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Abstract

In this paper, we present a novel methodology to detect and recognize objects in cluttered scenes by proposing boosted contextual
descriptors of landmarks in a framework of multi-class object recognition. To detect a sample of the object class, Boosted Landmarks
identify landmark candidates in the image and define a constellation of contextual descriptors able to capture the spatial relationship
among them. To classify the object, we consider the problem of multi-class classification with a battery of classifiers trained to share
their knowledge among classes. For this purpose, we extend the Error Correcting Output Codes technique proposing a methodology
based on embedding a forest of optimal tree structures. We validated our approach using public data-sets from the UCI and Caltech
databases. Furthermore, we show results of the technique applied to a real computer vision problem: detection and categorization of
traffic signs.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Usually, the problem of object recognition (e.g. person
identification) needs a previous detection of the object cat-
egory (e.g. face location). Object detection is concerned
with the reliable and accurate location of target objects in
an image. According to the way objects are described, three
main families of approaches can be considered (Murphy
et al., 2003): part-based, patch-based and region-based
methods. Part-based approaches consider that an object
is defined as a specific spatial arrangement of its parts frag-
ments. Following this idea, an efficient Bayessian network
for learning the spatial arrangement of parts is proposed
0167-8655/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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in (Schneiderman, 2004). A unsupervised statistical learn-
ing of constellation of parts and spatial relations is used
in (Fergus and Zisserman, 2003). Other authors (Hong
and Huang, 2004) propose to use Attribute Relational
Graphs for describing spatial relations. In (Amores et al.,
2005) a representation integrating Boosting with constella-
tions of contextual descriptors is defined. In this work, the
feature vector includes the bins that correspond to the dif-
ferent positions of the correlograms determining the object
properties. Another family of recognition techniques is the
patch-based methods, which classify each rectangular
image region of a fixed aspect ratio (shape) at multiple
sizes, as object (or parts of the target object) or back-
ground. In this topic, the authors of Agarwal et al.
(2004) use a dictionary of parts and a window algorithm
for learning active features of the object are proposed. A
similar technique is found in (Torralba et al., 2004), where
objects are described by the best features obtained using
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masks and normalized cross-correlation. Finally, region-
based algorithms segment regions of the image from the
background and describe them by a set of features that
provide texture and shape information. The selection of
feature points can be based on image contour points
(Amores et al., 2005) or other image features.

Once an object is located in an image, it should be recog-
nized using some kind of classification technique (support
vector machines, nearest neighbor, linear discriminant anal-
ysis, etc.). Recently, Torralba et al. (2004) proposed a novel
multi-class approach where instead of training independent
classifiers for each object class, they are jointly trained lead-
ing to a more robust feature extraction and better recogni-
tion generalization. Following the multi-class framework,
we choose to use the Error Correcting Output Codes
(ECOC) (Dietterich and Bakiri, 2005) technique. This tech-
nique shown to be a very successful multi-class framework
due to its ability to extend any binary classifier to the
multi-class classification domain. However, the ECOC
design is still an open issue. Recently, embedding of a tree
structure in the ECOC framework has been shown to obtain
high accuracy with a very small number of binary classifiers
(Pujol et al., 2006). Here, we take advantage of the represen-
tation of tree structures in the ECOC framework to intro-
duce a ‘‘Forest’’-ECOC. This novel method is based on
embedding of different optimal trees in the ECOC approach
to obtain the necessary number of classifiers assuring the
required classification performance.

Our goal in this paper is 2-fold: first, we introduce a
novel approach for detection of objects in cluttered scenes
based on Boosted Landmarks to identify landmark candi-
dates in the image. The features used are invariant to glo-
bal illumination, to slight image transformation and
partial occlusions. On the other hand, according to
the landmark candidates, a constellation of contextual
descriptors using correlograms is defined for each land-
mark to capture the spatial relationship between them.
Using boosting to learn the object descriptors ensures a
good theoretical and practical convergence to a low recog-
nition error rate in few iterations. Second, a new multi-
class learning technique is introduced based on embedding
a forest of optimal trees in an ECOC framework that
allows to share classifiers (tree nodes, base classifiers or
dichotomies) across classes in a very robust way. The
main advantage of the proposed classification technique
is the problem-dependent design, leading to a compact
codeword with high generalization performance power.
Different experiments are evaluated on synthetic and real
data, showing the high performance of the Boosted Land-
marks of Contextual Descriptors and Forest-ECOC
approaches.

