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Abstract

One of the basic problems in dynamics, and specially in ptej close approaches of NEOs relies on the fact that, even
if the physical laws of motion are known with a reasonableragimation, the set of initial data at a given epoch are not.
Typically they are known to be in a given box in the phase spa@g/be with some probability density, either known
analytically (e.g., a normal multivariate distribution)in some experimental way.

The problem is how to transport these data to a future epodypial procedure consists in sampling the domain
and transport every initial point independently. This isatly process, specially to transport probability disitions.

A solution to this problem will be presented. It is based omgb-called Taylor methods based on the use of higher
order variational equations or, in mathematical jargontrignsport. In turn, this transport can be done using Taylor
integration methods. It is extremely powerful, flexiblecaate and efficient.

We have applied this methodology to the particular case @949) Apophis, a NEO that will experience the most
significant close approach with the Earth in the next 20 yeafswill discuss how the initial uncertainties evolve along
time and if we are able to determine the existence or not dfiplesfuture collisions.

INTRODUCTION

The asteroid (99942) Apophis represents an interesting @llear Earth Object with no negligible probability of col-
lision with the Earth. Among the known objects, it will getttee most significant distance with respect to the Earth in
the next 20 years. Several studies have actually wardetheffiireat of an impact in 2029, but it is not clear what this
approach will imply for the future behaviour of the asteroid

Itis well known that as long as the asteroid stays far fronptaaets, its motion can be approximated by the Keplerian
laws, which do not hold at a close approach with the Earth-Megstem. As we will see, to model the motion of
Apophis we consider a restrictédd—body problem. Our purpose is to analyse the motion of Apofatkisig into account
the uncertainties given by the observations using highrordeational equations. We will use a Taylor method for the
integration of the ODE and the jet transport methodologydagport a box of data along time.

First, we will focus on the neighbourhood of April 13, 2029identify up to which order the variational equations
are necessary, the minimum distance reached and the role doon in this passage. Clearly, we will also obtain
information about the shape of the covered space and the mafngelocity swept. Then we will try to propagate the
region found by increasing the order of the jet transpomiig to characterise the second foreseen approach that will
take place between 2036 and 2037.

MODEL

We consider the motion of the asteroid to be sufficiently webBcribed by a restricte —body model. That is, Apophis
moves driven by the gravitational force exerted by the Sumpine planets and MooV = 11). The major bodies attract
each other, but they are not affected at all by the astero@rémark that the Moon is taken into account, because we are
interested in close approaches of Apophis with respecigtothit of the Earth.



Then the equations of motion are:
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whereX,,..., X;; € R? are the positions of thel bodies andn,, ..., m; are their massesy, € R? is the position
of the asteroidr;; denotes the distance between major bodi@sd; (i,j = 1,...,11); r;, the one between the major
bodyj (j =1,...,11) and the asteroid and@ is the gravitational constant. We take as units of massigtand timel

kg, 1 AU and1 day, respectively. To fix criteria, we consider the positibthe bodies to be in ecliptic coordinates taking
as origin the Solar System barycentre.

We are aware that in the Solar System there are additioreatsfthat must be considered, for instance the gravitdtiona
forces due to the planets natural satellites or the refgiiveffects. These terms can be taken into account at leatid
major bodies by reading their position and velocities frowe dJPL Solar System Ephemerides DE405 at each step of the
integration. However, it is still necessary to compute #ie pf derivatives associated with the planets becausafipsar
in the Apophis’ one. For this we would just use the gravitadilbinteraction between them, the effect of the changes in
the other forces on Apophis motion being negligible in omp &f integration. For more details see [1].

A detailed description on the JPL Solar System Ephemeride$0b can be found in [2]. In short, we only recall
that the equations of motion used to obtain DE405 includdritmrtions from: (a) point mass interactions among the
Moon, planets, and Sun; (b) general relativity (isotrop@tametrised post-Newtonian); (¢) Newtonian perturlmetiof
selected asteroids; (d) action of Moon and Sun on Earth’sdige) action of Earth and Sun on Moon'’s figure; (f) physical
libration of the Moon, modeled as a solid body with tidal anthtional distortion, including both elastic and dissipat
effects, (g) the effect upon the Moon’s motion caused bystidésed upon the Earth by Moon and Sun.

