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Abstract. The main result of this paper is a characterization of the abelian varieties B/K
defined over Galois number fields with the property that the L-function L(B/K; s) is a product
of L-functions of non-CM newforms over Q for congruence subgroups of the form Γ1(N). The
characterization involves the structure of End(B), isogenies between the Galois conjugates of
B, and a Galois cohomology class attached to B/K.

We call the varieties having this property strongly modular. The last section is devoted to the
study of a family of abelian surfaces with quaternionic multiplication. As an illustration of the
ways in which the general results of the paper can be applied we prove the strong modularity of
some particular abelian surfaces belonging to that family, and we show how to find nontrivial
examples of strongly modular varieties by twisting.

1. Introduction

We will work in the category of abelian varieties up to isogeny, in which the objects are
abelian varieties and the morphisms between two varieties A and B are the elements of the
Q-vector space Hom0(A,B) := Q⊗Z Hom(A,B), where Hom(A,B) denotes the usual Z-module
of homomorphisms between abelian varieties. In particular, isogenies become isomorphisms in
our category. We will use the standard Hom,End and Aut to denote morphisms up to isogeny
(we will suppress the superscripts to lighten the notation). As usual, a field as an index means
morphisms defined over that field. The notation A ∼ B will indicate that the abelian varieties
A and B are isogenous, and A ∼K B that they are isogenous with an isogeny defined over the
field K.

Let f =
∑
anq

n be a weight-two newform for the congruence subgroup Γ1(N), and let Ef =
Q({an}) be the number field generated by its Fourier coefficients. Shimura attaches to f an
abelian variety Af defined over Q, constructed as a subvariety of the Jacobian J1(N) of the
modular curve X1(N). The variety Af has dimension equal to the degree [Ef : Q], the algebra
EndQ(Af ) of its endomorphisms defined over Q is isomorphic to the number field Ef , and the
L-function L(Af/Q; s) is equivalent (i.e., coincides up to a finite number of Euler factors) with
the product

∏
L(σf ; s) of the L-functions of the Galois conjugates of the form f [21, Section

7.5].
The abelian varieties Af and, more generally, all abelian varieties A/Q that are isogenous

over Q to Af for some f are known as modular abelian varieties. This modularity property has
many important consequences and applications, for example:

• modularity implies the Hasse conjecture for the L-function L(A/Q; s);
• the theory of Heegner points and results by Gross–Zagier and Kolyvagin produce partial

results for the variety A/Q in the direction of the Birch and Swinnerton-Dyer conjecture;
• the modularity of Frey’s elliptic curves can be used to solve certain Diophantine equations

of Fermat type.
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As a result, modular abelian varieties have been intensively studied and exploited in the last
decades. In practice, one can easily compute and work with modular forms and the corresponding
modular abelian varieties thanks to the powerful tool provided by the theory of modular symbols:
see [3] for elliptic curves and [22] for arbitrary dimension. The computer systems Magma and
Sage include packages that are able to perform many explicit computations with those objects.

In the other direction, one would like to characterize the modularity of a given variety A/Q. In
the one-dimensional case, the Shimura–Taniyama conjecture predicted that every elliptic curve
over Q is modular, and its proof was completed in [2] by Breuil, Conrad, Diamond and Taylor,
using generalizations and variants of the ideas and techniques of Wiles [24] and Taylor–Wiles
[23]. In [20] Ribet introduced the concept of a variety of GL2-type as an abelian variety A/Q for
which EndQ(A) is a number field of degree equal to the dimension of A. He generalized Shimura–
Taniyama by conjecturing that every variety of GL2-type is modular over Q, and proved that
this fact would be a consequence of Serre’s conjecture on the modularity of 2-dimensional mod
p Galois representations [20, Theorem 4.4]. After the proof of Serre’s conjecture by Khare and
Wintenberger [11, Theorem 9.1], we now know that modularity of an abelian variety over Q is
equivalent to the property of being of GL2-type.

The abelian varieties of GL2-type are not absolutely simple in general: they factor up to
isogeny as products of varieties defined over number fields. After some work done by Elkies
in the one-dimensional case and by Ribet in general, in [15] Pyle gave a characterization of
the abelian varieties defined over number fields that appear in the absolute decomposition of
abelian varieties of GL2-type, which depends on the structure of their endomorphism algebras
and on the existence of isogenies between their Galois conjugates. She uses the name building
blocks for them (also known as elliptic Q-curves in the one-dimensional case) and generalizes
the use of the term modular abelian variety to refer to an abelian variety B/K defined over a
number field K that is isogenous to a factor of some Af . In this sense, Ribet’s generalization of
the Shimura–Taniyama conjecture predicts that building blocks and absolutely simple modular
abelian varieties are the same things up to isogeny, and now, after the work of Khare and
Wintenberger, this is known to be a fact.

In this way one gets a new family of abelian varieties defined over number fields and is tempted
to use their modularity in the same way as was done over Q. But the key property of modularity
that is used for many of the applications is the relation of the L-function of the variety with
modular forms, and this property is invariant only by isogeny defined over the base field. Hence,
to use modularity in the context of abelian varieties over number fields, it is natural to single
out a class of abelian varieties that we will term ‘strongly modular.’

Definition 1.1. Let K be a number field. An abelian variety B/K is strongly modular over K
if its L-function L(B/K; s) is equivalent to a product of L-series of newforms over Q for Γ1(N).

In the next section we give a characterization (Proposition 2.4) of strong modularity as the
property that the restriction of scalars to Q is a product of GL2-type varieties. This can be
taken as an alternative definition of strong modularity.

It is important to notice that strong modularity is a much more restrictive concept than that
of being just a building block. For example, consider an elliptic curve over the field of rational
numbers B/Q. Then, the extension of scalars of B to any number field K is a building block,
but B/K is strongly modular only in the case that K/Q is an abelian extension: in this case we
have that L(B/K; s) =

∏
χ L(f ⊗ χ; s), where f is the newform such that L(B/Q; s) = L(f ; s)

and χ runs over the group of complex characters of Gal(K/Q). Another less trivial example is
the following: consider the elliptic curve B defined over the number field K = Q(

√
−3) by an
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equation of the type:

Y 2 = X3 + 4aX2 + 2(a2 +
√
−3b)X, a, b ∈ Q.

Then B/K is a building block but it is not strongly modular; in fact, no curve isogenous
to B over Q and defined over the field K can be strongly modular. If we enlarge the base
field K to M = Q(

√
−3,
√
−2) then the curve B/M obtained by extension of scalars is still not

strongly modular but its quadratic twist corresponding to the extension M(
√

2 +
√

6) is strongly
modular. This example is obtained in [4, §3] using the results of [16] and [17], and is applied to
the study of a family of Diophantine equations of Fermat type. The strong modularity of the
twisted model is fundamental for this application. Examples of this same type but in higher
dimension are given in the last section of this paper as application of our results.

Strongly modular abelian varieties over number fields can be studied as easily as modular
abelian varieties over Q. For instance, their L-series satisfy the Hasse conjecture, Heegner cycles
and Gross–Zagier type results can be used to compute rational points on them, and they can
be used for solving Diophantine equations as in the example cited in the previous paragraph.

Of course, for abelian varieties over number fields there are other concepts of modularity that
associate the L-function of the variety with more general modular and automorphic forms. The
case of abelian varieties over totally real number fields and their relation to Hilbert modular
forms is perhaps the best understood situation, and many results generalizing the classical ones
are known.

The purpose of the present paper is to understand and characterize the abelian varieties over
number fields whose L-functions can be obtained in terms of classical elliptic modular forms over
Q for congruence subgroups Γ1(N), in the precise sense of our definition of strong modularity.
This characterization is given in our main theorem, Theorem 5.3, in terms of the Galois group
of the number field and of certain Galois cohomology class attached to the variety. The case of
non-CM one-dimensional building blocks, i.e., of Q-curves without complex multiplication, was
already studied in [16]. This paper is a generalization of [16] to arbitrary dimension; many ideas
and tools we will use here were already introduced in [20], [15] and [16].

It would be desirable to have also methods to produce modular abelian varieties without
the use of modular forms, with the modularity being just a consequence of their arithmetic
and geometric properties. The one-dimensional case is of course the most well known, and
for this reason it has been the main source of applications up to now: all elliptic curves over
Q are strongly modular. Over number fields all CM elliptic curves are modular, and Elkies
proved in [5] that non-CM modular elliptic curves are parameterized up to isogeny by the (non-
cusp, non-CM) rational points of the modular curves X∗(N) quotient of X0(N) by the group
of Atkin-Lehner involutions, for squarefree values of N . A method to explicitly work-out this
parametrization when the moduli variety X∗(N) is of genus zero or one (this happens for 81
values of N in the range 2-238) is given in [6], and standard conjectures suggest that only a
finite number of isogeny classes is missing out of these genus 6 1 moduli curves. Once one has
a modular elliptic curve the results in [16] can be used to characterize the curves in its isogeny
class that are strongly modular, and explicit equations for them may be obtained using the
methods developed in [17].

The non-modular construction of higher dimensional strongly modular abelian varieties has
been performed up to now only over Q. They appear either as Jacobians of curves C/Q for which
one is able to write down enough endomorphisms defined over Q, or as the varieties corresponding
to certain points in moduli varieties, especially Shimura curves. In the last section we consider
a family of modular abelian surfaces over number fields that are strictly non-rational examples,
in the sense that they cannot be obtained by just extending scalars from varieties defined over
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Q, and we see how the main theorem of this paper can be used to distinguish (and to produce)
strongly modular examples.

