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Abstract

The Chagas’ disease is endemic in all Latin Amer-
ica, affecting millions of people in the continent. In
order to diagnose and treat the chagas’ disease, it is
important to detect and measure the coronary damage
of the patient. In this paper, we analyze and catego-
rize patients into different groups based on the coronary
damage produced by the disease. Based on the features
of the heart cycle extracted using high resolution ECG,
a multi-class scheme of Error-Correcting Output Codes
(ECOC) is formulated and successfully applied. The
results show that the proposed scheme obtains signifi-
cant performance improvements compared to previous
works and state-of-the-art ECOC designs.

1 Introduction
Chagas’ disease is an infectious illness caused by the

parasite Tripanosoma Cruzi, which is transmitted to hu-

mans through the feces of a bug called Triatoma infes-

tans. The World Health Organization (WHO) estimates

that 16 to 18 million people in Latin American coun-

tries are already infected by the disease and other 100

million people are at risk of being infected [5]. In areas

where the illness is endemic, Chagas’ cardiomyopathy

represents the first cause of cardiovascular death [4].

In order to optimize treatment for chronic chagasic

patients, it is essential to make use of an effective di-

agnosis tool able to determine the existence of cardiac

injury and, if positive, its magnitude. Since Chagas’

cardiomyopathy frequently leads to alterations in the

heart’s electrical conduction, recently it has been pro-

posed the slopes of QRS complex in order to determine

the myocardial damage associated with the disease [7].

Based on the temporal indices and slopes of QRS com-

plex as extracted features, an automatic system that cat-

egorized patients into different groups is presented. To

perform a multi-classification system able to learn the

level of damage produced by the disease, we focus on a

new design of Error-Correcting Output Codes [2].

The ECOC technique can be broken down into two

distinct stages: encoding and decoding. Given a set of

classes, the coding stage designs a codeword1 for each

class based on different binary problems. The decod-

ing stage makes a classification decision for a given test

sample based on the value of the output code. Though

many coding designs have been proposed to codify an

ECOC coding matrix, obtaining successful results [3],

the use of a proper decoding strategy is still an open

issue. In this paper, we propose the Loss-Weighted de-

coding strategy, witch exploits the information provided

at the coding stage to perform a successful classifica-

tion. As a result, our system automatically diagnoses

the level of coronary damage of patients with the Cha-

gas’ disease, outperforming state-of-the-art ECOC de-

signs and related works.

The paper is organized as follows: Section 2

overviews the ECOC framework, section 3 presents the

Loss-Weighted decoding strategy, section 4 shows the

design of the data set and the experimental results, and

finally, section 5 concludes the paper.

2 Error-Correcting Output Codes
Given a set of Nc classes to be learnt, at the coding

step of the ECOC framework, n different bi-partitions

(groups of classes) are formed, and n binary problems

(dichotomies) are trained. As a result, a codeword of

length n is obtained for each class, where each bin of the

code corresponds to a response of a given dichotomy.

Arranging the codewords as rows of a matrix, we de-

fine a ”coding matrix” M , where M ∈ {−1, 0, 1}Nc×n

in the ternary case. Joining classes in sets, each di-

chotomy, that defined a partition of classes, codes by

{+1,−1} according to their class set membership, or 0

if the class is not considered by the dichotomy. In fig.1

we show an example of a ternary matrix M . The ma-

trix is coded using 7 dichotomies {h1, ..., h7} for a four

class problem (c1, c2, c3, and c4). The white regions are

coded by 1 (considered as positive for its respective di-

1The codeword is a sequence of bits of a code representing each

class, where each bit identifies the membership of the class for a given

binary classifier.



chotomy, hi), the dark regions by -1 (considered as neg-

ative), and the grey regions correspond to the zero sym-

bol (not considered classes by the current dichotomy).

For example, the first classifier (h1) is trained to dis-

criminate c3 versus c1 and c2 ignoring c1, and so on.

During the decoding process, applying the n trained

binary classifiers, a code x is obtained for each data

point in the test set. This code is compared to the base

codewords of each class {y1, ..., y4} defined in the ma-

trix M , and the data point is assigned to the class with

the ”closest” codeword [1].

Figure 1. Example of ternary matrix M for a 4-class problem. A
new test codeword is classified by class c1 when using the traditional
Hamming and Euclidean decoding strategies.

2.1 Decoding designs
The decoding step decides the final category of an

input test by comparing the codewords. In this way, a

robust decoding strategy is required to obtain accurate

results. Several techniques for the binary decoding step

have been proposed in the literature, the most common

ones are the Hamming (HD) and the Euclidean (ED)

approaches [1]. In fig.1, a new test input x is evaluated

by all the classifiers and the method assigns label c1

with the closest decoding distances. Note that in the

particular example of fig. 1 both distances agree.

In [1], the authors propose a Loss-based technique

when a confidence on the classifier output is available.

