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Abstract

Error correcting output codes (ECOC) represent a clas-
sification technique that allows a successful extension of bi-
nary classifiers to address the multiclass problem. In this
paper, we propose a novel technique called ECOC-ONE to
improve an initial ECOC configuration by including new
dichotomies guided by the confusion matrix over exclu-
sive training subsets. In this way, the initial coding repre-
sented by an optimal decision tree is extended adding binary
classifiers forming a network. Since not all dichotomies
have the same relevance, a weighted methodology is in-
cluded. Moreover, to decode we introduce a new distance
to attenuate the error accumulated by zeros in the ECOC-
ONE matrix. We compare our strategy to other well-known
ECOC coding strategies on the UCI data set achieving very
promising results.

1. Introduction

Error correcting output codes were born as a general
framework to handle multiclass problems using binary clas-
sifiers [2]. It is well-known that ECOC, when applied to
multiclass learning problems, can improve the generaliza-
tion performance [6][1]. One of the reasons for this im-
provement is its property to decompose the original prob-
lem into a set of complementary two-class problems in the
ECOC matrix that allow sharing of classifiers across the
original classes. Another well-known technique for extend-
ing binary classifiers to the multiclass problem is the nested
dichotomies strategy in form of independent binary trees to
vote [3], where the generation of the tree depends on the
nature of the problem we are solving. However, there are
usually many candidate trees for a given problem and in the
standard approach the choice of a particular tree is based

on a priori domain knowledge that may not be available
in practice. Recently, the embedding of tree structures in
the ECOC framework has been proposed [5] and shown to
obtain high accuracy with a very small number of binary
classifiers. In this work, the discrete ECOC coding step
proposed is application-dependent but independent of the
classification strategy.

The goal of this article is twofold: firstly, we introduce a
new coding strategy. Its starting point comes from an em-
bedding of an optimal tree according to the classification
score. This tree is extended by selective greedy optimiza-
tion based on the confusion matrix of exclusive training sub-
sets. The candidate dichotomies to be included come from
previously generated optimal subsets of binary classifiers if
they help the ECOC convergence. Our procedure creates
an ECOC code that splits optimally the classes while re-
ducing the number of classifiers used, increasing the Ham-
ming distance between the difficult to discriminate classes.
Similar to the Adaboost technique, we propose a weighting
strategy that gives more attention to the most discriminant
dichotomies. Moreover, our procedure uses a new decod-
ing technique based on a weigthed Euclidean distance that
attenuates the error due to the zeros in the ECOC matrix.

The article layout is as follows: section 2 introduces the
general procedure of ECOC techniques used in the litera-
ture. Section 3 describes the new approach ECOC-ONE.
Section 4 shows the experiment results and section 5 con-
cludes the paper.

2. ECOC

For some classification problems, it is known that the
lowest error rate is not always reliably achieved by trying to
design a single classifier. An alternative approach is to em-
ploy a set of relatively simple sub-optimal classifiers and to



determine a combination strategy that pools together the re-
sults. The basis of the ECOC framework is to create a code-
word for each class of Nc classes (up to Nc codewords).
Arranging the codewords as rows of a matrix we define the
”coding matrix” M , where M ∈ {−1, 1}Nc×n, being n
the code length. From the point of view of learning, the
matrix M is represented as n binary learning problems (di-
chotomies from now on), each corresponding to a column
of the ECOC matrix. Each dichotomy defines a partition
of classes (coded by +1,-1 according to their class member-
ship). As a result of the outputs of the n binary classifiers, a
code is obtained for each data point in the test set. This code
is compared with the base codewords of each class defined
in the matrix M , and the data point is assigned to the class
with the ”closest” codeword. When we use a larger set,
M ∈ {−1, 0, 1}Nc×n, some entries in the matrix M can be
zero, indicating that a particular class is not considered for
a given dichotomy. To design an ECOC system, we need a
coding and a decoding strategy. When the ECOC technique
was first developed it was believed that the ECOC code ma-
trix should be designed to have certain properties to enable
it to generalize well. A good error-correcting output code
for a k-class problem should satisfy that rows and columns
are well-separated from the rest in terms of Hamming dis-
tance (avoiding complementaries).

Most of the discrete coding strategies up to now are pre-
designed problem-independent codewords satisfying the
former row and column properties. These strategies include
one-versus-all, random techniques [1], and one-versus-one
[4]. The last one mentioned has obtained high popular-
ity showing a better accuracy in comparison with the other
commented strategies. Recently, the embedding of tree
structures [5] allows us to generate discrete application-
dependent ECOC independent of the classification strategy.

Concerning the decoding strategies, one of the most stan-
dard technique is the Hamming decoding distance, dj =∑n

i=1 |(xi − yj
i )|/2, where dj is the distance to the row j,

n is the number of dichotomies, and x and y are the values
of the input vector codes and base class codeword, respec-
tively.

