Tri-modal Person Re-identification with RGB, Depth, and Thermal Features PBVS, CVPR 2013

June 24, 2013

Andreas Møgelmose¹*, Chris Bahnsen¹, Thomas B. Moeslund¹, Albert Clapés², and Sergio Escalera² am@create.aau.dk

¹Visual Analysis of People Lab Aalborg University Denmark ²Dept. Matemàtica Aplicada i Anàlisis Computer Vision Center Universitat de Barcelona

Re-identification

- The act of recognizing people who have passed by a camera earlier.
- Can be used in many situations:
 - Person flow analysis (think airport queues)
 - As a forensics tool (London's underground)
 - Anywhere with an established camera network, which benefits from tracking of people.
- Must update with new persons on the fly.
- Must work with soft biometrics, as hard biometrics are difficult to obtain.
- Previous work has been done in RGB, but the combination of modalities has not yet been tested.

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features RGB features Depth features Thermal features Re-identification Results

Multi-modal features

Tri-modal Person

- ▶ RGB and depth captured with Microsoft Kinect for Xbox 360
- ► Thermal imagery captured with Axis Q1922

RGB features

- Color histograms.
- The body is split into two parts. One histogram is created for each
- In total a descriptor is a 120 bin histogram
- Averaged over all frames in a pass
- For re-identification, the descriptor is compared to the stored histograms using the Bhattacariyya-distance

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

HING NEW GROUND

RGB features Depth features Thermal features Re-identification Results

Depth features Pre-processsing

- Figure-ground segmentation
- Skeleton extraction from raw depth data
- ► Coordinate transformation
- Smoothing

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features

RGB features

Depth features

Thermal features

Re-identification

Results

Depth features Feature extraction

- Frontal curve model
- Thoracic geodesic distances
- Anthropometric distances
- Averaged over all frames in a pass

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features

RGB features

Depth features

Thermal features

Re-identification

Results

Thermal features

- SURF descriptors extracted within the contour
- Location not taken into account
- Around 150 descriptors per person per frame
- No convenient way to average, so the model consists of all descriptors from the pass

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

HING NEW GROUND

Vulti-modal features RGB features Depth features Thermal features

Re-identification

Results

System flow

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features

RGB features

Depth feature

Thermal feature

Re-identification

Results

Fusion

Id voting

Combines the distance measures from each modality:

 $C(U_1, U_2) = \alpha \cdot \frac{1}{d_{\mathsf{RGB}}(H_1, H_2)} + \beta \cdot \frac{1}{d_{\mathsf{depth}}(D_1, D_2)} + \gamma \cdot d_{\mathsf{thermal}}(S_1, S_2)$

Determine if new

If $C \leq T_N \rightarrow$ Subject new If $C > T_R \rightarrow$ Re-identify subject If $C > T_N \wedge C \leq T_R \rightarrow$ Ignore subject (too close to existing)

Re-identify or enroll

Assign ID with the highest score, or add model to database

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Aulti-modal features

RGB features

Depth feature

Thermal features

Re-identification

Results

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features

RGB features

Depth features

Thermal features

Re-identification

Results

9

12

Tested	on	tri-modal	dataset	with	35	subjects	doing	2	passes
each.									

	Correct new	Wrong new	Correct ID	Wrong ID	Ignored
Run 1	32	4	21	1	12
Run 2	33	3	21	1	12
Run 3	33	4	24	0	9
Run 4	32	3	23	0	12
Run 5	32	3	19	1	15
Average	32.4	3.4	21.6	0.6	12
Percentage ¹			97.3%	2.7%	

Re-identification results.

¹Percentage of attempted re-identifications.

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

_	Introduction
	Multi-modal features
	RGB features
	Depth features
	Thermal features
	Re-identification
	10 Results

VAP Lab Aalborg University Denmark

	Correct new	Wrong new	Correct ID	Wrong ID	Ignored
All modalities	32.4	3.4	21.6	0.6	12
RGB only	33.4	7.8	14.6	0	14.2
Depth only ¹	30.2	20.6	3.2	16	0
Thermal only	33.8	11.6	14	1	9.8

Average re-identification results for individual modalities ¹With other T_N and T_R thresholds.

- The largest number of correct IDs are obtained with the combined system
- Depth features do more harm than good
- While RGB-only has the least wrong IDs it is a the expense of more ignored subjects and a much larger number of wrong new classifications

Results for individual modalities Hallway dataset

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features RGB features Depth features Thermal features

Re-identification

) Results

Tested on	bi-modal	dataset	with	9	subjects	doing	2	passes
each.								

	Correct new	Wrong new	Correct ID	Wrong ID	Ignored
All modalities	8	0	6	0.4	3.6
RGB only	8	3	2	0	5
Thermal only	9	2	5	0.4	1.6

Average re-identification results for individual modalities, hallway dataset

Tri-modal Person Re-identification with RGB, Depth, and Thermal Features

Introduction

Multi-modal features

RGB features

Depth feature

Thermal feature

Re-identification

12 Results

VAP Lab Aalborg University Denmark

12

Thank you