The article is organized as follows: Section 2 provides a
description of the proposed object detection method. Sec-
tion 3 introduces the novel Forest-ECOC approach. Sec-
tion 4 shows the results of our method on different
databases and on a real problem of traffic sign detection
and recognition. Finally, Section 5 concludes the paper.
2. Object detection by Boosted Landmarks and contexts

In this section, we introduce a new object detection
method based on training the discriminant features of the
object description. Such description includes the informa-
tion of correlograms to learn at the same time the object
local representation and the spatial relationship among
its parts fragments.

2.1. Patch-based step: Boosting Landmarks

A common strategy to address the object detection
problem is to model the object as an arrangement of its
parts. The representative parts of the object (e.g. repre-
sented by a set of landmarks) must be highly discriminable;
incorporating the spatial relationship between different
parts (Belongie et al., 2000) can improve significantly the
robustness of the object detection.

In order to avoid considering all possible ROIs of an
image where an object can be located, first we define candi-
date locations of the object of interest by means of a set of
landmarks. The set of object landmarks is selected manu-
ally from a data set. Using a training set of positive samples
and a negative set of background image regions, we train
each landmark using a cascade of classifiers (Hastie and
Tibshirani, 1998). In particular, Gentle Adaboost with
Haar-like features estimated on the Integral Image (Baro
and Vitria, 2004) has been used in the cascade since it
has been shown to outperform most of the other boosting
variants in real applications (Friedman et al., 1998). Each
level of the cascade is specialized on a complex set of fea-
tures corresponding to a landmark. By adding cascade lev-
els, the number of false positives is reduced while
maintaining the detection of true positives, and the process
is repeated for each landmark of the object. This approach
has the advantage of reducing the number of landmark
candidates when compared to other well-known tech-
niques. For instance, Torralba et al. (2004) use a set of
masks and parts of an object and use normalized cross-cor-
relation to obtain and detect the set of landmarks. By using
the Haar-like features, compared to other methods like the
normalized cross-correlation (Torralba et al., 2004), we are
more permissive to detect objects in case of object transfor-
mations and to obtain a lower level of confusion with the
background regions. Summarizing, the steps to train a
landmark detector are

For each landmark:

• Define a positive set of image regions (centered in the
landmark).

• Define a set of non-containing landmark images (nega-
tive set).

• Train a cascade of classifiers for each landmark.

To illustrate the process observe the triangular traffic
sign image in Fig. 2a. To distinguish this object type, we
have manually identified six different object parts (land-
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marks) that can represent the object. The selected frag-
ments are shown in Fig. 1. In the detection step, the set
of selected landmarks is learnt using Gentle Adaboost with
the Haar-like features estimated in the integral image. In
particular, for the example in Fig. 2 we used 100 real trian-
gular signs to generate a set of 100 positive samples of
21 · 21 pixels for each landmark. For each fragment, its
100 positives samples and 500 random background samples
of the same size are trained in an attentional cascade of 10
levels, allowing a false alarm rate by stage of 30%. This
measure assures that each landmark classifier has learnt
correctly 100% of the positives samples, and the small num-
ber of detected false positives does not introduce ambiguity
at the detection step. The use of six landmark cascades
gives the results shown in Fig. 2b. We can observe that it
has a small number of detected labelled landmarks com-
pared to all possible locations and scales. Note that the pre-
sented scheme is quite robust to scale, translation, global
illumination and to small object affine transformations,
avoiding the problems of background confusion of masked
landmarks because of the use of the Haar-like features
(Baro and Vitria, 2004).

