Computation of invariant tori and whiskers in quasiperiodically forced systems

Theory, algorithms, numerical explorations, conjectures

Àlex Haro

Departament de Matemàtica Aplicada i Anàlisi
Universitat de Barcelona

IMA (University of Minnesota), June 2011

Preface

The long term behaviour of a dynamical system is organized by its invariant objects.

Hence, it is important to:

- understand which invariant objects persist under perturbations of the system;
- provide results about their existence, regularity and dependence with respect to parameters;
- classify their bifurcations and mechanisms of breakdown.

These robust objects are normally hyperbolic invariant manifolds (NHIM).

Preface

We adress these questions for a class of dynamical systems and invariant objects: quasiperiodic forced systems and Fiberwise Hyperbolic Invariant Tori (FHIT).

Skew product systems modelize systems driven by another.
The invariant tori we consider are the response to the quasiperiodic forcing.

Theorems

Quasiperiodically forced systems

A quasi-periodic map with irrational frequency vector $\omega \in \mathbb{R}^{d}$ is a skew product in $\mathbb{R}^{n} \times \mathbb{T}^{d}$

$$
\left\{\begin{array}{l}
\bar{x}=F(x, \theta) \\
\bar{\theta}=\theta+\omega(\bmod 1)
\end{array}\right.
$$

where $F: \mathbb{R}^{n} \times \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$.
We assume F of class C^{r+1}.

Quasiperiodically forced systems

Given a quasi-periodic map

$$
\left\{\begin{array}{l}
\bar{x}=F(x, \theta) \\
\bar{\theta}=\theta+\omega(\bmod 1)
\end{array}\right.
$$

a solution $K: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$ of

$$
\begin{equation*}
F(K(\theta), \theta)=K(\theta+\omega), \tag{1}
\end{equation*}
$$

parameterizes an invariant torus

$$
\mathcal{K}=\left\{(K(\theta), \theta) \mid \theta \in \mathbb{T}^{d}\right\}
$$

whose dynamics is a rotation.
This torus is a response to the quasiperiodic forcing.

Quasiperiodically forced systems

Given a quasi-periodic map

$$
\left\{\begin{array}{l}
\bar{x}=F(x, \theta) \\
\bar{\theta}=\theta+\omega(\bmod 1)
\end{array},\right.
$$

A solution $W: \mathbb{T}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{n}, \lambda \in \mathbb{R}$ of

$$
\begin{equation*}
F(W(\theta, s), \theta)=W(\theta+\omega, \lambda s), \tag{2}
\end{equation*}
$$

parameterizes an invariant manifold

$$
\mathcal{W}=\left\{(W(\theta, s), \theta) \mid \theta \in \mathbb{T}^{d}, s \in \mathbb{R}\right\}
$$

whose dynamics is the product of a rotation and a homothety.
This is the simplest case. But theory works for higher rank whiskers.

Fiberwise hyperbolic invariant tori

A FHIT is a graph of a continuous map $K: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$ such that:
(1) Invariance: $K(\theta+\omega)=F(K(\theta), \theta), \quad \forall \theta \in \mathbb{T}$.
(2) Hyperbolicity: The fiber bundle $\mathbb{R}^{n} \times \mathbb{T}^{d}$ decomposes in a continuous invariant Whitney sum $E^{s} \oplus E^{u}$ such that $D_{z} F_{\mid E^{u}}$ is invertible and there exist $0<\lambda<1$ and $C>0$ for which

- If $(v, \theta) \in E^{s}$ and $m>0$, then

$$
\left\|D_{z} F^{m}(K(\theta), \theta) v\right\|<C \lambda^{m}\|v\| .
$$

- If $(v, \theta) \in E^{u}$ and $m<0$, then

$$
\left\|D_{z} F^{m}(K(\theta), \theta) v\right\|<C \lambda^{-m}\|v\| .
$$

Fiberwise hyperbolic invariant tori

Functional definition

A FHIT is a graph of a continuous map $K: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$ such that:
(1) Invariance: K is a fixed point of

$$
\begin{aligned}
\mathcal{F}: \quad \mathcal{C}^{0}\left(\mathbb{T}^{d}, \mathbb{R}^{n}\right) & \longrightarrow \mathcal{C}^{0}\left(\mathbb{T}^{d}, \mathbb{R}^{n}\right) \\
K & \longrightarrow F(K(\theta-\omega), \theta-\omega) .
\end{aligned}
$$

