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“Well distributed” points

Take Nk points in S2

Zk = {z(k)
j ∈ S2 : 1 ≤ j ≤ Nk}, k ≥ 1.

Define a family of points Z = {Zk}k≥1
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Let µ the normalized surface measure in S2. The triagular family Z is
asymptotically equidistributed when

µ(k) =
1

Nk

Nk∑
j=1

δ
z

(k)
j

w−→ µ, k →∞.

Recall that for measures {ν(k)}k , ν we say that ν(k) w−→ ν iff∫
S2

f (z)dν(k)(z) −→
∫
S2

f (z)dν(z), k →∞,

for all f ∈ C(S2).
In our case, Z is asymptotically equidistributed iff

1
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j=1

f (z
(k)
j ) −→

∫
S2

f (z)dµ(z), k →∞,

for all f ∈ C(S2).
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The space P(S2) of probability measures with the weak convergence
can be metrizised by the Kantorovich-Wasserstein distance:

ν(k) w−→ ν, k →∞, iff W1(ν(k), ν)→ 0, k →∞.



Monte Carlo Integration

Take Zk independent uniformly distributed points in S2 and define the
empirical measure

µ(k) =
1

#Zk

∑
z∈Zk

δz .

Given any f ∈ C(S2) we have that, by the strong law of large
numbers, almost surely∫

S2

f (z)dµ(k)(z) =
1

#Zk

∑
z∈Zk

f (z) −→
∫
S2

f (z)dµ(z), k →∞.

In fact, almost surely, W1(µ(k), µ)→ 0, k →∞.
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Independent uniform points have clumping

529 random uniform points



Independent uniform points have clumping

Rob Womersley web http://web.maths.unsw.edu.au/
529 minimal Coulomb energy points



Objective

Quantify the weak convergence (and therefore the “regularity” of Z)

µ(k) =
1

Nk

Nk∑
j=1

δ
z

(k)
j

w−→ µ, k →∞,

in terms of the decay of Kantorovich-Wasserstein distance

W1(µ(k), µ)→ 0, k →∞,

for empirical measures of β−ensembles on compact manifolds.

Previous work in RMT

S. Dallaporta, E. S. Meckes, M. W. Meckes, Z. D. Bai, T. Tao and V.
Vu, E. Sandier and S. Serfaty, N. Rougerie and S. Serfaty...
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Determinantal point process (Macchi 70’s)

Let µ be a normalized measure in X .

Given a function (kernel) K : X × X −→ C such that:

K (x , y) = K (y , x)

Reproducing property∫
X
K (x , y)K (y , z)dµ(y) = K (x , z)

Trace ∫
X
K (x , x)dµ(x) = n

Then

f (x1, . . . , xn) =
1

n!
det(K (xi , xj))1≤i ,j≤n

is a density function (w.r.t. µ) in X .



Determinantal point process

Take φ1, . . . , φn ON system in L2(X ) then

K (x , y) =
n∑

i=1

φi (x)φi (y),

satisfies the properties.

Random matrix theory, Mathematical Physics, Machine learning,
Numerical integration...

By the HKPV (Ben Hough-Krishnapur-Peres-Virág) algorithm these
processes are “easy” to sample.
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Spherical ensemble

Let A,B be n × n random matrices with i.i.d. complex Gaussian
entries. The generalized eigenvalues associated to (A,B), i.e. the
eigenvalues of A−1B, form a determinantal point process in C with
kernel

Kn(z ,w) =
n(1 + zw)n−1

(1 + |z |2)(n−1)/2(1 + |w |2)(n−1)/2
,

with respect to the measure dz
π(1+|z|2)2 . The eigenvalues have joint

probability density

f (z1, . . . , zn) =
1

n!
det(Kn(zi , zj))

n∏
l=1

1

π(1 + |zl |2)2

=
1

Zn

n∏
l=1

1

(1 + |zl |2)n+1

∏
i<j

|zi − zj |2,

with respect to the Lebesgue measure in Cn.



Spherical ensemble

Using the stereographic projection, the joint density (with respect to
the product area measure in the product of spheres) is

f (x1, . . . , xn) = Cn

∏
i<j

‖xi − xj‖2, x1, . . . , xn ∈ S2.

Observe that the mode of this point process is a set of Fekete points
(x∗1 , . . . , x

∗
n ) on the sphere

sup
x1,...,xn

∏
i<j

‖xi − xj‖2 =
∏
i<j

‖x∗i − x∗j ‖2,

iff ∑
i<j

log
1

‖x∗i − x∗j ‖
= inf

x1,...,xn

∑
i<j

log
1

‖xi − xj‖
.
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Spherical ensemble

This point process was considered (without a random matrix model)
by Caillol (81), and Forrester, Jancovici and Madore (92) as the
model of one-component plasma on a sphere.