Initial Conditions

We set the initial epoch at September 1, 2006 00:00r2¢13979.5). The initial condition for Apophis is taken from [3]
(and then translated to the Solar System barycentre, sed)lathere we also find information about the uncertainties i
position and velocity estimates. Finally, the initial c@iahs for the main bodies are obtained from the DE405 ephisme
of Caltech’s Jet Propulsion Laboratory mentioned above.

The semi-major axis and the mean anomaly of the osculatlipgelcovered by Apophis are affected by the errors
due to the experimental data (as well as the other orbitarpaters). According to [3], these errors follow a Gaussian
distribution, with a standard deviatian ~ 9.6 x 10~2 AU ando,; ~ 1.08 x 10~° degrees, respectively. These give rise
to uncertainties in positiorr 9.6 x 1072 AU and~ 1.9 x 108 AU, respectively. They can be translated to uncertainties
of 3.5 km along the tangent direction to the orbit and km along two directions which are orthogonal to this one.

Table 1: Initial position and velocity for Apophis on Septeen 1 2006 00:00h, given by [3]. Units AU and Aday.

X y z
position 5.1957863284797057e-01 | 6. 9976953615406001e-01 | - 2. 4547675315725277e- 02
velocity | - 1. 2956402252285342e- 02 | 1. 3886168210055569¢e- 02 | - 1. 0476006251579106e- 03

GOAL

Let 2y be an initial data ang and initial uncertainty on a given domaih. Our aim is to propagate initial data of the
form zy + £ along time and see how they evolve. Typically one would safpand transport for mang, with a high
computational cost as said before. Instead, we will useghiegnsport methodology for this purpose. The main idea is t
use high order variational equations to express the solati@any desired given timeas a Taylor series i§, truncated at
a suitable order. Once this is computed, the propagationyirdtial small enough sampled domaihhas not significant
computational effort.

We want to characterize the first close approach of ApopHis tlie Earth in 2029 and even the second one between
2036 and 2037. But the whole technique is useful in many miffefields of application. In what follows, we explain it
in a more general framework.



INTEGRATION OF ODE: THE TAYLOR METHOD

Faced to the problem to integrate a differential equatien f (¢, x), x(to) = xo, there are many methods available. Here
we sketch the background for the so-called Taylor methodaus® they can easily be adapted to the jet transport, to be
presented in next section. But, in principle, any integmratnethod can be adapted to jet transport. For simplicitytvedl s
assumef analytic in a neighbourhood @f,, zo) € 2 C R x R™.

As in many integration methods for IVP one has to provide a twalo one step starting &, z). Fromz(to +h) =
>0 cih? andf(to 4+ h,x(to + h)) = 3,5, d;h? itfollows ¢; = d;—1 /4. It remains to compute thé;.

The key idea is to do this in@current way Whenc; are known forj = 0, ..., k we knowz(to + k) up to orderk in
h. It can be inserted in the expressionfodnd compute its expansion also up to orkdeT his givesd, and from this we
obtainc41. All the operations are done with formal power series. Itasyeto multiplyA(h) = Z;’:O A;hi; B(h) =
Z?:o B;h7, known to ordet, to obtain the produat' (k) = A(h)B(h) to orderk. The well-known convolution formula

Cr = Z?:o A;Byj_; providesCy. In a similar way one can compute, recurrently, the coefiiisidor A(h)/B(h),
providedB, # 0, for powersA(h)“, if Ag # 0, or for elementary functions, likén, cos, exp, log, etc.

Note that despite we manipulate (truncated) power serlegparations are done with numbers, i.e., the coefficients
of the series. Itis enough to store the coefficients of a giggiable as a vector with elements of orders from Ovto

After computing the coefficients;, j = 0,..., N up to a suitable ordeN, there are different strategies which allow
for a reasonable selection of the time steplt remains then to evaluate a polynomial truncation of tkea@sion of
z(to + h), which can be done by Horner’s rule. Taylor methods are Blgétr analytic, non-stifflifferential equations.

Some interesting properties are:

e Under simple conditions, the optimal step sizeto minimize the computing time for a fixed truncation erier,
almost independent of the number of digits used in the coatjous.

e The optimal ordefV is approximately linear in the number of digits. As a rulehafinb, if we want local truncation
errors of the order of 0% then N ~ 1.2d. This depends mildly on the vector fiefd

e The computational cost to integrate for a fixed time-inteizvapproximately quadratic in the number of digits. Of
course, the elementary operations will be more expensiveafworks with more digits.

e Itis elementary to produce dense output and to compute Bd@rsections, for instance.

e If f contains terms of different order of magnitugle+ f» + f5... it is easy to implement that they could be
expanded up to different ordei§;, N2, N3, ..., with good savings in computing time.

e One of the most important features is that a suitable chditeedocal truncation errors allows to reduce the global
error to the propagation of the round off errors.

e The method is extremely fast due to its optimality propettie

Further discussion, details, a large variety of examplesmplementations freely accessible can be found in [4].

