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Abstract. Multi-class binary symbol classification requires the use of
rich descriptors and robust classifiers. Shape representation is a difficult
task because of several symbol distortions, such as occlusions, elastic de-
formations, gaps or noise. In this paper, we present the Circular Blurred
Shape Model descriptor. This descriptor encodes the arrangement infor-
mation of object parts in a correlogram structure. A prior blurring degree
defines the level of distortion allowed to the symbol. Moreover, we learn
the new feature space using a set of Adaboost classifiers, which are com-
bined in the Error-Correcting Output Codes framework to deal with the
multi-class categorization problem. The presented work has been vali-
dated over different multi-class data sets, and compared to the state-of-
the-art descriptors, showing significant performance improvements.

1 Introduction

Shape Recognition is one of the most active areas in Pattern Recognition, which
consists in recognizing objects from a large set of classes (we use symbol and
object indistinctly). Shape is one of the most important visual cues for describing
objects, and with texture and color, it is widely used for describing the content of
the objects. In the last years, there is an increasing interest in the developing of
good shape recognition methods. Shape representation is a difficult task because
of several object distortions, such as occlusions, elastic deformations, gaps or
noise. In general, the desirable properties of a shape-based approach can be
divided in two main groups: the definition of expressive and compact shape
descriptors, and the formulation of robust classification methods.

A good shape descriptor should guarantee inter-class compactness and intra-
class separability, even when describing noisy and distorted shapes. The main
techniques for shape recognition are reviewed in [2]. They are mainly classified
in continuous and structural approaches. Zernike moments and R-signature are
examples of continuous approaches, which extract information from the whole
shape region. Zernike moments [3] maintain properties of the shape, and are
invariant to rotation, scale, and deformations. Contrary, other continuous ap-
proaches only use the external contour (silhouette) for computing the features,
such as Curvature Scale Space (CSS) and Shape context. CSS [5] is a standard
of the MPEG [4] that is tolerant to rotation, but it can only be used for close



curves. Shape Context can work with non-closed curves, and has good perfor-
mance in hand drawn symbols, because it is tolerant to deformations, but it
requires point-to-point alignment of the symbols [6].

Concerning structural approaches, straight lines and arcs are usually the basic
primitives. Strings, graphs or trees represent the relations between these prim-
itives. The similarity measure is performed by string, tree or graph matching.
Attributed graph grammars, Deformable models and Region Adjacency Graphs
are a few examples of structural approaches. Attributed graph grammars [7] can
cope with partially occluded symbols, while Region Adjacency Graphs [8] reach
good performance in front of distortions in hand drawn documents.

Due to the large different kinds of problems in shape recognition applications,
a shape descriptor usually reaches good performance in some aspects, but fails
in others. In fact, some object descriptors, robust to some affine transformations
and occlusions in some type of objects, are not enough effective in front of elastic
deformations. For this reason, the research of a descriptor that can cope with
elastic deformations and non-uniform distortions is still required. In the work
of [11], the blurred shape model was presented. It is a descriptor that can deal
with elastic deformations, variations in object styles and blurring, but it is sensi-
ble to rotations. In this paper, we present an evolution of the blurred shape model
descriptor, which not only copes with distortions and noise, but also is rotation-
ally invariant. The Circular Blurred Shape Model (CBSM) codifies the spatial
arrangement of object characteristics using a correlogram structure. Based on
a prior blurring degree, object characteristics are shared among correlogram re-
gions. By rotating the correlogram so that the major descriptor densities are
aligned to the x-axis, the descriptor becomes rotationally invariant.

Referring the categorization of object classes, many classification techniques
have been developed. One of the most well-known techniques is the Adaboost al-
gorithm, which has been shown to be good for feature selection, and it has shown
to achieve high performance when applied to binary categorization tasks [9]. Af-
terwards, the extension to the multi-class case is usually solved by combining
the binary classifiers in a voting scheme, such as one-versus-one or one-versus-all
grouping schemes. Dietterich et. al. [10] proposed the Error Correcting Output
Codes framework (ECOC) to benefit from error correction properties, obtain-
ing successful results [15]. In this paper, we learn the CBSM features using
Adaboost, and then, combine the binary problems in an ECOC configuration,
which extends the system to deal with multi-class categorization problems. The
comparison with the state-of-the-art descriptors and the high performance clas-
sifying multi-class problems with several categories show the robustness and
better performance of the present methodology.