For each row of M and each data sample ℘, the authors

compute the similarity between f j(℘) and M(i, j),
where f j is the jth dichotomy of the set of hypothesis

F , considering a loss estimation on their scalar prod-

uct, as follows: D(℘, yi) =
∑n

j=1 L(M(i, j) · f j(℘)),
where L is a loss function that depends on the nature

of the binary classifier. The most common loss func-

tions are the linear and the exponential one. The final

decision is achieved by assigning a label to example ℘
according to the class ci with the minimal distance.

Recently, the authors of [6] proposed a probabilistic

decoding strategy based on the margin of the output

of the classifier to deal with the ternary decoding.

The decoding measure is given by D(yi, F ) =
−log

(∏
j∈[1,...,n]:M(i,j) �=0 P (xj = M(i, j)|f j) + α

)
,

where α is a constant factor that collects the probability

mass dispersed on the invalid codes, and the proba-

bility P (xj = M(i, j)|f j) is estimated by means of

P (xj = yj
i |f j) = 1

1+exp(yj
i
(Ajfj+Bj))

, where vectors

A and B are obtained by solving an optimization

problem [6].

3 Loss-Weighted decoding (LW)
The ternary symbol-base ECOC allows to increase

the number of bi-partitions of classes (thus, the number

of possible binary classifiers) to be considered, result-

ing in a higher number of binary problems to be learnt.

However, the effect of the ternary symbol is still an open

issue. Since a zero symbol means that the correspond-

ing classifier is not trained on a certain class, to consider

the ”decision” of this classifier on those zero coded po-

sition does not make sense. Moreover, the response of

the classifier on a test sample will always be different to

0, so it will register an error. Let return to fig. 1, where

an example about the effect of the 0 symbol is shown.

The classification result using the Hamming distance as

well as the Euclidean distance is class c1. On the other

hand, class c2 has only coded first both positions, thus

it is the only information provided about class c2. The

first two coded locations of the test codeword x corre-

spond exactly to these positions. Note that each posi-

tion of the codeword coded by 0 means that both -1 and

+1 values are possible. Hence the correct classification

should be class c2 instead of c1. The use of standard

decoding techniques that do not consider the effect of

the third symbol (zero) frequently fails. In the figure,

the HD and ED strategies accumulate an error value

proportional to the number of zero symbols by row, and

finally miss-classify the sample x.

Given a coding matrix M ,

1) Calculate the matrix of hypothesis H:

H(i, j) =
1

mi

mi∑
k=1

γ(hj(℘
i
k), i, j) (1)

based on γ(xj , i, j) =

{
1, if xj = M(i, j)
0, otherwise.

(2)

2) Normalize H so that
∑n

j=1
MW (i, j) = 1, ∀i = 1, ..., Nc:

MW (i, j) =
H(i, j)∑n

j=1
H(i, j)

,

∀i ∈ [1, ..., Nc], ∀j ∈ [1, ..., n]

Given a test input ℘, decode based on:

d(℘, i) =

n∑
j=1

MW (i, j)L(M(i, j) · f(℘, j)) (3)

Table 1. Loss-Weighted algorithm.

To solve the commented problems, we propose a

Loss-Weighted decoding. The main objective is to find



a weighting matrix MW that weights a loss function to

adjust the decisions of the classifiers, either in the bi-

nary and in the ternary ECOC frameworks. To obtain

the weighting matrix MW , we assign to each position

(i, j) of the matrix of hypothesis H a continuous value

that corresponds to the accuracy of the dichotomy hj

classifying the samples of class i (1). We make H to

have zero probability at those positions corresponding

to unconsidered classes (2), since these positions do not

have representative information. The next step is to nor-

malize each row of the matrix H so that MW can be

considered as a discrete probability density function (3).

In fig. 2 a weighting matrix MW for a 3-class problem

with four hypothesis is estimated. Figure 2(a) shows the

coding matrix M . The matrix H of fig. 2(b) represents

the accuracy of the hypothesis classifying the instances

of the training set. The normalization of H results in

the weighting matrix MW of fig. 2(c)2.

(a) (b)

(c)

Figure 2. (a) Coding matrix M of four hypotheses for a 3-class
problem. (b) Matrix H of hypothesis accuracy. (c) Weighting matrix.

The Loss-weighted algorithm is shown in table 1. As

commented before, possible loss functions applied in

equation (3) are be the linear or the exponential ones.

The linear function is defined by L(θ) = θ, and the

exponential loss function by L(θ) = e−θ, where in

our case θ corresponds to M(i, j) · f j(℘). Function

f j(℘) may return either the binary label or the confi-

dence value of applying the jth classifier to sample ℘.

4 Results

Before the experimental results are presented, we

comment the data, methods, and evaluation measure-

ments.

• Data: In this work, we analyzed a population

composed of 107 individuals from the Chagas data set

recorded at Simón Bolı́var University (Venezuela). For

each individual, a continuous 10-minute HRECG was

recorded using orthogonal XYZ lead configuration. All

the recordings were digitalized with a sampling fre-

quency of 1 kHz and amplitude resolution of 16 bits.