Remark on complex multiplication. Shimura proved that a variety Af has a factor with complex
multiplication if and only if it is isogenous to a power of an elliptic curve with complex multi-
plication. This is also equivalent to the fact that the newform f admits a twist by a quadratic
character whose kernel is the field of complex multiplication of the corresponding elliptic curve.
The CM case requires a special treatment and, except for section 2, in which the results hold
in complete generality, for the rest of the paper we will tacitly assume that all abelian varieties
considered have no CM-factors up to isogeny; when necessary we will stress this condition by
saying “non-CM abelian variety.”

Acknowledgments. Guitart wants to thank the Max Planck Institute for Mathematics for their
hospitality and financial support during his stay at the Institute, where part of the present work
has been carried out.

2. Strong modularity and GL2-type

The purpose of this section is to show that an abelian variety B/K is strongly modular if and
only if the abelian variety A/Q obtained by restriction of scalars A = ResK/Q(B) is isogenous
over Q to a product of abelian varieties of GL2-type. Due to the fact that this last property is
the one that plays a key role in this paper, many statements become simpler if we enlarge the
definition of GL2-type to include varieties that are not simple over Q.

Definition 2.1. An abelian variety A/Q is of GL2-type if EndQ(A) contains a commutative
semisimple sub-Q-algebra of Q-dimension equal to dimA.

Note that the standard use of “GL2-type” in the literature corresponds to the varieties that
satisfy our definition and are simple. The relation between the two concepts is analogous to the
relation between arbitrary CM-abelian varieties and the simple ones (cf. [13, p. 29]).

Lemma 2.2. An abelian variety is of GL2-type if and only if all its Q-simple factors are of
GL2-type.

Proof. For an abelian variety A/Q let A ∼Q A
r1
1 ×· · ·×Arnn be its decomposition up to Q-isogeny

into Q-simple factors. Put Di = EndQ(Ai), let Fi be the center of Di and let ti = [Di : Fi]
1/2 be

its index. The decomposition of EndQ(A) into simple algebras is

(2.1) EndQ(A) ' Mr1(D1)× · · · ×Mrn(Dn),

and the reduced degree of EndQ(A) over Q is [EndQ(A) : Q]red =
∑
riti[Fi : Q].

If every Ai is of GL2-type then Di = Fi has degree [Fi : Q] = dimAi. Every field extension
Ei/Fi of degree ri can be embedded in the matrix ring Mri(Fi) and the product

∏
Ei is a

commutative semisimple subalgebra of EndQ(A) of dimension
∑

[Ei : Q] =
∑
ri[Fi : Q] =∑

ri dimAi = dimA, hence A is of GL2-type.
For the converse we will make use of the following basic facts about associative algebras:

for any semisimple k-algebra A the maximal commutative semisimple subalgebras E ⊆ A have
dimension dimk E = [A : k]red, and for every faithful A-module M one has dimkM > [A : k]red

with the equality being possible only if all the simple subalgebras of A are matrix algebras
over fields (cf. [13, Propositions 1.3 and 1.2]). The second fact applied to the space of tangent
vectors Lie(B/Q) of an abelian variety B/Q gives the inequality [EndQ(B) : Q]red 6 dimB =
dim Lie(B/Q).
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Assume now that A is of GL2-type. Let E ⊆ EndQ(A) be a commutative semisimple subal-
gebra with [E : Q] = dimA. Then by the previous results

dimA = [E : Q] 6 [EndQ(A) : Q]red 6 dimA.

Hence each step is an equality and EndQ(A) is product of matrix algebras over fields; i.e., ti = 1
for all i.

Now, using the inequalities [EndQ(Ai) : Q]red 6 dimAi for every i, we have

dimA = [EndQ(A) : Q]red =
∑

ri[Fi : Q] =
∑

ri[EndQ(Ai) : Q]red 6
∑

ri dimAi = dimA;

the equality at each summand follows, from which one deduces [Fi : Q] = dimAi for all i and
so all simple factors Ai are of GL2-type. �

Proposition 2.3. An abelian variety A/Q is strongly modular over Q if and only if it is of
GL2-type.

Proof. If A/Q is of GL2-type, by the previous lemma we have that A ∼Q Ar11 × · · · × Arnn ,
where the Ai’s are Q-simple abelian varieties of GL2-type. Results of Ribet [20, Theorem
4.4] and Khare and Wintenberger [11, Theorem 10.1], together with Faltings’s isogeny theorem
imply the existence of newforms fi such that Ai ∼Q Afi . Then L(A/Q, s) ∼

∏
L(Ai/Q, s)ri ∼∏

L(Afi/Q, s)ri , where ∼ denotes equivalence of L-functions. Since each L(Afi/Q, s) is the
product of the L-functions of the newforms that are Galois conjugates of fi, the variety A is
strongly modular over Q.

Now we prove the converse. Let A/Q be a strongly modular abelian variety over Q, and
let f1, . . . , fn be newforms such that L(A/Q, s) =

∏
L(fi, s). Let Ei be the field of Fourier

coefficients of fi, and denote by E = E1E2 · · ·En the composition. Let m = [E : Q] and
mi = [E : Ei], and denote by ΣE and ΣEi the corresponding sets of complex embeddings. For
every index i, the restriction of all the elements of ΣE to the field Ei gives mi copies of every
element of ΣEi .

We will make use of the following notation: if S =
∑
ann

−s is a Dirichlet series with an ∈
C and σ ∈ Aut(C), we denote by σS the series

∑
σann

−s; that is, the series obtained by
applying σ to the coefficients an. Note that since L(A/Q, s) has rational coefficients we have
that σL(A/Q, s) = L(A/Q, s). One has

L(Am/Q, s) = L(A/Q, s)m =
∏
σ∈ΣE

σL(A/Q, s) =
∏
σ∈ΣE

n∏
i=1

σL(fi, s)

=

n∏
i=1

∏
σ∈ΣE

L(σfi, s) =

n∏
i=1

∏
σ∈ΣEi

L(σfi, s)
mi =

n∏
i=1

L(Afi/Q, s)
mi = L

(( n∏
i=1

Amifi

)
/Q, s

)
.

Then by Faltings’s isogeny theorem the varieties Am and
∏
Amifi are isogenous over Q. By the

uniqueness of decomposition up to Q-isogeny into the product of Q-simple varieties it follows
that A is isogenous over Q to a product

∏
Aeifi for some exponents ei > 0, and thus it is of

GL2-type. �

For other number fields strong modularity can be reduced to that of the restriction of scalars.

Proposition 2.4. An abelian variety B/K over a number field K is strongly modular over K
if and only if ResK/Q(B/K) is of GL2-type.
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Proof. The equality of L-functions L(B/K, s) = L((ResK/QB)/Q, s) implies that B is strongly
modular over K if and only if ResK/QB is strongly modular over Q, and by the previous
proposition this is the case if and only if ResK/QB is of GL2-type. �

Combining Lemma 2.2 with this proposition one immediately obtains the following conse-
quence.

Corollary 2.5. An abelian variety is strongly modular over a number field K if and only if all
its K-simple factors are strongly modular over K.

3. Q-abelian varieties

The absolutely simple factors up to isogeny of non-CM abelian varieties of GL2-type are
studied by Ribet in [20] and by Pyle in [15]. A common property of the non-CM abelian
varieties of GL2-type and of their simple factors is that the object consisting of the variety
together with its endomorphisms has as field of moduli the field of rational numbers. In order
to deal with this property the following definitions are useful. For a given abelian variety B/Q
and Galois automorphism σ ∈ GQ, an isogeny µσ :

σ
B → B is said to be compatible with the

endomorphisms of B if the map End(B)→ End(B) : ψ 7→ µσ aσψ aµ−1
σ is the identity, i.e., if the

diagram

σ
B

µσ //

σψ

��

B

ψ

��σ
B µσ

// B

is commutative for every ψ ∈ End(B).

Definition 3.1 ([15, p. 194]). A Q-abelian variety (or just Q-variety for short) is an abelian
variety B/Q such that for every σ ∈ GQ there exists an isogeny µσ :

σ
B → B compatible with

End(B).

Let F be the center of the endomorphism algebra End(B). It is easily seen that if the
isogeny µσ :

σ
B → B is compatible with End(B), then all isogenies between these two varieties

compatible with End(B) are the maps of the form ψ aµσ for ψ ∈ F ∗; also, if B is a Q-abelian
variety, then all its endomorphisms belonging to the center F are defined over every field of
definition for B.

The cocycle class [cB]. Let B/Q be a Q-variety. Since the variety is defined over some
number field one can always choose a set of isogenies {µσ :

σ
B → B}σ∈GQ compatible with the

endomorphisms of B that is locally constant. Let cB be the map defined as

(3.1) cB : GQ ×GQ → F ∗, cB(σ, τ) = µσ aσµτ aµ−1
στ .

In the following lemma we state some of the properties of cB, which can be straightforwardly
checked.

Lemma 3.2. The map cB is a well-defined continuous 2-cocycle on GQ with values in the group
F ∗, considered as a GQ-module with trivial action, and the cohomology class [cB] ∈ H2(GQ, F

∗)
does not depend on the locally constant set of isogenies used to define the cocycle cB. Moreover,
the class [cB] depends only on the Q-isogeny class of B.
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This invariant [cB] gives the obstruction to descend up to isogeny the variety and its endo-
morphisms over a given number field. The following result is stated as Proposition 5.2 in [15]
for Q-abelian varieties that are building blocks, but in the proof given there the structure of the
endomorphism algebra plays no role, so we state it here in full generality.

Proposition 3.3 (Ribet–Pyle). Let B/Q be a Q-variety and let K be a number field. There
exists an abelian variety defined over K and with all the endomorphisms defined over K that is
isogenous to B if and only if [cB] belongs to the kernel of the restriction map Res: H2(GQ, F

∗)→
H2(GK , F

∗).