(2) Hyperbolicity: The transfer operator

$$
\begin{aligned}
D \mathcal{F}: \quad \mathcal{C}^{0}\left(\mathbb{T}^{d}, \mathbb{R}^{n}\right) & \longrightarrow \mathcal{C}^{0}\left(\mathbb{T}^{d}, \mathbb{R}^{n}\right) \\
\sigma & \longrightarrow \quad D_{z} F(K(\theta-\omega), \theta-\omega) \sigma(\theta-\omega)
\end{aligned}
$$

is hyperbolic, i.e. its (Mather) spectrum does not intersect the unit circle.

Interlude: Spectral Theory

A linear skew product (cocycle) in \mathbb{R}^{n} over \mathbb{T}^{d},

$$
\left\{\begin{array}{l}
\bar{v}=M(\theta) v \tag{3}\\
\bar{\theta}=\theta+\omega
\end{array} ;\right.
$$

induces a transfer operator \mathcal{M}_{ω} acting on (bounded, continuous, C^{r}) sections $v: \mathbb{T}^{d} \rightarrow \mathbb{C}^{n}$ by

$$
\begin{equation*}
\mathcal{M}_{\omega} \boldsymbol{v}(\theta)=M(\theta-\omega) \boldsymbol{v}(\theta-\omega) . \tag{4}
\end{equation*}
$$

The functional analysis properties (4) are closely related to the dynamical properties of (3).

Mather, Sacker, Sell, Palmer, Hirsch, Pugh, Shub, Mañé, Chicone, Swanson, Johnson, Latushkin, Stëpin, de la Llave, ...

Interlude: Spectral Theory

- The spectrum of \mathcal{M}_{ω} is a finite union of spectral annuli.
- Each spectral annulus induces an invariant subbundle of the cocycle M, characterized by rates of growth.
- If \mathcal{M}_{ω} is hyperbolic, the cocycle M has stable/unstable subbundles.
- The spectrum is independent of the space of sections! [A.H.,de la Llave] (for rotational dynamics in the base)

Example: if $n=2$, the spectrum can be:

- Two circles of radii $\Lambda_{1}<\Lambda_{2}$;
- One annulus of radii $\Lambda_{1}<\Lambda_{2}$;
- One single circle of radius \wedge.

The Λ 's are the Lyapunov multipliers.

Fiberwise hyperbolic invariant tori

Theorem

Let F be C^{r+1} and K be C^{r}. Assume:

- K is an approximate solution of (1):

$$
\|F(K(\theta-\omega), \theta-\omega)-K(\theta)\|_{C^{r}} \leq \varepsilon .
$$

- Its transfer operator \mathcal{M}_{ω} on $B\left(\mathbb{T}^{d}, \mathbb{R}^{n}\right)$ is hyperbolic.

Then, if ε is small enough:
(1) There exists an invariant graph K_{F}, and $\left\|K-K_{F}\right\|_{C^{r}} \leq c \epsilon$.
(2) The map $F \rightarrow K_{F}$ is C^{1} from C^{r+1} to C^{r}.
(3) The torus K_{F} is C^{r+1} (bootstrap of the differentiability).

Moreover, the torus \mathcal{K}_{F} is fiberwise hyperbolic.

Asymptotic invariant manifolds

Existence result of (1 rank) whiskers

Theorem

Let F be C^{r+1} and K a C^{r} invariant torus. Let $\lambda \in \mathbb{R}$ be an eigenvalue of the transfer operator \mathcal{M}_{ω} acting in C^{r}, and $V: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$ be its C^{r}-eigenfunction, i.e.

$$
M(\theta) V(\theta)=\lambda V(\theta+\omega) .
$$

Assume that:

- $|\lambda| \neq 1$;
- For all $k \geq 2, \lambda^{k} \notin \operatorname{Spec}\left(\mathcal{M}_{\omega}\right)$.