JET TRANSPORT

A step forward concerning the integration of ODE is to knopta any desired order, how the solution depends on the
initial conditions, not only to be able to integrate fromeivinitial conditionsz, at an initial timet,. More concretely,
assume we denote aggt;to, o) the solution ofi = f(¢,x) passing throughx, at time¢,. Our goal is to obtain
o(t; to, zo + &) for small variationg of the initial conditions.

It is well-known that the variational equations at first, sed, ... order give the linear, quadratic, ... termg iim
o(t; to, zo + £). For instance, computations of Lyapunov exponents, #talof periodic orbits, solution of boundary
value problems by shooting, etc, require the use of firstrordeational equations. For some persons this can be famili
under the name afensitivity to initial conditionsTo write down and program these equations requires a miedeffart.
But to do this for higher order variationals and check anduddlbom mistakes can be a cumbersome task. The rationale
of jet transport is to do this taskutomatically

The basic idea is to integrate the ODE using any method (&glor methods) but replacing operations with numbers
(e.g. the coefficients of the Taylor expansioriof (¢ + h)) by operations with polynomials i6truncated at the desired
order.

The following considerations hold.



e Typical expansions are full, not sparse. Hence, one hastefiisient methods to multiply multivariate polynomi-
als, to store and retrieve coefficients, etc.

e The computing time is roughly the same that would be requisethe integration of the variational equations to
the desired order, taking care of the symmetries and avgidimecessary computations. But programming and
debugging is extremely easier and compact using jet trahspo

e At a fixed timet the solution is represented as a truncated Taylor serigsAn(&y, ..., &), £ < n. Note that for
eachg; different truncation order can be considered. The coefftsief this representation evolve in time and its
evolution is represented as a Taylor series.ifaylor methods in general, and the adapted ones to jetptainis
particular, allow to choose a suitable truncation ordetthefseries irh which can depend on the componentrof

e The jet transport methods allow to adapt coordinates agupto the shape of the initial uncertainty box: it is
equivalent to consider suitable initial conditions in tle¢ ¢f derivatives with respect 9. For example, if the
adapted coordinates are a linear combination of the ofligimas, then the initial condition of the first variational
equations is given by the matrix of the change and the adaptadinates are new coordinates in the tangent space.

e A further advantage is that one can include, with the samdodeiogy, the effect of parameters. So, one can
consider equations like = f(¢,z, A) containing one or several parameters. If one is interested in values of
A= Ao + 4, itis possible to carry out the expansiong§nd). This allows, for instance, to do bifurcation analysis
with respect to parameters of all kinds of objects which anlg available by numerical means.

¢ In the example considered, we assume the uncertainty toifm@miy distributed in the initial box. However, the
jet transport can be modified to take into account differastriutions for the uncertainty, such as the Gaussian
one, to be propagated along time.

e By replacing the usual arithmetic by interval arithmetidaigorous estimate of the errors, the computations can be
made absolutely rigorous, so that the final result becomdagt, a mathematical theorem. This will give rigorous
realistic estimates, provided the mathematical modelysighlly correct.

Indeed, the ideas of this methodology can be found in [5] wliee jet transport is used to validate numerical results.
In our approach we will forget the validation part, not makour results less applicable.

RESULTS

As we have already said, for Apophis we consider that th&lnihcertainties are given in a 3D box, whicl8is km long
on the tangent direction to the orbit ahd km long on two other orthogonal directions. This allows theplynomials
representing the coordinates to be function of 3 coord&(@te &z, £3) which lay in these directions. Note that in the case
of a 6D initial box, a Taylor series in 6 coordinates is sth$ible from a computational point of view.