Generalizing the terminology introduced in [16] for elliptic Q-curves we will say that a Q-
variety B is completely defined over a Galois number field K if the variety B and all its endo-
morphisms are defined over K, and there exist isogenies between Galois conjugates compatible
with End(B) that are all of them defined over K. In this case, let µs : sB → B be an isogeny
compatible with the endomorphisms of B for each element s ∈ G = Gal(K/Q). Then, as for
(3.1), one sees that the map

(3.2) cB/K : G×G→ F ∗, cB/K(s, t) = µs a sµt aµ−1
st

is a well-defined 2-cocycle on G with values in the trivial G-module F ∗ whose cohomology class
[cB/K ] ∈ H2(K/Q, F ∗) is an invariant of the K-isogeny class of the variety B.

Proposition 3.4. Let B/Q be a Q-variety and let K be a Galois number field. There exists an
abelian variety completely defined over K that is isogenous to B if and only if [cB] belongs to
the image of the inflation map Inf : H2(K/Q, F ∗)→ H2(GQ, F

∗).
Moreover, if [cB] = Inf([c]) for some cocycle class [c] ∈ H2(K/Q, F ∗), then there exists such

a variety B0/K such that [cB0/K ] = [c].

Proof. Since the image of the inflation lies in the kernel of the restriction, by Proposition 3.3 we
can suppose that B and all of its endomorphisms are defined over K.

Assume that [cB] = Inf([c]). Modifying the 2-cocycle c by a coboundary we can assume that
it is normalized, i.e., takes the value c(1, 1) = 1, and as a consequence of the cocycle condition
this implies that also c(s, 1) = c(1, s) = 1 for every s ∈ Gal(K/Q). Moreover, by changing the
choice of isogenies compatible with End(B) used in (3.1) to define cB, we can also suppose that
inf(c) coincides with the cocycle cB. This implies that cB(σ, τ) = 1 whenever σ or τ belong to
the subgroup GK . It follows that the map σ 7→ µσ is a one-cocycle on the group GK with values
in the group Aut(B), viewed as a module with the natural Galois action of GK , which is in fact
the trivial action since all the elements of End(B) are defined over K.

Let B0 be the twist of B by this one-cocycle: it is an abelian variety B0 defined over K
together with an isogeny κ : B → B0 such that µσ = κ−1 aσκ for all σ ∈ GK . We will see that
this variety satisfies the conditions of the proposition.

Every endomorphism of B0 is of the form κ aψ aκ−1 for some ψ ∈ End(B). Since all endo-
morphisms of B are defined over K and the isogenies µσ are compatible with End(B), for every
σ ∈ GK one has

σ(κ aψ aκ−1) = σκ aσψ aσκ−1 = κ aµσ aσψ aµ−1
σ

aκ−1 = κ aψ aκ−1

and the endomorphisms of B0 are defined over K too.
A calculation shows that the maps νσ := κ aµσ aσκ−1 are isogenies

σ
B0 → B0 compatible

with End(B0) for every σ ∈ GQ, and the relation of µσ = κ−1 aσκ for elements σ ∈ GK shows
that νσ = 1 for the σ fixing the field K. The cocycle cB0 computed from this set of isogenies is
related to cB by cB0(σ, τ) = κ acB(σ, τ) aκ−1 for all σ, τ ∈ GQ. Since cB is the inflation of c and
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this cocycle is normalized, one deduces that cB0(σ, τ) = 1 if either σ or τ belong to the subgroup
GK . Applying this fact to a pair σ ∈ GQ and τ ∈ GK one deduces that

cB0(σ, τ) = νσ aσντ aν−1
στ = νσ aν−1

στ = 1 ⇒ νστ = νσ,

which means that νσ depends only on the action of σ on K (i.e., on the class of σ modulo the
normal subgroup GK). Now, applying the identity to a pair σ ∈ GK and τ ∈ GQ one has

νσ aσντ aν−1
στ = σντ aν−1

στ = σντ aν−1
τ = 1 ⇒ σντ = ντ

proving that the isogenies νσ are also defined over K for every σ ∈ GQ.
Finally, for every element s ∈ Gal(K/Q) let νs be the isogeny νσ for any σ ∈ GQ whose

action on K is given by the element s. In this way one obtains a set of isogenies compatible
with End(B0) defined over the field K and the cocycle cB0/K computed using this set is the

cocycle cB0/K(s, t) = κ ac(s, t) aκ−1. Hence, under the isomorphism between the centers of the
endomorphisms of the varieties B0 and B given by conjugation by the isogeny κ between them,
the cohomology class [cB0/K ] is the class [c] we started with. �

Simple Q-varieties of the first kind. Up to now we have put no restrictions in the Q-abelian
varieties considered; in particular we have not assumed the varieties to be simple. If B ∼

∏
Bmi
i

is the decomposition up to isogeny into simple varieties then it is easy to see that B is a Q-
abelian variety if and only if all its simple factors have this property, but we will not need
this fact here. For the study of the modular abelian varieties we are interested in, the case of
interest is when the center F of End(B) is a totally real number field; this is equivalent to say
that the previous decomposition has a unique simple factor that is a variety of the first kind in
the standard terminology employed for the classification of simple abelian varieties according to
the type of their endomorphism algebras as algebras with involution (cf. [14, p. 193]). We also
recall that the endomorphism algebras of simple varieties of the first kind are either a totally real
number field (type I varieties) or a quaternion algebra over such field, that may be either totally
indefinite (type II) or totally definite (type III). So we assume from now on that F = Z(End(B))
is a totally real number field; we could also assume that B is absolutely simple but in fact that
is not necessary and everything below works for varieties that are powers of simple varieties of
the first kind.

Generalizing to our situation the definitions given first by Ribet in [19, p. 113] for simple
varieties of type I, and then by Pyle in [15, p. 218] for building blocks, one can define for every
isogeny µσ : σB → B compatible with End(B) its “degree” δ(µσ), which is a totally positive
element of the field F whose reduced norm as an element of the Q-algebra End(B) is the usual
degree of the isogeny µσ. Moreover, from the definition of this map and the fact that the Rosati
involution fixes the elements of the center F one gets, exactly as in [19, 15], the following identity:

(3.3) cB(σ, τ)2 = δ(µσ)δ(µτ )δ(µστ )−1,

showing that the cohomology class [cB] belongs to the 2-torsion subgroup H2(GQ, F
∗)[2].

Now, the structure of the group H2(GQ, F
∗)[2] is particularly simple and a number of conse-

quences about fields of definition can be deduced just by looking at it. As it is described in [19,
p. 114] (see also [18, Section 2]), if one starts with any group isomorphism F ∗ ' {±1}×F ∗/{±1},
and using basic facts of group cohomology, one obtains a decomposition

(3.4) H2(GQ, F
∗)[2] ' H2(GQ, {±1})×Hom(GQ, F

∗/{±1}F ∗2)

under which every 2-torsion cohomology class ξ ∈ H2(GQ, F
∗) has two components ξ = (ξ±, ξ).

The sign component ξ± ∈ H2(GQ, {±1}) ' Br2(Q) is an element of the 2-torsion of the Brauer

group of Q. The degree component ξ is a group homomorphism GQ → F ∗/{±1}F ∗2. Note
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that the decomposition of the cohomology group depends on the decomposition of the (trivial)
GQ-module F ∗ we have chosen, but it is easy to see that the degree component does not depend
on it, and also that, for the classes [cB] attached to Q-varieties B, the degree component is just
the map σ 7→ δ(µσ) mod {±1}F ∗2 (hence the name).

Given an element ξ ∈ H2(GQ, F
∗)[2] we will denote by KP the field fixed by the kernel of the

degree component ξ; since this morphism takes values in a 2-torsion group, the field KP is an
abelian extension of exponent 2 of the field Q.

Proposition 3.5. Let B be a Q-abelian variety with F = Z(End(B)) a totally real number field.

Let KP be the field fixed by the kernel of [cB].

(1) If B0 ∼ B with B0 and End(B0) defined over K then KP ⊆ K.
(2) There exist isogenous varieties B0 ∼ B defined over fields of the form K = KP ·Q(

√
a)

for some a ∈ Q, with End(B0) also defined over K.
(3) There exist isogenous varieties B0 ∼ B completely defined over fields of the form K =

KP ·Q(
√
a,
√
b) for some a, b ∈ Q.

Proof. The decomposition (3.4) has analogues for the group H2(GK , F
∗)[2] for every number

field K, and for the group H2(K/Q, F ∗)[2] for every Galois number field K. The restriction and
inflation maps respect the corresponding decompositions. It follows that the class [cB] belongs
to the kernel (resp. the image) of the restriction to the first group (resp. of the inflation from
the second group) if and only if the two components sign and degree belong to the corresponding
kernels (resp. images).

As for the degree component [cB] ∈ Hom(GQ, F
∗/{±1}F ∗2) each of the two conditions either

on the inflation or on the restriction are equivalent to the fact that KP ⊆ K. Every element
of H2(GQ, {±1}) ' Br2(Q) can be identified with a quaternion algebra, that can be written
as a pair (a, b)Q with a, b ∈ Q∗, using the standard notation. Such an element always can be
trivialized by restriction to a (at most) quadratic extension, for example the extension Q(

√
a).

Also, this element can be inflated from a cohomology class defined on the Galois group of a (at

most) biquadratic extension, for example the extension Q(
√
a,
√
b) (see [17, Section 2]). �

In [19] Ribet proved that for varieties with End(B) = F a totally real number field of odd
degree [F : Q] = dimB the field KP already trivializes the sign component, so that there are
always B0 ∼ B with End(B0) defined over KP . It is easily seen that his argument works in
fact for all Q-varieties of the first kind of odd dimension without the assumption on the size of
their endomorphisms. On the contrary, for even dimension this fact is not true any more, as the
modular examples given in [18] show.

