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Abstract. We present a methodology to compute power series
expansions of parameterizations of invariant manifolds and of nor-
mal forms of vector fields near an equilibrium. The described semi-
numerical algorithms combine solving functional equations and au-
tomatic differentiation techniques.

As an application, we compute a high order approximation of
the 4D center manifold of the L1 Lagrangian equilibrium point
of the Earth-Moon system. We explore the range of validity of
this asymptotic expansions. We study the dynamics on the center
manifold.
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1. Introduction

Poincaré’s program for the global analysis of a dynamical system
starts by considering its fixed points and their invariant manifolds, and
normal form reduction is a fruitful technique. There is a vast theoret-
ical and applied literature dealing with questions about existence and
regularity of invariant manifolds and normal forms [9, 10, 37, 50]. Low
order expansions are adequate for local studies, including bifurcation
analysis [16] and some globalization algorithms of invariant manifolds
[47], but may be inadequate for accurate computations of center and
weak stable manifolds. High order expansions provide semilocal ap-
proximations of invariant manifolds, reliable in a large neighborhood
of the steady state [56]. On this issue, there is a long tradition in Celes-
tial Mechanics, the field that inspired Poincaré, in developing specific
software for manipulating multivariate series expansions [24]. Notable
recent examples of algebraic manipulators are TRIP [1, 29], Piranha
[2, 18], and Jorba’s public domain software [3]. Since coefficients of
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power series expansions are (normalized) derivatives, it is natural to
consider methods of Automatic Differentiation (AD). AD is a set of
techniques based on the mechanical application of the chain rule to
obtain derivatives of a function given as a computer program [4] (see
[36] for a survey of the state-of-the-art of AD.) A number of AD tools
[4] are being used in studies of dynamical systems, such as ADOL-C,
[5, 34, 38, 48], COSY INFINITY [6, 15, 49], or C-XSC [7]. A main point
is how to use and extend these techniques for problems involving high
order derivatives.

In this paper, we present a new methodology to numerically compute
the coefficients of high order power series expansions of parameteriza-
tions of invariant manifolds and normal form transformations around a
fixed point of an elementary vector field, i.e. built from a finite number
of arithmetic operations and basic functions such as constants, powers,
exponentials, logarithms, trigonometric functions and their inverses, or
elliptic functions. Most of what is explained in this paper can also be
applied to the discrete time case, that is, for maps near a fixed point.

The methodology is rooted in the parameterization method of Cabré,
Fontich and de la Llave [23] and the semi-numerical algorithms pro-
posed by Simó [59], whose strategies go back to Poincaré. Under the
umbrella of the parameterization method we place different strategies
or styles [50] of parameterizations of invariant manifolds and their cor-
responding dynamics, including normal forms and the graph transform.
The implementation of the method is based on on-line algorithms for
manipulating power series, computing the terms of the series in increas-
ing order.

Our approach to AD consists in a new and very simple generalization
to multivariate power series of the well-known recurrence formulas for
composition of univariate power series with elementary functions [46].
Several extensions to the multivariate case have been considered in
the literature, see e.g. the review in [53]. Apart from its simplicity,
our formulation matches with invariant manifolds and normal form
computations [40].

We have developed our own C software to manipulate (truncated)
multivariate dense power series, implementing AD with the on-line al-
gorithms. The implementation benefits from the property of recur-
siveness, making the software potentially applicable for any number of
variables and any degree of the polynomials. We note that general pur-
pose manipulators, like Mathematica or Maple, are not adequate for
high order computations with multivariate power series or for the kind
of problems involving massive computations addressed in this paper.
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As an application, we compute a high order polynomial approxima-
tion of the center manifold of the L1 Lagrange equilibrium point of the
Earth-Moon system, in the context of the (spatial) Restricted Three
Body Problem (RTBP). This manifold has been computed in several
works using partial normal forms with the Lie series method [43, 56],
and has applications in spacecraft dynamics [31, 32] and in molecular
dynamics [27, 63]. Instead of using partial normal forms that involve
6-variate power series, we compute the center manifold using 4-variate
power series, an approach that has been used recently in a very similar
model in [26] (see [39] for center manifold computations in maps). The
reduction of the dimension of the problem, the use of AD methods with
on-line recurrence formulas and an efficient implementation of the alge-
braic manipulator reduces both execution time and memory space by
several orders of magnitude compared to standard methods. We also
reach high order approximations (e.g. order 60) without difficulty in a
few minutes. These power series are asymptotic expansions that pro-
vide quite sharp approximations of the center manifold in a relatively
large neighborhood around the origin. The growth of the coefficients
of the expansions give insight into the range of validity of the approx-
imations [58]. Following [30, 31, 44, 60] we analyze the dynamics on
the center manifold for different energy levels.

Organization of the paper. In Section 2 we present the AD meth-
ods based on on-line algorithms of manipulation of multivariate power
series. Section 3 is devoted to the algorithms used to solve the func-
tional equations to compute invariant manifolds and normal forms. We
also evaluate their cost. The illustrative example, the computation of
the invariant manifolds in the RTBP, is documented in Section 4. Some
details of the implementation and benchmarks of the software package
are described in Appendix A.

Benchmarks. We have compiled and run our codes on several ma-
chines, including three Macs, several Linux PC’s, and a cluster system
of 46 Sun Fire V20z servers (each of them with two 2.2Ghz AMD
Opteron processors, 4 GB of RAM) running under Linux. The results
reported in this paper correspond to three Mac machines, that we call
Mac I (laptop MacBook Pro 15”; Processor: 2.16 GHz Intel Core Duo,
2 MB L2 Cache; Memory: 2 GB 667 MHz DDR2 SDRAM), Mac II
(desktop iMac; 2 GHz Intel Core Due, 4MB L2 Cache; Memory: 1
GB 667 MHz DDR2 SDRAM) and Mac III (desktop iMac; 2.8 GHz
Intel Core 2 Due, 6 MB L2 Cache; Memory: 4 GB 800 MHz DDR2
SDRAM). Mac I and Mac II run under MAC OS X 10.4.1 (Tiger), and
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the codes are compiled with gcc 4.0.1. Mac III run under Mac OS X
10.6.2 (Leopard), and the codes are compiled with gcc 4.2.1.
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comments in reviewing several versions of the paper. Special thanks
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2. Multivariate power series

In this section we establish the notation and definitions related with
multivariate power series. We introduce on-line formulas to compute
compositions of power series with elementary functions. These for-
mulas are among the keys for designing general purpose algorithms for
computing power series expansions as solutions of functional equations,
described in Section 3.