The paper is organized as follows: Section 2 describes the rotationally invari-
ant Circular Blurred Shape Model descriptor. Section 3 describes the system of
Error-Correcting Output Codes that uses the CBSM system to solve multi-class
categorization problems. Section 4 presents the experimental evaluation of the
methodology, and finally, Section 5 concludes the paper.



2 Circular Blurred Shape Model

In order to describe an object that can suffer from irregular deformations, the
authors of [11] proposed a description strategy in which spatial arrangement of
object parts is captured in a rectangular grid. Contiguous regions share informa-
tion about the containing object points, and thus, the descriptor is tolerant to ir-
regular deformations. The descriptor has shown to be suitable for the multi-class
categorization of aligned symbols, outperforming state-of-the-art strategies [11].

In this section, we present a circular formulation of the Blurred Shape Model
descriptor (CBSM). By defining a correlogram structure from the center of the
object region, spatial arrangement of object parts is shared among regions de-
fined by circles and sections. The method also allows a rotationally invariant
description, rotating the correlogram by the predominant region densities. We
divide the description of the algorithm into three main steps: the definition of the
correlogram parameters, the descriptor computation, and the rotationally invari-
ant procedure. We also include a fourth step to extend the CBSM methodology
to solve symbol spotting problems.

Correlogram definition: Given a number of circles C, number of sections
S, and an image region I, a centered correlogram B = {b{1,1}, .., b{C,S}} is de-
fined as a radial distribution of sub-regions of the image, as shown in Figure 1(a)
and (b). Each region b has centroid coordinates defined by b∗. Then, the regions
around b are defined as the neighbors of b. Note that depending of the spatial
location of the analyzed region, different number of neighbors can be defined
(Fig. 1(c)).

Descriptor computation: In order to compute the descriptor, first, a pre-
process of the input region I to obtain the shape features is required. Working
with document images, relevant shape information can be obtained by means of
a contour map. However, based on the object properties, we can define another
initial properties. In this paper, we use a Canny edge detector procedure.

Given the object contour map, each point from the image belonging to a
contour is taken into account in the description process (Fig. 1(d)). First of all,
the distances from the contour point x to the centroids of its corresponding
region and neighbor regions are computed. The inverse of these distances are
computed and normalized by the sum of total distances. These values are then
added to the corresponding positions of the descriptor vector ν, including higher
values to that positions corresponding to the nearest regions to x (Figure 1(e)
bottom). This makes the description tolerant to irregular deformations.

At this point we have a description ν for an input image I, where the length
of ν, defined by parameters C and S, defines the degree of spatial information
taken into account in the description process. In Figure 2, a bat instance from
the public MPEG7 data set [1] is described with different C × S correlogram
sizes. In the way that we increase the number of regions, the description becomes
more local. Thus, an optimal parameters of C and S should be obtained for each
particular problem (i.e. via cross-validation).

Rotationally invariant descriptor: In order to make the description ro-
tationally invariant, we look for the main diagonal Gi of correlogram B with the



highest density. This diagonal is then the reference to rotate the descriptor. The
orientation of the rotationally process, so that Gi is aligned with the x-axis, is
that corresponding to the highest description density at both sides of Gi. This
procedure is detailed in Algorithm 2. A visual result of the rotationally invariant
process can be observed in Figure 2.

Algorithm 1 Circular Blurred Shape Model Description Algorithm.

Require: a binary image I, the number of circles C, and the number of sections S
Ensure: descriptor vector ν

Define d = R/C and g = 360/S, where R is the radius of the correlogram, as the distance between
consecutive circles and the degrees between consecutive sectors, respectively (Figure 1(a)).
Define B = {b{1,1}, .., b{C,S}} as the set of bins for the circular description of I, where bc,s is
the bin of B between distance [(c − 1)d, cd) with respect to the origin of coordinates o, and
between angles [(s− 1)g, sg) to the origin of coordinates o and x-axis (Figure 1(b)).
Define b∗{c,s} = (d sin α, d cos α), the centroid coordinates of bin b{c,s}, where α is the angle

between the centroid and the x-axis, and B∗ = {b∗{1,1}, .., b∗{C,S}} the set of centroids in B

(Figure 1(e)).
Define Xb{c,s} = {b1, .., bcs} as the sorted set of the elements in B∗ so that

d(b∗{c,s}, b∗i ) ≤ d(b∗{c,s}, b∗j ), i < j.