In Fig. 1, we can see several shots that illustrate the deolwf the initial set of uncertainties along time using first
second and third order variational approximations. As weajgpreciate, as we get close to the first approach with the
Earth, we need to consider higher order variational eqnatio have an accurate approximation of the set of uncagdaint
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Figure 1: Evolution of the initial uncertainty along timesjua few minutes before the first approach and on the first
approach. In red: boxes using only the first order variatidngreen: boxes using the second order variational approx
imation; in blue: boxes using the third order variationgbagximation. Note that the blue boxes essentially oveithap t
green ones. Leftl” = 8260.95, right: T' = 8260.955 days counted from September 1, 2006 00:00h.
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Figure 2: Maximum contributiop;, of the variational terms of orddr= 1, ..., 7 on the estimate of the region covered
by the initial uncertainties for Apophis as a function of énOn thex-axis days counted from September 1, 2006 00:00h
are shown. On thg-axis the contribution of the variationals in logarithm@ate (units AU and Ay day). Left: time
span close to the first approach with Earth; Right: time sparsiclering the first and second close approaches with the
Earth.
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Figure 3: Speed of Apophis as function of time. Left: from ®epber 1, 2006 00:00h to February 15, 2038 00:00h.
Middle (resp. right): in a neighbourhood of the first clos@mach with the Earth (resp. the Moon). On thaxis days
counted from September 1, 2006 00:00h. Units day angskm
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Figure 4: Projections of the orbit of Apophis from May 3, 2GEB00h to October 4, 2030 12:00 h. From the left; y,
x — z andy — z. Unit AU.

The first question that we must face is to determine the minirotder of variational equations that we need to take
in the jet of derivatives to have an accurate approximatich@set of uncertainties at a given tiri&. To this end, we
estimate the maximum contribution of each variational ofdea set of points in the uncertainty region. As we can see
in the left-hand side of Fig. 2, for the first close approactihe Earth in 2029 the fourth order variationals contiidout
is less thari0~1° AU and AU/day. So we can use a third order variational approximatidrate@ an accurate description
of the shape of the final uncertainty set.

Note, also, that a plot like the one displayed in Fig. 2 cardet much more information that just, say, the maximal
Lyapunov exponent. This indicator gives an idea of the ayeraretching along the full period, while the plot shows
the epochs at which stretching is created. The modulus oddin@nant eigenvalue of the matrix of the first variational
equations changes from a few tens just before the first apprime= 10° a few days after that approach, and then to



9.e5 1.2e8

7.e5 / 1.0e8

/

5.e5 0.8e8

/
3.e5 y// 0.6e8

\
\

Earth\, Moon |
le5 A 0.4e8
t t
8260.0 8260.5 8261.0 8261.5 8262.0 8262.5 10800 11000 11200 11400

Figure 5: On the left, distance of Apophis w.r.t. the centféhe Earth and of the Moon as function of time in the
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the asteroid between 2036 and 2037. Thaxis refers to the number of days counted from Septembedd6 20:00h.
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Figure 6: Uncertainty box &' = 10000 days from September 1, 2006 00:00h. Different colors refalifferent orders
of the variational approximation. Unit AU.
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Figure 7: Relation between the uncertainty boxe¥ at 11300 (left) andT" = 11400 (right) days from September 1,
2006 00:00h and the nominal orbit of Apophis. Left:y projection of the orbit, Rightz, z projection. Unit AU.

~ 107 on year 2038.

The plot also reflects another feature. Assume we start agriaion at time, and consider how initial variatiors
propagate at timé. The solution, for fixed and as a function of has a radius of convergené¥t, t). It is clear the
sudden decrease R(to, t) at the first approach to the Earth. This decrease is relatiéetoollision singularity with the
Earth. In the real path this collision does not occur, butaiely it is present for some complex value of time. One stoul
remember that the radius of convergence takes also intaattiee complex part of the phase space.

Analyzing the effects caused by the first passage, after #@28steroid slows down (on the average and in the long
range) by about 3 kifs. The only role played by the Moon is a tiny change of the maslof the velocity at the time
of the lunar closest approach (see Fig. 3). Moreover, we thateApophis’ orbit suffers a change mainly in the value of
inclination w.r.t. the ecliptic plane and in the value of $enajor axis (see Fig. 4) and thus in the value of the period,
which changes from: 320 days tox 425 days. Concerning the eccentricity, no significant variaioan be appreciated.

Following the idea explained earlier, we try to see if we cahtp the second close approach with a reasonable
approximation of the set of uncertainties. As we can seedrmitht-hand side of Fig. 2, after approximately 10600 days
from the initial epoch, not even the seventh order variaisield something reliable. At this time we are approaghin
a minimum of the distance to the Earth (see Fig. 5 on the right)it takes a value which cannot justify such behaviour,
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Figure 8: Maximum contributiom;, of the variational terms of ordér = 1,2,...,15 on the estimate of the region
covered by the initial uncertainties for Apophis as a fumtf time. On ther-axis days counted from September 1, 2006
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and neither can do the distance of Apophis w.r.t. anotheontejdy.

