
Problem-Dependent Designs for Error Correcting Output Codes: ECOC-ONE

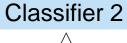
Sergio Escalera

Oriol Pujol

Petia Radeva

INDEX

- 1. Error Correcting Output Codes
- 2. Suboptimal node embedding in ECOC
- 3. Experiments and Results
- 4. Conclusions

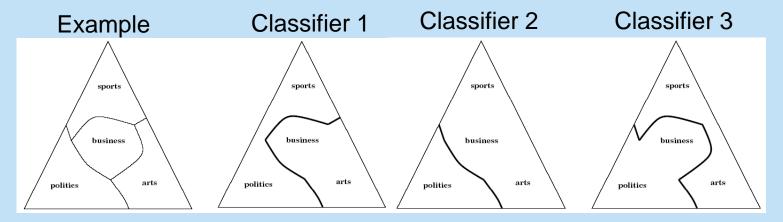


ECOC ECOC-ONE Results Conclusions

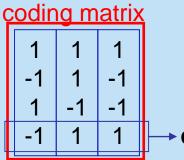
sports business arts



Classifier 3


C1= sports C2=business C3=politics C4=arts 1 -1 1 -1

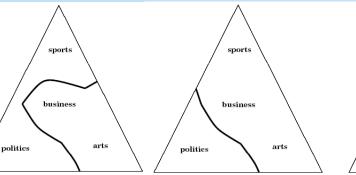
1 -1 -1 1



ECOC ECOC-ONE Results Conclusions

C1= sports C2=business C3=politics C4=arts

code for class C4



ECOC ECOC-ONE Results **Conclusions**

Example sports business arts Classifier 1

Classifier 2

Classifier 3

sports business arts politics

C1= sports C2=business

C3=politics C4=arts

coding matrix

1	1	1
-1	1	-1
1	-1	-1
-1	1	1

Decoding: Given a test sample, we obtain a code according to the output of each classifier and find the "closest" code.

ECOC

ECOC-ONE

Results

Conclusions

Standard strategies

Coding 1 versus All

One-vs-one

One-vs-all

Dense Random

Sparse Random

Code length: Nc

Random Dense ECOC

Code length: 10 log Nc

Three symbol codes

1 versus 1: "All pairs" Code length: Nc (Nc-1)/2

Random Sparse ECOC

Code length: 15 log Nc

Decoding

Hamming decoding

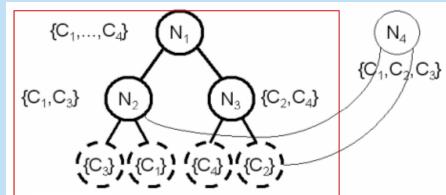
Euclidean decoding

Loss-based decoding

ECOC

ECOC-ONE

Results


Conclusions

What we propose...

- Problem-dependent extension of any initial coding
 - Focus on difficult classes

 (increase the distance between difficult to classify classes while preserving the rest)

 A validation subset guides the process to increase generalization and prevent or delay overfitting.

Optimal tree and first optimal node embedded.

	N_1	N_2	N_3	N_4
C_1	1	-1	0	1
C ₂	-1	0	-1	-1
C ₃	1	1	0	1
C_4	-1	0	1	0

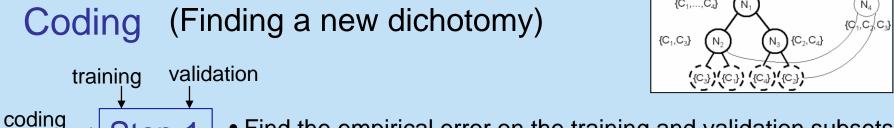
ECOC-ONE code matrix M for four dichotomies from the network.

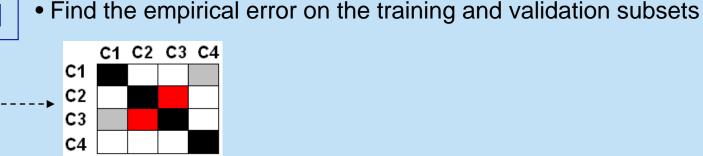
ECOC

matrix

Step 1

Step 2


dichotomy


ECOC-ONE

Results

Conclusions

Coding

 Select the pair of classes with highest error analyzing the joint confusion matrix (train and validation).

 Complete the sets of classes minimizing the joint error (Sequential Forward Floating Search)

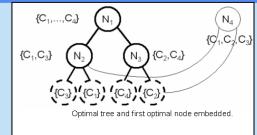
ECOC


ECOC-ONE

Results

Conclusions

Coding


dichotomy {C2} vs {C3, C1}

Weighting

• Embed the new dichotomy in the matrix

$$M(r,i) = \begin{cases} 0 & if \quad c_r \notin C_i \\ +1 & if \quad c_r \in C_{i1} \\ -1 & if \quad c_r \in C_{i2} \end{cases}$$

	N_1	N_2	N_3	N_4
C_1	1	-1	0	1
C_2	-1	0	-1	-1
C_3	1	1	0	1
C ₄	-1	0	1	0

Update the dichotomy importance (weight)

$$w_i = 0.5 \log \left(\frac{1 - e_i}{e_i} \right)$$

1.0 weights
original code extended code

Decoding (weighted attenuated Euclidean distance) $d = \sqrt{\sum_{i=1}^{n} |y_i| (x_i - y_i)^2 w_i}$

ECOC ECOC-ONE Results Conclusions

UCI repository database

Use a Discriminant ECOC codification using classification score as split criterion instead of mutual information.

