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Abstract

Intravascular Ultrasound (IVUS) represents a powerful
imaging technique to explore coronary vessels and to study
their morphology and histologic properties. In this paper,
we characterize different tissues based on Radio Frequency,
texture-based, slope-based, and combined features. To deal
with the classification of multiple tissues, we require the use
of robust multi-class learning techniques. In this context,
we propose a strategy to model multi-class classification
tasks using sub-classes information in the ECOC frame-
work. The new strategy splits the classes into different sub-
sets according to the applied base classifier. Complex IVUS
data sets containing overlapping data are learnt by splitting
the original set of classes into sub-classes, and embedding
the binary problems in a problem-dependent ECOC design.
The method automatically characterizes different tissues,
showing performance improvements over the state-of-the-
art ECOC techniques for different base classifiers and fea-
ture sets.

1. Introduction
Cardiovascular diseases represents the first cause of sud-

den death in the occidental world [12]. Plaque rupture is one

of the most frequent antecedent of coronary pathologies.

Depending on the propensity to collapse, coronary plaque

can be divided into stable and vulnerable plaque [2]. Ac-

cording to pathological studies, the main features of a sta-

ble plaque are characterized by the presence of a large lipid

core with a thin fibrous cap. This last type of plaque can

rupture generating thrombi followed by an intimal hyper-

plasia. Therefore, an accurate detection and quantification

of plaque types represents an important subject in the diag-

nosis in order to study the nature and the plaque evolution

to predict its final effect. One of the most widely used di-

agnostic procedures consists of screening the coronary ves-

sels employing Intravascular Ultrasound Imaging (IVUS).

This technique yields a detailed cross-sectional image of

the vessel allowing coronary arteries and their morphology

to be extensively explored. This image modality has be-

come one of the principal tools to detect coronary plaque.

An IVUS study consists of introducing a catheter which

shots a given number of ultrasound beams and collect their

echoes to form an image. According with these echoes,

three distinguishable plaques are considered in this type

of images: calcified tissue (characterized by a very high

echo-reflectivity and absorbtion of the ultrasound signal), fi-

brous plaque (medium echo-reflectivity and good transmis-

sion coefficient), and lipidic or soft plaque (characterized

with very low reflectance of the ultrasound signal).

Despite the high importance of studying the whole coro-

nary vessel, in clinical practice, this plaque characteriza-

tion is performed manually in isolated images. Moreover,

due to the variability among different observers, a precise

manual characterization becomes very difficult to perform.

Therefore, automatic analysis of IVUS images represents a

feasible way to predict and quantify the plaque composi-

tion, avoiding the subjectivity of manual region classifica-

tion and diminishing the characterization time in large se-

quences of images. Given its clinical importance, automatic

plaque classification in IVUS images has been considered

in several research studies. The process can be divided into

two stages: plaque characterization step, which consists of

extracting characteristic features in order to describe each

tissue, and a classification step, where a learning technique

is used to train a classifier. In the first stage there are mainly

two basic strategies: image-based approaches [14], and Ra-

dio Frequency (RF) signal analysis [9]. The main advan-

tage of image-based methods is the availability of the im-

ages since they are the standard data source of the equip-

ment. Additionally there is a high variety of descriptors

which capture the spatial information of gray level values

of a pixel together with its neighborhood in the image. On



the other hand, characterization of RF signal has been pro-

posed to take advantage of the raw IVUS signals. This data

source avoids the introduction of artifacts from the pixel in-

terpolation in the process of image formation. Due to the

higher resolution of the unprocessed data, small regions of

plaque could be distinguished.