2.2. Parts-based step: Contextual descriptors

In order to refine the set of landmarks we use their con-
textual description. This step focuses on defining the spatial
relationship among the previously detected landmarks to
be learnt. Our approach proposes an alternative point of
view of the method of Amores et al. (2005) in which a set
of points of interest P ¼ fpig

N
i¼1 is considered, where N is

the number of points of interest coming from the edges
of the image. These points are used to build the constella-
tion of multi-scale correlograms. However, opposed to
the work presented in (Amores et al., 2005), our relevant
information is provided by landmarks instead of a set of
contour points. Since we are focusing on landmark candi-
Fig. 1. Selected landmark

Fig. 2. (a) Input image. (b) Detected landmarks. (c) Contextual descriptors. (d
Fig. 1b. (e) Detected sign.
dates, we can exploit the previous knowledge about
the relationship between the landmarks and the size of
the object of interest, reducing considerably the number
of false positives and avoiding the multi-scale step. Consid-
ering n landmarks and their sets of detected candidates
L1 ¼ fL1

1 . . . L1
i1
g; . . . ; Ln ¼ fLn

1 . . . Ln
in
g, where ij is the num-

ber of instances of landmark j found in the image, for each
combination of possible landmarks candidates
fL1

j1
; . . . ; Ln

jn
; j1 2 f1; . . . ; i1g; . . . ; jn 2 f1; . . . ; ingg, we gen-

erate n correlograms centered at the n chosen candidates.
Their combination forms a constellation. From this con-
stellation, we design a contextual descriptor vector
D = (D1, . . . ,Dn). The descriptor vector associated to each
landmark candidate is described by Di ¼ fB1

i ; . . . ;Bn
i g,

being Bj
i ¼ fðoj; hj; xjÞgn

i¼1, where oj is the label identifying
the part, hj are the properties describing the part, and xj

is its spatial description in the image defined by its shape
context (Belongie et al., 2002), as shown in Fig. 2c. Hence,
the spatial relationship vector is defined by the values of the
correlogram bins for each of the landmarks. For example,
using the six landmarks shown in Fig. 1, the spatial descrip-
tor vector for an object is 6 · N bins in length, where N is
the number of bins that forms each correlogram.

Given L correlograms of N bins, we create the object
descriptor rearranging the bins as a vector of size N · L.
Since the constructed descriptor is, usually, very highly
dimensional, we use Gentle Adaboost (as in the case of
learning the landmarks) as a feature selection algorithm
to reduce the dimensionality of the feature space and to
learn the representative features of the object. In this
way, the final classifier learns at the same time the features
that correspond to relevant landmarks and their respective
spatial relations. Note that we can also introduce extra
information, such as the image contour map as an addi-
tional information to the Boosted Landmarks.

The detected landmarks involved in the detection step
are shown in Fig. 2b. First, all candidates of each type of
s for triangular signs.

) Resulting bins at feature selection of the correlogram of the landmark of
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For more details, see (Dietterich and Kong, 1995).
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landmark (each positive detection of a given landmark) are
sorted by their likelihood using the margin of the output of
the Gentle Adaboost classifier. Afterwards, we select the
first combination of landmarks (one of each type) that
maximizes the sum of the likelihood. The individual vector
descriptors of each set of selected landmarks are merged. In
Fig. 2c, the correlogram applied to the landmark displayed
in Fig. 1b is shown. In Fig. 2d, the locations learnt for the
correlogram of the same landmark are shown. The gray
level of the bins of the correlogram corresponds to the
importance assigned by the boosting procedure – which is
intuitively related to the likelihood of the presence of the
other landmarks in the descriptor of a current landmark.
When a combined descriptor from a set of landmark can-
didates is classified as positive using the trained Gentle
Adaboost classifier, the object presence and the location
of its landmarks are defined. In Fig. 2e we can observe a
detected object, which contextual descriptor, defined by
the combination of detected landmarks, has been accepted
as a positive example using the classifier based on Boosted
Landmarks.

