

Master in Artificial Intelligence (UPC-URV-UB)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Tri-modal Human Body Segmentation Master of Science Thesis

Cristina Palmero Cantariño

Advisor: Sergio Escalera Guerrero

February 6, 2014

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Introduction

- 2 Tri-modal dataset
- O Proposed baseline
- 4 Evaluation
- **5** Conclusions and future work

Introduction	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Outline				

1 Introduction

- Human body segmentation
- Motivation
- Proposal

Tri-modal dataset

3 Proposed baseline

4 Evaluation

5 Conclusions and future work

Introduction ●○○	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
	1 1	1		

Human body segmentation

Segmentation: labeling problem.

Main challenges:

- Different points of view.
- Illumination changes.
- Complex and cluttered backgrounds.
- Presence of occlusions.
- Human body articulated nature.
- Diversity of poses.
- Variable appearance.

Segmentation using Grabcut

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. "Grabcut: Interactive foreground extraction using iterated graph cuts". In: *ACM Transactions on Graphics (TOG)*. Vol. 23. 3. ACM. 2004, pp. 309=314. = +

Introduction ○●○	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Mativat	ion			

Applications:

- Security.
- Leisure.
- Health.

Imaging modalities:

- Mostly RGB cues from color cameras.
- Recently, RGB-Depth cues (Microsoft®KinectTM).
- Little attention to thermal.

Thermal Imaging:

• Price of thermal sensors is lowering substantially every year.

- Less intrinsic problems than RGB cues.
- Lack of benchmarks comparing RGB-Depth-Thermal modalities.

Introduction	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Motiva	tion			

Applications:

- Security.
- Leisure.
- Health.

Imaging modalities:

- Mostly RGB cues from color cameras.
- Recently, RGB-Depth cues (Microsoft®KinectTM).
- Little attention to thermal.

Thermal Imaging:

• Price of thermal sensors is lowering substantially every year.

- Less intrinsic problems than RGB cues.
- Lack of benchmarks comparing RGB-Depth-Thermal modalities.

Introduction	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Motiva	tion			

Applications:

- Security.
- Leisure.
- Health.

Imaging modalities:

- Mostly RGB cues from color cameras.
- Recently, RGB-Depth cues (Microsoft®KinectTM).
- Little attention to thermal.

Thermal Imaging:

• Price of thermal sensors is lowering substantially every year.

- Less intrinsic problems than RGB cues.
- Lack of benchmarks comparing RGB-Depth-Thermal modalities.

Introduction ○○●	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Proposa	al			

Tri-modal dataset

- Novel tri-modal dataset of continuous image sequences.
- RGB-Depth-Thermal modalities.
- People interacting with everyday objects.

Baseline methodology

- Automatic segmentation of people in video sequences in indoor scenarios with a fixed camera.
- Usage of state-of-the-art descriptors for feature extraction among modalities.
- GMM modeling of subject/object regions.
- Multi-modal fusion using several approaches.

Introduction ○○●	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Proposa	al			

Tri-modal dataset

- Novel tri-modal dataset of continuous image sequences.
- RGB-Depth-Thermal modalities.
- People interacting with everyday objects.

Baseline methodology

- Automatic segmentation of people in video sequences in indoor scenarios with a fixed camera.
- Usage of state-of-the-art descriptors for feature extraction among modalities.
- GMM modeling of subject/object regions.
- Multi-modal fusion using several approaches.

Introduction 000	Tri-modal dataset	Proposed baseline	Evaluation 00000	Conclusions and future work
Outline				

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1 Introduction

- 2 Tri-modal dataset
 - Dataset
 - Scenes
- Proposed baseline
- 4 Evaluation
- **5** Conclusions and future work

<u>т.</u> :	al data an			
Introduction 000	Tri-modal dataset ●○○○	Proposed baseline	Evaluation 00000	Conclusions and future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Tri-modal dataset

- Novel registered multi-modal dataset
- RGB Depth Thermal modalities
- 3 different scenarios
- 3 continuous image sequences
- More than 2,000 frames per sequence
- RGB Depth pixel-level registration
- Thermal near pixel-level registration
- Manually annotated ground truth
- Registration algorithm provided

Introduction Tri-modal dataset Proposed baseline conconcence Evaluation conclusions and future work conclusions an

