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Abstract

Error Correcting Output Codes (ECOC) represent
a successful framework to deal with multi-class cate-
gorization problems based on combining binary clas-
sifiers. In this paper, we present a new formulation of
the ternary ECOC distance and the error-correcting ca-
pabilities in the ternary ECOC framework. Based on
the new measure, we stress on how to design coding
matrices preventing codification ambiguity and propose
a new Sparse Random coding matrix with ternary dis-
tance maximization. The results on the UCI Repository
and in a real speed traffic categorization problem show
that when the coding design satisfies the new ternary
measures, significant performance improvement is ob-
tained independently of the decoding strategy applied.

1 Introduction
Error Correcting Output Codes were born as a gen-

eral framework to combine binary problems to address

the multi-class problem [4]. The ECOC technique can

be broken down into two general stages: encoding and

decoding. At the coding step, given a set of N classes

to be learnt, n different bi-partitions (groups of classes)

are formed, and n binary problems (dichotomizers) are

trained. As a result, a codeword of length n is obtained

for each class, where each bit of the code corresponds

to the response of a given dichotomizer (coded by +1,

-1, according to its class set membership). Arranging

the codewords as rows of a matrix, we define a cod-
ing matrix M , where M ∈ {−1, 1}N×n in the binary

case. It was when Allwein et al. [1] introduced a third

symbol (the zero symbol) in the coding process that the

coding step received special attention. This symbol in-

creases the number of partitions of classes to be consid-

ered in a ternary ECOC framework by allowing some

classes to be ignored. Then, the ternary coding matrix

becomes M ∈ {−1, 0, 1}N×n. In this case, the sym-

bol zero means that a particular class is not considered

by a certain binary classifier. Thanks to this, strategies

such as the Sparse Random coding [1] have been for-

mulated in the ECOC framework. The decoding step

was originally based on error-correcting principles un-

der the assumption that the learning task can be mod-

eled as a communication problem, in which class in-

formation is transmitted over a channel [4]. During the

decoding process, applying the n binary classifiers, a

code is obtained for each data point in the test set. This

code is compared to the base codewords of each class

defined in the matrix M , and the data point is assigned

to the class with the closest codeword. The most fre-

quently applied decoding strategies are the Hamming

(HD) and the Euclidean (ED) decoding distances [6].

To deal with multi-class categorization problems in

the ternary ECOC framework, recent works redefined

decoding strategies that were formulated to deal with

just two symbols [1]. However, the influence of the

zero symbol to the error-correction capabilities and the

design of the coding strategies have not been taken into

account. In this paper, we formulate the ternary distance

in the ECOC framework. Based on the new measure

and the ternary error-correcting capabilities, we propose

a new sparse coding design. We evaluate the methodol-

ogy on a wide set of UCI data sets and in a real speed

traffic sign categorization problem. The results show

that when the new ternary distance is considered on

sparse designs, significant performance improvement is

obtained.

The paper is organized as follows: Section 2 presents

a new sparse coding design based on ternary distance

maximization, section 3 presents the experimental re-

sults, and finally, section 4 concludes the paper.

2 Random ECOC Designs
In this section, we overview both Dense and Sparse

Random ECOC designs [1]. We show the inconsistence

of the classical Sparse Random design and introduce a

new measure for sparse coding designs.

2.1 Dense Random Design
Given a binary ECOC matrix M ∈ {−1, 1}N×n,

where N is the number of classes and n the



codeword length, the minimum Hamming distance

dr among all pairs of rows is defined as dr =
min

{∑n
j=1(1 − sign(yj

i1
· yj

i2
))/2

}
, for i1, i2 ∈

{1, ..., N}, i1 �= i2, being yj
i1

the jth position of the

codeword for class ci1 . Suppose that two codewords

coded using {−1,+1} values have a Hamming distance

of three. Then, it means that even if we fail in a bit, we

still are able to obtain the correct classification. It sug-

gests that a distance dr in a binary ECOC matrix M
can correct [dr − 1]/2 codeword errors at the decoding

step [4]. Because of these binary error-correction ca-

pabilities, many ECOC designs, such as random ECOC

strategies, base the design of the ECOC coding matrix

on maximizing the value dr [1]. Let us now consider

the distance dc between all pairs of columns and their

opposites dc = minj1,j2 {min (A(j1, j2), B(j1, j2))},

being:

A(j1, j2) =
N∑

i=1

(1 − sign(yj1
i · yj2

i ))/2 (1)

B(j1, j2) =
N∑

i=1

(1 − sign(−1 · (yj1
i ) · yj2

i ))/2 (2)

where j1, j2 ∈ {1, ..., n}, j1 �= j2. High value of

dc contributes to consider different sub-partitions of

classes and to increase the variability of the knowledge

of the classifiers. Note that in eq.(2) the factor (-1) is

used to take into account the independence of the class

ordering, i.e. the base classifier learns the same problem

from the partition C1 versus C2 and from C2 versus C1.

The Dense Random ECOC strategy [1] tries to max-

imize simultaneously both previous dr and dc distances

to design matrices where the decoding strategies are

able to obtain a correct classification still when there

exist failures in some bits of the tested codewords. The

Dense random strategy generates a high number of ran-

dom coding matrices M of length n, where the val-

ues {+1,−1} have a certain probability to appear (usu-

ally P (1) = P (−1) = 0.5). Studies on the perfor-

mance of the dense random strategy suggests a length

of n = 10 log N [1]. In order to assure optimal perfor-

mance of ECOC classification, for the set of generated

dense random matrices, the optimal one should maxi-

mize the HD between rows dr and columns dc, taking

into account that each column of the matrix M must

contain both different symbols {−1, +1}.

2.2 Classical Sparse Random Design
One of the main limitations of the binary ECOC

framework is the need of considering all classes for

each binary classifier. Although a high distance dr and

dc can be computed, the selection of the most relevant

sub-partition of classes for different multi-classification

problems is not assured in the coding design. This fact

implies the need of designing large codes to increase

the discriminating ability of the combined set of binary

problems. Moreover, taking into account the whole set

of classes for each classifier significantly reduces the

number of possible sub-partitions of classes to consider.

To take into account a higher number of possible

classifiers, a third symbol was introduced in the ECOC

framework [1]. In this sense, the Sparse Random strat-

egy is designed in the same way than the Dense design,

but it includes the third symbol zero with another proba-

bility to appear, given by P (0) = 1 − P (−1) − P (1).
Studies suggest a sparse code length of 15 log N [1].

2.2.1 Sparse Design with Ternary Separability

Let us show an example to analyze sparse designs. A

zero symbol in a class code introduces one degree of
freedom, that means that both +1 and -1 are possible val-

ues during the test classification since the class has not

been taken into account to train the corresponding di-

chotomizer. Any codeword yi containing the zero sym-

bol defines an extended set of possible codewords that

could be obtained by examples of the class ci. In this

sense, a possible codeword y1 = {1, 0, 0} can be dis-

ambiguated into its extended set of codewords Y e
1 =

{{1, 1, 1}, {1, 1,−1}, {1,−1, 1}, {1,−1,−1}}, where

each of the four codewords of y1 is a possible represen-

tation1 of the same codeword y1. Now, a possible code-

word for a second class y2 = {1, 1, 1} corresponds to

one of the four possible representations of y1 (y2 ∈ Y e
1 ).

Let us consider another example of codewords of length

six. Suppose that we randomly define two codewords

y1 = {1, 1, 1, 0, 0, 0} and y2 = {0, 0, 0, 1, 1, 1} in a

Sparse Random design. If we use the classical dis-

tance dr between y1 and y2, we obtain a class sepa-

rability of three. However, based on the previous ex-

ample, if we disambiguate y1 and y2, we obtain that

Y e
1 ∩ Y e

2 = {1, 1, 1, 1, 1, 1}. Thus, an input test code-

word X = {1, 1, 1, 1, 1, 1} belongs to both previous

codewords, which implies a wrong Sparse design. Fi-

nally, observe the ternary coding matrix M of fig. 1.