In this paper, we base on texture-based features, RF sig-

nals, slope-based features, and combined features to char-

acterize the different types of tissues. For the learning step,

we focus on Error-Correcting Output Codes as a general

framework to combine binary classifiers to deal with multi-

class categorization problems. The strategy was introduced

by Dietterich and Bakiri [4] in 1995. Based on the error cor-

recting principles [4], ECOC has been successfully applied

to a wide range of applications, such as face recognition,

face verification, text recognition or manuscript digit clas-

sification [8]. In this context, we propose a novel technique

to address multi-class classification problems by means of

Error-Correcting Output Codes. The new methodology is

based on the splitting of the original set of tissue classes

into different sub-tissues so that the base classifier applied

is able to learn the data. In this sense, complex data sets

containing overlapping data can be modelled by splitting

the original set of classes into sub-classes and embedding

the binary problems in a problem-dependent ECOC design.

The method shows to automatically characterize different

tissues using different feature sets with high performance,

obtaining significant performance improvements compared

to previous state-of-the-art ECOC strategies for different

base classifiers.

The paper is organized as follows: section 2 overviews

the ECOC framework. Section 3 presents the Sub-class ap-

proach. Section 4 explains the features and data sets, and

section 5 shows the experimental results.

2. Error-Correcting Output Codes
Given a set of N classes to be learnt, at the coding step of

the ECOC framework, n different bi-partitions (groups of

classes) are formed, and n binary problems (dichotomies)

are trained. As a result, a codeword of length n is obtained

for each class, where each bin of the code corresponds to

a response of a given dichotomy. Arranging the codewords

as rows of a matrix, we define a ”coding matrix” M , where

M ∈ {−1, 0, 1}N×n in the ternary case. Joining classes

in sets, each dichotomy is coded by {+1,−1} according

to their class set membership, or 0 if the class is not con-

sidered by the dichotomy. In fig.1 we show an example of

a one-versus-one coding matrix M , where each dichotomy

learns to split a pair of classes. The matrix is coded using

6 dichotomies {h1, ..., h6} for a 4-class problem (c1, c2, c3,

and c4). The white regions are coded by 1 (considered as

positive for its respective dichotomy, hi), the dark regions

by -1 (considered as negative), and the grey regions cor-

respond to the zero symbol (not considered classes by the

current dichotomy). For example, the first classifier (h1) is

trained to discriminate c1 versus c2 ignoring c3 and c4, etc.

During the decoding process, applying the n trained bi-

nary classifiers, a code x is obtained for each data point in

the test set. This code is compared with the base codewords

of each class {y1, ..., y4} defined in the matrix M , and the

data point is assigned to the class with the ”closest” code-

word [1]. Although different distances can be applied, the

Hamming (HD) and the Euclidean distances (ED) are the

most frequently used. In fig.1, a new test input x is eval-

uated by all the classifiers and the method assigns label ci

with the closest decoding measure.

3. ECOC Sub-class
From an initial set of classes C of a given multi-class

problem, the objective of the Sub-class ECOC strategy is to

define a new set of classes C ′, where |C ′| > |C|, so that

the new set of binary problems is easier to learn for a given

base classifier. For this purpose, we use a guided procedure

that, in a problem-dependent way, groups classes and splits

them into sub-sets if necessary.

Figure 1. Example of ternary matrix M for a 4-class problem. A new test codeword
is classified using a decoding strategy.

Recently, the authors of [13] proposed a ternary

problem-dependent design of ECOC, called DECOC,

where given N classes, a high classification performance

is achieved with only N − 1 binary problems. The method

is based on the embedding of discriminant tree structures

derived from the problem domain. The binary trees are

built by looking for the partition that maximizes the mu-

tual information (MI) between the data and their respective

class labels. Look at the 3-class problem shown on the top

of fig. 2(a). The standard DECOC algorithm considers the

whole set of classes to split it into two sub-sets of classes

℘+ and ℘− maximizing the MI criterion on a sequential

forward floating search procedure (SFFS). In the example,

the first sub-sets found correspond to ℘+ = {C1, C2} and
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Figure 2. (a) Top: Original 3-class problem. Bottom: 4 sub-classes found. (b) Sub-class ECOC encoding using the four sub-classes using Discrete Adaboost with 40 runs of
Decision Stumps. (c) Learning evolution of the sub-class matrix M . (d) Original tree structure without applying sub-class. (e) New tree-based configuration using sub-classes.