4. K-building blocks

Since we want to study abelian varieties over a number field K that are quotients up to K-
isogeny of varieties of GL2-type, we slightly adapt the definition of “building block” given by
Pyle in [15, p. 195], in order to keep track of their decomposition over K and not merely over
Q.

Definition 4.1. Let K/Q be a Galois extension. We say that a (non-CM) abelian variety B/K
is a K-building block if

(1) B is a Q-variety admitting isogenies µσ :
σ
B → B compatible with End(B) defined over

K for every σ ∈ GQ, and
(2) EndK(B) is a division algebra with center a number field E, having index t 6 2 and

reduced degree t[E : Q] = dimB.
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We note the following remarks:

• The requirement that EndK(B) is a division algebra implies that K-building blocks are
K-simple abelian varieties, but they may factor over larger fields.
• The Q-building blocks are the (non-CM) Q-simple abelian varieties of GL2-type.
• The Q-building blocks are the building blocks in the sense of Pyle’s definition; we will

also use this terminology without a prefix field sometimes.
• For Q-building blocks the field E is necessarily a totally real field, equal to the center

of End(B). In general it may be either totally real or a CM-field, and the center F of
End(B) is a (necessarily totally real) subfield of E.
• We do not require B to have all its endomorphisms defined over K. This means that a
K-building block is not necessarily a Q-variety completely defined over K.

Proposition 4.2. Let A/Q be a Q-simple abelian variety of GL2-type without CM and let K/Q
be a Galois extension. Then the extension of scalars A/K is K-isogenous to a power Bn of a
K-building block B/K.

Proof. Let A ∼K Bn1
1 ×· · ·×Bnr

r be the decomposition up to K-isogeny into K-simple varieties.
Since EndQ(A) is a subfield of End(A) it acts on each isotypical factor Bni

i , hence [EndQ(A) :
Q] | 2ni dimBi. But [EndQ(A) : Q] = dimA =

∑
ni dimBi, and this implies that either

[EndQ(A) : Q] = ni dimBi or [EndQ(A) : Q] = 2ni dimBi for each index. The second case is
not possible since we are assuming that no subvariety of A has CM, and so [EndQ(A) : Q] =
ni dimBi, which implies that there is only one isotypical factor and A ∼K Bn.

Next, we prove that EndQ(A) is a maximal subfield of EndK(A) or, equivalently, that EndQ(A)
is its own centralizer in EndK(A). Let ϕ be an element of EndK(A) that commutes with
EndQ(A). The image ϕ(A) is isogenous to Br for some r. Since ϕ commutes with EndQ(A),
the field EndQ(A) acts on Br, and this implies that [EndQ(A) : Q] | 2r dimB. This gives only
two options: either [EndQ(A) : Q] = r dimB or [EndQ(A) : Q] = 2r dimB. Again, the second
is not allowed since Br can not have CM. This means that r = n and ϕ is an isogeny. Hence,
C(EndQ(A)) is a field and therefore C(EndQ(A)) = EndQ(A).

Set E = Z(EndK(B)) and let t be the index of EndK(B). We can prove now that t[E : Q] =
dimB. This comes from the decomposition A ∼K Bn, which translates into an isomorphism
EndK(A) ' Mn(EndK(B)). Since EndQ(A) is a maximal subfield of EndK(A) taking dimensions
over E we have that [EndQ(A) : E] = nt, and multiplying both sides of this expression by
[E : Q] it gives [EndQ(A) : Q] = nt[E : Q]. Since [EndQ(A) : Q] = dimA = n dimB we see that
dimB = t[E : Q].

Since B is K-simple, EndK(B) is a division algebra acting on H1(B,Q); therefore [EndK(B) :
Q] | 2 dimB. This means that t2[E : Q] | 2 dimB, and by the relation t[E : Q] = dimB we see
that t dimB | 2 dimB, showing that t 6 2.

Finally, we have to show that B is a Q-variety with isogenies between Galois conjugates
defined over K. The argument is the same as in the proof of Proposition 1.4 in [15], but starting
from an isogeny between AK and Bn defined over K. It only has to be noticed that the isogenies
α(σ) : A → A that appear in that proof are defined over Q, and this implies that the isogenies
defined on page 195 of [15] are defined over K. �

Corollary 4.3. If a K-simple variety is strongly modular over a Galois number field K, then
it is a K-building block.

Proof. Let B be a K-simple strongly modular variety. By Proposition 2.3, since B is strongly
modular over K, ResK/Q(B) is of GL2-type. Since ResK/Q(B) ∼K

∏
s∈Gal(K/Q)

s
B, the variety
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B is a K-simple factor of a Q-simple variety of GL2-type, and then it is a K-building block by
the previous proposition. �

The converse of this corollary is not true: a K-building block needs extra conditions to be
strongly modular. This conditions are related to a cohomology class [cB/K ] attached to B that is
defined in a similar way than (3.2) as follows. Let B be a K-building block over a Galois number
field K; put G = Gal(K/Q), E = Z(EndK(B)) and F = Z(End(B)). Let {µσ}σ∈GQ be a set of
isogenies compatible with End(B) defined over K. For each s ∈ G choose a representative s̃ in
GQ, and define

cB/K : G×G→ E∗, cB/K(s, t) = µs̃ a s̃µt̃ aµ−1
s̃t
.

When all the endomorphisms of B are defined over K this cocycle cB/K(s, t) coincides with (3.2).
Since now we are not requiring the field K to be a field of definition of all the endomorphisms
of B, we can only guarantee that cB/K(s, t) lies in E∗ but not in F ∗ as it happens when the
variety is completely defined over K. In the next lemma we state the main properties of this
cocycle.

Lemma 4.4. The map cB/K is a 2-cocycle on G with values in E∗, considered as a module

with trivial action. The cohomology class [cB/K ] ∈ H2(K/Q, E∗) depends neither on the lift

s 7→ s̃ nor on the choice of the isogenies µs̃. Moreover, the inflation of [cB/K ] to H2(GQ, E
∗)

coincides with the image of [cB] under the morphism H2(GQ, F
∗)→ H2(GQ, E

∗) induced by the
embedding F ∗ ↪→ E∗.

Proof. Let ϕ be an element of EndK(B). Since s̃t = s̃ t̃ τ for some τ ∈ GK we have

cB/K(s, t) aϕ = µs̃ a s̃µt̃ aµ−1
s̃t

aϕ = µs̃ a s̃µt̃ a s̃tϕ aµ−1
s̃t

=

= µs̃ a s̃µt̃ a s̃ t̃ τϕ aµ−1
s̃t

= µs̃ a s̃µt̃ a s̃ t̃ϕ aµ−1
s̃t

=

= µs̃ a s̃ϕ a s̃µt̃ aµ−1
s̃t

= ϕ aµs̃ a s̃µt̃ aµ−1
s̃t

= ϕ acB/K(s, t),

and this shows that cB(s, t) lies in E. In the same way we can prove the cocycle condition,
and the independence on the set {µσ}σ∈GQ is seen in an analogous way than for the case of the
cocycle cB.

Observe that, if σ ∈ GQ is such that σ|K = s̃|K then µσ aµ−1
s̃ commutes with the elements

in EndK(B); therefore, we can write µσ = λσ aµs̃ for some λσ ∈ E∗. Using this it is immediate
to see that the use of another lift from Gal(K/Q) to GQ would modify the cocycle cB/K by a
coboundary.

It remains to prove the last statement in the lemma. Take σ, τ ∈ GQ and put s = σ|K ,
t = τ |K . We use the same name for the cocycles and for their images for the morphisms
involved; namely, cB/K is the inflation to GQ of cB/K and cB is the image of cB in Z2(GQ, E

∗).

By the definitions cB(σ, τ) = µσ aσµτ aµ−1
στ and cB/K(σ, τ) = µs̃ a s̃µt̃ aµ−1

s̃t
. Since σ|K = s̃|K we

see that µσ = µs̃ aλσ for some λσ ∈ E. Now cB(σ, τ) = cB/K(σ, τ) aλσ aλτ aλ−1
στ and the two

cocycles are cohomologous. �

Restriction of scalars of K-building blocks. Our objective now is to compute the endomor-
phism algebra EndQ(ResK/Q(B)) for a K-building block B. What we obtain is a generalization
of the expression found by Ribet in [20, Lemma 6.4] for the case of Q-curves, giving the algebra
as a twisted group algebra. The main difference is that in our case the algebra is obtained by a
construction that mimics the standard twisted group algebra definition, which we first describe
in abstract terms.
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Let A be a central E-algebra and let c ∈ Z2(G,E∗) be a two-cocycle on a finite group G
with values in the multiplicative group E∗ viewed as a module with trivial action. One defines
the E-algebra Ac[G] by generalizing the usual definition of twisted group algebra: it is the free
left A-module ⊕s∈GA · λs with basis a set of symbols λs indexed by the elements s ∈ G and
multiplication defined by the relations:

(4.1)
a · λs = λs · a, for a ∈ A,
λs · λt = c(s, t) · λst.

The cocycle condition for c is used to check that this definition makes sense and produces an
associative algebra, and of course its isomorphism class does depend only on the cohomology
class of the cocycle c. This algebra is related with the twisted group algebra Ec[G] through the
following isomorphism:

Ac[G] ' A⊗E Ec[G] as E-algebras.