2Note that the presented Weighting Matrix MW can also be ap-

plied over any existing decoding strategy.

Out of the total 107 individuals of the study popula-

tion, 96 are chagasic patients with positive serology for

Trypanosoma Crucy, clinically classified into three dif-

ferent groups according on their degree of cardiac dam-

age (Groups I, II, and III). This grouping is based on the

clinical history, Machado-Guerreiro test, conventional

ECG of twelve derivations, Holter ECG of 24 hours,

and myocardiograph study for each patient. The other

11 individuals are healthy subjects with negative serol-

ogy taken as a control group (Group 0). All individuals

of the data set are described with a features vector of

16 features based on [7]. The four analyzed groups are

described in detail next:

· Group 0: 11 healthy subjects in the age 33.6±10.9

years, 9 men and 2 women. · Group I: 41 total pa-

tients with the Chagas’ disease in the age of 41.4±8.1

years, 21 men and 20 women, but without evidences

of cardiac damage in cardiographic study. · Group II:

39 total patients with the Chagas’ disease in the age

of 45.8±8.8 years, 19 men and 20 women, with nor-

mal cardiographic study and some evidences of weak or

moderate cardiac damage registered in the conventional

ECG or in the Holter ECG of 24 hours. · Group III:

16 total patients with the Chagas’ disease in the age of

53.6±9.3 years, 9 men and 7 women, with significant

evidences of cardiac damage detected in the conven-

tional ECG, premature ventricular contractions and/or

cases of ventricular tachycardiac registered in the Holter

ECG and reduced fraction of ejection estimated in the

cardiographic study.

• Methods: We compare our results with the perfor-

mances reported in [7] for the same data. Moreover, we

compare different ECOC designs: the one-versus-one

ECOC coding strategy [8] applied with the Hamming

[1], Euclidean [1], Probabilistic [6], and the presented

Loss-Weighted decoding strategies. We selected the

one-versus-one ECOC coding strategy because the in-

dividual classifiers are usually smaller in size than they

would be in the rest of ECOC approaches, and the prob-

lems to be learnt are usually easier, since the classes

have less overlap. Each ECOC configuration is evalu-

ated for three different base classifiers: Fisher Linear

Discriminant Analysis (FLDA) with a previous 99.9%

of Principal Components, Discrete Adaboost with 50

runs of Decision Stumps, and Linear Support Vector

Machines with the regularization parameter C set to 1.

• Evaluation measurements: To evaluate the

methodology we apply leave-one-patient-out classifica-

tion on the Chagas data set.

The results of categorization for the four groups of

patients reported by [7] are shown in fig. 4. Consider-

ing the number of patients from each group, the mean

classification accuracy of [7] is of 57%. The results us-



(a) Mean classification performance for each base classifier (b) Classification performance for each group using FLDA

(c) Classification performance for each group using Discrete Adaboost (d) Classification performance for each group using Linear SVM

Figure 3. Leave-one-patient-out classification using one-versus-one ECOC design (HD: Hamming decoding, ED: Euclidean decoding, LW: Loss-Weighted
decoding, PD: Probabilistic decoding) for the four groups with and without Chagas’ disease.

ing the different ECOC configurations for the same four

groups are shown in fig. 3. In fig. 3(a), the mean accu-

racy for each base classifier and decoding strategy is

shown. The individual performances of each group of

patients for each base classifier are shown in fig. 3(b),

fig. 3(c), and fig. 3(d), respectively. Observing the mean

results of fig. 3(a), one can see that any ECOC config-

uration outperforms the results reported by [7]. More-

over, even if we use FLDA, Discrete Adaboost, or Lin-

ear SVM in the one-vs-one ECOC design, the best per-

formance is always obtained with the proposed Loss-

Weighted decoding strategy. In particular, the one-

versus-one ECOC coding with Discrete Adaboost as the

base classifier and Loss-Weighted decoding attains the

best performance, with a classification accuracy upon

65% considering the four groups of patients.

Figure 4. Classification performance reported by [7] for the four
groups of patients.

5 Conclusions
In this paper, we characterized patients with the Cha-

gas’ disease based on the coronary damage produced

by the disease. We used the features extracted using

the ECG of high resolution from the heart cycle of 107

patients, and presented a decoding strategy of Error-

Correcting Output Codes lo learn a multi-class sys-

tem. The results show that the proposed scheme out-

performs previous works characterizing patients with

different coronary damage produced by the Chagas’

disease (upon 10% performance improvements), at the

same time that it achieves better results compared with

the state-of-the-art ECOC designs for different base

classifiers.
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Evaluation of QRS slopes for determination of myocar-

dial damage in chronic chagasic patients. Computers in
Cardiology, 2007.

[8] T.Hastie and R.Tibshirani. Classification by pairwise

grouping. NIPS, 26:451–471, 1998.