Then, if r is large enough, there is a C^{r} invariant manifold tangent to the bundle of rank 1 generated by V, whose dynamics is conjugate to the direct product of a rotation and an homothety.

Asymptotic invariant manifolds

Some remarks

- The theorem has a higher rank version, producing an invariant manifold associated to an invariant subbundle, under appropriate non-resonant conditions.
- Reducibility of normal dynamics is not an issue in this generalization.
- Even if the dynamics on the manifold could not be linearized, we can get that it is polynomial, whose coefficients depend on θ.
- One produces the classical stable manifold and strong stable manifold.
- One also produces smooth slow manifolds that are not avaliable with the classical theory.
- One can obtain that the manifolds are unique under a suitable C^{L} regularity, depending only on spectral properties.

Algorithms

Invariant tori

A Newton step is:
Given an approximate invariant torus K, with error

$$
F(K(\theta-\omega), \theta-\omega)-K(\theta)=R(\theta),
$$

the improved torus is $\hat{K}=K+\Delta$, where

$$
\begin{equation*}
M(\theta-\omega) \Delta(\theta-\omega)-\Delta(\theta)=-R(\theta), \tag{5}
\end{equation*}
$$

where $M(\theta)=\mathrm{DF}(K(\theta), \theta)$.

Feasible Newton step in the same space if hyperbolicity holds.

Invariant tori

- The tori are expanded as Fourier series.
- If F is "simple", the L.H.S. of the invariance equation (1)

$$
F(K(\theta), \theta)=K(\theta+\omega),
$$

is easily computed using AD. Otherwise, use FT.

- The Fourier discretization of the Newton-step (5)

$$
M(\theta-\omega) \Delta(\theta-\omega)-\Delta(\theta)=-R(\theta)
$$

produces Large matrices!

- If $M(\theta)$ is reducible to constants, i.e.

$$
\begin{equation*}
M(\theta) P(\theta)=P(\theta+\omega) \Lambda \tag{6}
\end{equation*}
$$

for suitable $P(\theta)$ and Λ, then (5) is "diagonal" in the Fourier modes, producing Fast computations!.

These observations are also useful in KAM theory [de la Llave et al]. See also [Castellà,Jorba 00], [Jorba, Olmedo 10].

Asymptotic invariant manifolds

To solve $F(W(\theta, s), \theta)=W(\theta+\omega, \lambda s)$, we expand W as

$$
W(\theta, s)=W_{0}(\theta)+W_{1}(\theta) s+W_{2}(\theta) s^{2}+\ldots,
$$

obtaining a hierarchy of equations:
$k=0$) Tori invariance eq.:

$$
F\left(W_{0}(\theta), \theta\right)=W_{0}(\theta+\omega),
$$

$$
\text { so } W_{0}(\theta)=K(\theta) \text {. }
$$

$k=1$) Eigenvalue eq.:

$$
M(\theta) W_{1}(\theta)=\lambda W_{1}(\theta+\omega),
$$ so $W_{1}(\theta)=V(\theta)$ is an eigenfunction of \mathcal{M}_{ω}.

$k \geq 2)$ Homological eq.: $M(\theta) W_{k}(\theta)-\lambda^{k} W_{k}(\theta+\omega)=C_{k}(\theta)$, where C_{k} depends on the previously computed terms.

Non-resonance condition: for $k \geq 2, \lambda^{k} \notin \operatorname{Spec}\left(\mathcal{M}_{\omega}\right)$.

Asymptotic invariant manifolds

- The whiskers are expanded as Fourier-Taylor series.
- If F is "simple", the L.H.S. of the invariance equation (1)

$$
F(W(\theta, s), \theta)=W(\theta+\omega, \lambda s),
$$

is easily computed using AD. The R.H.S. is straightforward.

- The methods yields high precision results.
- Useful to globalize the manifold.

Numerical explorations in a dissipative system

The rotating Hénon map

$$
\left\{\begin{array}{l}
\bar{x}=1+y-a x^{2}+\varepsilon \cos (2 \pi \theta) \\
\bar{y}=b x \\
\bar{\theta}=\theta+\omega \quad(\bmod 1)
\end{array}\right.
$$

- a is the nonlinear parameter $(a=0.68)$;
- b is the dissipative parameter $(b=0.1)$;
- ε is the quasi-periodic parameter;
- $\omega=\frac{1}{2}(\sqrt{5}-1)$ is the frequency of the forcing.
[Krauskopf,Osinga 98][Feudel,Osinga 00]

The rotating Hénon map

The saddle type fixed point and the stable 2 periodic orbit of the Hénon map ...