℘− = {C3}. Then, a base classifier is used to train its

corresponding dichotomizer h1. This classifier is shown in

the node h1 of the tree structure shown in fig. 2(d). The

procedure is repeated until all classes are split into separate

sub-sets ℘. When the tree is constructed, the coding matrix

M is obtained by codifying each internal node of the tree

as a column of the coding matrix (see the second matrix in

fig. 2(c)). Taking as baseline this procedure, our encoding

algorithm is shown in table 1. Given a N -class problem,

the whole set of classes is used to initialize the set L con-

taining the sets of labels for the classes to be learnt. At the

beginning of each iteration k of the algorithm (Step 1), the

first element of L is assigned to Sk in the first step of the

algorithm. Next, SFFS is used to find the optimal binary

partition BP of Sk that maximizes the mutual information

I between the data and their respective class labels (Step
2). To illustrate our procedure, let us return to the example

of the top of fig. 2(a). On the first iteration of the Sub-class

ECOC algorithm, SFFS finds the sub-set ℘+ = {C1, C2}
against ℘− = {C3}. The encoding of this problem is shown

in the first matrix of fig. 2(c). The positions of the column

corresponding to the classes of the first partition are coded

by +1 and the classes corresponding to the second parti-

tion to -1, respectively. In our procedure, the base classifier

is used to test if the performance obtained by the trained

dichotomizers is sufficient. Observe the decision bound-

aries of the picture next to the first column of the matrix in

fig. 2(b). One can see that the base classifier finds a good

solution for this first problem. Then, the second classifier is

trained to split ℘+ = C1 against ℘− = C2, and its perfor-

mance is computed. The separation of the current sub-sets

is not a trivial problem, and the classification performance

is poor. Therefore, our procedure tries to split the data J℘+

and J℘− from the current sub-sets ℘+ and ℘− into more

simple sub-sets. At Step 3 of the algorithm, the splitting

criteria SC takes as input a data set J℘+ or J℘− from a sub-

set ℘+ or ℘−, and splits it into two sub-sets J+
℘+ and J−

℘+

or J+
℘− and J−

℘− . The splitting algorithm is shown in ta-

ble 2. When two data sub-sets {J+
℘+ , J−

℘+} and {J+
℘− , J−

℘−}
are obtained, only one of both split sub-sets is used. We se-

lect the sub-sets that have the highest distance between the

means of each cluster. Then, if the new sub-sets improve

the classification performance, new sub-classes are formed,

and the process is repeated.

In the example of fig. 2, applying the splitting crite-

ria SC over the two sub-sets, two clusters are found for

℘+ = C1 and for ℘− = C2. Then, the original encoding of

the problem C1 vs C2 (corresponding to the second column

of the matrix in the center of fig. 2(c)) is split into the two

columns marked with the solid lines in the matrix on the

right. In this way, the original C1 vs C2 problem is trans-

formed into two more simple problems {C11} against {C2}
and {C12} against {C2}. Here the first subindex of the class

corresponds to the original class, and the second subindex to

the number of sub-class. It implies that the class C1 is split

into two sub-classes (look at the bottom of fig. 2(a)), and

the original 3-class problem C = {C1, C2, C3} becomes

the 4-sub-class problem C ′ = {C11, C12, C2, C3}. As the

class C1 has been decomposed by the splitting of the second

problem, we need to save the information of the current sub-

sets and the previous sub-sets affected by the new splitting.

The steps to update this information are summarized in the

Step 4 of the splitting algorithm. The process is repeated

until the desired performance is achieved or the stopping

conditions are full-filled.