2.1. The algebra of power series. For K = R or K = C, a (real or
complex) power series in the variables x = (x1, . . . , xd) with coefficients
in K is an element of the commutative algebra K[[x]] = K[[x1, . . . , xd]],
whose elements are of the form

(1) f(x) =
∞∑
k=0

fk(x) ,

where each fk(x) is a homogeneous polynomial of order k,

fk(x) =
∑

m1+···+md=k

fm1,...,mdx
m1
1 . . . xmdd =

∑
|m|=k

fmx
m ,

where in the latter we use the standard multi-index notation and |m|
denotes the `1-norm of the multi-index m ∈ Nd.

The algebraic operations in K[[x]] are defined as follows. The scalar
multiplication and addition in K[[x]] are defined coefficient-wise. The
product p(x) = f(x)g(x) of two power series is provided by the convo-
lution formula

pk(x) =
k∑
j=0

fj(x)gk−j(x) .

Assuming that g0 is invertible, the division of the two power series,
d(x) = a(x)/b(x), is performed recursively by using the iteration

dk(x) =
1

b0

(
ak(x)−

k−1∑
j=0

dj(x)bk−j(x)

)
.

For k ≥ 0, the kth truncation of f(x) is the polynomial f≤k(x) =∑k
i=0 fi(x). We will also use the obvious notations f<k(x) and f>k(x).

Algebraic operations extend naturally to the set of kth truncated power
series, which constitute a quotient algebra of finite dimension

(2) nd(k) =

(
d+ k

d

)
∼ 1

d!
kd ,

where ak ∼ bk means that lim
k→∞

akb
−1
k = 1.
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2.2. A working definition of algorithmic complexity. The trun-
cated product of two power series using the convolution formula in-
volves products of homogeneous polynomials. In computing the multi-
plication of each pair of monomials we perform the following three-step
operation: address the product of monomials, multiply the two numer-
ical coefficients, add the result to the current address. The cost of an
algorithm is its number of operations.

In particular, the cost of the kth truncated product of two d-variate
series, using (naively) the convolution formula, is

(3) pd(k) =

(
2d+ k

2d

)
∼ 1

(2d)!
k2d ∼ d!2

(2d)!
nd(k)2 .

Many functions for manipulating power series are built in the convolu-
tion. Other operations, such as scalar multiplication or addition, have
negligible cost compared with the cost of the convolution. We consider
the following definition of complexity.

Definition 2.1. Given an algorithm that computes kth truncated d-
variate power series, let cd(k) be its cost, i.e. the number of opera-
tions. We say that the algorithm is efficient if cd(k) ∼ Cpd(k) for some
constant C independent of k, where pd(k) denotes the cost of the kth
truncated product. We refer to C as the complexity of the algorithm.

Remark 2.2. We have not explored the application of fast convolution
algorithms such us the Karatsuba and Toom-Cook methods [21, 25, 45,
55, 62], or FFT methods [22, 46, 54, 64, 65], including multi-evaluation
and interpolation techniques and reduction to univariate series [19, 35,
52]. These fast methods seem to be advantageous from very high orders
(say, higher than 1000), which are not usual in dynamical systems
computations. Moreover, their numerical stability is unclear. As far
as we know, the influence of the choice of the interpolation nodes on
round-off errors has not been studied to date.

Remark 2.3. In the complexity analysis of algorithms, besides count-
ing the number of arithmetic operations among coefficients, one must
also consider the addressing schemes to locate and save the coeffi-
cients in the data structure encoding polynomials. Efficient addressing
schemes are crucial in the implementation of algebraic manipulators.

Remark 2.4. Efficient implementation of algorithms is an important
issue. For instance, while the Mathematica implementation of an FFT
method can take hours to compute the truncated exponential up to
order 10 of a 10-variate power series on a PC [52], our C programs
based on the naive algorithm take less than 0.20 seconds on a slightly
old laptop (Mac I).
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2.3. Elementary functions of power series. The composition of
power series is the bottleneck in many algorithms. For instance, if ϕ =
ϕ(z) is a univariate function and f(x) is a power series, one can compute
the composition ϕ(f(x)) by Taylor expanding ϕ around f0 = f(0),
computing the powers of f(x) and adding up. However, if the function
ϕ is elementary, then it is much better to derive specific formulae. On-
line algorithms for univariate power series go back to Euler [46], and
here we generalize them for the multivariate case. A useful concept is
that of radial derivative.

The radial derivative of a function f(x) is defined by

Rf(x) = gradf(x) · x =
d∑
i=1

∂f

∂xi
(x) xi .

For an homogeneous function of order k, fk, Rfk(x) = kf(x), which
is the famous Euler’s identity. A simple observation is the following
chain rule:

(4) R(ϕ◦f)(x) = ϕ′(f(x)) Rf(x) .

Therefore, if ϕ satisfies an elementary differential equation, we can use
(4) to obtain a recurrence for the homogeneous terms gk of the power
series g = ϕ◦f , starting from the seed g0 = ϕ(f0).

Example 2.5. Consider the case ϕ(z) = zα, the power function of
exponent α 6= 0 (in Section 4, α = −3

2
or α = 2). Since zϕ′(z) = αϕ(z),

the composition p(x) = (f(x))α satisfies the identity f(x)Rp(x) =
αp(x)Rf(x). We then obtain the recurrence

pk(x) =
1

k f0

k−1∑
j=0

(α(k − j)− j) fk−j(x)pj(x) ,

starting with p0 = fα0 (we assume f0 6= 0). Observe that the complexity
of the computation is 1. Special cases are α = 2 and α = 1

2
, whose

complexities are ∼ 1
2
.

Extending the arguments, one can derive efficient formulas for the
composition of multivariate power series with any univariate elemen-
tary function ϕ that satisfies an elementary differential equation ϕ′(z) =
F (ϕ(z)) (in this recursive definition we start with the constants and
arithmetic operations as the most elementary functions). Table 1 sum-
marizes several examples, indicating the corresponding complexities
(C). Analogous formulas for univariate power series have appeared in
many places, see e.g. [20].
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Remark 2.6. From the existing extensions of the composition formu-
las to the multivariate case, see e.g. [53] for a review and [8] for some
C-XSC implementations in the 2-variate case, our approach is closer to
the formulation in [14, 51]. In a way, these recurrence algorithms are
derived from the chain rule ∇(ϕ◦f)(x) = ϕ′(f(x))∇f(x) involving the
gradient operator, while our recurrence algorithms are derived from
the chain rule R(ϕ ◦ f)(x) = ϕ′(f(x))Rf(x) for the radial derivative
operator. Hence, instead of solving Pfaffian systems ∇g(x) = H(x),
our method is based on solving first-order linear PDEs Rg(x) = h(x)
around the singularity 0. This is the key to the simplicity of our for-
mulation.