3. Object recognition by Forest-ECOC

Once located the object category (e.g. a traffic sign), we
proceed with the multi-class object recognition. The recog-
nition is handled using a multi-class framework based on
ECOC. The basis of this framework is to create a compact
codeword for each of Nc classes (generating Nc codewords,
respectively). Arranging the codewords as rows of a matrix,
a ‘‘coding matrix’’ M is defined where MNc�n ¼ fmg;
m 2 f�1; 0; 1g, where n is the length of the code represent-
ing each class. Each column of the coding matrix is deter-
mined by a binary classifier (dichotomy). From the point
of view of learning, the coding matrix M can be seen as
the process of embedding n binary learning problems corre-
sponding to the n columns of the matrix-coding each class
with +1, 0 and �1 according to their class membership. A
zero value indicates that a particular class is not considered
for a given binary classifier. Given a new data description, a
code is obtained for each data point in the test set as a result
of the outputs of the n dichotomies. This is compared with
the Nc codewords – corresponding to the matrix rows – and
it is assigned to the class with the ‘‘closest’’ codeword.

In order to design an ECOC system, we need a coding
and a decoding strategy. When the ECOC technique was
first developed (Dietterich and Bakiri, 1991) it was believed
that the ECOC code matrices should be designed to have
certain properties to enable them to generalize well. A good
error-correcting output code for a k-class problem should
satisfy that rows and columns, and their complementaries
are well-separated from the rest in terms of Hamming dis-
tance. Most of the discrete coding strategies up to now are
pre-designed problem-independent codewords satisfying
the requirements of row and column separability. How-
ever, our Forest-ECOC technique design is problem-depen-
dent generating as much dichotomies as necessary to
obtain the required performance independently of the kind
of classifiers used.

Concerning the decoding strategies, two of the most
standard techniques are the Euclidean distance djðx; yjÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � yj
iÞ

2
q

and the Hamming decoding distance

djðx; yjÞ ¼
Pn

i¼1jðxi � yj
iÞj=2, where dj is the distance to

the row j, n is the number of dichotomies, and x and yj

are the values of the test input vector codes and the jth base
class codeword, respectively. The benefit of ECOCs con-
sists in the fact that if the minimum Hamming distance
between any pair of codewords is d, then any [(d � 1)/2]
errors in the individual dichotomies classification can be
corrected, keeping as the nearest codeword the correct
codeword.

The analysis of the ECOC error evolution has demon-
strated that the ECOC corrects errors caused by the bias
and the variance of the learning algorithm (Dietterich
and Kong, 1995).1 The variance reduction is to be
expected, since ensemble techniques address this problem
successfully and ECOC is a form of voting procedure. On
the other hand, the bias reduction must be interpreted as
a property of the decoding step. It follows that if a point
x is misclassified by some of the learnt dichotomies, it
can still be classified correctly after being decoded due to
the correction ability of the ECOC algorithm. Non-local
interaction between training examples leads to different
bias errors. Initially, the experiments in (Dietterich and
Kong, 1995) show the bias and variance error reduction
for algorithms with global behavior (when the errors made
at the output bits are not correlated). After that, new anal-
ysis also shows that ECOC can improve performance of
local classifiers (e.g. the k-nearest neighbor, which yields
correlated predictions across the output bits) by extending
the original algorithm or selecting different features for
each bit (Ricci and Aha, 1998).