Indeed, if we let Ec[G] = ⊕s∈GE · λs then the map a⊗
∑
xs · λs 7→

∑
(axs) · λs : A⊗E Ec[G]→

Ac[G] is an isomorphism of E-algebras.

Proposition 4.5. Let B be a K-building block over a Galois number K field with group G =
Gal(K/Q). Let D = EndK(B) and E = Z(D). Then,

(4.2) EndQ(ResK/Q(B)) ' D ⊗E EcB/K [G].

Proof. Call A the variety ResK/Q(B). For each s ∈ G fix a representative s̃ for s in GQ imposing

that 1̃ = 1. Let {µσ}σ∈GQ be a locally constant set of isogenies compatible with End(B) defined

over K in which we have chosen µ1 to be the identity. We know that A ∼K
∏
s∈G

s̃B, and that
by the universal property of the restriction of scalars functor EndQ(A) ' HomK(A,B). Hence,

EndQ(A) ' HomK(A,B) '
∏
s∈G

HomK(s̃B,B) '
∏
s∈G
D · µs̃

and we see that EndQ(A) is a left D-module of dimension [K : Q]. We shall determine now its

structure as an algebra. Define, for s ∈ G, λs to be the endomorphism of A which sends t̃sB to
t̃B via t̃µs̃. It is fixed by all elements in GQ and so it is an endomorphism of A defined over Q.

Since we forced 1̃ to be 1, we can identify λ1 with the identity endomorphism of EndQ(A).
We can embed D in EndQ(A) by sending each d ∈ D to the morphism whose components

are the diagonal maps s̃d : s̃B → s̃B. Hence, we can multiply the λs by elements d in D in the
following way, depending on whether we left or right multiply:

d aλs : t̃sB
t̃µs̃−→ t̃B

t̃d−→ t̃B

λs ad : t̃sB
t̃sd−→ t̃sB

t̃µs̃−→ t̃B.

By the compatibility of the isogenies it is clear that these two maps coincide, and therefore
d aλs = λs ad. Also the compatibility of the isogenies gives us the formula λs aλt = cB/K(s, t) aλst.
That is, multiplication in EndQ(A) is given in terms of this basis by formulas (4.1) with cocycle
cB/K , so that this algebra is isomorphic to DcB/K [G]. �

5. Strongly modular abelian varieties

Let B be a K-building block over a Galois number field K with Galois group G = Gal(K/Q).
Let D = EndK(B), E = Z(D), and t the index of D. Recall that in the previous section we
have associated to B/K a cohomology class [cB/K ] ∈ H2(G,E∗). In this section we characterize
when B is strongly modular over K in terms of that class.
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Lemma 5.1. Let B be a K-building block over a Galois number field K. If A = ResK/Q(B) is
an abelian variety of GL2-type, then

A ∼Q A
t
1 × · · · ×Atn,

with the Ai pairwise non-isogenous Q-simple abelian varieties of GL2-type.

Proof. A priori we know that

(5.1) A ∼Q A
r1
1 × · · · ×A

rn
n

for some ri > 0 and with the Ai being non-isogenous Q-simple abelian varieties of GL2-type. If
we set Ei = EndQ(Ai) then EndQ(A) ' Mr1(E1)× · · · ×Mrn(En).

First we show that each ri is at least t. If t = 1 this is clear, so we suppose now that t = 2.
There is an injection of algebras EndK(B) ↪→ EndQ(A), and so EndK(B) injects into each simple
component Mri(Ei) of EndQ(A). If t = 2 then EndK(B) is non-commutative, and so each ri
must be at least 2.

Now we show that each ri is in fact equal to t. On the one hand we know, by the universal
property of the restriction of scalars, that EndQ(A) ' HomK(AK , B), and using that AK ∼K∏
s∈Gal(K/Q)

sB we have that

(5.2) EndQA ' HomK(AK , B) ' HomK(
∏

sB,B) '
⊕

s∈Gal(K/Q)

HomK(sB,B).

Since B is a K-building block each sB is K-isogenous to B, and so we have an isomorphism of
D-modules HomK(sB,B) ' D. Since D is a Q-vector space of dimension t2[E : Q] = t dimB
one obtains dimQ EndQ(A) = |G|tdimB = t dimA.

On the other hand, we can use expression (5.1) to calculate the same dimension. We have
shown that ri > t for all i. Suppose that for some i we had ri > t. Then we would find that

dimQ EndQA = r2
1 dimA1 + · · ·+ r2

n dimAn > tr1 dimA1 + · · ·+ trn dimAn =

= t(r1 dimA1 + · · ·+ rn dimAn) = t dimA,

which is a contradiction with the first calculation we made. �

Lemma 5.2. Let B be a K-building block over a Galois number field with G = Gal(K/Q). Then
B is strongly modular if and only if the algebra EcB/K [G] is commutative.

Proof. First suppose that EcB/K [G] is commutative. Then it is a product of fields so that
EcB/K [G] =

∏
Ei. Call A the variety ResK/Q(B). By Proposition 4.5 we know that

EndQ(A) ' D ⊗E EcB/K [G] '
∏
D ⊗E Ei,

with D ⊗E Ei a central simple Ei-algebra with index ti dividing t. Corresponding to this
decomposition of EndQ(A) there is a decomposition of A up to Q-isogeny: A ∼Q

∏
Ai, and

EndQ(Ai) ' D⊗E Ei. As AK '
∏

sB ∼K B|G|, each Ai is K-isogenous to Bni for some ni. We
claim that ni equals [Ei : E]. To prove the claim, first we observe that the natural inclusion
EndQ(Ai) ↪→ EndK(Ai) gives an injective morphism D⊗EEi ↪→ Mni(D). Looking at the reduced
degrees of these algebras over E we see that t[Ei : E] 6 tni, and then [Ei : E] 6 ni. To see
the equality, we can use that on the one hand, as EndQ(A) '

⊕
s∈G Hom(

s
B,B) '

⊕
s∈GD we

have that
[EndQ(A) : E] = |G|t2 = t2

∑
ni.

But, on the other hand we have that

[EndQ(A) : E] = [D ⊗E
∏

Ei : E] = t2
∑

[Ei : E],
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and this gives that [Ei : E] = ni.
Returning to the proof of the lemma, since EndQ(Ai) ' D ⊗E Ei is a central simple algebra

of index ti|t, there exists a division Ei-algebra Di of index ti acting on the differentials of Ai.
The space of differentials of Ai is a Q-vector space of dimension equal to the dimension of Ai,
and so we have that [Di : Q]|dimAi. But [Di : Q] = t2i [Ei : E][E : Q] and dimAi = ni dimB =
nit[E : Q] = t[Ei : E][E : Q], because ni = [Ei : E]. This means that

t2i [Ei : E][E : Q] | t[Ei : E][E : Q],

so t2i |t, which implies ti = 1. This means that D ⊗E Ei ' Mt(Ei), and therefore Ai ∼Q (A′i)
t,

for some abelian variety A′i with EndQ(A′i) ' Ei. Finally, A′i ∼K Bni/t, which gives that

[Ei : Q] = ni[E : Q] =
ni
t
t[E : Q] =

ni
t

dimB = dimA′i,

showing that each A′i is a variety of GL2-type.
In order to prove the other implication, by the previous lemma we can suppose that A ∼Q

At1 × · · · ×Atn, and as a consequence that

(5.3) EndQ(A) ' Mt(E1)× · · · ×Mt(En),

where the notation is the same as in the first part of the proof. On the other hand,

EndQ(A) ' D ⊗E EcK [G] = D ⊗E
∏

Mri(Ci)

where the Ci are division algebras. But (5.3) forces ri = 1 and Ci ' Ei for each i. �

Now we state our main result, giving a characterization of strong modularity.

Theorem 5.3. Let K be a Galois number field and let B/K be a K-simple abelian variety.
Then B is strongly modular over K if and only if it is a K-building block, the extension K/Q
is abelian, and [cB/K ] belongs to the subgroup Ext(G,E∗) ⊆ H2(G,E∗) consisting of symmetric
cocycle classes.

Proof. By Corollary 4.3 being a K-building block is a necessary condition, and in that case
the previous lemma says that being strongly modular is equivalent to the fact that the algebra
EcB/K [G] is commutative. A twisted group algebra Ec[G] is commutative if and only if the
group G is abelian and the cocycle c is symmetric. �

Strongly modular simple varieties. The previous theorem shows that strong modularity
puts very restrictive conditions on varieties. In what follows, we consider the setting in which
B/Q is a Q-building block. Given a Galois number field K, using Theorem 5.3 we want to give
necessary and sufficient conditions to guarantee the existence, in the Q-isogeny class of B, of
some variety which is completely defined over K and strongly modular over K.

For that, let B be a Q-building block and let D = End(B). The center F = Z(D) is a totally
real number field and D is either equal to F , in which case t = 1 and [F : Q] = dimB, or
it is a totally indefinite quaternion algebra over F , with t = 2 and [F : Q] = 1

2 dimB. Let

ξ = [cB] ∈ H2(GQ, F
∗) be the cohomology class attached to B.