2.4. A working definition of complexity of a function. Moti-
vated by the on-line formulas introduced in the previous section, we
consider the following working definition.

Definition 2.7. A function is elementary if it can be evaluated through
a sequence of finite length of steps, where one step is an expression
involving either a constant, or an arithmetic operation or a univariate
elementary function (see Table 1 for some examples). The complexity
of the elementary function is the sum of the complexities of the steps.

In the computation of the composition of an elementary function
with power series, the computer memory space needed to store the
intermediate steps has to do with its length, while the execution time
is related to its complexity. Both definitions of the length and the
complexity depend on how the equations of the model are written.

3. Computation of invariant manifolds and normal forms

In this section, under the umbrella of the parameterization method
[23], we overview several algorithms for computing power series expan-
sions of invariant manifolds and normal forms of fixed points of vector
fields [9, 10, 17, 23, 37, 50, 59].

We estimate the complexity of the derived algorithms, specifically
for elementary vector fields.

3.1. The invariance equation. Let z∗ ∈ Rn be a fixed point of an
n-dimensional vector field

(5) ż = F (z) ,

where z = (z1, . . . , zn). Let E ⊂ Rn be a d-dimensional subspace,
invariant for the linearization v̇ = DF (z∗)v around z∗. The goal is
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elementary function k ≥ 1 C

p(x) = af(x)± bg(x) pk(x) = afk(x)± bgk(x) 0

p(x) = f(x)g(x) pk(x) =

kX
j=0

fj(x)gk−j(x) 1

d(x) = f(x)/g(x) dk(x) =
1

g0

0@fk(x)−
k−1X
j=0

dj(x)gk−j(x)

1A 1

p(x) = (f(x))α pk(x) =
1

k f0

k−1X
j=0

(α(k − j)− j) fk−j(x)pj(x) 1

p(x) = (f(x))2 pk(x) =

8>>>>><>>>>>:
2

(k−1)/2X
j=0

fj(x)fk−j(x), if k odd

2

(k−2)/2X
j=0

fj(x)fk−j(x) + (fk/2(x))2, if k even

0.5

p(x) = (f(x))
1
2 pk(x) =

8>>>>><>>>>>:
1

2p0

0@fk(x)− 2

(k−1)/2X
j=1

pj(x)pk−j(x)

1A , if k odd

1

2p0

0@fk(x)− 2

(k−2)/2X
j=1

pj(x)pk−j(x)− (pk/2(x))2

1A , if k even

0.5

e(x) = exp(f(x)) ek(x) =
1

k

k−1X
j=0

(k − j)fk−j(x)ej(x) 1

l(x) = log(f(x)) lk(x) =
1

f0

0@fk(x)−
1

k

k−1X
j=1

jfk−j(x)lj(x)

1A 1

s(x) = sin(f(x)) sk(x) =
1

k

k−1X
j=0

(k − j)fk−j(x)cj(x)

c(x) = cos(f(x)) ck(x) = −
1

k

k−1X
j=0

(k − j)fk−j(x)sj(x) 2

t(x) = tan(f(x)) tk(x) = fk(x) +
1

k

k−1X
j=0

(k − j)fk−j(x)pj(x)

p(x) = (t(x))2 1.5

a(x) = arcsin(f(x)) ak(x) =
1q

1− f2
0

0@fk(x)−
1

k

k−1X
j=1

jrk−j(x)aj(x)

1A
s(x) = (f(x))2

r(x) =
p

1− s(x) 2

a(x) = arctan(f(x)) ak(x) =
1

1 + f2
0

0@fk(x)−
1

k

k−1X
j=1

jrk−j(x)aj(x)

1A
r(x) = 1 + (f(x))2 1.5

s(x) = sn(f(x)) sk(x) =
1

k

k−1X
j=0

bk−j(x)dj(x)

c(x) = cn(f(x)) ck(x) = −
1

k

k−1X
j=0

ak−j(x)dj(x)

d(x) = dn(f(x)) dk(x) = −
κ2

k

k−1X
j=0

ak−j(x)cj(x)

elliptic modulus: κ

a(x) = s(x)Rf(x) ak(x) =

k−1X
j=0

(k − j)fk−j(x)sj(x)

b(x) = c(x)Rf(x) bk(x) =

k−1X
j=0

(k − j)fk−j(x)cj(x) 5

Table 1. Some elementary functions of power series,
and their complexities (C).
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to compute a high order approximation of a d-dimensional invariant
manifold W for (5), tangent to E at z∗.

In the light of the parameterization method [23], we look for a pa-
rameterization z = W (s) of the invariant manifold W , where s =
(s1, . . . , sd) are the coordinates and W (0) = z∗, and for the dynamics
on the manifold, which is described by a vector field ṡ = f(s), with
f(0) = 0. The invariance equation is given by

(6) F (W (s)) = DW (s)f(s) .

Using an affine transformation, we may assume that z∗ = 0 and
E = {(x, 0) ∈ Rn | x ∈ Rd}. We split coordinates in z = (x, y),
with x = (z1, . . . , zd) and y = (zd+1, . . . , zn). Then, F (0) = 0 and the
linearization is block triangular, i.e.

DF (0) =

(
A1 B
0 A2

)
.

In what follows, we use notations such as vx or vy to represent the
projections of v ∈ Rn in x or y components respectively. Note that,
since matrices A1 and A2 come from a real vector field (and a real
invariant subspace E), then the corresponding spectra are invariant
under complex conjugation.

We consider Equation (6) formally in terms of power series for the
unknowns W and f . Hence, we split the parameterization W in x, y
components, as

(7)

W x(s) = s+
∑
k≥2

W x
k (s) ,

W y(s) =
∑
k≥2

W y
k (s) .

The reduced vector field is

(8) f(s) = A1s+
∑
k≥2

fk(s) .

First order terms of W and f are known, and our aim is to find higher
order terms. The standard procedure to solve (formally) (6) is by sub-
stituting the expansions (7) and (8) in (6), and find their homogeneous
terms in increasing order.