The rotating Hénon map

... turn into an invariant circle and a 2 periodic circle for the RHM with $\varepsilon=0.100$.

The rotating Hénon map

Sections with $\theta=0$ of the invariant manifolds, for $\varepsilon=0.1$.

Continuation of an invariant torus

(I) Period "halving" (from saddle to attracting torus)

Continuation of an invariant torus

(II) Continuation of an attracting torus

Continuation of an invariant torus

(III) Fractalization of the torus

Continuation of a reducible invariant torus

Rotating Hénon map: $a=0.68, b=0.1$

ε	eigenvalues	error	nfm
0.000	$-1.0721039594,0.0932745366$	$9.6 \mathrm{e}-21$	100
0.200	$-1.0297559933,0.0971103841$	$8.3 \mathrm{e}-21$	100
0.400	$-0.8288693291,0.1206462786$	$9.6 \mathrm{e}-20$	100
0.450	$-0.6721643269,0.1487731437$	$9.9 \mathrm{e}-13$	100
0.460	$-0.6034304995,0.1657191675$	$2.9 \mathrm{e}-14$	300
0.461	$-0.5925812920,0.1687532181$	$2.7 \mathrm{e}-12$	300
0.462	$-0.5792054526,0.1726503084$	$2.3 \mathrm{e}-13$	400
0.463	$-0.5584521519,0.1790663706$	$9.1 \mathrm{e}-10$	6800

Invariant directions (projectivized bundles)

(I) Unstable direction becomes a slow stable direction

Invariant directions (projectivized bundles)

(II) Merging of invariant directions

Invariant directions (projectivized bundles)

(III) Invariant directions for the fractalization of the torus

Description of the bifurcations

Observables: \wedge (maximal Lyapunov multiplier)
Δ (distance beween bundles)

a) Period halving bifurcation.
$\mathrm{b}, \mathrm{c}, \mathrm{d})$ Bundle merging bifurcation, a global bifurcation.

The bundle merging bifurcation

The invariant bundles approach each other while the Lyapunov multipliers $\Lambda_{-}<\Lambda_{+}$remain different from 1 .

- The reducibility breaks down.
- In spectral terms, as the parameter approaches the critical value
- The spectrum is two circles, of radii $\Lambda_{-}<\Lambda_{+}$.
- The distance of the two circles is bounded from below.
- The norm of the spectral projections grows to infinity.

At the critical value, the spectrum is a filled annulus.

- The invariant bundles are not continuous when they collapse, but measurable [Oseledec68]. Their projectivizations are SNA (Strange Nonchaotic Attractors).

The bundle merging bifurcation

Quantitative estimates (universal laws)

$$
\begin{cases}\Delta_{\varepsilon} \sim \alpha\left(\varepsilon_{\mathrm{b}}-\varepsilon\right)^{\beta} & \text { if } \varepsilon \lesssim \varepsilon_{\mathrm{b}} \\ \Delta_{\varepsilon} \approx 0 & \text { if } \varepsilon \gtrsim \varepsilon_{\mathrm{b}}\end{cases}
$$

$$
\begin{cases}\Lambda_{\varepsilon} \sim \Lambda_{\mathrm{b}}+A\left(\varepsilon_{\mathrm{b}}-\varepsilon\right)^{B} & \text { if } \varepsilon \lesssim \varepsilon_{\mathrm{b}} \\ \Lambda_{\varepsilon} \approx \Lambda_{\mathrm{b}}+\bar{A}\left(\varepsilon-\varepsilon_{\mathrm{b}}\right)^{\bar{B}} & \text { if } \varepsilon \gtrsim \varepsilon_{\mathrm{b}}\end{cases}
$$

$$
\begin{aligned}
& \Lambda_{b}=0.5423122 \\
& A=1.015 \\
& B=0.5020 \approx 0.5 \\
& \bar{A}=-0.7409 \\
& \bar{B}=1.00035 \approx 1
\end{aligned}
$$

The bundle merging bifurcation

Projectivization of the slow and fast stable bundles, and zooms.