The conditions that guide the learning and splitting



Table 1. Problem-dependent Sub-class ECOC algorithm.
Inputs: J, C, θ = {θsize, θperf , θimpr} //Thresholds for

the number of samples, performance, and improvement

between iterations

Outputs: C′, J ′, ℘′, M

[Initialization:]
Create the trivial partition {℘+

0 , ℘−
0 } of the set of

classes {Ci}: {℘+
0 , ℘−

0 } = {{∅}, {C1, C2, ..., CN}}
L0 = {℘−

0 };J ′ = J ;C′ = C;℘′ = ∅;M = ∅;k = 1

Step 1 Sk is the first element of Lk−1

L′
k = Lk−1\{Sk}

Step 2 Find the optimal binary partition BP (Sk):

{℘+
k , ℘−

k } = argmaxBP (Sk)(I(x, d(BP (Sk))))
where I is the mutual information criterion, x is the ran-

dom variable associated to the features and d is the dis-

crete random variable of the dichotomy labelsa, defined

in the following terms:

d = d(x, BP (Sk)) =
1 if x ∈ Ci|Ci ∈ ℘+

k

−1 if x ∈ Ci|Ci ∈ ℘−
k

Step 3 // Look for sub-classes

{C′, J ′, ℘′} = SPLIT (J
p+

k
, J

p−
k

, C′, J ′, J, ℘′, θ)b

Step 4 Lk = {L′
k ∪ ℘i

k} if |℘i
k| > 1 ∀i ∈ {+,−}

Step 5 If |Lk| �= 0
k = k + 1 go to Step 1

Step 6 Codify the coding matrix M using each partition

{℘+
i , ℘−

i } of ℘′, i ∈ [1, .., |℘′|] and each class Cr ∈
℘i = {℘+

i ∪ ℘−
i } as follows:

M(Cr, i) =

⎧⎨
⎩

0 if Cr �∈ ℘i

+1 if Cr ∈ ℘+
i

−1 if Cr ∈ ℘−
i

(1)

aUse SFFS as the maximization procedure and MI to estimate

I [13].
b Using the splitting algorithm of table 2.

process are defined by the set of parameters θ =
{θsize, θperf , θimpr}, where θsize corresponds to the min-

imum size of a sub-set to be clustered, θperf contains the

minimum error desired for each binary problem, and θimpr

looks for the improvement of the split sub-sets regarding the

previous ones. The function TEST PARAM in table 2 is

responsible for testing the constraints based on the parame-

ters {θsize, θperf , θimpr}. If the constraints are satisfied,

the new sub-sets are selected and used to recursively call

the splitting function (Step 3 of the algorithm in table 2).

The constraints of the function TEST PARAM are fixed

by default as follows:

• |J℘+ | has to be larger than θsize.

• |J℘− | has to be larger than θsize.

• The error ξ(h(J℘− , J℘+)) obtained from the di-

chomomizer h using a particular base classifier applied on

Table 2. Sub-class SPLIT algorithm.
Inputs: J℘1 , J℘2 , C′, J ′, J, ℘′, θ // C′ is the final set of

classes, J ′ the data for the final set of classes, and ℘′ is

the labels for all the partitions of classes of the final set.

Outputs: C′, J ′, ℘′

Step 1 Split problems:

{J+
℘+ , J−

℘+} = SC(J℘+)a

{J+
℘− , J−

℘−} = SC(J℘−)

Step 2 Select sub-classes:

if |J+
℘+ , J−

℘+ | > |J+
℘− , J−

℘− | // find the largest distance

between the means of each sub-set.

{J+
+ , J−

+ } = {J+
℘+ , J℘−}; {J+

− , J−
−} =

{J−
℘+ , J℘−}

else

{J+
+ , J−

+ } = {J+
℘− , J℘+}; {J+

− , J−
−} =

{J−
℘− , J℘+}

end

Step 3 Test parameters to continue splitting:

if TEST PARAM (J℘1 , J℘2 , J1
1 , J2

1 , J1
2 , J2

2 , θ)

call the function with the new sub-sets

{C′, J ′, ℘′} = SPLIT (J1
1 , J2

1 , C′, J ′, J, ℘′, θ)
{C′, J ′, ℘′} = SPLIT (J1

2 , J2
2 , C′, J ′, J, ℘′, θ)

end

Step 4 Save the current partition:

Update the data for the new sub-classes and previous

sub-classes if intersections exists J ′.
Update the final number of sub-classes C′.
Create ℘c = {℘c1 , ℘c2} the set of labels of the current

partition.