In (Pujol et al., 2006), a method for embedding a tree
structure in the ECOC framework is proposed. Beginning
from a root of a tree – that considers all the classes of
the problem – a binary tree is built as follows. Each node
corresponds to the best bi-partition of the set of classes
maximizing the quadratic mutual information between
the class samples and their labels. The process is recursively
applied until sets of single classes corresponding to the tree
leaves are obtained. Taking this work as a baseline, we
propose the embedding of multiple trees to form a For-
est-ECOC. However, opposed to the discriminant tree pro-
posed in (Pujol et al., 2006), we use the classification score
to create each node of the tree. The tree with the maximum
classification score at each node is called ‘‘optimal’’ tree. In
the case that we consider the first T best partitions of clas-



Table 1
Training algorithm for the Forest-ECOC

Given n classes: C1, . . . ,Cn and T the number of optimal tree structures to be embedded:
Step 1. Initialize the root node with the set N0 = {C1,. . .Cn}
Step 2. Generate the tree structures:

• For each node Nj consider the T partitions }kj ¼ ff}1
j ; }

2
jgjNj ¼ }1

j

S
}2

jg; k ¼ 1 . . . T that attain the minimal empirical error for the subproblem
defined by the partition }kj

}k ¼ argmin
~}

ðeðHð~};xÞ; lÞÞ ð1Þ

where e(H(Æ,x), l) stands for the empirical error between the hypothesis result H(Æ,x) on the data set x and the respective class labels l

• Partitions }kj, k = 2, . . . ,T define T � 1 roots of new trees of the forest
• Include each binary classifier hj for each internal node of the trees as a column in the Forest-ECOC matrix M, using the following rule for each

class Cr:

Mðr; jÞ ¼
0 if Cr 62 Nj

þ1 if Cr 2 }1
j

�1 if Cr 2 }2
j

8><
>:

ð2Þ
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ses – the T partitions that best splits the set of classes – it
allows us to create multiple tree structures. These trees
are embedded in the ECOC matrix forming the Forest-
ECOC. The pseudo-algorithm is shown in Table 1.

For a given multi-class problem, we have seen experi-
mentally that usually using 2 or 3 trees is enough to create
a rich set of dichotomizers to achieve accurate results. An
example of the forest for T = 2 and the Forest-ECOC
matrix for a toy problem are shown in Fig. 3. The two first
optimal tree structures (without repeating classifiers) are
shown in Fig. 3 for a four-class toy problem. The best 2
bi-partitions for the root are {{C1,C3},{C2,C4}} and
{{C1,C2,C3},{C4}} that correspond to classifiers h1 and
h4, respectively. For the next nodes of the first optimal tree,
we can only generate one bi-partition for each case, corre-
sponding to h2 and h3, respectively. For the node N 02 of the
second three, the T = 2 first best bi-partitions are
h5 = {{C1},{C2,C3}} and h7 = {{C1,C3}, {C2}}. Note that
the classes are shared by different partitions of sets and
they are combined in the Forest-ECOC matrix.

Given an input sample to test with the Forest-ECOC
matrix, we obtain the Forest-ECOC vector where each vec-
tor component is the result of solving each binary classifier
trained on each of the columns of the matrix. Note that this
Fig. 3. (a) T = 2 bi-partitions of trees for a toy problem, (b) the Forest-ECOC
the first tree, h4, h5 and h6 to N 01, N 02 and N 05 from the second tree, and h7 to N
procedure can be cast in the multi-task framework since it
combines knowledge from different binary problems and
shares their knowledge among the tasks.

The second step of the ECOC process is the decoding.
When we decode a new test data point, the ambiguity of
the zero values can produce an accumulation of errors in
the distance estimation – recall that symbol zero is used
for all classes not considered in a dichotomy. The main
drawback of the traditional decoding strategies is the ambi-
guity that appears due to the zero values (Pujol et al.,
2006). In order to address this issue, we base our classifica-

tion on the Euclidean distance dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � yj
iÞ

2
q

– that
shows to perform the Hamming results when applied to
ternary ECOC symbol-based (Pujol et al., 2006), where dj

is the distance to the row j, n is the number of dichotomies,
and x = (x1,x2, . . . ,xn) and y ¼ ðyj

1; x
j
2; . . . ; xj

nÞ are the
results of classification of a test example and base code-
word of class j, respectively.
4. Results