Introduction Tri-modal dataset Proposed baseline conconcence Evaluation conclusions and future work conclusions an

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000	000000000000000000000000000000000000000	00000	00

Outline

2 Tri-modal dataset

- O Proposed baseline
 - Extraction of masks
 - Extraction of regions of interest
 - Feature extraction
 - Classifiers overview
 - Cell classification
 - Individual Prediction
 - Multi-modal fusion

4 Evaluation

Conclusions and future work

Introduction 000 Tri-modal dataset

Proposed baseline

Evaluation 00000 Conclusions and future work

Extraction of masks

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Extracti Background	on of mask Subtraction	(S		

- Limit the search space.
- Non-adaptive background modeling using Mixture of Gaussians.
- Select modality:

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Extracti Background	on of mask Subtraction	(S		

- Limit the search space.
- Non-adaptive background modeling using Mixture of Gaussians.
- Select modality: depth.

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Extract	ion of masl	٢S		

Depth/RGB Foreground Masks

Thermal Foreground Masks

Introduction 000 Tri-modal dataset 0000 Proposed baseline

Evaluation 00000 Conclusions and future work

Extraction of regions of interest

Introduction Tri-modal dataset Ococo Desceline Conclusions and future work Ococo Descence Desceline Conclusions and future work Ococo Descence Desc

People overlap:

- Bimodal disparity distribution.
- Otsu's threshold to split regions.

All modalities must have the same number of bounding boxes, corresponding to the same regions of interest.

Tasks:

- Find correspondence between rgb/depth and thermal regions of interest.
- Compute the corresponding bounding boxes in thermal modality generated after applying Otsu's threshold in depth modality.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1 Find correspondence between rgb/depth and thermal regions of interest.
 - Iterative search among depth and thermal modalities.
 - Takes into account deviation among them.
 - Best match: bounding box coordinates, amount of overlap and area similarity.
 - Correspondence function:

$$b_{iq}^{\rm thermal} = \beta(b_{ij}^{\rm depth}) \tag{1}$$

where b_{ij} is the *j*-th bounding box in frame *i*.

- 2 Compute the corresponding bounding boxes in thermal modality generated after applying Otsu's threshold in depth modality.
 - Assuming bounding boxes of both rgb/depth and thermal modalities are proportional, find the equivalence ratio to create the split bounding boxes in thermal.
 - Ratio k:

$$k_{\mathsf{h}} = \frac{h_{b_{ij}^{\text{depth}}}}{h_{b_{iq}^{\text{thermal}}}}, k_{\mathsf{w}} = \frac{w_{b_{ij}^{\text{depth}}}}{w_{b_{iq}^{\text{thermal}}}}$$
(2)

where h and w are the size of a given bounding box.

Result:

- Correspondence of regions of interest among modalities.
- Grid partitioning 2×2 cells per bounding box.

Depth

Comparing overlap between:

- Bounding boxes extracted from Ground Truth Masks
- Bounding boxes extracted from Background Subtraction Masks

Label:

$$t_r^d = \begin{cases} 0 \quad (\text{Object}) & \text{if overlap} \le 0.1 \\ -1 \quad (\text{Unknown}) & \text{if } 0.1 < \text{overlap} < 0.6 \\ 1 \quad (\text{Subject}) & \text{if overlap} \ge 0.6 \end{cases}$$

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work

Feature extraction

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000	○○○○○○○○○○○○○○○○○○○○○○○	00000	
Feature	extraction:	Color		

- Unsigned gradients (0 180 degrees).
- 9-bin histogram.
- Contribution to the histogram given by the vector magnitude.
- No block overlap applied.
- Final vector of 288 values per cell.

HOG

Navneet Dalal and Bill Triggs. "Histograms of oriented gradients for human detection". In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE 2005, pp. 886–893. Introduction Tri-modal dataset Proposed baseline Evaluation October Conclusions and future work October Proposed baseline Conclusions and future work October Conclusions and

Feature extraction: Color Histogram of Oriented Optical Flow (HOOF)

- Dense optical flow computation.
- 8-bin histogram.
- Signed gradients (0 360 degrees).
- Contribution to the histogram given by the vector magnitude.
- Final vector of 8 values per cell.