The bundle merging bifurcation

- For $\varepsilon=0.460$, the torus is attracting and the cocycle is reducible to a constant diagonal matrix

$$
\operatorname{diag}(-0.6034304995,0.1657191675)
$$

- For $\varepsilon=0.530$, the torus is attracting and the cocycle is reducible to a constant diagonal matrix

$$
\operatorname{diag}(0.6945467500,-0.1439787890) .
$$

- Since the Lyapunov multipliers are different during the continuation, continuation!

The bundle merging bifurcation

Description and consequences

The invariant bundles approach each other when $\varepsilon<\varepsilon_{c}$, and collapse for $\varepsilon=\varepsilon_{c}$, while the Lyapunov multipliers $\Lambda_{\varepsilon}^{-}<\Lambda_{\varepsilon}^{+}$remain different.

	$\varepsilon<\varepsilon_{c}$	$\varepsilon=\varepsilon_{c}$
Linear dynamics: Invariant bundles	Continuous	Measurable [Oseledets 68]
Projective dynamics: Invariant curves	Continuous (attracting $/$ repelling)	Measurable (SNA / SNR)
Spectrum	Two circles of radii $\Lambda_{\varepsilon}^{ \pm}$	Annulus of radii $\Lambda_{\varepsilon}^{ \pm}$
Reducibility $(\omega$ Diophantine)	Yes	No
If $\Lambda_{\varepsilon}^{-}<\Lambda_{\varepsilon}^{+}<1$	Attracting torus	The torus survives
If $\Lambda_{\varepsilon}^{-}<1<\Lambda_{\varepsilon}^{+}$	Saddle torus	The torus is destroyed

After the bundle merging scenario

From the numerical experiments

The formation of a SNA in the linearized dynamics of an attracting torus produces a sudden growth of the spectrum.

There are scaling relations in the observables (distance between bundles, Lyapunov multipliers), that are universal.

See [Bjerklöv, Saprykina 08] for some proofs.
The phenomenon is the prelude of the destruction of the torus in a fractalization route.

Conjecture: The torus is destroyed when the maximal Lyapunov multiplier crosses 1.

Numerical explorations in a conservative system

The rotating standard map

$$
\left\{\begin{array}{l}
\bar{x}=x+\bar{y} \quad(\bmod 1) \\
\bar{y}=y-\frac{\sin (2 \pi x)}{2 \pi}(K+\varepsilon \cos (2 \pi \theta)) \\
\bar{\theta}=\theta+\omega \quad(\bmod 1)
\end{array}\right.
$$

- K is the parameter of the standard map ($K=0.2$);
- ε is the quasi-periodic parameter;
- ω is an algebraic number of order 3:

$$
\omega=\sqrt[3]{\frac{19}{27}+\sqrt{\frac{11}{27}}}+\sqrt[3]{\frac{19}{27}-\sqrt{\frac{11}{27}}}-\frac{2}{3}
$$

[Artuso et al 91, Tompaidis 96, Haro 98]

Invariant manifolds of a 2-periodic torus $(\varepsilon=0.5)$

Invariant manifolds of a 2-periodic torus ($\varepsilon=0.5$)

slice $\theta=0$

Invariant manifolds of a 2-periodic torus ($\varepsilon=0.5$)

Bifurcations at resonance

Rotating standard map: $K=0.2$. Torus $\{x=0, y=0\}$

ε	eigenvalues	error	nfm
0.010	$\exp (\pm 0.4513209919 \mathbf{i})$	$1.6 \mathrm{e}-19$	100
0.030	$\exp (\pm 0.4537325863$ i)	$3.5 \mathrm{e}-19$	100
0.050	$\exp (\pm 0.4589178272 \mathbf{i})$	$2.1 \mathrm{e}-19$	100
0.070	$\exp (\pm 0.4679895639 \mathbf{i})$	$5.0 \mathrm{e}-19$	100
0.090	$\exp (\pm 0.4857579944 \mathbf{i})$	$8.4 \mathrm{e}-19$	100
0.096	$\exp (\pm 0.5003407232 \mathbf{i})$	$4.3 \mathrm{e}-18$	100
0.09625	$\exp (\pm 0.5024691304 \mathbf{i})$	$6.7 \mathrm{e}-18$	100
ε_{r}	$\exp (\pm 0.5048955423$ i)	$5.5 \mathrm{e}-10$	450