Given both parts of our approach – object detection and
multi-class categorization – in order to show the behavior
matrix, where h1, h2 and h3 correspond to classifiers of N1, N2 and N3 from
00
1 from the third tree.
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and to validate the proposed methodology, we designed
three types of experiments. First, we compare the Boosted
Landmarks of Contextual Descriptors with two state-of-
the-art detection approaches on a set of objects images
from the public Caltech repository databases. Second, we
validate the recognition approach based on the Forest-
ECOC technique compared to well-known state-of-the-
art multi-classification strategies on a set of public UCI
repository databases. Finally, we apply the whole detection
and classification system to a real multi-class traffic sign
detection and categorization problem.

4.1. Evaluating Boosted Landmarks in Contextual

Descriptors

In order to compare the accuracy of our detector, we
test the Boosted Landmarks of Contextual Descriptors
approach on the Caltech database (www.vision.cal-
tech.edu/html-files/archive.html) considering the following
seven object categories: car side, face, motorbike, car rear,
plane, leaf, and spotted cat (Fig. 4), training only three
Fig. 4. Some samples for the considered Caltech

Fig. 5. Fergus faces database. (a) Original image. (b) Conto
landmarks from the models of each database. In Figs. 5
and 6, the models, contour points, landmarks trained,
and a correlogram for the face and car side databases are
shown. To validate the method we used 20% of samples
to train landmarks (between 30 and 80 samples for each
category) and contextual descriptors by boosting, and the
rest to test. From the 20% images for training, we select
only three representative landmarks in a supervised way
to train each database (Fig. 4(down)). We use 40 weaks
of Gentle Adaboost with Decision Stumps to train the cas-
cades and the correlogram descriptors.

The results of this experiment are shown in Table 2. We
compare the results with those reported by Fergus and
Zisserman (2003) and the boosting context proposed by
Amores et al. (2005). We can see that our proposed tech-
nique obtains better results in most of the cases: car (side),
face, car (rear), and leaf, and comparable results in the
other three cases.

Boosting Context (Amores et al., 2005) shows very good
behavior too, but it is more susceptible to confusion and
appearance of false positives and negatives due to the use
categories and relevant landmarks trained.

ur points map. (c) Correlogram for a given landmark.



Fig. 6. Fergus car side database. (a) Original image. (b) Contour points map. (c) Correlogram of a landmark.

Table 2
Hit ratio results for the Fergus database

Category Fergus (Fergus
and Zisserman,
2003)

Boosting Context
(Amores et al.,
2005)

Boosted Landmarks
in Contextual
Descriptors

Car (side) 88.50% 90.00% 96.63%

Face 96.40% 89.50% 97.72%

Motorbike 92.50% 95.00% 93.85%
Car (rear) 90.30% 96.90% 99.35%

Plane 90.20% 94.50% 92.50%
Leaf – 96.30% 98.85%

Spotted
car

90.00% 86.50% 84.00%

Rank 2.50 1.86 1.57
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of the contour points. The authors in (Fergus and Zisser-
man, 2003) use a model that involves a considerable num-
ber of features, being susceptible to false positives
appearance. We also tested the false alarm rate using the
background set of images from the Caltech database. Test-
ing with 500 background images, our Boosted Landmarks
classifiers obtained a maximum on only one false positive
at each of the seven object categories.
Table 3
Classification results for UCI databases

UCI JB All pairs
FLDA

Forest
ECOC

Dense
ramdom
ECOC

Yeast 56.54 ± 1.42 52.32 ± 1.65 53.85 ± 1.64 47.32 ± 0.93
Dermathology 96.14 ± 0.92 96.40 ± 1.33 95.32 ± 1.31 96.57 ± 0.74
4.2. Evaluating Forest-ECOC