Suppose that the matrix M of the figure receives an

input test data sample which codeword corresponds to

X = {−1, 1, 1, 1, 1}. This codeword matches with the

four positions different of zero from class c1 and the

three from class c3. In this case, X ∈ Y e
1 and X ∈ Y e

3 .

Thus, both classes can be a possible solution. However,

the HD between codewords y1 and y3 produces a value

of 1.5. Note that in the literature [1], a Sparse Random

matrix is generated by selecting the matrix from a pre-

vious set of matrices that maximizes the distances dr

and dc. The HD between columns containing the third

1Possible representation means that any test example of class c1
would give a codeword from Y e

1 .



symbol is still useful since the zero positions help to cre-

ate create a rich set of partitions to be learnt. However,

the measure dr for the row separability in terms of the

HD is inconsistent. Instead, to assure that the coding

matrix M splits all pairs of classes, each pair of code-

words of M should be split by at least one hypothesis:

Figure 1. Codification error between classes c1 and c3.

Definition 1.: The ternary separability condition

of a matrix M is defined as:

∀(yi1 , yi2)|i1, i2 ∈ {1, ..., N}, i1 �= i2,∃hj |
(ci1 ∈ Cj

1 , ci2 ∈ Cj
2) ∨ (ci2 ∈ Cj

1 , ci1 ∈ Cj
2)

where Cj
1 and Cj

2 are the two subsets of classes for

hypothesis hj , respectively. Then, we define the dis-

tance between two codewords in a ternary ECOC:

Definition 2.: The ternary distance between two

codewords (y1,y2) is defined as:

d(y1, y2) =
n∑

j=1

1
2
|yj

1||yj
2|(1 − y1y2) (3)

It defines the number of different bits between two

codewords without taking into account the positions

coded by zero. The weighting term |yj
1||yj

2| makes the

distance to ignore the zero positions which do not give

information about the classes separability. Then, the

pair of codewords (yi1 , yi2) that are split by the mini-

mum number of hypothesis in a ternary ECOC matrix

M defines the new distance dt:

Definition 3.: The distance dt of a coding matrix M
is defined as follows:

dt = argmini1,i2

n∑
j=1

1
2
|yj

i1
||yj

i2
|(1 − yi1yi2) (4)

where the term dt defines the distance between the pair

of codewords that are split by the minimum number

of binary problems in a ternary ECOC matrix. Then,

as the distance in the ternary case is reformulated, the

new measure of error-correction changes. Having a N -

multi-class classification problem in the binary ECOC

framework, a distance dr between rows of M can cor-

rect [dr − 1]/2 bits errors. In the ternary case, the max-

imum class separability is defined by the measure dt.

Thus, on a sparse ECOC matrix, [dt − 1]/2 bits errors

can be corrected2. Then, as the use of the distance dr

applied to the classical design of the Sparse Random

2We realize that the error-correcting capability also depends on the

way that the decoding strategies are applied.

matrix M produces inconsistences, we suggest to rede-

fine the coding stage of the Sparse Random designs. A

good codification of a ternary matrix should assure the

highest number of codeword bits splitting each pair of

rows; that is to maximize the value dt. Therefore, we

propose to use the new measure of ternary separability

for the Sparse Random design. In this case, the selected

random matrix should be that one which maximizes si-

multaneously dc and dt.