3.2. The homological equations. At each step k > 1, the goal is
to compute Wk(s) and fk(s), assuming that W<k(s) and f<k(s) have
already been computed in previous steps. Moreover, the left hand side
of (6) up to order k − 1, that is [F (W<k(s))]<k, is also known. We
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first compute [F (W<k(s))]k. Then, the order-k terms in the invariance
equation (6) lead us to the order-k homological equation for Wk and fk,
(9)
DWk(s)A1s−AWk(s)+DW1(s)fk(s) = [F (W<k(s))]k−[DW<k(s)f<k(s)]k ,

which is equivalent to

DW x
k (s)A1s− A1W

x
k (s) + fk(s) = Rx

k(s) +BW y
k (s) ,(10)

DW y
k (s)A1s− A2W

y
k (s) = Ry

k(s) ,(11)

where Rk(s) denotes the right hand side of (9).
After solving (9) (see below), we compute [F (W≤k(s))]≤k just adding

AWk(s) to [F (W<k(s))]≤k. This is necessary to start the next step of
the on-line method.

Solution of the homological equation depends on the eigenvalues of
A1 (which we refer to as internal eigenvalues) and the eigenvalues of
A2. For the sake of simplicity, we analyze the solution of (9) under
the generic assumption that the block-diagonal matrices A1 and A2

can be reduced to diagonal form, possibly with complex entries: A1 =
diag(λ1, . . . , λd) and A2 = diag(λd+1, . . . , λn). In the following, Rew
denotes the real part of a complex number w.

3.2.1. Cross resonances. Equation (11) is written, for i = d+ 1, . . . , n:

λ1
∂W i

k

∂s1

s1 + · · ·+ λd
∂W i

k

∂sd
sd − λiW i

k(s) = Ri
k(s) .

These equations are diagonal in the coefficients W i
m of the homogeneous

polynomials W i
k(s). In particular, for i = d+1, . . . , n, |m| = k:

(12) (λx ·m− λi)W i
m = Ri

m.

The pairs (m, i) ∈ Nd × {d + 1, . . . , n} with |m| ≥ 2 such that
λx ·m− λi = 0 are cross resonances [9], and are obstructions to solve
the homological equation (11) (and to the existence of the invariant
manifold). Hence, if there are no cross resonances, for i = d+1, . . . , n,
|m| = k:

W i
m =

Ri
m

λx ·m− λi
.

The non-existence of crossing resonances depends on the way the
eigenvalues are grouped. Notable examples are the following groupings
(where 1 ≤ i ≤ d and d+ 1 ≤ j ≤ n): Reλi < 0,Reλj ≥ 0 (stable man-
ifold); Reλi > 0,Reλj ≤ 0 (unstable manifold); Reλi = 0,Reλj 6= 0
(center manifold); Reλi ≤ 0,Reλj > 0 (center-stable manifold); Reλi ≥
0,Reλj < 0 (center-unstable manifold).
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3.2.2. Internal resonances. Equation (10) is written, for i = 1, . . . , d:

(13) λ1
∂W i

k

∂s1

s1 + · · ·+ λd
∂W i

k

∂sd
sd − λiW i

k(s) + f ik(s) = R̂i
k(s) ,

where R̂x
k(s) = Rx

k(s) + BW y
k (s). This is equivalent to split the equa-

tions for i = 1, . . . , d, |m| = k:

(14) (λx ·m− λi)W i
m + f im = R̂i

m.

The pairs (m, i) ∈ Nd×{1, . . . , d} with |m| ≥ 2 such that λx·m−λi =
0 are internal resonances, and are obstructions to the linearization of
the dynamics on the manifold. A main difference of (10) with respect
to (11) is that, even in presence of resonances, Equation (14) can be
solved by adjusting f im.

3.3. Styles of parameterizations. Since solutions to (10) are not
unique, one can adapt the style of the parameterization to the problem
at hand. In the following, we consider several examples.

3.3.1. The normal form style. This style consists in simplifying the
equations of the dynamics on the manifold, finding a normal form for
f . To this end, for i = 1, . . . , d, |m| = k:

(15)

f im = 0 , W i
m =

R̂i
m

λx ·m− λi
, if λx ·m− λi 6= 0;

f im = R̂i
m , W i

m = 0, if λx ·m− λi = 0.

The case d = n corresponds to computing the normal form f of the
vector field F .

The normal form style is especially well suited for cases in which
there is a finite number of internal resonances, and hence dynamics
on the manifold can be described by a polynomial vector field. This
happens when the d internal eigenvalues belong to the Poincaré do-
main [11] (the internal eigenvalues all lie either in the left half-plane
or in the right half-plane). This is the case of the stable and unstable
manifolds, but one can also consider manifolds associated to subsets
of stable eigenvalues (with negative real part). A special case is the
strong or fast stable manifold, which is associated with eigenvalues of
“most negative” real part. An important case is the weak or slow sta-
ble manifold (if there are no cross resonances), which corresponds to
internal eigenvalues of “less negative” real part, which dominates the
dynamics inside the stable manifold. See [23, 41] for rigorous results on
the existence, uniqueness and regularity of these invariant manifolds,
and [33] for some numerical computations of stable, fast stable and
slow manifolds in maps.
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3.3.2. The graph style. This style consists in simplifying the parameter-
ization of the manifold rather than its dynamics, by taking W x

k (s) = 0

and fk(s) = R̂x
k(s). Hence, the (local) invariant manifold is a graph

y = ψ(x) (i.e. W x(s) = s and W y(s) = ψ(s), and the dynamics is
given by ẋ = f(x) = F (x, ψ(x)). Hence, for i = 1, . . . , d, |m| = k:

(16) f im = R̂i
m , W i

m = 0.

The graph style is feasible for all the types of invariant manifolds, but
it is not adapted to the shape of the manifold (that could be folded).
It is adequate for parameterizing a center manifold, since there are
infinitely many internal resonances. Although power series expansions
of center manifolds may be divergent [9], they may provide good local
approximations. See Section 4.

3.3.3. The subgraph style. In this style, we solve the homological equa-
tions to reveal the existence of an invariant submanifold of dimension
d̂ < d, represented as a graph, inside the manifold of dimension d. Let

us denote λ̂x = (λ1, . . . , λd̂), and m̂ ∈ Nd̂. We assume there are no

cross resonances of the d̂ eigenvalues: for i = d̂+1, . . . , d and |m̂| ≥ 2,

λ̂x · m̂− λi 6= 0.
Then, a suitable choice for the parameterization is, for i = 1, . . . , d,

|m| = k:

(17)

f
i
m = 0 , W i

m =
R̂i
m

λ̂x · m̂− λi
, if i > d̂, m = (m̂, 0);

f im = R̂i
m , W i

m = 0, otherwise.

This style is adequate, for instance, for the parameterization of a
center stable manifold, in which the center-manifold is a subgraph.