Bifurcations at resonance

- For $\varepsilon=\varepsilon_{r} \simeq 0.09634888517236193761$
- the internal frequency $\alpha \simeq 0.50489554233135677542$
- the external frequency $\omega \simeq 0.83928675521416126683$
satisfy

$$
\left|\frac{\alpha}{2 \pi}-\frac{k_{1}+k_{2} \omega}{2}\right| \simeq 1.1 \cdot 10^{-9},
$$

for $k_{1}=1, k_{2}=-1$.

- We improve reducibility using rotating transformations, so we can cross the resonance [Moser-Pöschel 86].
- After the bifurcations, the torus is hyperbolic. Moreover,
- Since $k_{1}=1$ is odd, the eigenvalues are negative.
- Since $k_{2}=-1$ is odd, the invariant manifolds are non-orientable

Bifurcations at resonance

Rotating standard map: $K=0.2$. Torus $\{x=0, y=0\}$			
ε	eigenvalues	error	nfm
0.010	$\exp (\pm 0.4513209918 i)$	7.7e-20	100
0.030	$\exp (\pm 0.4537325863 i)$	1.6e-19	100
0.050	$\exp (\pm 3.0956149315 i)$	$5.1 \mathrm{e}-10$	100
0.070	$\exp (\pm 3.1046866683 i)$	$5.2 \mathrm{e}-19$	100
0.090	$\exp (\pm 3.1224550988 i)$	3.8e-19	100
0.100	-0.985229910, -1.0149915151	3.0e-19	100
0.300	-0.859755912, -1.1631208182	$4.6 \mathrm{e}-19$	100
0.500	-0.784499412, -1.2746982141	3.7e-19	100

Non-orientable invariant manifolds

Stable manifold $(\varepsilon=0.5)$

Non-orientable invariant manifolds

Unstable manifold $(\varepsilon=0.5)$

Bundle merging causing breakdown

A 3-periodic torus close to breakdown, and projectivized bundles

Bundle merging causing breakdown

$\Delta_{\varepsilon} \sim \alpha\left(\varepsilon_{\mathrm{c}}-\varepsilon\right)^{\beta}$ if $\varepsilon \lesssim \varepsilon_{\mathrm{c}}$

$\Lambda_{\varepsilon} \sim \Lambda_{\mathrm{c}}+A\left(\varepsilon_{\mathrm{c}}-\varepsilon\right)^{B}$ if $\varepsilon \lesssim \varepsilon_{\mathrm{c}}$

$$
\Lambda_{c}=1.19533
$$

$$
A=-1.6
$$

$$
B=1.00 \approx 1
$$

From the numerical experiments

The formation of a SNA in the linearized dynamics of a saddle type torus produces the sudden growth of the spectrum.

The torus is destroyed in such transition.
There are scaling relations in the observables (distance between bundles, Lyapunov multipliers), that are universal.

Validation of Numerical Computations

A Validation algorithm

Goal: Use computers to validate computations, proving existence and (local) uniqueness of fiberwise hyperbolic invariant tori.

We use an a posteriori theorem based on an adaptation of the Newton-Kantorovich theorem to the problem [HdLIO6].

The validation procedure is:

- Obtain initial data via some (non-rigorous) numerical method.
- Transform initial data to Fourier models.
(Fourier model = trigonometric polynomial with interval coefficients that encloses a continuous periodic function).
- Check hypothesis of the theorem using rigorous manipulation of the Fourier models.