We fix an embedding F ↪→ Q. By a theorem of Tate it is known that the group H2(GQ,Q
∗
)

is trivial (here GQ acts trivially in Q), so there exist continuous maps α : GQ → Q∗ such that
cB(σ, τ) = α(σ)α(τ)α(στ)−1 for all σ, τ ∈ GQ; two such maps differ by a Galois character. The

map α : GQ → Q∗/F ∗ obtained viewing the values of α modulo elements of F ∗ is a morphism; let
Kα denote the fixed field of its kernel, which is an abelian extension of Q. Using the identity (3.3)

we see that the map εα(σ) = α(σ)2/δ(µσ) is a Galois character GQ → Q∗; two such characters
differ by the square of a Galois character. Let Kεα be the fixed field of ker εα; the fact that δ(µσ)
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is real implies that Kεα ⊆ Kα. Let Eα = F ({α(σ)}σ∈GQ) be the number field generated over
F by the values of α; from the identity defining εα(σ) it easily follows that Eα/F is an abelian
extension. Even though the splitting maps α depend on the cocycle cB (or, what is the same, on
a system of isogenies between conjugates of B) the morphisms α, the fields Kα and Eα, and the
characters εα do not depend on that choice. We will call the maps α splitting maps, the fields Kα

splitting fields, and the characters εα splitting characters for the building block B. The isogeny
class of a building block determines a set of morphisms α ∈ Hom(GQ,Q

∗
/F ∗) that is an orbit

by the action of the group of Galois characters Hom(GQ,Q
∗
), and a set of splitting characters

εα ∈ Hom(GQ,Q
∗
) that is an orbit by the action of the subgroup of squares Hom(GQ,Q

∗
)2.

For every Galois character ε : GQ → Q∗ choose square roots of its values and define

cε(σ, τ) =
√
ε(σ)

√
ε(τ)

√
ε(στ)

−1
.

This is a 2-cocycle on GQ with values in {±1}. Its cohomology class [cε] ∈ H2(GQ, {±1}) '
Br2(Q) gives the obstruction to the existence of a square root of ε. If two characters ε, ε′ differ
by the square of a character, then [cε] = [cε′ ]. If ξ = [cB] ∈ H2(GQ, F

∗) is the class attached to
a building block B, then ξ± = [cε] with ε any splitting character for B (see [18, Theorem 2.6]).

Theorem 5.4. Let B/Q be a building block and let K/Q an abelian extension. There exists an
abelian variety isogenous to B that is completely defined and strongly modular over the field K
if and only if K contains a splitting field for [cB].

Proof. The proof is essentially the same given in [16, Proposition 5.2] for the case of Q-curves.
Suppose that K contains the splitting field Kα corresponding to some splitting map α. For

every element s ∈ Gal(K/Q) choose an element α(s) as any of the values α(σ) for σ ∈ GQ an
automorphism restricting to s, and define c(s, t) = α(s)α(t)α(st)−1. Then [c] is an element of
H2(K/Q, F ∗) whose inflation equals [cB]. By Proposition 3.4 there exists an abelian variety
B0 isogenous to B that is completely defined over the field K and with [cB0/K ] = [c]. By
construction the cocycle c is symmetric, hence [cB0/K ] ∈ Ext(K/Q, F ∗) and by Theorem 5.3 the
variety B0 is strongly modular over K.

Conversely, assume that there is a variety isogenous to B that is strongly modular over the
field K. Let cB0/K be a cocycle on G = Gal(K/Q) attached to this variety. Then by Theorem

5.3 the algebra F cB0/K [G] is commutative. Hence the Q-algebra QcB0/K [G] = Q ⊗F F cB0/K [G]
is also commutative, and by a property of twisted group algebras over algebraically closed fields
(cf. [10, Chapter 2, Corollary 2.5]) it follows that the image of the class [cB0/K ] in the Schur

multiplier group H2(G,Q∗) is trivial. Hence there exists a map s 7→ α(s) : G → Q∗ such that
cB0/K(s, t) = α(s)α(t)α(st)−1 and its inflation to the group GQ is a splitting map for the variety
that factors through the group G, hence Kα ⊆ K. �

6. QM Jacobian surfaces

In this section we illustrate the previous general results with applications to the study of
concrete abelian surfaces with quaternionic multiplication. The surfaces we will be dealing with
are obtained as Jacobians of a family of genus two curves defined in [9]. We will use some results
on their arithmetic that appear in [1] to compute the cocycles needed for the characterization of
their strong modularity, and for the computation of Q-endomorphism algebras of their restriction
of scalars.

Since we will need quadratic twists later, we begin with a technical lemma describing the
effect of such a twist in the cohomology classes of interest. For every abelian variety B/K over
a number field K and element γ ∈ K∗, let Bγ denote the K(

√
γ)-quadratic twist of the variety
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B over K. In the standard classification of twists by elements of the first Galois cohomology
group with values in the automorphism group of the object, this variety corresponds to the
homomorphism in H1(GK , {±1}) whose kernel has K(

√
γ) as fixed field, which is given by the

formula σ 7→ σ√γ/√γ. Note that here we interpret ±1 as automorphisms of B. In other words,
Bγ is the abelian variety determined up to K-isomorphism by the fact that there exists an
isomorphism φ : Bγ → B defined over K(

√
γ) such that φ aσφ−1 = σ√γ/√γ for every σ ∈ GK .

For hyperelliptic Jacobians the quadratic twists are easily computed: if C is a hyperelliptic
curve defined by the equation Y 2 = F (X) then for every γ ∈ K∗ the equation γY 2 = F (X)
defines an hyperelliptic curve that is the K(

√
γ)-quadratic twist of C over K. The Jacobian

Jac(Bγ) is the K(
√
γ)-quadratic twist of the abelian variety Jac(B) over K.

Lemma 6.1. Let B/K be a Q-variety completely defined over a Galois number field K, and
let γ ∈ K∗. The twist Bγ is completely defined over K if and only if the field K(

√
γ) is Galois

over Q. In this case, [cB/K ] and [cBγ/K ] differ by the cohomology class in H2(Gal(K/Q), {±1})
corresponding to the group extension given by the exact sequence

(6.1) 1 // Gal(K(
√
γ)/K) ' {±1} // Gal(K(

√
γ)/Q) // Gal(K/Q) // 1 .

In particular, quadratic twisting affects only the sign components of the cohomology classes and
leaves the degree components unchanged.

Proof. Note that the cohomology classes [cB/K ] and [cBγ/K ] we want to compare take values
in groups F ∗ consisting of automorphisms of the varieties. The cohomology class attached to
the group extension of the statement takes values in the group {±1}, which must be identified
with a subgroup of F ∗ by the (canonical) identification of its elements as automorphisms of the
variety.

Let φ : Bγ → B be the isomorphism corresponding to the twist. Then φ−1 is an isomorphism
giving B as the K(

√
γ)-twist of Bγ and for every σ ∈ GQ the map σφ : σ(Bγ) → σB is an

isomorphism giving σ(Bγ) as the K(
√
σγ)-twist of σB. Every isogeny νσ : σBγ → Bγ compatible

with End(B) is of the form νσ = φ−1 aµσ aσφ for an isogeny µσ : σB → B compatible with
End(B), which by hypothesis is defined over K. For τ ∈ GK one has

τνσ = τφ−1 aτµσ aτσφ = τφ−1 aφ aνσ aσφ−1 aτσφ =

√
γ

τ√γ
aνσ a √σγ

τ
√
σγ
,

which equals νσ if and only if the two other maps, each equal to ±1, coincide. But
√
γ

τ√γ
=

√
σγ

τ
√
σγ

⇔
√
γ

√
σγ

=
τ√γ
τ
√
σγ

⇔ τ fixes
√
σγ/
√
γ.

Hence the isogeny νσ is defined over K if and only if
√
σγ/
√
γ ∈ K, and this condition is satisfied

for every σ ∈ GQ exactly when the extension K(
√
γ)/Q is Galois.

Now assume the condition is satisfied. For each s ∈ Gal(K/Q) fix a lift s̃ of s in Gal(K(
√
γ)/Q).

Then

cBγ/K(s, t) = νs̃ a s̃νt̃ aν−1
s̃t

= φ−1 aµs̃ a s̃φ a s̃φ−1 a s̃µt̃ a s̃t̃φ a s̃tφ−1 aµ−1
s̃t

aφ
= φ−1 aµs̃ a s̃µt̃ a s̃t(s̃t−1

s̃t̃φ aφ−1) aµ−1
s̃t

aφ
= φ−1 aµs̃ a s̃µt̃ aµ−1

s̃t
aφ a(s̃t−1

s̃t̃φ aφ−1)

= cB/K(s, t) a(s̃t−1
s̃t̃φ aφ−1) = cB/K(s, t) ·

s̃t
−1
s̃t̃√γ
√
γ

,
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and the factor in the right is a cocycle associated to the group extension (6.1). �

We now recall some notation and results from [1]. If a, b ∈ Q we denote (a, b)Q the quaternion
algebra over Q generated by ı,  with ı2 = a, 2 = b and ı + ı = 0. Let Q6 = (2, 3)Q be the
quaternion algebra of discriminant 6 over Q, and let O = Z[ı, (1 + )/2], which is a maximal
order of Q6. We also define the subrings R2 = Z[ı] ' Z[

√
2], R3 = Z[ + ı] ' Z[

√
−3] and

R6 = Z[µ] ' Z[
√

6], where µ = 2 + ı. A curve C is said to be a QM-curve with respect to O
if O can be embedded into the endomorphism ring of its Jacobian. If (B, ρ)/Q is a polarized
abelian variety and R is a subring of End(B), the field of moduli kR is defined to be the smallest
number field such that for any σ ∈ Gal(Q/kR) there exists an isomorphism φσ : σB → B with
φ∗σ(ρ) = σρ and such that r aφσ = φσ aσr for all r ∈ R. In other words, kR is the field of
moduli of the object consisting of the polarized abelian variety (B, ρ) together with the ring of
endomorphisms R ⊆ End(B).