3.3.4. Further comments. Besides the styles described above, there are
many other possibilities. For instance, one can consider using partial
normal form styles to show the existence of invariant submanifolds
by reducing to partial normal forms. The simplest example of this
methodology is the mentioned subgraph style.

We emphasize that the lack of uniqueness of the solutions of the
invariance equations is suitable for controlling the numerical stability
of the computations. A first choice is the length of the eigenvectors
generating the linear approximation (which is equivalent to scale the
parameterization), which control the growth of the coefficients in the
expansions. In normal form styles, one can save the nearly resonant
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coefficients to avoid small divisors when solving the homological equa-
tions.

If matrices A1, A2 are not diagonal the given non-resonance condi-
tions are the same but the solution of the homological equations is
harder [17, 50]. Using their triangular reduced forms (e.g. the Jordan
normal form), the homological equations are also triangular.

A more refined normal form style can be designed for the case of a 1D
parabolic manifold (a 1D center manifold associated to an eigenvalue
1), finding a polynomial normal form for the dynamics [12, 13].

3.4. Complexity. Let F be an n-dimensional elementary vector field
F of complexity c. We estimate the computational cost of solving the
invariance equation (6) up to order k, for a parameterization W of a
d-dimensional manifold and the corresponding reduced d-dimensional
vector field f .

The computational effort of the step k of the on-line algorithm is
concentrated in obtaining the right hand side of the kth order equation
(9), because the cost of solving the homological equations (especially
in the diagonal case) is negligible. The computation of [F (W<k(s))]k
involves the application of the on-line composition formulas (at order
k) of the elementary functions giving F , which has a fix complexity c.
In order to avoid extra computations, one has to save all the interme-
diate steps in the compositions with F . Note that the complexity of
computing [DW<k(s)f<k(s)]k =

∑k−1
l=2 DWk−l+1(s)fl(s) is related with

the style of the parameterization.
Summarizing, the computational cost for solving (6) up to order k is

wn,d(k) ∼ Cpd(k),

where the complexity C depends only on the dimensions n, d, the
complexity of the vector field, c, and the style of the parameterization.
Note that C ≤ (c + nd). In the normal form style, with polynomial
normal form, C = c. In the graph style, C = c+ (n− d)d.

3.5. Error estimates. After the computation of an (order k) approx-
imation of the parameterization z = W (s) of the invariant manifold
of the vector field ż = F (z), and the corresponding reduced vector
field, ṡ = f(s), numerical tests have to be performed in order to esti-
mate the quality of the approximation. In particular, a fundamental
domain in which the approximation is sufficiently accurate has to be
determined. For invariant manifolds in which the dynamics is asymp-
totically stable (in forward or backward time), this is the first step to
globalize the manifold, that is to extend the manifold far away from
the equilibrium point [47], propagating the fundamental domain. But
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for invariant manifolds in which the dynamics is “practically” stable
(like the center manifolds in Hamiltonian dynamics), the dynamics re-
mains in this fundamental domain and has to be analyzed. In order
to numerically estimate a fundamental domain, several error estimates
can be considered.

From an initial condition z0 = W (s0) on the (approximate) invariant
manifold, let z(t) and s(t) be the (numerical) solutions of the Cauchy
problems ż = F (z), z(0) = z0 and ṡ = f(s), s(0) = s0, respectively.
We define the error in the invariance equation as

eI(t, s0) = ||F (W (s(t)))−DW (s(t))f(s(t))||∞ ,

and the error in the orbit as

eO(t, s0) = ||W (s(t))− z(t)||∞.

For a small lapse of time, and if s0 is sufficiently close to 0, eI(t, s0)
and eO(t, s0) should be proportional to |s0|k+1.

If the vector field ż = F (z) has a first integral H, one can also
consider the error in the (reduced) first integral H ◦W as

eH(t, s0) = |H(W (s(t)))−H(W (s(0)))|.

Observe that testing the preservation of the first integral is a test for
the numerical integrator as well as for the quality of the approximation
of the invariant object.

4. An example: center manifolds in the Restricted Three
Body Problem

In this section, we present an example of computation of invariant
manifold: the center manifold of a collinear equilibrium point in the
Restricted Three Body Problem (RTBP). The computation of this 4D
manifold in a 6D phase space has been performed e.g. in [30, 31, 44,
43, 60]. We reach higher orders that let us to explore the asymptotic
character of the expansions and their range of validity.

Our aim is also to show how our methodology can perform very
efficient computations of invariant manifolds in this and many other
non-trivial problems.

4.1. A brief description of the RTBP. The RTBP deals with the
motion of a massless body under the gravitational forces induced by
two punctual masses, usually called primaries, which evolve in circular
Keplerian motion around the center of mass. In a rotating frame,
and in suitable non-dimensional units, the equations of the motion
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of the massless body are determined by the three degrees of freedom
Hamiltonian

(18) H(x, y, z, px, py, pz) =
1

2
(p2
x + p2

y + p2
z) + y px − x py + V (x, y, z)

where V is the gravitational potential

(19) V (x, y, z) = −1− µ
r1

− µ

r2

.

In (19), r1 =
√

(x− µ)2 + y2 + z2 and r2 =
√

(x− µ+ 1)2 + y2 + z2

are the distances of the body to the primaries, whose masses are 1− µ
and µ ∈]0, 1

2
], respectively. Hence, the equations of motion are:

(20)

ẋ = px + y , ṗx = py −
1− µ
r3

1

(x− µ)− µ

r3
2

(x− µ+ 1) ,

ẏ = py − x , ṗy = −px −
1− µ
r3

1

y − µ

r3
2

y ,

ż = pz , ṗz = − 1− µ
r3

1

z − µ

r3
2

z .

The equations of the RTBP are elementary. In fact, the complexity of
the vector field (20) is c = 6.5.

4.2. Computation of center manifolds in the RTBP. We have
applied our algorithms to compute the expansions of the invariant man-
ifolds of the equilibrium points of the RTBP. Once one has chosen the
mass parameter µ, the equilibrium point Lp (p = 1, 2, 3, 4, 5), the di-
mension of the manifold d, the order of its expansion k, and the (com-
plex) eigenvectors expanding the tangent space of the manifold at the
equilibrium point (the natural choice is to take their lengths as the
distance of the equilibrium point to the nearest primary), the com-
puter program produces the coefficients of the (complex) power series
expansions of the graph style parameterization of the manifold, W . If
(s1, s2, s3, s4, s5, s6) are coordinates in which the linearization around
Lp takes diagonal form, then the parameterization W (s1, s2, s3, s4) rep-
resents a graph of (s5, s6) with respect to (s1, s2, s3, s4).