Optical flow

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
_		6 1		

Feature extraction: Color Score Maps (SM)

- Score map based on Gabor filters.
- C = 6 component filters per body part.
- M = 26 body parts.
- L scales per image.

Score maps from Ramanan et al

$$score(p_l) = \frac{1}{C} \frac{1}{M} \sum_{c \in C} \sum_{m \in M} score(p_l)_c^m$$
(3)
$$score(p) = \frac{1}{L} \sum_{l \in L} score(p_l)'$$
(4)

Introduction Tri-modal dataset Proposed baseline Evaluation Conclusions and future work of Sector Proposed baseline Sector Secto

- Depth dense maps to 3D point cloud structures.
- Surface normals computations.
- Angle distribution quantized in 8-bin histogram.

Depth normals

 Introduction
 Tri-modal dataset
 Proposed baseline
 Evaluation
 Conclusions and future work

 Sector
 Feature extraction:
 Thermal

 Histogram of Thermal Intensities and Oriented Gradients (HIOG)

- Concatenation of 2 histograms:
 - Thermal intensitities [0, 255].
 - Orientation of thermal gradients (similar to HOG).
- 8 bins per histogram.

Thermal intensities and oriented gradients

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
<u> </u>				

lassifiers overview

Statistical Learning:

- Gaussian Mixture Models (GMM)
- Subject and object probabilities
- Individual prediction
- Ø Multi-modal fusion approaches:
 - Naive approach
 - Discriminative classifiers
 - Stacked learning fashion

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Cell clas Gaussian M	sification			

- Unsupervised learning method for fitting multiple Gaussians to a set of multi-dimensional data points to obtain a likelihood \mathcal{L} .
- Trained using Expectation Maximization algorithm.

Introduction 000 Tri-modal dataset 0000 Proposed baseline

Evaluation 00000 Conclusions and future work

Individual Prediction

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	00000	
Individu	al Predictio	on		

Predict if a region corresponds to subject or object, for each cell-based descriptor individually. Grid cell voting v:

$$v = \sum_{i,j} \mathbb{1}\{\mathcal{L}_{ij}^{d,\mathrm{sub}} > \mathcal{L}_{ij}^{d,\mathrm{obj}}\}$$
(6)

Based on a threshold v_{thr} that defines the minimum number of positive votes needed to assign the subject label to the given region:

$$v_{thr} = \frac{v_{\text{grid}} h_{\text{grid}}}{2} \tag{7}$$

Final decision \hat{t}_r^d :

$$\hat{t}_{r}^{d} = \mathbb{1}\left\{v > v_{thr}\right\} \bigvee \left\{\mathbb{1}\left\{v = v_{thr}\right\} \cdot \mathbb{1}\left\{\sum_{i,j} \left(\hat{\mathcal{L}}_{ij}^{d, \text{sub}} - \hat{\mathcal{L}}_{ij}^{d, \text{obj}}\right) > 0\right\}\right\}$$

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Individu Pixel-based	al Predictio	on		

Prediction of a given region defined by:

- α : minimum score of a pixel to be considered as a person.
- η: minimum percentage of pixels inside a region considered as person that are needed to label the whole region as a person.

Final decision \hat{t}_r^d :

$$\hat{t}_r^d = \mathbb{1}\left\{\frac{1}{N_r}\sum_{i=1}^{N_r}\mathbb{1}\{\operatorname{score}(p_i) > \alpha\} > \eta\right\}$$
(9)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where N_r denotes the number of pixels of a region.

Introduction 000 Tri-modal dataset 0000 Proposed baseline

Evaluation 00000 Conclusions and future work

Multi-modal fusion

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000	○○○○○○○○○○○○○○○○○○○○○○○○	00000	
Multi-m Naive appro	nodal fusior	1		

- **9** Voting among all descriptors using individual predictions \hat{t}_r^d .
- If there is a strong agreement between descriptions, those descriptions that differ are not taking into account in the third step.
- Output Cell level fusion:

$$\bar{\mathcal{L}}_{ij}^{d,\mathrm{sub}} = \sum_{d \in \mathcal{D}'} \hat{\mathcal{L}}_{ij}^{d,\mathrm{sub}}, \ \bar{\mathcal{L}}_{ij}^{d,\mathrm{obj}} = \sum_{d \in \mathcal{D}'} \hat{\mathcal{L}}_{ij}^{d,\mathrm{obj}}$$
(10)

Predict t̂_r following the same procedure as in individual prediction.