The family of surfaces we are going to consider is the following. For every algebraic number
j ∈ Q let Cj be the genus 2 curve with equation

(6.2)

Cj : Y 2 =
(
−4 + 3

√
−6j

)
X6 − 12(27j + 16)X5 − 6 (27j + 16)

(
28 + 9

√
−6j

)
X4

+ 16(27j + 16)2X3 + 12(27j + 16)2
(

28− 9
√
−6j

)
X2

− 48(27j + 16)3X + 8(27j + 16)3
(

4 + 3
√
−6j

)
Let Bj = Jac(Cj) be its Jacobian with the canonical principal polarization induced by Cj . Some
properties of these objects proved in [1] are summarized in the following statement.

Theorem 6.2 (Baba-Granath).

• The curve Cj has field of moduli Q(j). For every σ ∈ GQ(j) such that
σ√−6j = −

√
−6j

the map (x, y) 7→
(
−2(27j+16)

x , y(−2(27j+16))3/2

x3

)
is an isomorphism

σ
Cj → Cj.

• The field Q(
√
−6j)kO is a field of definition of the endomorphisms of Bj.

• The curves Cj are QM -curves with respect to O. Moreover, for all j ∈ Q but for 26

values, End0(Bj) ' Q6. Under this isomorphism the Rosati involution ′ attached to the
canonical polarization of Bj is given by ϕ′ = µ−1ϕ∗µ, where ∗ indicates the canonical
conjugation of Q6.
• The fields of moduli kR for the canonically polarized Jacobian Bj and several rings of

endomorphisms of interest are given in the following diagram:

kO = Q(
√
j,
√
−(27j + 16))

hhhhhhhhhhhhhhhhhh

VVVVVVVVVVVVVVVVVV

kR2 = Q(
√
−(27j + 16)) kR6 = Q(

√
j) kR3 = Q(

√
−j(27j + 16))

kZ = Q(j).

VVVVVVVVVVVVVVVVVVV

hhhhhhhhhhhhhhhhhhhh

When j ∈ Q the abelian surfaces Bj have the property that for every σ ∈ GQ there exists
an isomorphism φσ : σBj → Bj , but this isomorphism does not need to be compatible with
End(Bj) (indeed, in general it is not compatible with End(Bj)). However, if the algebra of
endomorphisms of Bj is isomorphic to Q6 then we can always find isogenies compatible with
End(Bj). More generally, we have the following result.
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Proposition 6.3. Let B/Q be an abelian variety whose algebra of endomorphisms is a central
simple Q-algebra. Let σ ∈ GQ. If σB and B are isogenous then there exists an isogeny σB → B
compatible with End(B).

Proof. Call D the endomorphism algebra of B, and let φσ : σB → B be an isogeny. The map
ϕ 7→ φσ aσϕ aφ−1

σ is a Q-algebra automorphism of D since it fixes the center, which is Q by
hypothesis. Then the Noether–Skolem Theorem implies that it is inner; that is, there exists
an element ψσ ∈ D such that φσ aσϕ aφ−1

σ = ψ−1
σ

aϕ aψσ. Then the isogeny µσ = ψσ aφσ is
compatible with D. �

Hence, we see that if j belongs to Q and the endomorphism algebra of Bj is isomorphic to
Q6, then Bj is a building block completely defined over the field

K = Q(
√
−6j,

√
j,
√
−(27j + 16),

√
−2(27j + 16)).

From now on we assume that End(Bj) ⊗ Q ' Q6. Now we aim to compute the cohomology

class [cBj ]. The degree component [cBj ] belongs to Hom(GQ,Q∗/{±1}Q∗2), and we use the
following notation to indicate the elements of this group: for t, d ∈ Q∗ we denote by (t, d)P the
homomorphism that sends an element σ ∈ GQ to d ·{±1}Q∗2 if σ

√
t = −

√
t and has trivial image

otherwise. An expression of the form (t1, d1)P ·(t2, d2)P ·. . .·(tr, dr)P denotes the product of such
homomorphisms, and all elements in Hom(GQ,Q∗/{±1}Q∗2) admit a (non-unique) expression
of this kind.

Proposition 6.4. The degree and sign components of [cBj ] are given by

(6.3) [cBj ] = (−(27j + 16), 3)P · (−j(27j + 16), 2)P ,

(6.4) [cBj ]± = (−(27j + 16), 3)Q · (−j(27j + 16), 2)Q · (2, 3)Q.

Proof. Recall that the degree component is the map σ 7→ δ(µσ) mod {±1}Q∗2, where µσ is any
isogeny µσ : σBj → Bj compatible with End(Bj). If σ ∈ Gal(Q/kO), by the definition of kO
there exists an isomorphism φσ : σBj → Bj compatible with End(Bj) such that φ∗σ(ρ) = σρ,
where ρ is the polarization of Bj given by Cj . Applying the definition of δ (see [15, p. 220]) we
find that

δ(φσ) = φσ aσρ−1 a φ̂σ aρ = φσ aφ−1
σ

aρ−1 a φ̂−1
σ

a φ̂σ aρ = 1.

Hence, the degree component is the inflation of a map defined in Gal(kO/Q). Now, since
kO = kR2 · kR3 , we just need to compute δ(µσ) for σ ∈ Gal(Q/kRd) for d = 2, 3.

Let σ be an element in Gal(Q/kRd) that does not fix kO. Since kR2 = Q(
√
−(27j + 16))

and kR3 = Q(
√
−j(27j + 16)), in order to prove (6.3) we just need to see that δ(µσ) ≡ d

(mod Q∗2). By the definition of kRd there exists an isomorphism φσ : σB → B compatible with
the endomorphisms in Rd, but not necessarily compatible with all the endomorphisms. However,
we know from Proposition 6.3 that we can find ψσ ∈ Q6 such that µσ = ψσ aφσ is an isogeny
compatible with all the endomorphisms. Moreover, from the proof of this proposition we see
that ψσ is characterized by the property that

φσ aσϕ aφ−1
σ = ψ−1

σ
aϕ aψσ, for every ϕ ∈ Q6.

But if we take ϕ ∈ Rd, this particularizes to ϕ = ψ−1
σ

aϕ aψσ, so ψd commutes with every element
in Rd, which implies that ψd belongs to Rd ⊗ Q. Hence, if we write Rd = Z[cd], with c2 = ı
and c3 =  + ı we have that ψd = a + bcd for some a, b ∈ Q. In fact, b 6= 0 because otherwise
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the isomorphism ψσ would be compatible with all the endomorphisms of Bj , and this is not the
case since we are assuming that σ does not fix kO. Using the definition of δ(µσ) we see that

δ(µσ) = δ(ψσ aφσ) = ψσ aφσ aσρ−1 aψ̂σ aφσ aρ = ψσ aφσ aφ−1
σ

aρ−1 a φ̂−1
σ

a φ̂σ aψ̂σ aρ
= ψσ aρ−1 aψ̂σ aρ = ψσ aψ′σ.

Now we know that if ϕ ∈ Q6 its Rosati involution is given by ϕ′ = µ−1ϕ∗µ. Hence,

δ(µσ) = ψσ aψ′σ = (a+ bcd)(a+ bcd)
′ = (a+ bcd)µ

−1(a− bcd)µ
= (a+ bcd)

2 = a+ db2 + 2abcd,

and since δ(µσ) must lie in Q∗ and b 6= 0, we see that a = 0 and δ(µσ) ≡ d (mod Q∗2).
Now, to prove the identity (6.4) we use [18, Theorem 2.8], which gives a formula for the

Brauer class of the endomorphism algebra of a building block. Specialized to our case, and
having computed the degree component, this formula gives

(2, 3)Q = [cBj ]± · (−(27j + 16), 3)Q · (−j(27j + 16), 2)Q,

and from this (6.4) follows. �

A concrete example: j = 1/81. Let us now consider the example corresponding to this value
of the parameter; let C = Cj and B = Jac(C). We remark that B is QM and not CM, i.e.,
End(B) ⊗ Q ' Q6. Then B is a building block completely defined over K = Q(

√
−6,
√
−3)

and it is strongly modular over K if and only if [cB/K ] ∈ Ext(K/Q,Q∗); that is, if and only
if it can be represented by a symmetric cocycle. In fact, since the degree component is always
symmetric (over an abelian extension) we need to check this property only for the sign component
[cB/K ]± ∈ H2(K/Q, {±1}).

For d = −3,−6 we denote by εd the non-trivial character εd : Gal(Q(
√
d)/Q) → {±1}. The

group H2(K/Q, {±1}) admits a basis as a Z/2Z-vector space consisting of the classes of three
2-cocycles that we call cε−6 , cε−3 and c−6,−3 (see for instance [17, Section 2] for the definition
of these cocycles and their properties). Hence, we have that

(6.5) [cB/K ]± = [cε−6 ]a · [cε−3 ]b · [c−6,−3]c

for some a, b, c ∈ {0, 1}, and [cB/K ] lies in Ext(K/Q, {±1}) if and only if c = 0. We know
that Inf[cB/K ]± = [cB]±, which in this case turns out to be trivial by (6.4). Since Inf[cε−6 ] =
(−6,−1)Q, Inf[cε−3 ] = (−3,−1)Q and Inf[c−6,−3] = (−6,−3)Q, the only possibilities are a =
b = c = 0 or a = b = 1, c = 0. In both cases c = 0, which implies that [cB/K ]± lies in
Ext(K/Q, {±1}) and therefore B is strongly modular over K.