Bordenave (11) proved the universality of the spectral distribution of
the n× n matrix A−1B with respect to other i.i.d. random distribution
of entries. As an outcome, he proved that µ is the weak limit of the
spectral measures (so limn W1(µn, µ) = 0).

Alishahi and Sadegh Zamani (14): discrepancy of the empirical
measure with respect to its limit. Precise estimates of the expected
newtonian and logarithmic energies.

We want to estimate the speed of the convergence of the empirical
measure µn = 1

n

∑n
j=1 δxj towards the surface mesure µ.
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The Kantorovich-Wasserstein distance is defined on the probability
measures over a compact metric space (X , d) and metrizes the weak
convergence of measures:

W1(µ, σ) = inf
ρ

∫∫
X×X

d(x , y)dρ(x , y),

where the infimum is taken over all admissible transport plans ρ, i.e.,
probability measures ρ ∈ P(X × X ) with marginal measures µ and σ
respectively.

Dual formulation

W1(µ, σ) = sup
f

∣∣∣∣∫
X
f (x)d(µ− σ)(x)

∣∣∣∣ ,
where f belongs to Lip1,1(X ) i.e. |f (x)− f (y)| ≤ d(x , y) for
x , y ∈ X .
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Lower bound

Given a set of n distinct points Z = {x1, . . . , xn} ⊂ S2. Let
µn = 1

n

∑n
j=1 δxj . Then

W1(µn, µ) ≥ c√
n

for some constant c > 0.

Take 2n disjoint spherical caps in S2 of radius cn−1/2 for some c > 0.
At least n of these caps (say) B1, . . . ,Bn do not have points from Z .
Let 1

2Bj be the spherical cap with the same center than Bj and half
the radius. The function f (x) = d(x ,Z ) belongs to Lip1,1(S2)

W1(µn, µ) ≥
∫
S2

f (x)dµ(x) ≥
∫
∪nj=1

1
2
Bj

f (x)dµ(x)

≥ c

2
√
n
nµ(

1

2
B1) ∼ 1√

n
.



Upper bound

Theorem

If µn is the empirical measure corresponding to the spherical
ensemble, then

EW1(µn, µ) = O(1/
√
n).

Moreover, almost surely:

W1(µn, µ) = O(
√

log n/
√
n).



Idea of the proof I. Transport plan

We build the transport plan explicitly (Lev and Ortega-Cerdà (10))

ρ(z ,w) =
1

n

n∑
j=1

δzj (w)Kn(z , zj)`j(z)dµ(z),

and use the fast decay of the kernel for z ,w ∈ C

|Kn(z ,w)|2 = n2

(
1− |z − w |2

(1 + |z |2)(1 + |w |2)

)n−1

. n2 exp

(
−Cn |z − w |2

(1 + |z |2)(1 + |w |2)

)
= C1n

2 exp
(
−C2n d(z ,w)2

)
,

to estimate

EW1(µ, σ) ≤ E
∫∫

X×X
d(x , y)d |ρ|(x , y) .

1√
n
.



Idea of the proof II. Concentration of measure

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a
Lipschitz-1 functional defined in the set of finite counting measures
(with respect to the total variation distance). Then

P(f − Ef ≥ a) ≤ 3 exp

(
− a2

16(a + 2n)

)

f (σ) = nW1(
1

n
σ, µ)

is Lipschitz-1

|f (σ)− f (σ′)| ≤ nW1(
1

n
σ,

1

n
σ′) ≤ ‖σ − σ′‖TV



Idea of the proof III. Borel-Cantelli

Then

P
(
W1(µn, µ) >

11
√

log n√
n

)
.

1

n2
.

By Borel-Cantelli we get a.s.

W1(µn, µ) ≤ 10
√

log n√
n

,

for n big enough.



Compact complex manifolds

(X , ω) be a n-dimensional compact complex manifold endowed with a
smooth Hermitian metric ω and let (L, φ) be a holomorphic line
bundle with a positive Hermitian metric φ.
Denote by H0(X , L) the global holomorphic sections. If s ∈ H0(X , L)
then |s(x)|φ is the pointwise norm on the fiber induced by φ.
Given a basis s1, . . . , sN of H0(X , L) we define det(si (xj)) as a section
of L�N over XN by the identities

det(si (xj)) =
∑
σ∈Sn

sgn(σ)
N⊗
i=1

si (xσi ).



Definition

Given β > 0. A β-ensemble is an N point random process on X which
has joint distribution given by

1

ZN
| det(si (xj))|βφ dµ(x1)⊗ · · · ⊗ dµ(xN).

Theorem

Consider the empirical measure µN associated to the β-ensemble and

let ν = (i∂∂̄φ)n∫
X (i∂∂̄φ)n

be the equilibrium measure. Then

EW1(µN , ν) ≤ C/
√
N.

Results in terms of large deviations Robert Berman (14), Tien-Cuong
Dinh and Viet-Anh Nguyen (16).