Problem	one-vs-one E	COC	one-vs-all ECOC		Dense random ECOC		ECOC-ONE	
	Hit	#D	Hit	#D	Hit	#D	Hit	#D
Dermathology	96.30 ± 0.61	15	92.65 ± 1.23	6	$95.26 \!\pm\! 0.82$	10	$95.17 {\pm} 0.74$	8.2
Ecoli	$78.05{\pm}1.46$	28	77.10 \pm 1.19	8	77.65 \pm 1.33	10	$78.15{\pm}1.84$	10
Glass	$67.93{\pm}1.66$	21	60.83 ± 2.34	7	$63.69{\pm}2.51$	10	$67.03{\pm}1.63$	10
Segmentation	$97.01{\pm}0.72$	21	92.89 ± 1.16	7	94.51±1.22	10	$96.23 \!\pm\! 1.52$	9.6
Vowel	$81.43{\pm}1.12$	55	73.33 ± 1.40	11	$74.50{\pm}1.96$	10	$81.50{\pm}1.22$	10
Satimage	$86.23{\pm}0.79$	15	81.99 ± 0.86	6	84.39±0.76	10	85.47±1.00	9.8
Yeast	$52.35{\pm}1.05$	45	51.48 ± 1.08	10	$51.82{\pm}1.47$	10	$52.50{\pm}1.96$	10
Pendigits	$98.01{\pm}1.04$	45	93.98 ± 2.56	10	95.54 ± 1.71	10	$97.84{\pm}1.13$	10
Rank	1.00		1.88		1.63		1.00	

ECOC Strategies hits for UCI databases using Discrete Adaboost.

Note that one-vs-all with a voting policy for decoding corresponds exactly to the multiclass Adaboost (Adaboost.MH)

ECOC ECOC-ONE Results Conclusions

UCI repository database

Use a Discriminant ECOC codification using classification score as split criterion instead of mutual information.

Problem	one-vs-one E0	COC	one-vs-all ECOC		Dense random ECOC		ECOC-ONE	
	Hit	#D	Hit	#D	Hit	#D	Hit	#D
Dermathology	$96.02{\pm}0.95$	15	$94.83{\pm}1.84$	6	$\bf 95.94 \pm \! 1.22$	10	$95.83{\pm}0.94$	8.7
Ecoli	76.11 \pm 1.26	28	63.97±1.51	8	72.94±1.37	10	$75.68{\pm}1.28$	10
Glass	$58.52{\pm}2.63$	21	49.73±2.45	7	54.13±2.73	10	$57.83{\pm}1.93$	10
Segmentation	$98.36{\pm}1.47$	21	94.36 ± 1.13	7	93.83±1.43	10	$97.84{\pm}1.12$	9.2
Vowel	$73.18{\pm}1.15$	55	32.07±1.62	11	46.00±1.34	10	$69.14{\pm}3.01$	10
Satimage	87.43±0.80	15	85.85±1.08	6	84.03±1.49	10	$89.04{\pm}0.63$	10
Yeast	$55.31{\pm}1.47$	45	41.41 ± 1.79	10	51.07±2.12	10	$52.58{\pm}1.73$	10
Pendigits	$98.53{\pm}1.03$	45	95.04±1.88	10	96.44±1.12	10	$98.43{\pm}0.99$	10
Rank	1.13		2.50		2.13		1.00	

ECOC Strategies hits for UCI databases using SVM.

ECOC ECOC-ONE Results Conclusions

UCI repository database

Extension of the one-versus-all strategy

Problem	one-vs-one ECOC		one-vs-all-ONE ECO	
	Hit	#D	Hit	#D
Dermathology	$96.30 {\pm} 0.61$	15	$95.53 {\pm} 0.89$	8
Ecoli	$78.05{\pm}1.46$	28	$78.43{\pm}1.02$	10
Glass	$67.93 \!\pm\! 1.66$	21	$64.90 \!\pm\! 2.39$	9
Segmentation	$97.01 \!\pm\! 0.72$	21	$95.90{\pm}1.03$	9
Vowel	$81.43{\pm}1.12$	55	$79.34{\pm}1.40$	13
Satimage	$86.23 {\pm} 0.79$	15	$84.83 {\pm} 0.96$	8
Yeast	$52.35{\pm}1.05$	45	$53.52{\pm}0.89$	12
Pendigits	$98.01{\pm}1.04$	45	$96.88 {\pm} 2.01$	12

ECOC ECOC-ONE Results Conclusions

Conclusions

- We propose a coding framework to extend any ECOC.
 - It produces compact codewords (small length).
 - It is problem-dependent.
 - It focuses on difficult to discriminate classes increasing their code distance.
 - Its performance is comparable to the one-versus-one ECOC.

Open issues

- Embed other structures to capture knowledge from the domain.
- Develop efficient decoding strategies.

Thank you!