3. ECOC-ONE

Given a multiclass recognition problem, our procedure
starts with the generation of an optimal tree that is included
in the ECOC matrix, and allows to share the information
across classes. We increase this ECOC matrix, in an it-
erative way, adding dichotomies that correspond to differ-
ent spatial partitions of subsets of classes. These partitions
are found using a greedy optimization of the confusion ma-
trix so that the ECOC accuracy improves on both exclu-
sive training subsets. Our training set is partitioned in 2
training subsets: the training subset, that guides the conver-

gence process, and the validation subset, that leads the opti-
mization process in order to avoid classification overfitting.
Since not all problems require the same dichotomies, our
optimum node embedding approach (ECOC-ONE), gener-
ates an optimal ECOC-ONE matrix dependent of our do-
main, forming a network with a reduced number of di-
chotomies.

To explain our procedure, we divide the algorithm in
three steps: optimal tree generation, weights estimation,
and optimum node embedding. The resumed algorithm is
shown in fig. 1.

Figure 1. ECOC-ONE Coding algorithm.
3.1. Optimal tree generation

The first dichotomies included in our ECOC-ONE ma-
trix are the binary classifiers of the optimum tree generated
for our problem. Since the tree used in [5] uses the mutual
information to form the nodes, the computational cost can
be very high and it does not assure us the best partitions for
a given classifier. We use the classification score to create
the optimum discrimination tree associated to that classifier.

Each node of the tree is generated by an exhaustive
search of partitions of the classes associated to the parent
node. Once we have generated the optimal tree, we em-
bed each internal node of the tree in the following way:
Consider the set of classes associated to a node Ci =
{Ci1 ∪ Ci2|Ci1 ∩ Ci2 = ∅}, the column i of the ECOC-
ONE matrix M and row r corresponding to class cr is filled
as follows:

M(r, i) =





0 if cr /∈ Ci

+1 if cr ∈ Ci1

−1 if cr ∈ Ci2

(1)

3.2. Weights estimations

Similar to boosting algorithms, our approach uses a
weight to adjust the importance of each dichotomy in the
ensemble ECOC matrix. In particular, the weight associ-
ated to each column depends on the error when applying
the ECOC to the validation subset in the following way,

wi = 0.5 log(
1− ei

ei
) (2)



where wi is the weight for the ith dichotomy, and ei is
the error produced by this dichotomy at the affected classes
of the validation subset.

3.3. Optimum node embedding

Test reliability of the validation subset: To introduce
each network node, first, we test the current M reliability
with the validation subset. For this step, we find the re-
sulting codeword x ∈ {−1, 1}n for each class sample of
the validation subset, where n is the number of trained di-
chotomies, and we label it as follows:

x ∈ Cj if j = argminNc
dj (3)

where j is the class cj , and dj is the distance estima-
tion between x and the base codeword y for class cj . The
distance d is calculated for the validation subset sample and
each class codeword using the following weighed Euclidean
distance:

dj =

√√√√
n∑

i=1

|yi|(xi − yj
i )2wi (4)

We introduce the weight |yi| to attenuate the error that can
be accumulated by zeros in the ECOC-ONE matrix M , and
the weight wi to adjust the importance of each dichotomy.

Once we test the reliability on the validation subset, we
estimate its confusion matrix ℘.

The confusion matrix ℘: The confusion matrix ℘ is of
size N2

c , and it has at position (i, j) the number of instances
of class ci classified as class cj . We select the pair cicj that
maximizes ℘(i, j) + ℘(j, i)|i 6= j∀(i, j) ∈ [1, ..., Nc] from
the validation subset confusion matrix ℘.

Calculate ht: To optimize classes {ci, cj} we consider
all possible partitions (ciC1, cjC2) ⊆ C|C1∩C2∩ci∩cj =
∅ from the training subset. We select the dichotomy ht at it-
eration t that considers the partition that minimizes the error
of classes cicj at validation subset using the classification
score.

Update dichotomy: Node ht is included in M with
weight wt (2). This process is iterated while the error on
the validation subset is greater than ε or the number of iter-
ations t < T .

To classify a new input, a codeword x of length n is gen-
erated and labeled using (3).

Figure 2. First optimal node embedded.

Figure 3. ECOC-ONE code matrix M for four
dichotomies from the network of fig. 2.

Using the optimal nodes, the initial tree structure is up-
graded to a network that is embedded in the ECOC-ONE
matrix M . In fig. 2, the network for a toy problem formed
by an initial optimum tree and the first optimal node is
shown. Suppose that classes c2, c3 maximize the error in
the confusion matrix ℘ for the validation subset. We search
for the partition of classes using the training set so that the
error c2, c3 is minimized. Suppose now that the new node,
N4, considers that the best partition is c1, c3 versus c2. We
can observe in fig. 2 that N4 uses a class partition that is
present in the tree. In this sense, this new node connects
different branches of the tree creating the network. Note
that using the previously included dichotomies, the parti-
tion c1, c3 is solved by N2. In this way, the Hamming dis-
tance between c2 and c3 is increased by adding the node in
the network. However, the distance among the rest of the
classes is usually maintained or slightly modified.