In order to validate the accuracy of the Forest-ECOC
we tested it on the UCI repository. The compared methods
are 40 runs of multi-class joint boosting with decision
stumps (Torralba et al., 2004),2 all pairs Fisher Linear Dis-
criminant Analysis (FLDA) with a previous 99.9% of the
Principal Components Analysis, and Dense Random
ECOC. Our method and Dense Random ECOC use Gentle
Adaboost with decision stumps as a classification technique
to estimate the Forest-ECOC dichotomies, with T = 2 to
generate and embed multiple trees. The state-of-the-art in
random strategies are the dense random and the sparse ran-
dom coding techniques. As the dense random strategy
tends to improve the classification rate of sparse case for
the same number of binary problems (Pujol et al., 2006),
we tested this strategy with the same number of dichoto-
2 Multi-class joint boosting is a relatively new multi-class approach
where instead of training independent classifiers for each object class, they
are jointly trained. This training is performed by finding common features
that can be shared across classes, leading to a robust feature extraction
and a good generalization of the recognition problem.
mies as our Forest-ECOC approach. The probability of
appearance of the {1,�1} is 0.5 in both cases, so we tested
10000 matrices to obtain the one that maximizes the row
and column Hamming distance (Allwein et al., 2002).

Looking at the results in Table 3 we can observe that
our method is competitive with the three commented
approaches, and it attains the first position in the classifica-
tion ranking for 8 UCI databases. The table shows the
mean accuracy using stratified 10-fold cross-validation,
and the confidence interval at 95% using a two tailed t-test.
The ranking has been obtained considering that all tech-
niques with results overlapping with the confidence interval
of the top performance technique are considered also as
first choice. Observe that the Forest-ECOC compares
favorably to the other approaches; in this sense, it turns
out a promising technique for the purposes of multi-class
recognition.

4.3. Evaluating the whole system in a real traffic sign

problem

In order to validate the Boosted Landmarks and the
Forest-ECOC detection and classification approaches in a
complex real problem, we tested it in a real traffic sign rec-
ognition problem.

We used a database of 300 traffic sign images obtained
by a mobile mapping process in non-controlled outdoor
conditions (Escalera and Radeva, 2004). The considered
traffic sign classes are shown in Fig. 7. Some samples of
our database illustrating the variation of appearance of
the signs are shown in Fig. 8. Observe the high variability
of the signs due to the non-controlled conditions of acqui-
sition. Triangular signs are detected using the Boosted
Ecoli 85.50 ± 1.06 84.62 ± 1.92 83.98 ± 1.13 81.15 ± 1.55
Segmentation 92.83 ± 1.01 86.81 ± 0.91 94.98 ± 0.66 73.89 ± 0.56
Satimage 80.02 ± 1.18 81.92 ± 1.92 73.91 ± 1.11 72.85 ± 0.83
Vowel 64.86 ± 1.74 74.28 ± 1.37 77.67 ± 1.81 41.32 ± 1.38
Pendigits 90.22 ± 0.69 93.94 ± 2.35 81.42 ± 1.93 78.41 ± 1.44
Rank 1.57 1.57 1.42 3.0



Fig. 7. Triangular traffic sign classes.

Table 4
Hit ratio results for the traffic sign database

Strategy Detection accuracy

Fergus (Fergus and Zisserman, 2003) 94.3 ± 0.70
Boosting Context (Amores et al., 2005) 97.9 ± 0.60
Boosted Landmarks in Contextual Descriptors 99.1 ± 0.40
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Landmarks technique. The landmarks are located at the
three corners of the signs. In order to learn each landmark
at size 21 · 21 pixels (Fig. 1) we use cascades of classifiers.
We used stratified 10-fold cross-validation to train each
cascade of 10 levels and 500 negatives samples, with an
expected error of 0.3. The correlograms used have a dia-
meter of 150 pixels, 20 radius regions and 13 geometric cir-
cles with an enlarging factor of 1.3. As a result, we obtain a
total of 780 features for each landmark correlogram includ-
ing the object attributes and spatial positions.