The mass parameter we have chosen to illustrate the methodology
is µ ' 0.0121506, which corresponds to the Earth-Moon system. The
collinear points L1, L2, L3 are of center×center×saddle type, that is
there are two couples of complex eigenvalues of modulus 1, and one
couple of real eigenvalues. Hence, collinear points have attached 4D
center manifolds, 5D center stable and center unstable manifolds and
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Mac I Mac II Mac III

k product graph ratio product graph ratio product graph ratio

10 4.352e−04 7.790e−03 17.90 3.841e−04 6.090e−03 15.86 2.617e−04 4.716e−03 18.02
20 2.533e−02 4.048e−01 15.98 2.054e−02 3.039e−01 14.80 1.428e−02 2.329e−01 16.30
30 3.582e−01 5.497e+00 15.34 2.650e−01 3.819e+00 14.41 1.888e−01 2.988e+00 15.83
40 2.590e+00 3.921e+01 15.14 1.813e+00 2.641e+01 14.57 1.308e+00 2.047e+01 15.66
50 1.259e+01 1.900e+02 15.09 8.500e+00 1.243e+02 14.62 6.192e+00 9.643e+01 15.57
60 4.708e+01 7.104e+02 15.08 3.104e+01 4.555e+02 14.67 2.274e+01 3.536e+02 15.55
70 1.460e+02 2.207e+03 15.12 9.481e+01 1.397e+03 14.73 6.974e+01 1.083e+03 15.53

Table 2. Benchmark of execution time (in seconds) for
computing the graph style parameterization of the center
manifold of the L1 point of the RTBP of the Earth-Moon
system.

k Lie series Graph transform Graph style + AD
8 0m 0.085s 0m 0.057s 0m 0.005s

16 0m 3.876s 0m 2.943s 0m 0.084s
24 2m 10.251s 1m 13.965s 0m 0.790s
32 33m 22.000s 14m 35.475s 0m 4.764s

Table 3. Comparison of several methods for cen-
ter manifold reduction. Results for Lie series and di-
rect graph transform have been taken from [26], which
were obtained with an Intel(R) Core(TM)2 Quad CPU
at 2.83GHz, similar to Mac III.

1D stable and unstable manifolds. The triangular points are linearly
stable, and will be not considered here.

From now on, we report the study of the center manifold of the L1

equilibrium point, whose energy is HL1 ' −1.594171. In Table 2 we
show some benchmarks of execution time. We include the ratio between
the total time of computation and the time of the truncated product of
complex power series (up to order k), observing that in all cases this is
relatively close to the theoretical (asymptotic) ratio (6.5+2∗4) = 14.5.

The center manifold has been computed in the literature by using
partial normal forms based on the Lie series method (see e.g. [31, 44,
43, 60]) and, more recently, using the Graph transform method [26].
We also consider automatic differentiation methods in the design of the
algorithms. See Table 3 for a benchmark of the speed using different
methodologies, for computations up to order 32.

4.3. Growth of the coefficients of the center manifold. Even
though the center manifold is not analytic, the coefficients of its power
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Figure 1. Mild growth of the coefficients (left) implies
quite sharp behavior of the asymptotic expansion (right).

series expansions can grow in a mild way [42], less than Gevrey. For
each k > 0, let `1(k) be the maximum of the `1 norms of the components
of the order-k term Wk in the graph style parameterization. Figure 1
reveals a growth like

(21) `1(k) ∼ `(k) = Aλk(log k)ck

where a = logA,b = log λ and c are estimated by

a = −1.25± 0.05 , b = −0.212± 0.008 , c = 0.252± 0.005

(fitting the norms from k = 10 to k = 70). Similar behavior is observed
in the growth of the coefficients of the expansions of the reduced vector
field.

Assume that, for δ small enough, the expansion of W (s) for |s|∞ ≤ δ
is asymptotic, that is:

(22) |W≤k(s)−W (s)|∞ ≤ `1(k + 1)δk+1 ∼ ε(δ, k) = `(k + 1)δk+1 .

Following [58], the best bound b(δ) for the error in the approximation
of W (s) by W≤k(s) in the box |s|∞ ≤ δ is obtained taking k = k(δ)
minimizing ε(δ, k). In the present case,

k(δ) =
1

e
exp

(
(λδ)−

1
c

)
− 1 ,

b(δ) = ε(δ, k(δ)) = A exp
(
−c(λδ)

1
c (k(δ) + 1)

)
.

Hence, the mild growth of the coefficients of the expansions explains the
behavior of the (best) error of the asymptotic approximation, observed
in Figure 1, right. This behavior is much sharper than the typical
exponentially small estimates arising from Gevrey expansions [58].
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Figure 2. Error estimates as a function of δ for dif-
ferent order of approximations (left), and best error es-
timates (in log-scale).

From the error bounds one can also give estimations of the validity
domains of the expansions, depending on both the order of the approx-
imations and the size of the domains. See Figure 2.

4.4. Dynamics on an energy level in the center manifold. Since
the present example is Hamiltonian, the 4D reduced vector field on the
center manifold, f , is Hamiltonian, with Hamiltonian H◦W (with re-
spect to the push forward of the symplectic form, that is the symplectic
form on the center manifold).

Since H◦W is a conserved quantity of the reduced vector field, the
standard practice [30, 43, 44, 60] is to study its dynamics by using
the Poincaré section trick on different Hamiltonian levels to obtain a
collection of 2D phase portraits. The Poincaré section is {z = 0},
which corresponds to s4 = 0 in the s = (s1, s2, s3, s4) coordinates of the
parameterization of the center manifold.

4.4.1. The boundary of the center manifold. The boundary of the in-
tersection of the 4D center manifold with the 5D Poincaré section in
a given 5D energy level H > HL1 in the 6D phase space is a closed
curve tangent to the vector field: a planar Lyapunov periodic orbit. It
is easy to continue planar Lyapunov orbits numerically with respect to
the energy H.

The error estimates for a planar Lyapunov orbit provide upper bounds
for the errors in the semi-local approximations for the points inside the
center manifold for the corresponding energy level. This is useful to
obtain estimates of the truncation order of the expansions to obtain
accurate approximations of orbits in the center manifold for such an
energy level.
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Figure 3. Errors for the planar Lyapunov orbit (H = −1.565)

Figures 3 shows, in logarithmic scale, the error estimates eI ,eO,eH
(see Section 3.5) for the planar Lyapunov orbit at the Hamiltonian
level H = −1.565, which is relatively far from the Hamiltonian level
HL1 ' −1.594171 of the L1 equilibrium point. The estimates have been
produced for different orders of the expansions of the center manifold
(from 10 to 60), in order to compare the quality of the expansions and
the numerical computations. We note that errors eI and eH fluctuate
with respect to time, and that orbital error eO is essentially increasing
in time, due to the hyperbolic directions, transversal to the center
manifold. Figure 3 also shows the estimated period T of the periodic
orbit, and the errors e1

PO and e2
PO in the return map on the manifold

and on the whole phase space, respectively.