Update the labels of the previous partitions ℘.

Update the set of partitions labels with the new partition

℘′ = ℘′ ∪ ℘c.

aSC corresponds to the splitting method of the input data into

two main clusters.

the sets {℘+, ℘−} has to be larger than θperf .

• The sum of well-classified objects from the new prob-

lems (based on the confusion matrices) divided by the total

number of objects has to be greater than 1 − θimpr.

θsize avoids the learning of very unbalanced problems.

θperf determines when the performance of a partition of

classes is insufficient and sub-classes are required. And

finally, when a partition does not obtain the desired per-

formance θperf , the splitting of the data stops, prevent-

ing overtraining. In the example of fig. 2, the three di-

chotomizers h1, h2, and h3 find a solution for the prob-

lem (look the trained boundaries shown in fig. 2(b)), ob-

taining a classification error under θperf , so, the process

stops. Now, the original tree encoding of the DECOC de-

sign shown in fig. 2(d) can be represented by the tree struc-



ture of fig. 2(e), where the original class associated to each

sub-class is shown in the leaves.

When the final set of binary problems is obtained, its

respective set of labels ℘′ is used to create the coding ma-

trix M (eq. (1)). The outputs C ′ and J ′ contain the final

set of sub-classes and the new data for each sub-class, re-

spectively. Finally, to decode the new sub-class problem-

dependent design of ECOC, we take advantage of the re-

cently proposed Loss-Weighted decoding design [5]. The

decoding strategy uses a set of normalized probabilities

based on the performance of the base classifier and the

ternary ECOC constraints [5].

4. Feature Extraction
The RF features are obtained by means of the analysis

of the power spectrum after RF acquisition, filtering, and

exponential compensation by TGC. It is done by means of

Autoregressive Models (ARM), as explained in [7].

Given that different plaques can be discriminated as re-

gions with different grey-level distributions, it is a natural

decision to use texture descriptors. Our strategy is instead

of trying to find out the optimal texture descriptor for our

problem to gather several families of descriptors and apply

multiple classifiers able to learn and extract the optimal fea-

tures for the concrete problem.

The co-occurrence matrix is defined as the estimation of

the joint probability density function of gray level pairs in

an image [11]. The sum of all element values is:

P (i, j, D, θ) = P (I(l,m))
P (I(l,m)) = i ⊗ I(l + Dcos(θ),m + Dsin(θ)) = j)

(2)

where I(l, m) is the gray value at pixel (l,m), D is

the distance among pixels and θ is the angle between

neighbors. We have established the orientation θ to be

[0o, 45o, 90o, 135o] [11]. After computing this matrix, En-

ergy, Entropy, Inverse Difference Moment, Shade, Inertia

and Promenance measures are extracted [11].

Local Binary Patterns (LBP) are used to detect uniform

texture patterns in circular neighborhoods with any quan-

tization of angular space and spatial resolution. LBP are

based on a circular symmetric neighborhood of P members

with radius R. To achieve gray level invariance, the cen-

tral pixel gc is subtracted to each neighbor gp, assigning the

value 1 to the result if the difference is positive and 0, oth-

erwise. LBPs are defined as follows:

LBPR,P =
P∑

p=0

a(gp − gc) · 2p (3)

A Gabor filter is a special case of wavelets which is es-

sentially a Gaussian modulated by a complex sinusoid s. In

2D, it has the following form in the spatial domain:

h(x, y) = 1
2πσ2 exp{− 1

2 [(x2+y2

σ2 )]} · s(x, y)
s(x, y) = exp[−i2π(Ux + V y)], φ = arctanV/U

where σ is the standard deviation, U and V represent the

2D frequency of the complex sinusoid, and φ is the angle of

the frequency.