The whole process of detection and recognition is illus-
trated for some test images in Fig. 9. First column corre-
Fig. 8. Real triangular sign images

Fig. 9. Two examples of the whole procedure for real traffic sign images. (a
landmark combination. (c) Classification results (landmarks candidates are show
to the web version of this article).
sponds to the detected landmark candidates labeled by
color. The second column of the figure shows the combina-
tion of landmarks obtained by the highest likelihood of the
contextual descriptors classifiers. At the third column one
can see the final recognition results – the recovered object
from the traffic sign database.

Table 4 shows the results on detecting traffic signs from
the set of real samples by the three detectors. Our results
for the test set are upon 99%. Up to our opinion it is very
positive taking into account the high variability in appear-
ance of the test signs (Fig. 8). Note that our technique is
also robust to slight affine image transformations, illumina-
tion changes, and partial occlusion due to the descriptors
used. Next step consists in extracting the region of the sign
in order to classify it. Hence, we use the pixel-based fea-
tures from the Boosted Landmarks detected objects to cat-
egorize among sign classes.
in non-controlled conditions.

) Landmark candidates for test images. (b) Predominant likelihoods of
n in color) (for interpretation of colour in this figure, the reader is referred



Fig. 10. (a) Recognition rate and confidence interval for the traffic sign database. (b) Graphical results.
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For the recognition of the signs, we compared our pro-
posed technique with the following classical classifiers:
3-Nearest neighbors (KNN), Tangent Distance (TD) (Sim-
ard et al., 1998) with invariant tangent vector respect trans-
lation, rotation and scaling, 99.9% of PCA followed by
3-Nearest neighbors (PCA-KNN) (Dudoit et al., 2002),
all pairs FLDA with a previous 99.9% of PCA (Dudoit
et al., 2002), Support Vector Machine with projection ker-
nel Radial Basis Function and parameter gamma set to 1
(SVM) (Hsu et al., 2002), 40 runs of Gentle Adaboost with
decision stumps using rectangular features on the integral
image (BR) (Lienhart and Maydt, 2002; Kim et al.,
2000), 40 runs of multi-class Joint Boosting with decision
stumps (JB) (Murphy et al., 2003), 40 runs of Gentle Ada-
boost (Friedman et al., 1998) Sampling with FLDA and a
previous 99.9% of PCA (BS), and our Forest-ECOC
approach. Our technique is tested with T = 2 multiple trees
using 40 runs of Gentle Adaboost with decision stumps to
train the tree nodes classifiers to code and the Euclidean
distance to decode. All the tests use 10-fold cross-valida-
tion and a two-tailed t-test to estimate the confidence inter-
val. Fig. 10a shows the results obtained. We can observe
that our system obtains the best result when compared to
the different state-of-art classification techniques, and its
compact confidence interval assure us to obtain stable
results. Besides, the novel scheme processes a medium res-
olution image of 800 · 600 pixels in less than one second.
These classification results are also graphically shown at
Fig. 10b.

5. Conclusions

In this article, we introduced a novel, fast, and robust
strategy for object detection and classification based on
boosted contextual landmarks to detect and capture
objects in cluttered scenes learning simultaneously the most
relevant object features and their relations. Boosting is the
base classifier and acts as feature selector, parts detector
and recognizer. We show its accuracy on the Caltech data-
base and solve a real traffic sign problem, comparing to
well-known object recognition approaches. The procedure
is invariant to small variations in scale, translation, global
illumination, partial occlusions and to small affine transfor-
mations. Moreover, we presented a novel recognition tech-
nique called Forest-ECOC based on the embedding of
multiple optimal trees in an ECOC framework. Our
approach is not bounded by the number of classifiers,
instead it allows constructing an ensemble of tree structures
until the necessary performance is achieved. We validate
this method using the UCI repository datasets and real
traffic sign images obtaining very promising results, com-
peting with an extended set of ten state-of-the-art multi-
class recognition techniques. To improve the accuracy of
our context of Boosted Landmarks, we are focusing on
generating deformable contextual descriptors in order to
allow to find elastic objects with higher deformations and
to detect them from different points of view.
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