In Fig. 6, we display the shape of the transported box 1008 d#ter the initial epoch. One checks that it is
completely bent along the orbit and it has a large size. Omigjit plot a zoom of one of the sides is shown. One can
distinguish the different approximations that the secdidgl, up to seventh order variationals give. However rafteler
four the contributions of next orders are small.

Finally, Fig. 7 show the relation between two boxes afterrggltime of integration, in particuldf = 11300 and
T = 11400 days from the initial epoch. Although (see Fig. 2) the sewemter variational equations still don’t give a
good description of the uncertainty region, we do have aa afdow large these uncertainties are going to be.

We must mention that to get close to the second close apphbmaleen 2036 and 2037, we need to consider higher
order variational equations or to use a different approseh {inal Section). In Fig. 8, we display an analysis up tororde
15 in the neighbourhood of the first minimum in Fig. 5. We caprapiate that the error decreases as the variational order
increases (as it was expected), and it seems that taking Bae 14 variationals give a good approach a couple of years
before this approach.

To illustrate the flexibility of the method implemented, bs fet transport is independent from the initial box, we look
for the initial size in the uncertainties required to obtamaccurate description of the second close approach upb@011
days from the initial epoch. It can be seen that if we starwait initial set 4 times smaller than the one considered so far
the seventh order variational would be enough for this psepo

CONCLUSIONS & FUTURE WORK

Here we have used the jet transport to see how uncertainfpEsition and velocity evolve along time. The techniqué tha
we have presented is very flexible and fast, and allow us te hayood understanding of the dynamics of the problem.
Moreover, it permits to compute the evolutions of uncettagin a more efficient way that the classical sampling rule.

We have seen that we can accurately describe the first clgseagh of Apophis with the Earth by means of third
order variational equations. With respect to the secongecpproach, we have shown that seventh order variational
equations are not enough to guarantee an accurate destmbtine final set. One way to overcome this difficulty is to
consider higher order approximation. It seems that ordér Wéuld be sufficient for the first minimum of the distance at
the epoch of the second approach.

As a further step, we will consider a 6D uncertainty box, mato look if it brings relevant modifications to the
conclusions obtained with a 3D one. It should be explaineddke of the errors in the velocity directions.

On the other hand, in the near future we will have more preeigeerimental data, hence we will be allowed to
propagate the initial box with a lower order of variationguations and higher level of accuracy. In particular we have
checked that errors in the initial data with standard demist4 times smaller would be enough to make good estimates
for the second approach. Hence, we can expect that gooddataw years will make this prediction reliable.

Alternative ways to propagate big uncertainties via Tajdotransport will be studied. For instance, one can divide
the initial sampled domain into several pieces and consiagir evolution independently. This subdivision techrduas
been widely used in computer assisted proof providing gesdlts (see [1]). Special attention will be devoted to the
division’s strategy, in order to select an optimal numbebafes.



More concretely, before the vicinity of the first approacé thitial set of data is stretched out along the tangent direc
tion to the orbit, having a typical shear behaviour. During first approach the character of the dynamics is hyperbolic
(both in the celestial mechanics and in the dynamical systeemses). Beyond the possibility of using coordingtes
adapted to the expanding directions and the most suitab&r®m each direction, this has a direct effect on the sithdiv
sion strategies.

Indeed, the cost of the integration depends on the varitimnger)/ at which the expansions are carried out and on
which is the dimensio® of the¢ variables used for the expansion. The computational cpsbortional, asymptotically
and for largeM, to M2P. On the other hand, for given radius of convergeR¢®), t), tolerance: and assuming that the
number of expanding directionsis the required number of boxes is of the ordee’of . Of course, different expanding
directions can require different numbers of divisions. Agb estimate of the optimal value of the ordér the one which
requires less computational effort, givks ~ E|log(e)|/(2D). This rule helps to decide the best subdivision strategy
that has to be applied at the time it is required, that is, wthersize of the propagated box exceeds some size.

Finally, one of the ideas considered in order to prevent aiptesfuture collision consists in introducing a small
change in the asteroid’s velocity at a certain epoch. Usitdransport, we will analyze the possibilities of collisio
avoidance, collision and even capture of the asteroid b¥#reh-Moon system.
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