As a result of extracting the texture descriptors, we con-

struct an n-dimensional feature vector where n = k + l +
m + 1, k is the number of co-occurrence matrix measure-

ments, l is the number of Gabor filters, m is the number of

LPB and the last feature is the measure of the ”shadow” in

the image [6].

4.1. Data set

To generate the data sets we used the RF signals and

their reconstructed images from a set of 10 different pa-

tients with Left Descent Artery pullbacks acquired in Hos-

pital ”German Trias i Pujol” from Barcelona, Spain. All

these pullbacks contain the three classes of plaque. For

each one, 10 to 15 different vessel sections were selected

to be analyzed. Two physicians independently segmented

50 areas of interest per pullback. From these segmentations

we took 15 regions of interest (ROI) of tissue per study ran-

domly making a total of 5000 evaluation ROIs. To build the

data set, these selections were mapped in both RF signals

and reconstructed images. In order to reduce the variability

among different observers, the regions where both cardiol-

ogist agreed have been taken under consideration. Some

samples from the data set are shown on the left of fig. 3.

To generate the data set of texture features, the intersection

Figure 3. Left: IVUS data set samples. Right: (top) segmentation

by a physician and (down) Automatic classification with Texture-

Based Features.

between segmented images is mapped into a feature vector.

Then, all the features collected are categorized by patient

and each of the three possible plaques type. The features

are calculated for each pixel and gathered in a feature vector

of 68 dimensions. An example of a manual and automatic

texture-based segmentation is shown on the right of fig. 3.

To generate the data set of RF features, the RF signals

have been acquired using a 12-bit acquisition card with a



sampling rate of fs = 200MHz. The IVUS equipment

used is Galaxy II from Boston Scientific with a catheter

transducer frequency of f = 40Mhz, and it is assumed

a sound speed in tissue of 1565m/s. Each IVUS image

consists of a total of 256 A-lines (ultrasound beams), with

a radial distance of r = 0.65cm. The attenuation in tissue

factor used is α = 1Db/Mhz × cm. To analyze the RF

signals, the sliding window is composed of n = 64 samples

of depth and m = 12 radial A-lines, and the displacement is

fixed in 16 samples and four A-lines. The power spectrum

of the window ranges from 0 to 100MHz and it is sampled

by 100 points. Then, it is complemented with two energy

measures yielding a 102 feature vector.

We also consider a data set that concatenates the descrip-

tors from the previous RF and texture-based features, ob-

taining a feature vector of length 170 features, and a fourth

data set considering the 14 slope-based features proposed

in [10].

5. Results
Before the experimental results are presented, we com-

ment the data, methods, and evaluation measurements.

• Data: The data used for the experiments corresponds

to the four data sets described at the previous section: RF,

texture-based, combined features, and slope-based features

data sets.

• Methods: We compare our method with the state-of-

the-art ECOC coding designs: one-versus-one, one-versus-

all, dense random, sparse random, and DECOC [1][13].

Each strategy uses the previously mentioned Linear Loss-

weighted decoding. Three different base classifiers are ap-

plied: Nearest Mean Classifier (NMC) with the classifi-

cation decision using the Euclidean distance between the

mean of the classes, Discrete Adaboost with 50 iterations

of Decision Stumps, and Linear Discriminant Analysis im-

plementation of the PR Tools using the default values. For

these experiments, we selected k-means as the splitting cri-

terion SC for the Sub-class ECOC approach.

• Evaluation measurements: To measure the perfor-

mance of the different experiments, we apply leave-one-

patient-out evaluation. Moreover, we use the statistical

Friedman and Nemenyi tests to look for statistical signifi-

cance among the methods performances [3].