Define N(b{c,s}) as the neighbor regions of b{c,s}, defined by the initial elements of Xb{c,s} :

N(b{c,s}) =

8
<
:

X′, |X′| = S + 3 if b{c,s} ∈ IN
X′, |X′| = 9 if b{c,s} ∈ MI
X′, |X′| = 6 if b{c,s} ∈ EX

being X′ the first elements of X, and IN , MI, and EX, the inner, middle, and extern regions of
B, respectively (Figure 1(c)). Note that different number of neighbor regions appears depending
of the location of the region in the correlogram. We consider the own region as the first neighbor.
Initialize νi = 0, i ∈ [1, .., CS], where the order of indexes in ν are:
ν = {b{1,1}, .., b{1,S}, b{2,1}, ..b{2,S}, .., b{C,1}, ..b{C,S}}
for each point x ∈ I, I( x ) = 1 (Figure 1(d)) do

for each b{i,j} ∈ N(bx) do

d{i,j} = d(x, b{i,j}) = ||x− b∗{i,j}||2
end for
Update the probabilities vector ν positions as follows (Figure 1(f)):

ν(b{i,j}) = ν(b{i,j}) +
1/d{i,j}
D{i,j}

, D{i,j} =
P

b{m,n}∈N(b{i,j})
1

||x−b∗{m,n}||
2

end for
Normalize the vector ν as follows:
d′ =

PCS
i=1 νi, νi =

νi
d′ , ∀i ∈ [1, .., CS]

3 Multi-class Categorization

Error Correcting Output Codes are a meta-learning strategy that divides the
multi-class problem is a set of binary problems, solves them individually and
aggregates their responses into a final decision. ECOC classifiers combination
have been shown to have interesting properties in statistical learning, reducing
both the bias and variance of the base classifiers [12].

The ECOC meta-learning algorithm [13] consists in two steps: in the learning
step, an ECOC encoding matrix is constructed in order to define the combination
of the M binary classifiers. In the decoding step, the new sample x is classified



Algorithm 2 Rotationally invariant ν description.

Require: ν, S, C
Ensure: Rotationally invariant descriptor vector νROT

Define G = {G1, .., GS/2} the S/2 diagonals of B, where
Gi = {ν(b{1,i}), .., ν(b{C,i}), .., ν(b{1,i+S/2}), .., ν(b{C,i+S/2})}
Select Gi so that

P2C
j=1 Gi(j) ≥

P2C
j=1 Gk(j), ∀k ∈ [1, .., S/2]

Define LG and RG as the left and right areas of the selected Gi as follows:
LG =

P
j,k ν(b{j,k}), j ∈ [1, .., C], k ∈ [i + 1, .., i + S/2− 1]

RG =
P

j,k ν(b{j,k}), j ∈ [1, .., C], k ∈ [i + S/2 + 1, .., i + S − 1]

if LG > RG then
B is rotated k = i + S/2− 1 positions to the left:
νROT = {ν(b{1,k+1}), .., ν(b{1,S}), ν(b{1,1}), .., ν(b{1,k}), ..,
, .., ν(b{C,k+1}), .., ν(b{C,S}), ν(b{C,1}), .., ν(b{C,k})}

else
B is rotated k = i− 1 positions to the right:
νROT = {ν(b{1,S}), .., ν(b{1,S−k+1}), ν(b{1,1}), .., ν(b{1,S−k}), ..,
, .., ν(b{C,S}), .., ν(b{C,S−k+1}), ν(b{C,1}), .., ν(b{C,S−k})}