A Validation algorithm

Step 0 of 5 . Initial data

0.1.- Modelize with Fourier models:

- An approximate invariant torus $K: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$.
- Two continuous matrix-valued maps $P_{1}, P_{2}: \mathbb{T}^{d} \rightarrow G L(n, \mathbb{R})$, where P_{1} has in its columns an approximation of the invariant subbundles and P_{2} is an approximate inverse of P_{1}.
- A continuous block diagonal matrix-valued map $\wedge: \mathbb{T}^{d} \rightarrow G L(n, \mathbb{R})$ which satisfies, approximately

$$
P_{2}(\theta+\omega) D_{z} F(K(\theta), \theta) P_{1}(\theta) \simeq \Lambda(\theta)=\left(\begin{array}{cc}
\Lambda_{n_{s}}(\theta) & 0 \\
0 & \Lambda_{n_{u}}(\theta)
\end{array}\right) .
$$

Λ modelizes approximately the dynamics on the invariant subbundles.

A Validation algorithm

1.1.- Compute the upper bounds:

$$
\begin{gathered}
\left\|P_{2}(\theta+\omega) D_{z} F(K(\theta), \theta) P_{1}(\theta)-\Lambda(\theta)\right\|_{\infty} \leq \sigma \\
\left\|P_{2}(\theta) P_{1}(\theta)-\mathrm{Id}\right\|_{\infty} \leq \tau \\
\max \left\{\left\|\Lambda_{n_{s}}(\theta)\right\|_{\infty},\left\|\Lambda_{n_{u}}(\theta)^{-1}\right\|_{\infty}\right\} \leq \lambda
\end{gathered}
$$

1.2.- Check $\lambda+\sigma+\tau<1$. If not, validation fails.

A Validation algorithm

Step 2 of 5: Checking approximate invariance
2.1.- Compute the upper bound:

$$
\left\|P_{2}(\theta)(F(K(\theta-\omega), \theta-\omega)-K(\theta))\right\|_{\infty} \leq \rho
$$

2.2.- Compute the upper bound:

$$
\frac{\rho}{1-(\lambda+\sigma+\tau)} \leq \varepsilon .
$$

A Validation algorithm

3.1.- Compute the upper bound:

$$
\left\|P_{2}(\theta+\omega) D_{z}^{2} F(z, \theta)\left[P_{1}(\theta) \cdot, P_{1}(\theta) \cdot\right]\right\|_{\infty} \leq b
$$

for $\theta \in \mathbb{T}^{d}$ and $z \in B(K(\theta), 2(1+\tau) \varepsilon)$.
3.2.- Compute the uppers bounds:

$$
\frac{b}{1-(\lambda+\sigma+\tau)} \leq \beta, \quad \beta \varepsilon \leq h .
$$

A Validation algorithm

4.1.- If $h<\frac{1}{2}$ there exists an invariant torus $K_{*}: \mathbb{T}^{d} \rightarrow \mathbb{R}^{n}$ with

$$
\left\|P_{1}(\theta)^{-1}\left(K_{*}(\theta)-K(\theta)\right)\right\|_{\infty}<r_{0}
$$

where

$$
\frac{1-\sqrt{1-2 h}}{h} \cdot \varepsilon \leq r_{0}
$$

4.2.- This invariant torus is unique in the ball centered at the approximate invariant torus K_{0} and radius

$$
r_{1} \leq \frac{1+\sqrt{1-2 h}}{h} \cdot \varepsilon .
$$

A Validation algorithm

5.1.- Compute the upper bounds:

$$
\begin{gathered}
\|\Lambda(\theta)\|_{\infty} \leq \hat{\lambda}, \\
\frac{\lambda}{1-\lambda^{2}} \frac{1}{1-\tau}\left(b r_{0}+\sigma+\hat{\lambda}_{\tau}\right) \leq \mu .
\end{gathered}
$$

5.2.- If $\mu<\frac{1}{4}$ then, there exist continuous matrix-valued maps $P_{*}: \mathbb{T}^{d} \longrightarrow G L(n, \mathbb{R})$, and $\Lambda_{*}: \mathbb{T}^{d} \longrightarrow G L(n, \mathbb{R})$ (block-diagonal), such that:

- $P_{*}(\theta+\omega)^{-1} \mathrm{D}_{z} F\left(K_{*}(\theta), \theta\right) P_{*}(\theta)=\Lambda_{*}(\theta) ;$
- $\left\|P_{1}(\theta)^{-1}\left(P_{*}(\theta)-P(\theta)\right)\right\|_{\infty} \leq \frac{\mu}{\sqrt{1-4 \mu}} ;$
- $\left\|\Lambda_{*}(\theta)-\Lambda(\theta)\right\|_{\infty} \leq \frac{1}{1-\tau}\left(b r_{0}+\sigma+\hat{\lambda} \tau\right)\left(1+\frac{\mu}{\sqrt{1-4 \mu}}\right)$.