Applying the three different base classifiers over the

set of ECOC configurations, the performance results for

RF features, texture-based features, combined features, and

slope-based features are shown in fig. 4. Comparing the

results among the different data sets, one can see that the

worst performances are obtained by the RF and slope-based

features, which obtain very similar results for all the base

classifiers and ECOC configurations. The texture-based

features obtain in most cases results upon 90%. Finally, the

data set of combined RF and texture-based features slightly

outperform the results obtained by the texture-based fea-

ture, though the results do not significantly differ1. This

behavior is summarize in table 3, where the mean rank ob-

tained by each feature set is shown. The rankings are ob-

tained estimating each particular ranking rj
i for each prob-

lem i and each feature set j, and computing the mean rank-

ing R for each feature set as Rj = 1
N

∑
i rj

i , where N is

the total number of problems (3 base classifiers × 6 ECOC

designs). Note that the best ranking corresponds to the com-

bined set of features, and that the individual feature set that

obtains the best results correspond to texture-based. Con-

Table 3. Mean rank for each feature set.
Feature set RF Texture-based RF+Texture-based Slopes

Mean rank 2.94 2.28 1.72 2.83

cerning the classification strategies, observing the obtained

performances in fig. 4, one can see that independently of the

data set and the ECOC design applied, the Sub-class ECOC

approach always attains the best results. To compare these

performances, the mean rank of each ECOC design consid-

ering the twelve different experiments (3 base classifiers ×
4 data sets) is shown in table 4. One can see that the Sub-

class ECOC attains the best position for all experiments. To

analyze if the difference between methods ranks are statisti-

cally significant, we apply the Friedman and Nemenyi tests.

In order to reject the null hypothesis that the measured ranks

differ from the mean rank, and that the ranks are affected

by randomness in the results, we use the Friedman test. The

Friedman statistic value is computed as follows:

X2
F =

12N

k(k + 1)
[
∑

j

R2
j −

k(k + 1)2

4
] (4)

In our case, with k = 6 ECOC designs to compare,

X2
F = 30.71. Since this value is undesirable conservative,

Iman and Davenport proposed a corrected statistic:

FF =
(N − 1)X2

F

N(k − 1) − X2
F

(5)

Applying this correction we obtain FF = 11.53. With

six methods and twelve experiments, FF is distributed ac-

cording to the F distribution with 5 and 55 degrees of free-

dom. The critical value of F (5, 55) for 0.05 is 2.40. As

the value of FF is higher than 2.45 we can reject the null

hypothesis. One we have checked for the for the non-

randomness of the results, we can perform a post hoc test to

check if one of the techniques can be singled out. For this

purpose we use the Nemenyi test - two techniques are sig-

nificantly different if the corresponding average ranks differ

by at least the critical difference value CD:

1Due to the high similitude among slope-based and RF features results,

the combination of texture-based and slope-based features has been omit-

ted.



Performance results with Radio Frequency features

Performance results with texture-based features

Performance results combining RF and texture-based features

Performance results with slope-based features

Figure 4. Performance results for different sets of features, ECOC designs, and base classifiers on the IVUS data set.

CD = qα

√
k(k + 1)

6N
(6)

where qα is based on the Studentized range statistic di-

vided by
√

2. In our case, when comparing six methods

with a confidence value α = 0.10, q0.10 = 1.44. Substi-

tuting, we obtain a critical difference value of 1.09. Since

the difference of any technique rank with the Sub-class rank

is higher than the CD, we can infer that the Sub-class ap-

proach is significantly better than the rest with a confidence

of 90% in the present experiments.

Table 4. Mean rank for each ECOC design.
ECOC design one-versus-one one-versus-all dense random

Mean rank 2.33 5.08 4.25

ECOC design sparse random DECOC Sub-class

Mean rank 5.00 2.67 1.00

6. Conclusions

In this paper, we characterized Intravascular Ultrasound

tissues based on RF and texture-based features. We pre-

sented a Sub-class approach of Error-Correcting Output

Codes that splits the tissue classes into different sub-sets

according to the applied base classifier. In this sense, com-



plex IVUS data sets containing overlapping data are solved

by splitting the original set of classes into sub-classes, and

embedding the binary problems in a problem-dependent

ECOC design. The method automatically characterizes dif-

ferent tissues, showing performance improvements over the

state-of-the-art ECOC techniques for different base classi-

fiers and feature sets.
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