end if

according to the set of M binary classifiers. The decoding algorithm finds the
most suitable class label for the test sample using the output of this binary set
of classifiers. Thus, given a set of N training samples X = {x1, . . . ,xN}, where
each xi belongs to the class Ci ∈ {C1, . . . , CK}, an ECOC encoding consists
on constructing M binary problems using the original K classes. Each binary
problem splits two meta-classes, and values +1 and -1 are assigned to each class
belonging to the first or second meta-classes, respectively. If a class does not be-
long to any meta-class, the membership value is set to 0. This creates a K ×M
matrix T. When a new sample must be classified, the outputs of the classifiers
trained on each binary problem (columns of the matrix T) are used to con-
struct the codeword that is compared with each row of the matrix T. The class
codeword with the minimum distance is selected as the classifier output. The
ECOC scheme allows to represent in a common framework well-known strate-
gies such as one-versus-all or all-pairs, as well as more sophisticated problem
dependent encodings, namely discriminant ECOC [14] or sub-class ECOC [15],
without a significant increment of the codeword length. Literature shows that
one of the most straightforward and well-performing approach disregarding of
the properties of the particular base learner is the one-versus-one strategy.

The final part of the ECOC process is based on defining a suitable distance
for comparing the output of the classifiers with the base codewords. The authors
of [17] have recently shown that weighted decoding achieves the minimum error
with respect to most of the state-of-the-art decoding measures. The weighted
decoding strategy decomposes the decoding step of the ECOC technique in two
parts: a weighting factor for each code position and any general decoding strat-
egy. In [17] the authors show that for a decoding strategy to be successful, two



(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) CBSM correlogram parameters, (b) regions distribution, (c) region neighbors, (d) object
point analysis, (e) region centroid definition, and (f) descriptor vector update after point analysis.

Bat1 Bat1 5×5 Bat1 24×24 Bat1 54×54 Bat2 Bat2 5×5 Bat2 24×24 Bat2 54×54

Fig. 2. Examples of image descriptions at different sizes for two object instances.

conditions must be fulfilled: the bias induced by the zero symbol should be zero
and the dynamic range of the decoding strategy must be constant for all the
codewords. The complete decoding strategy weights the contribution of the de-
coding at each position of the codeword by the elements of W that ensures that
both conditions are fulfilled. As such, the final decoding strategy is defined as
d(y, T (i, ·)) =

∑M
j=1 W (i, j) · L(T (i, j) · hj(x)), where,

w(i, j) =
{

ri(S, T (·, j), T (i, j)) T (i, j) 6= 0
0 otherwise

(1)

and
∑M

j=1 W (i, j) = 1,∀i ∈ {1 . . .K}. We define the meta-class relative accuracy
(r-value) of class k on the set S given the following definition,

rk(S, ρ, i) =
#elements of class k classified as meta-class i in the set S

#elements belonging to class k in the set S
(2)

where ρ defines which classes belong to which meta-class.



The second part of the weighting decoding lies in a base decoding strategy.
In this article, we chose to use Linear Loss-based decoding as base strategy
decoding. Linear Loss-based decoding was introduced by Allwein et al. [16] and
is defined in the following way: given the input sample x and the binary code y
result of applying all the dichotomizers (h1, h2, . . . , hM ) to the input test sample,
the decoding value is defined as follows,

d(y, T (i, ·)) =
M∑

j=1

L(T (i, j) · hj(x))

where T (i, ·) denotes the codeword for class i, hj(x) is the prediction value for
dichotomizer j, and L is a loss function that represents the penalty due to the
miss-classification (we use L(ρ) = −ρ).

4 Experimental evaluation

In order to present the results, first, we discuss the data, methods, and validation
of the experiments:

• Data: To test the multi-class symbol recognition system, we used two multi-
class data sets: the public 70-class MPEG7 repository data set [1], which contains
a high number of classes with different appearance of symbols from a same class,
including rotation. And secondly, a 17-class data set of grey-level symbols, which
contains the common distortions from real-environments, such as illumination
changes, partial occlusions, or changes in the point of view.