4.4.2. Computation of Poincaré maps and their phase portraits. One
can obtain a global and synthetic view of the dynamics on the center
manifold in a given energy level H by computing orbits of the Poincaré
map. Two methods can be used: reduction and projection.

The method of reduction consists of computing the orbits along the
center manifold by numerically integrating the reduced vector field f ,
using e.g. a Runge-Kutta method. We have used a Runge-Kutta
method of order 7-8 with automatic step size control to obtain a local
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error of 10−15. At each step of the numerical integration method the
reduced vector field has to be evaluated at 13 different 4D points, hence
evaluating the power series giving f . These evaluations are computa-
tionally costly, and a single return map can be quite time-consuming,
depending on the energy level (and, hence, of the order of the expan-
sions). For instance, for H = −1.580, using expansions of order 20,
each return map takes less than one second. For H = −1.565, using
expansions of order 50, each return map takes around 45 s.

The method of projection is based on the fact that the computed
manifold is (approximately) invariant. Hence, once one has taken a
point in the Poincaré section, in the center manifold and in a given en-
ergy level, the return map is computed by integrating the full 6D vector
field. For the numerical integration, we have used a Taylor method of
order 18 with automatic step size control to obtain a local error of
10−15 [61]. Due to numerical instabilities produced by the hyperbolic
directions, the error estimates tend to grow. Hence, at each return map
we project the computed return point on the center manifold (and on
the same energy level). With this method, one computes hundreds of
iterations of the Poincaré map in a few seconds.

We use the method of reduction for a few orbits, in order to esti-
mate error bounds and the quality of the approximations, and we use
the method of projection in the simulations. If necessary, computing
several iterations of the Poincaré map for a collection of points in the
center manifold can be paralleled in a cluster of computers. Figures 4,
5 show the phase portraits of the Poincaré maps on different energy
levels on the center manifold, both in center manifold coordinates (left)
and synodic coordinates (right), in which we also scale the size of the
Moon. The figures visualize the typical features of 2D area preserv-
ing maps: fixed points and periodic points (corresponding to periodic
orbits), islands of invariant curves (corresponding to invariant tori),
separatrizes, etc. The boundaries of the domains correspond to planar
Lyapunov orbits, and the fixed point in the s2 = 0 (or y = 0) axis
correspond to vertical Lyapunov orbits.

In Figure 4, the energy levels are relatively close to HL1 . For H =
−1.590 the planar Lyapunov orbit is linearly stable (on the center man-
ifold), but it has bifurcated into an unstable planar Lyapunov periodic
orbit for H = −1.580, giving rise to two linearly stable halo orbits (on
the center manifold). The invariant curves around the vertical Lya-
punov orbit and the halo orbits correspond to the Lissajous orbits and
the quasi-halo orbits respectively.
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Figure 4. Dynamics on the center manifold, close to L1

In Figure 5, the energy levels are close to the boundaries of the
validity region of the expansions. See Figure 3 for estimates of the
errors in the boundary of the center manifold, for H = −1.565.

4.4.3. Numerical chaos. In the examples described above, the measure
of the chaotic sea (the complement of the regular motion) is very small.
One can argue that the measure of the chaotic sea increases when the
energy level increases. But then numerical errors also increase and the
simulations are not reliable in some parts of the validity domain.

For instance, Figure 6 shows the computed phase portraits of the
dynamics for energy values H = −1.555 and H = −1.545. Computa-
tions of orbits close to vertical and halo orbits are quite reliable. But
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Figure 5. Dynamics on the center manifold, far to L1

a non-reliable large chaotic sea is also observed. We note that orbits
far away from the vertical and halo orbits travel relatively close to the
planar Lyapunov orbit, the boundary of the center manifold in which
the accuracy of the approximations is worst.

4.5. Periodic orbits. From the phase portraits of the Poincaré maps,
one obtains insight on the dynamics on the center manifold. This
information can be e.g. used to compute periodic orbits inside the
center manifold. Here we only report some computations of periodic
orbits for H = −1.565.

Figures 7,8 show, in logarithmic scale, the error estimates eI ,eO,eH
for the vertical Lyapunov and halo orbits respectively (see Figure 3 for
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Figure 6. Numerical chaotic seas on the center manifold

the planar Lyapunov orbit). The initial conditions have been computed
by using the Newton method from initial estimates obtained from the
phase portrait in Figure 9, (a). These orbits are drawn in Figure 9,
(b). One can also perform similar computations for higher periods, for
periodic orbits around the vertical Lyapunov orbit, (see Figure 9, (c))
and around the halo orbit (see Figure 9, (d)).

Appendix A. On two implementations of algebraic
manipulators of dense multivariate power

series

In this section we briefly explain some details of our algebraic ma-
nipulator of dense multivariate power series using AD tools based on
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Figure 7. Errors for the vertical Lyapunov orbit (H = −1.565)
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Figure 8. Errors for the halo orbits (H = −1.565)
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Figure 9. Periodic orbits on the energy level H = −1.565.

on-line formulas. This is the core of the programs to compute invari-
ant manifolds and normal forms. We have implemented the algorithms
using the C programming language.

A.1. Data structures. The basis of the computer algebra system is
the data structure homog to encode homogeneous polynomials. The
data structure serie for truncated power series is just the collection
of homogeneous polynomials. The scalar coefficients are either double
precision real numbers (double type, of 8 bytes) or double precision
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complex numbers (complex type, of 16 bytes), but it is not difficult to
change to other types.

We have implemented two versions of the computer algebra system,
both of them based on the following recursive scheme: a homogeneous
polynomial fk(x) of d variables x = (x1, . . . , xd) of order k is a combi-
nation of (k+1) homogeneous polynomials of the first (d−1) variables
x̂ = (x1, . . . , xd−1) of degrees k, k − 1, . . . , 0:

(23) fk(x) = fdk (x̂) + fdk−1(x̂)xd + · · ·+ fd0 (x̂)xkd .