3 Results
First, we discuss the data, comparatives, and mea-

surements: • Data: We used the 16 multi-class data sets

from the UCI Repository [2] described in table 1. We

also use the video sequences obtained from a Mobile

Mapping System [3] to test a real traffic sign catego-

rization problem. • Comparatives: We use the classical

Sparse Random design [1] and the new Sparse Random

with ternary distance maximization. The sparse matri-

ces are selected from a set of 20000 randomly gener-

ated matrices with a length of codewords of N , where

P (0) = P (1) = P (−1) = 1/3. To decode, we

use nine state-of-the-art decoding strategies: HD [4],

ED [6], Inverse Hamming Decoding (IHD) [8], Atten-

uated Euclidean Decoding (AED) [5], Linear (LLB)

and Exponential (ELB) Loss-based [1], Probabilistic

Decoding (PD) [7], Laplacian Decoding (LAP ) [5],

and Pessimistic β-Density Distribution Decoding(β −
DEN ) [5]. • Measurements: We apply stratified ten-

fold cross-validation and test for confidence interval at

95% with a two-tailed t-test. The base classifiers are

Gentle Adaboost with 50 runs of decision stumps and

Linear Support Vector Machines (SV M ) with the reg-

ularization parameter C set to one.

3.1 UCI classification
In this experiment, from exactly the same set of gen-

erated matrices, we selected the classical Sparse Ran-

dom matrix by the one which maximizes dr and dc,

and the new Sparse Random matrix by selecting the one

which maximizes dt and dc. To show the performance

improvements by selecting the new Sparse Random ma-

trix, the absolute and relative improvements using the

obtained performances are shown in fig. 2 for Gentle

Adaboost and Linear SV M , respectively. The light

bars correspond to the absolute improvement, and the

dark lines to the relative one. Note that simply changing

the decision on the selection of the sparse matrix from

the same set of generated random matrices, the perfor-

mance significantly increases independently of the de-

coding strategy applied.

3.2 Real multi-class traffic sign categorization
For this experiment, we use the video sequences

obtained from a Mobile Mapping System [3] to test



Table 1. UCI repository data sets characteristics.
Problem Train Features Classes Problem Train Features Classes

Dermat. 366 34 6 OptDigits 5620 64 10

Iris 150 4 3 Shuttle 14500 9 7

Ecoli 336 8 8 Vehicle 846 18 4

Wine 178 13 3 Segment. 2310 19 7

Glass 214 9 7 Pendigits 10992 16 10

Thyroid 215 5 3 Letter 20000 16 26

Vowel 990 10 11 Satimage 6435 36 7

Balance 625 4 3 Yeast 1484 8 10

Figure 2. Absolute (light lines) and relative (dark lines) improve-
ments for the Sparse Random designs using ternary distance maximiza-
tion for Gentle Adaboost (left) and Linear SV M (right) on the UCI
experiments, respectively.

the methods in a real categorization problem. Figure

3 shows examples of video sequences and samples of

the speed data set used in the experiments. The data

set contains a total of 2500 samples divided in nine

classes. Each sample is composed by 1200 pixel-based

features after smoothing the image and applying his-

togram equalization. The results of this experiment are

shown in fig. 4 using the same criteria. The best perfor-

mance was obtained by the new Sparse design with β-

Density decoding, with an accuracy upon 80%, mean-

while the traditional Sparse design obtained results in-

ferior to 70%. Moreover, one can see in fig. 4 that the

ternary sparse maximization criterion also obtains per-

formance improvements for all decoding strategies.

Figure 3. Samples from the road video sequences and speed data
set samples.

4 Conclusions
We introduced a new formulation of the ternary dis-

tance that defines the classes separability in the ternary

ECOC framework. We showed that the rows separa-

bility in terms of the Hamming distance of the binary

ECOC framework can not be applied in the ternary case.

Based on the new measure, a new Sparse Random con-

struction is presented. The results on a wide set of

UCI data sets and in a real speed traffic sign categoriza-

tion problem show that when the coding designs satisfy

the new ternary measures, significant performance im-

provements are obtained independently of the decoding

strategy applied.

Figure 4. Absolute (light lines) and relative (dark lines) improve-
ment for the Sparse Random designs using ternary distance maximiza-
tion for Gentle Adaboost (left) and Linear SV M (right) on the traffic
sign categorization experiment, respectively.
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