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Chronic total occlusions (CTO) are obstructions of native coronary arteries with the 
presence of Thrombolysis In Myocardial Infarction (TIMI) flow grade 0 within the 
occluded segment with an estimated occlusion duration of more than three months. 
Recanalization of a CTO still remains a challenge for invasive cardiologists. Recent 
studies try to implement new imaging techniques to improve the success rate of 
CTO recanalization. Multislice Computed Tomography (MSCT) has emerged 
recently as a valuable technique for the non-invasive visualization of both the 
lumen and the features of the arterial wall of coronary vessels [3]. The importance 
of registration of CT to X-Ray images has been reported as a valuable tool to 
provide complete and high quality 3D information in addition to the poor data 
provided by X-ray images [4]. Moreover, prior segmentation of the vessels is a 
typical step to apply before registration, since a lot of background noise is removed 
and the registration method can be simplified to work only with binary images -the 
segmentation masks obtained-. 
 
Angiographic vessel image registration is a challenging problem due to the lack of 
some fragments of vessel and the non-rigid deformations they suffer caused by the 
breathing and heart beating of the subject. In order to improve this registration, we 
propose a prior automatic segmentation of the vessels in the images using graph-
cuts [1]. In the graph cut framework, an energy function is designed such that the 
minimum value of this function corresponds to the optimal segmentation of the 
image. In order to minimize this energy function, a graph is constructed from the 
image in the following way: each pixel in the image is mapped to one node in the 
graph, and these nodes are interconnected following a criterion extracted from the 
neighborhood context. Furthermore, two additional nodes T and S called Terminal 
nodes are added to the graph, and connected to all the rest of nodes. 
 
The energy function is divided in two weighted terms. The first term is called the 
unary potential and encodes likelihood information for each pixel. This potential 
gives values to the edges connecting each pixel node in the graph to the terminal 
nodes. The second term or pairwise potential, encodes information about the 
relations between pixels assigning values to the edges interconnecting pixel nodes 
in the graph.  In our case, on one hand we join geodesic information of the image 
and a vesselness probability for the unary potential of our energy function. The 
vesselness probability is computed with the method in [2], which returns a vessel 
probability value for each pixel of the image. On the other hand, we use contrast 
information of the image -an improved version instead of just pixel differences as in 
the original graph-cuts algorithm- for the pairwise potential. 
 
In order to validate our segmentation method we defined two different datasets. 
The first one is composed by 20 images acquired with a single plane Philips 
INTEGRIS Allura Flat Detector, of RCAs. Three experts have blindly annotated the 



centerlines with different labels: “vess” for the arteries that potentially can present a 
clinical interest (with a caliber of, at least, 1mm); “don’t care” for all other arteries in 
the image, and “cat” for the catheter guide. Each manual delineation required more 
than 5 minutes per image. The second dataset is formed by 31 images from 27 
patients, acquired with a SIEMENS Artis zee, of 10 RCAs, 10 LADs, and 11 Cxs. In 
this case, two experts blindly segmented a total of 41 lesions (12 LADs, 13 Cxs 
and 16 RCAs) assisted by a semi-automatic method (QCA-CMS Version 6.0, 
MEVIS). The experts were asked to manually correct unsatisfactory 
segmentations, and the time required for the initialization and manual corrections 
resulted in 27.3 ± 15.6 seconds per image. 
 
Figure 1 shows an example of vessel segmentation, including the original image, 
the vesselness probability map and the final segmentation mask. 
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Figure 1. (a) Original angiography image, (b) Vesselness probability map, and (c) 

Final segmentation 
 
 
Moreover, we tested a multimodal registration of coronary trees with CTA data 
using our segmentation results in X-Ray images can improve the. As a basic 
registration method, we used the well known Free Form Deformation [5] (FFD), 
using Mutual Information. To quantify the improvement due to our segmentation 
method, we performed the registration using three different settings: (1) FFD 
applied on the images without any pre-processing (named [I2I-FFD]), (2) FFD 
applied on images using Vesselness as pre-processing (named [V2VFFD], and (3) 
FFD applied to the segmented images (named [S2S-FFD]). As we can see in 
Figure 2, in most of the test cases, our segmentation achieves the best registration 
performance. As a general trend, the direct I2I registration is totally ineffective, 
despite the FFD can handle different modalities due to the use of the Mutual 
Information; nonetheless the background in XRA images does not allow FFD to 
find an acceptable solution, even at large grid spacings. 
 



 
Figure 2. Results of non-rigid registration with different preprocessing methods 

applied on 6 different cases (The “DM” bars represent the average magnitude of 
the displacement between annotated landmark in XRA and CTA images). 
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