Let ξ1, ξ2 ∈ H2(K/Q,Q∗) be the cohomology classes with degree component ξ1 = ξ2 =
(−3, 6)P and sign component ξ1± = 1, ξ2± = [cε−6 ] · [cε−3 ], and let A = ResK/QB. We have seen
that either [cB/K ] = ξ1 or [cB/K ] = ξ2. By direct computation we see that

Qξ1 [G] ' Q(
√

6)×Q(
√

6) and Qξ2 [G] ' Q(
√

6,
√
−6),

where G = Gal(K/Q). By Proposition 4.5 we see that if [cB/K ] = ξ1 then A ∼Q A
2
g×A2

h for some

newforms g and h with EndQ(Ag) ' EndQ(Ah) ' Q(
√

6). On the other hand, if [cB/K ] = ξ2

then A ∼Q A2
f for some newform f with EndQ(Af ) ' Q(

√
6,
√
−6). If p is a prime of K, let

Lp(B/K, T ) be the numerator of the zeta function of the reduction of B modulo p, and let

Lp(B/K, T ) =
∏
p | p

Lp(B/K, T
Np),
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which is in fact equal to Lp(A/Q, T ). By counting points in the reduction of B modulo primes
of K we have computed some of these local factors:

p Lp(B/K, T )−1 = Lp(A/Q, T )−1

5 (1− 4T 2 + 52T 4)4

7 (1− 2T + 7T 2)8

11 (1− 16T 2 + 112T 4)4

13 (1− 25T 2 + 132T 4)4

17 (1− 20T 2 + 172T 4)4

19 (1− 37T 2 + 192T 4)4

23 (1 + 40T 2 + 232T 4)4

29 (1− 34T 2 + 292T 4)4

31 (1− T + 31T 2)8

37 (1− 10T 2 + 372T 4)4

41 (1 + 58T 2 + 412T 4)4

Some of these factors are of the form (1 + epT
2 + p2T 4)4, and if we had A ∼Q A

2
g ×A2

h for some
newforms g =

∑
bnq

n and h =
∑
cnq

n this would imply that

1 + epT
2 + p2T 4 = (1− bpT + pT 2)(1− σbpT + pT 2),

being σ the non-trivial automorphism of Q(
√

6)/Q. A similar relation would hold for the coeffi-
cients cp. But this relation implies that b2p = c2

p = 2p− ep, which is impossible for the computed

values of ep because then the coefficients bp and cp would not lie in Q(
√

6). Therefore, the
actual cohomology class is [cB/K ] = ξ2 and A ∼Q A2

f for some newform f =
∑
anq

n with the

an generating Q(
√

6,
√
−6). However, Proposition 3.3 tells us that there also exists a variety in

the Q-isogeny class of B completely defined over K and with cohomology class ξ1. We will find
such a variety as the Jacobian of a quadratic twist of C.

Let γ = 2−
√

2. The extension K(
√
γ)/Q is Galois, and an easy computation shows that the

cohomology class associated to (6.1) in this particular case is [cε−6 ] · [cε−3 ]. Hence, the variety
Bγ is completely defined over K and [cBγ/K ] = cB/K · [cε−6 ] · [cε−3 ] = ξ1. Arguing as before
we see that Aγ = ResK/QBγ is Q-isogenous to the square of a product of two modular abelian

varieties with field of Fourier coefficients equal to Q(
√

6). In S2(Γ0(24 · 35)) we find a newform
with field of Fourier coefficients Q(

√
6) and Fourier expansion

g = q +
√

6q5 − 2q7 +
√

6q11 − q13 + 3
√

6q17 + q19 −
√

6q23 + . . .

Let ε be the quadratic Dirichlet character of conductor 8 satisfying ε(3) = ε(5) = −1. Let
h = g⊗ ε, which is a newform in S2(Γ0(26 · 35)). In the following table we list some local factors
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of the L-functions corresponding to the varieties Bγ/K, Ag/Q and Ah/Q.

p Lp(Bγ/K, T )−1 = Lp(Aγ/Q, T )−1 Lp(Ag/Q, T )−1 Lp(Ah/Q, T )−1

5 (1 + 4T 2 + 52T 4)4 (1 + 4T 2 + 52T 4) (1 + 4T 2 + 52T 4)
7 (1 + 2T + 7T 2)8 (1 + 2T + 7T 2)2 (1 + 2T + 7T 2)2

11 (1 + 16T 2 + 112T 4)4 (1 + 16T 2 + 112T 4) (1 + 16T 2 + 112T 4)
13 (1− T + 13T 2)4(1 + T + 13T 2)4 (1 + T + 13T 2)2 (1− T + 13T 2)2

17 (1− 20T 2 + 172T 4)4 (1− 20T 2 + 172T 4) (1− 20T 2 + 172T 4)
19 (1− T + 19T 2)4(1 + T + 19T 2)4 (1− T + 19T 2)2 (1 + T + 19T 2)2

23 (1 + 40T 2 + 232T 4)4 (1 + 40T 2 + 232T 4) (1 + 40T 2 + 232T 4)
29 (1 + 34T 2 + 292T 4)4 (1 + 34T 2 + 292T 4) (1 + 34T 2 + 292T 4)
31 (1− T + 31T 2)8 (1− T + 31T 2)2 (1− T + 31T 2)2

37 (1− 8T + 37T 2)4(1 + 8T + 37T 2)4 (1− 8T + 37T 2)2 (1 + 8T + 37T 2)2

41 (1 + 58T 2 + 412T 4)4 (1 + 58T 2 + 412T 4) (1 + 58T 2 + 412T 4)

We have checked the equality of the local factors of the L-functions of Aγ and A2
g × A2

h for all

primes p < 1000 (p 6= 2, 3) and this suggests that Aγ ∼Q A
2
g ×A2

h.
Comparing the local factors Lp(B/K, T ) and Lp(Bγ/K, T ) we can also find a modular form

f such that A ∼Q A
2
f as a twist of g. More precisely, let ψ be the Dirichlet character of order 4

and conductor 16 such that ψ(3) = −
√
−1 and ψ(5) =

√
−1. The modular form f = g ⊗ ψ is a

newform in S2(Γ0(28 · 35), ψ2) and the local factors Lp(B/K, T ) and Lp(Af , T )2 coincide for all
primes p < 1000 (p 6= 2, 3).

A concrete example: j = −4/27. We now consider another example, corresponding to the
stated value of j. The Jacobian B of the curve Cj is also a building block completely defined
over K = Q(

√
−6,
√
−3), but a similar analysis shows that in this case the only possibilities

for [cB/K ]± have c = 1 in the expression (6.5), and therefore [cB/K ]± is not symmetric. This
means that no variety in the isogeny class of B is strongly modular over K. If we let for instance
L = K(

√
−1) it is easy to see that there exist symmetric elements of H2(L/Q, {±1}) whose

inflation to GQ is [cB]±, and then by Proposition 3.4 and Theorem 5.3 there exists a variety
isogenous to B completely defined and strongly modular over L.

Thus, in this case we have seen that it is enough to go to a quadratic extension L of K to
find a variety in the isogeny class of B that is strongly modular over L. However, in the family
{Bj}j∈Q we can find varieties where any minimal field L with this property is arbitrarily large.
In fact, by Theorem 5.4 this is equivalent to find in this family varieties where the degree of any
splitting field is arbitrarily large. We will see this by means of the following lemma.

Lemma 6.5. Let r > 2 be an integer and let p be a prime such that p ≡ 1 (mod 2r) and p ≡ −1
(mod 3). Then the order of any splitting character for B1/p is at least 2r.

Proof. For simplicity we call B the variety B1/p, and let [cB] be its attached cohomology class.
By (6.4) the sign component [cB]± is given as the following product of quaternion algebras:

[cB]± = (−(27 + 16p)/p, 3)Q · (−(27 + 16p), 2)Q · (2, 3)Q.

Applying the formulas for computing the local Hilbert Symbols at p we find that

(−(27 + 16p)/p, 3)p = −1, (−(27 + 16p), 2)p = 1, (2, 3)p = 1,

and this implies that the local component of [cB]± at the prime p is −1. But [cB]± = [cε], where
ε is the splitting character associated to any splitting map α for B. We can identify ε with
a primitive Dirichlet character of a certain conductor N , and if εp denotes the component of
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ε modulo the largest power of p dividing N , then the local component of [cε] at p is given by

εp(−1). The value εp(−1) = −1 is taken by the characters of order multiple of 2ord2(p−1), and it

follows that ord(ε) > ord(εp) > 2ord2(p−1), which is at least 2r by our choice of p. �

Proposition 6.6. For any integer r there exists a variety B in the family {Bj}j∈Q such that
any splitting field for B has degree at least 2r.

Proof. Take a prime p as in the previous lemma, and take as B the variety B1/p. Let α be
any splitting map for B, and let ε be its associated splitting character. Then we have that
[Kα : Q] > [Kε : Q] > 2r. �

From Lemma 6.5 we can derive another interesting consequence.

Proposition 6.7. Let g be any natural number. There exist varieties B in the family {Bj}j∈Q
such that every Q-simple abelian variety A of GL2-type having B as its simple factor is of
dimension dimA > g.

Proof. Let r be an integer such that ϕ(2r) = 2r−1 > g, and take B = B1/p with p a prime as in
Lemma 6.5. If A is a simple abelian variety of GL2-type that has B as its simple factor, the field
E = End0

Q(A) is isomorphic to Eα for some splitting map α for B. The field Eα contains the
values of the splitting character ε associated to α. Therefore, it contains the 2r-th cyclotomic
extension and we have that dimA = [Eα : Q] > ϕ(2r) > g. �

References

[1] S. Baba, H. Granath. Genus 2 curves with quaternionic multiplication. Canad. J. Math. 60 (2008), no. 4,
pp. 734–757.

[2] C. Breuil, B. Conrad, F. Diamond, R. Taylor. On the modularity of elliptic curves over Q: wild 3-adic
exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939

[3] J. Cremona. Algorithms for modular elliptic curves. Second edition, Cambridge University Press (1997).
Available online at www.warwick.ac.uk/∼masgaj/book/fulltext/index.html.
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