• Methods: The methods used in the comparative are: SIFT [18], Zoning,
Zernique, and CSS curvature descriptors from the standard MPEG [3] [19] [20].
The details of the descriptors used for the comparatives are the followings: the
optimum grid size of the CBSM descriptors is estimated applying cross-validation
over the training set using a 10% of the samples to validate the different sizes
of S = {8, 12, 16, 20, 24, 28, 32} and C{8, 12, 16, 20, 24, 28, 32}. For a fair com-
parison among descriptors, the Zoning and BSM descriptors are set to the same
number of regions than the CBSM descriptor. Concerning the Zernique tech-
nique, 7 moments are used. The length of the curve for the CSS descriptor is
normalized to 200, where the σ parameter takes an initial value of 1 and increases
by 1 unit at each step. The descriptors are trained using 50 runs of Gentle Ad-
aboost with decision stumps [9], and the one-versus-one ECOC design [16] with
the Loss-Weighted decoding [17]. In order to show the benefits of the ECOC
design, we also compare with a 3-Nearest Neighbor classifier.

• Validation: The classification score is computed by a stratified ten-fold
cross-validation, testing for the 95% of the confidence interval with a two-tailed
t-test.



4.1 MPEG7 Classification

In this experiment, we used the 70 object categories from the public MPEG7 bi-
nary object data set [1] to compare the descriptors in a multi-class categorization
problem. Some examples of this data set are shown in Figure 3(a).

The classification results and confidence interval after testing using a strati-
fied ten-fold cross-validation with a 3-NN and the ECOC configuration are shown
in Table 1. Note that the best performance is obtained by our CBSM descriptor
with the one-versus-one ECOC design with Loss-Weighted decoding and with
3-NN, followed by the original BSM. Moreover, the ECOC configurations always
obtain higher performance than classifying with a nearest neighbor classifier.

Descriptor 3NN ECOC Adaboost

CBSM 71.84(6.73) 80.36(7.01)

BSM 65.79(8.03) 77.93(7.25)

Zernique 43.64(7.66) 51.29(5.48)

Zoning 58.64(10.97) 65.50(6.64)

CSS 37.01(10.76) 44.54(7.11)

SIFT 29.14(5.68) 32.57(4.04)
Table 1. Classification accuracy and confidence interval on the 70 MPEG7 symbol categories for
the different descriptors using 3-Nearest Neighbor and the one-versus-one ECOC scheme with Gentle
Adaboost as the base classifier.

4.2 Grey-scale symbol Classification

The second data set is composed by grey-level samples from 17 different classes,
with a total of 550 samples acquired with a digital camera from real environ-
ments. The samples are taken so that there are high affine transformations,
partial occlusions, background influence, and high illumination changes. Some
examples of the 17 classes are shown in Fig. 3(b). The SIFT descriptor is a
widely-used strategy for this type of images, obtaining very good results [18].
Hence, we compare the CBSM and SIFT descriptors in this experiment.

The performances and confidence intervals obtained in this experiment from
a ten-fold cross-validation using the CBSM and SIFT descriptors in a one-
versus-one ECOC scheme with Gentle Adaboost as the base classifier and Loss-
Weighted decoding are shown in table 2. One can see that the result obtained
by the CBSM descriptor adapted to grey-scale symbols significantly outperforms
the result obtained by the SIFT descriptor. This difference is produced in this
data set because of the high changes in the point of view of the symbols and the
background influence, which significantly change the SIFT orientations.

5 Conclusion

In this paper, we presented the Circular Blurred Shape Model descriptor. The
new descriptor is suitable to describe and recognize symbols that can suffer from



(a) (b)

Fig. 3. (a) MPEG samples, and (b) Grey-scale symbol data set samples.

CBSM SIFT

77.82(6.45) 62.12(9.08)
Table 2. Performance and confidence interval of the CBSM and SIFT descriptors on the grey-scale
symbols data set using a one-versus-one Adaboost ECOC scheme.

several distortions, such as occlusions, rigid or elastic deformations, gaps or noise.
The descriptor encodes the spatial arrangement of symbol characteristics using
a correlogram structure. A prior blurring degree defines the level of degradation
allowed to the symbol. Moreover, the descriptor correlogram is rotated guided
by the major density so that it becomes rotationally invariant. The new symbol
descriptions are learnt using Adaboost binary classifiers, and embedded in an
Error-Correcting Output Codes framework to deal with multi-class categoriza-
tion problems. The results over different multi-class categorization problems and
comparing with the state-of-the-art descriptors show higher performance of the
present methodology when classifying high number of symbol classes that suffer
from irregular deformations.
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