An example

The driven logistic map is defined as the skew product

$$
\left.\left.\begin{array}{rl}
f: & \mathbb{R} \times \mathbb{T}
\end{array}\right] \mathbb{R} \times \mathbb{T}, ~(z, \theta) \longrightarrow(1+D \cos (2 \pi \theta)) z(1-z), \theta+\omega\right),
$$

where $\omega=\frac{\sqrt{5}-1}{2}$; and a and D are parameters.
In the following, we fix $D=0.1$ and let a vary.

Figure: 2 period attracting curve for $a=3.24$.

Numerical exploration: $D=0.1$

Figure: 2 period attracting set for $a=3.272$.

Numerical exploration: $D=0.1$

Numerical facts:

- There exists a repellor curve for all $a>3.143$.
- There exists a 2 period attracting curve for $3.143<a<3.271383$. It's non reducible when $a>3.17496$.

Validation of tori on the verge of breakdown

- We have validated the 2 period attracting curve for several values of $a \in[3.143,3.269]$.
- Due to the non reducible nature of the tori, the slopes of some initial data are quite high. For example, at $a=3.269$, the maximum slope of P_{1} is $4.25 \cdot 10^{6}$.

Initial data to validate

Computing uniform atractiveness

Figure: Initial data of the 2 period attracting torus with $a=3.265$.

Initial data to validate

Computing uniform atractiveness

Figure: Initial data of the 2 period attracting torus with $a=3.269$.

Validation results.

a	3.265	3.268	3.269
h	$3.046383 \mathrm{e}-05$	$2.248226 \mathrm{e}-03$	$4.203495 \mathrm{e}-01$
r_{0}	$5.365990 \mathrm{e}-09$	$1.701127 \mathrm{e}-07$	$3.635973 \mathrm{e}-06$
r_{1}	$3.522752 \mathrm{e}-04$	$1.509902 \mathrm{e}-04$	$8.466295 \mathrm{e}-06$
nodes	3000	17000	27000
Time comp. (min.)	5	130	361

Table: Validation results of the period 2 invariant torus of the driven logistic map for different values of the parameter a.

Summary

Conclusions

Problems: Computation of invariant tori and their whiskers
Tools:

- The parameterization method: to find equations for the invariant manifold and the dynamics on it.
- The equations are functional equations. We use Newton-like methods (for tori) and normal form methods (for whiskers) in suitable spaces of functions.
- These equations are discretized in terms of Fourier or Fourier-Taylor series. We use Fourier Transform (FT) and Automatic Differentiation (AD).

Applications:

- Phenomena at the breakdown of dichotomies.
- Resonances in Hamiltonian elliptic tori.
- Computer assisted proofs on the verge of breakdown.

Work in progress/Future work

- Applications to some problems in Celestial mechanics
- Higher dimensional tori, sparse Fourier series
- Higher dimensional models
- Quasi-periodic solutions in some PDE's
- Quasi-periodic solutions in some delay equations
- More general normally hyperbolic manifolds
- A better connection with KAM theory
- Better theory for elliptic Hamiltonian tori
- Computer assisted proofs
...

Bibliography

- A.H., R. de la Llave, "A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: "
(1) Rigorous results.
(2) Numerical Algorithms.
(3) Explorations and Mechanisms for the Breakdown of Hyperbolicity.
- A.H., R. de la Llave, "Manifolds on the verge of a hyperbolicity breakdown"
- A.H, R. de la Llave, "Spetral Theory and Dynamical Systems" (book in preparation)
- J.-LI. Figueras-Romero, A. H., "Reliable computation of robust response tori" (preprint)
- J.-LI Figueras-Romero (phd. thesis)

Epitaph

From Theorems to Algorithms.
From Algorithms to Numerics.
From Numerics to Experiments.
From Experiments to Conjectures.
From Conjectures to Theorems?