As mentioned before, one of the desirable properties of
the ECOC matrix is to have maximum distance between
rows. In this sense, our procedure focuses on the rele-
vant difficult partitions, increasing the distance between the
classes. This fact increases the robustness of the method
since difficult classes are likely to have a greater number
of dichotomies focussed on them and, therefore, more error
correction.

4. Results

To test our method, we compare it to the most well-
known strategies used for ECOC coding: one-versus-
all ECOC (1-vs-all), one-versus-one ECOC (1-vs-1), and
Dense random ECOC. We have chosen dense random cod-
ing because it is more robust than the sparse technique when
the number of colums is small [1]. The decoding strategy
for all mentioned techniques is the standard Hamming de-
coding distance. We compare them with our ECOC-ONE
strategy for coding and our weigthed Euclidean distance for
decoding. We compute 10 iterations or dichotomies after
the inclusion of the first optimal tree. In order to have reli-
able results we have used the same number of dichotomies
for the generation of the Dense Random ECOC matrix
columns. The Dense Random matrix is selected from an ex-
haustive search of 10000 iterations. We have used discrimi-
nant analysis as weak learner for all techniques. All tests are
calculated using ten-fold cross-validation and a two-tailed



Problem one-vs-one one-vs-all Dense random ECOC-ONE
(a) 96.65±0.73 94.87±0.74 96.57±0.74 98.48±0.49
(b) 82.40±1.46 71.85±1.53 81.15±1.55 83.90±1.23
(c) 76.76±1.16 44.55±2.15 44.83±2.00 52.10±2.28
(d) 85.24±0.57 71.32±0.62 73.92±0.56 85.44±0.50
(e) 71.20±1.27 23.87±0.42 41.32±1.38 53.05±0.80
(f) 81.00±0.67 65.35±0.52 75.85±0.83 82.85±0.54
(g) 52.21±0.80 30.54±0.90 47.32±0.93 51.21±0.70
(h) 93.18±0.43 33.10±1.23 68.41±1.44 91.21±0.78

Table 1. ECOC Strategies hits for UCI data-
bases using FLDA as a base classifier.

t-test for a 95% confidence interval. Finally, to compare,
we have used a set of known databases from UCI repos-
itory. The results are shown in table 1. The description
of each database is shown in table 2. We can see that our
method is very competitive when compared to other stan-
dard ECOC coding techniques. And it attains a compara-
ble accuracy to the 1-vs-1 ECOC coding strategy, which is
known to usually obtain the best results. In some cases,
1-vs-1 improves our results for a certain database. For ex-
ample, at Pendigits database, 1-vs-1 obtains a two percent
of improvement over our method. However, one must note
that 1-vs-1 requires 45 dichotomies in that database, but we
only use 15. These results are easily explained by the fact
that our method chooses at each step the most discriminable
dichotomy. This procedure allows us to classify classes de-
pending of their difficulty, reducing the number of binary
classifiers to be selected. This is demonstrated observing
the results of Dense Random ECOC and our procedure.
Both cases have the same number of dichotomies, and al-
though Random ECOC has a higher distance between rows,
our procedure always obtains a higher hit ratio because the
dichotomies are selected in an optimal way depending on
the domain of the problem.

To accelerate our coding method, we store all the clas-
sifiers trained in previous iterations. In fig. 4 we can see
the error evolution for our procedure for an iteration of Der-
mathology UCI database.

Figure 4. Error evolution for an iteration of
Dermathology database using ECOC-ONE.

Problem Database #Train #Test #Attributes #Classes
(a) Dermathology 366 - 34 6
(b) Ecoli 336 - 8 8
(c) Glass 214 - 9 7
(d) Segmentation 2310 - 19 7
(e) Vowel 990 - 10 11
(f) Satimage 4435 2000 36 6
(g) Yeast 1484 - 8 10
(h) Pendigits 7494 3498 16 10

Table 2. UCI databases characteristics.
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6. Conclusions

In most of the ECOC coding strategies, the ECOC matrix
is pre-designed, using the same dichotomies in any type of
problem. We introduced a new coding and decoding strat-
egy called ECOC-ONE and Weighted Euclidean Distance,
respectively. The idea is based on the embedding of a graph
in the ECOC matrix formed by an initial optimal tree and
upgraded with a set of optimal dichotomies (nodes) to form
a network. The procedure shares classifiers among classes
in the ECOC-ONE matrix, and selects the best partitions
weighed by their relevance. In this way, it reduces the over-
all error for a given problem. We show that this technique
improves the Random ECOCS results. We compete with
the 1-vs-1 ECOC strategy using a smaller number of di-
chotomies. As a result, a compact multiclass recognition
technique with improved accuracy is presented with very
promising results.
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