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Multi-m	odal fusion			

 Discriminative supervised binary classifier that learns a model which represents the instances as points in space, mapped in such a way that instances of different classes are separated by a hyperplane in a high dimensional space.

- Approaches:
 - Simple: $\{\hat{\mathcal{L}}_{ij}^{d,\mathrm{sub}}, \hat{\mathcal{L}}_{ij}^{d,\mathrm{obj}}\}$ • Stacked: $\{\hat{\mathcal{L}}_{ij}^{d,\mathrm{sub}}, \hat{\mathcal{L}}_{ii}^{d,\mathrm{obj}}, \hat{t}_r^d\}$

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation	Conclusions and future work
Outline				

Introduction

- 2 Tri-modal dataset
- 3 Proposed baseline

4 Evaluation

• Experimental methodology and validation measures

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Experimental results
- 5 Conclusions and future work

Experimental methodology and validation measures

- 10-fold cross validation.
- Grid search to optimize all the parameters.
- Training without unknown labels.
- GMM with 3 components per Gaussian.
- SVM approaches for multi-modal fusion (simple and stacked):
 - Linear
 - RBF
- Don't care region.
- Segmentation accuracy measure: Jaccard Index

$$overlap(A, B) = \frac{|A \cap B|}{|A \cup B|}$$
(11)

Introduction 000 Tri-modal dataset

Evaluation ○●000 Conclusions and future work

Quantitative results

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Introduction 000 ri-modal dataset

Proposed baseline

Evaluation ○0●00 Conclusions and future work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Quantitative results

(c) Fusion using Simple linear SVM

(e) Fusion using Stacked Linear SVM

(d) Fusion using Simple RBF SVM

(f) Fusion using Stacked RBF SVM

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation ○○○●○	Conclusions and future work

Quantitative results

Table: Overlap results of the individual predictions for each description

DCR	HOG	SM	HOOF	HIOG	HON
0	62.10 %	63.12 %	56.97 %	46.35 %	56.76 %
1	64.71 %	65.85 %	59.41 %	47.99 %	59.09 %
3	67.59 %	69.02 %	62.13 %	50.85 %	61.70 %
5	68.65 %	70.40 %	63.20 %	53.02 %	62.77 %
7	68.65 %	70.72 %	63.28 %	54.45 %	62.94 %

Table: Overlap results of fusion using Stacked Linear SVM for each modality

DCR Thermal		Color/Depth	
0	49.64 %	64.65 %	
1	51.33 %	67.39 %	
3	54.29 %	70.43 %	
5	56.56 %	71.58 %	
7	58.11 %	71.63 %	

Introduction Tri-modal dataset Proposed baseline Conclusions and future work ocoo

Qualitative results

Comparison between masks generated after background subtraction and masks generated using Stacked Linear SVM.

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work
Outline				

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction

- 2 Tri-modal dataset
- 3 Proposed baseline

4 Evaluation

- 5 Conclusions and future work
 - Conclusions
 - Future work

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000		00000	●○
Conclus	ions			

- A solution for human body segmentation in multi-modal data has been proposed.
- A novel tri-modal dataset has been presented, containing RGB
 Depth Thermal modalities.
- Results show variable performance for the different modalities when segmenting people in multi-modal data, and improved segmentation accuracy of the multi-modal GMM-SVM stacked learning method.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Tri-modal dataset	Proposed baseline	Evaluation	Conclusions and future work
000	0000		00000	○●
Future \	work			

- Impact factor journal in progress in collaboration with Aalborg University and HuPBA group.
- Silhouette masks refinement using Grabcuts.
- If pixel-level registration available among all modalities:
 - Combination of different modalities in background subtraction.
 - Pixel-level feature extraction.
 - Pixel-level description.
- Extensive validation in real surveillance scenarios as a first real case study, including gesture recognition methodologies (planning just started with Aalborg University).

Introduction 000	Tri-modal dataset 0000	Proposed baseline	Evaluation 00000	Conclusions and future work

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