In the vector implementation, the data structure homog is a tuple
(or structure, in C terminology) whose fields are two bytes giving the
number of variables (d) and the degree (k), respectively, and a pointer
addressing the array storing the coefficients of the homogeneous poly-
nomial. The coefficients are ordered in a graded reverse lexicographical
ordering of the exponents of the monomials (m1, . . . ,md), that corre-
sponds to the recursive scheme (23). For example, the 10 coefficients
of a homogenous 3-variate polynomial of order 3 are ordered following
the scheme: x3

1, x
2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x3, x

2
2x3, x1x

2
3, x2x

2
3, x

3
3.

In the tree implementation, the data structure homog includes as
a field a pointer addressing an array whose components are of data
type homog, corresponding to the (k + 1) homogeneous (d− 1)-variate
polynomials in (23). This approach simplifies the combinatorics of
positioning the coefficients of a homogeneous polynomial that is used
in the vector implementation, simplifying the codes. On the other side,
the computer memory to store the coefficients increases in a factor
about 5 with respect to the vector implementation.

Thanks to the recursive scheme, we avoid the use of indexing routines
to locate coefficients, an approach that is used e.g. in [1, 57, 3], and
the symbolic manipulator works for any number of variables and any
truncation degree.

A.2. Benchmark for the truncated product. We report here the
benchmarks for the truncated product of multivariate power series.

Table 4 shows several execution times in machine Mac I for comput-
ing the truncated product of polynomials of 4 and 6 variables, whose
coefficients are double type. The speed is measured in megaflops, i.e.
millions of operations per second. We define the overhead as the quo-
tient between the execution time of the truncated product and the
execution time of computing p = pd(k) operations (multiplications and
additions).

We observe that execution time is sublinear in the number p = pd(k)
of operations, or subquadratic in the number of coefficients n = nd(k)
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d = 4 vector tree TRIP CS

k n p time (s) Mflops over. time (s) Mflops over. time (s) time (s)

10 1001 43758 2.740e – 04 159.7 2.88 2.930e – 04 149.3 3.05 NA 3.665e – 04

20 10626 3108105 1.364e – 02 227.9 2.50 1.364e – 02 227.9 2.50 NA 1.906e – 02

30 46376 48903492 1.700e – 01 287.7 1.89 1.900e – 01 257.4 2.38 2.000e – 01 2.529e – 01
40 135751 377348994 1.140e+00 331.0 1.75 1.120e+00 336.9 1.70 1.630e+00 1.767e+00

50 316251 1916797311 5.150e+00 372.2 1.57 5.050e+00 379.6 1.53 7.660e+00 1.032e+01

60 635376 7392009768 1.829e+01 404.2 1.45 1.793e+01 412.3 1.42 2.928e+01 5.371e+01
70 1150626 23446881315 5.456e+01 429.7 1.37 5.335e+01 439.5 1.34 9.257e+01 2.098e+02

80 1929501 64276915527 1.426e+02 450.8 1.31 1.393e+02 461.5 1.27 2.533e+02 6.623e+02

90 3049501 157366449604 3.361e+02 468.2 1.26 3.282e+02 479.5 1.23 6.229e+02 1.765e+03
100 4598126 352025629371 7.326e+02 480.5 1.23 7.093e+02 496.3 1.19 1.408e+03 4.195e+03

d = 6 vector tree TRIP AJ

k n p time (s) Mflops over. time (s) Mflops over. time (s) time (s)

10 8008 646646 4.421e – 03 146.3 3.49 4.808e – 03 134.5 4.17 NA 4.451e – 02
20 230230 225792840 1.241e+00 181.9 3.17 1.310e+00 172.4 3.36 9.940e – 01 1.722e+01
30 1947792 11058116888 4.915e+01 225.0 2.62 5.043e+01 219.3 2.69 4.408e+01 9.161e+02
40 9366819 206379406870 7.769e+02 265.7 2.23 7.808e+02 264.3 2.23 8.367e+02 1.926e+04

50 32468436 2160153123141 7.178e+03 301.0 1.96 7.183e+03 300.7 1.96 NA NA

Table 4. Timings of 4-variate and 6-variate truncated products.

vector implementation tree implementation
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Figure 10. Execution time (in seconds) of the trun-
cated product as a function of the number of coefficients
per polynomialm, in log-log representation.

per polynomial. We have fit the execution times with functions of the
form t(n) = A nb (where a = log10A), and the results are shown in
Figure 10, using log-log scale. Observe that exponents b are around
1.72, rather than the theoretical estimate 2. This is mainly due to
the fact that addressing schemes take advantage of the data structures
encoding the power series, and in particular on the lexicographical order
of the coefficients or the tree distribution of the coefficients.
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The two recursive implementations produce similar results. Table 4
also includes the timings obtained with the package TRIP [1, 28], and
two ad hoc implementations for 4 [57] and 6 [3] variables. Our results
are similar to TRIP, which uses huge addressing tables to perform
multiplication of polynomials, and whose codes were compiled with
icc in a twin machine working under Mac OS X 10.4.1 (Tiger).
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[44] Àngel Jorba and Josep Masdemont. Dynamics in the center manifold of the
collinear points of the restricted three body problem. Phys. D, 132(1-2):189–
213, 1999.

[45] A. Karatsuba and Ofman Yu. Multiplication of many-digital numbers by au-
tomatic computers. Dokl. Akad. Nauk SSSR, 145:293–294, 1962. Translation
in Physics-Doklady, 7 (1963), 595-596.

[46] Donald E. Knuth. The art of computer programming. Vol. 2: Seminumeri-
cal algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont, third revised edition, 1997.

[47] B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer,
A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of methods for comput-
ing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci.
Engrg., 15(3):763–791, 2005.



32 A. HARO

[48] Yu. A. Kuznetsov and H. G. E. Meijer. Numerical normal forms for codim 2
bifurcations of fixed points with at most two critical eigenvalues. SIAM J. Sci.
Comput., 26(6):1932–1954 (electronic), 2005.

[49] Kyoko Makino and Martin Berz. Taylor models and other validated functional
inclusion methods. Int. J. Pure Appl. Math., 4(4):379–456, 2003.

[50] James Murdock. Normal forms and unfoldings for local dynamical systems.
Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.

[51] Richard D. Neidinger. Computing multivariable taylor series to arbitrary order.
SIGAPL APL Quote Quad, 25(4):134–144, 1995.

[52] Richard D. Neidinger. Directions for computing truncated multivariate Taylor
series. Math. Comp., 74(249):321–340 (electronic), 2005.

[53] Richard D. Neidinger. Introduction to automatic differentiation and matlab
object-oriented programming. SIAM Review, 52(3):545–563, 2010.

[54] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting (Arch. Elektron. Rechnen), 7:281–292, 1971.
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