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Abstract. The challenge of interest point detectors is to find, in an un-
supervised way, keypoints easy to extract and at the same time robust to
image transformations. In this paper, we present a novel set of saliency
features that takes into account the region inhomogeneity in terms of
intensity and shape. The region complexity is estimated at real-time by
means of the entropy of the grey-level information. On the other hand,
shape information is obtained by measuring the entropy of normalized
orientations. The normalization step is a key point in this process. We
compare the novel complex salient regions with the state-of-the-art key-
point detectors. The new set of interest points shows robustness to a wide
set of transformations and high repeatability. Besides, we show the tem-
poral robustness of the novel salient regions in two real video sequences.

1 Introduction

Visual saliency [1] is a broad term that refers to the idea that certain parts
of a scene are pre-attentively distinctive and create some form of immediate
significant visual arousal within the early stages of the Human Vision System.
The term ’salient feature’ has previously been used by many other researchers
[12][1]. Although definitions vary, intuitively, saliency corresponds to the ’rarity’
of a feature [2]. In the framework of keypoint detectors, special attention has
been paid to biologically inspired landmarks. One of the main models for early
vision in humans, attributed to Neisser [6], is that it consists of pre-attentive and
attentive stages. In the pre-attentive stage, ’pop-out’ features are only detected.
These are the salient local regions of the image which present some form of
spatial discontinuity. In the attentive stages, relationships between these features
are found, and grouping takes place in order to model object classes.

Region detectors have been used in several applications: baseline matching
for stereo pairs, image retrieval from large databases, object retrieval in video,
shot location, and object categorization [9][8], to mention just a few. One of
the most well-known keypoint detector is the Harris detector [3]. The method is
based on searching for edges at different scales to detect interest image points.
Several variants and application based on the Harris point detector have been
used in the literature, such as Harris-Laplacian [5], Affine variants [3], DoG [4],
etc. In [11], the authors proposed a novel region detector based on the stability
of the parts of the image. Nevertheless, the homogeneity of the detected regions
makes the description of the parts ambiguous when considered in object recog-
nition frameworks. Schmid and Mohr [3] proposed the use of corners as interest



2 1Sergio Escalera, 2Oriol Pujol, and 1Petia Radeva

points in image retrieval. They compared different corner detectors and showed
that the best results were provided by the Harris corner detector [5]. Kadir et al
[1] estimate the entropy of the grey levels of a region to measure its magnitude
and scale of saliency. The detected regions are shown to be highly discriminable,
avoiding the exponential temporal cost of analyzing dictionaries when used in
object recognition models, as in [12]. Nevertheless, using the grey level informa-
tion, one can obtain regions with different complexity and with the same entropy
values. In [10], a method for introducing the cornerness of the Harris detector
in the method of [1] is proposed. Nevertheless, the robustness of the method is
directly dependent on the cornerness performance.

In this paper, we propose a model that allows to detect the most relevant
image features based on their saliency complexity. We use the entropy measure
based on the color or grey level information and shape complexity (defined by
means of a novel normalized pseudo-histogram of orientations) to categorize the
saliency levels. This new Complex Salient Regions can be related to the pre-
attentive stage of the HVS. In this sense, they are biologically inspired since it
is known that some neural circuits are specialized or sensitive to a restrictive
set of visual shapes, as edge, contour and motion detectors as others related
to color and spatial frequencies [7]. Although orientations have been previously
used in the literature with very few success[1], our approach defines a normalized
procedure that makes this measure very relevant and robust.

The paper is organized as follows: chapter 2 explains our Complex Salient
Regions, section 3 shows experimental results, and section 4 concludes the paper.

2 Complex Salient Regions

In [1], Kadir et. al. introduce the grey-level saliency regions. The key principle is
that salient image regions exhibit unpredictability in their local attributes and
over spatial scale. This section is divided in two parts: firstly, we describe the
background formulation, inspired in [1]. And, secondly, we introduce the new
metrics to estimate the saliency complexity.

2.1 Detection of salient regions

The framework to detect the position and scale of the saliency regions uses a
saliency estimation (defined by the Shannon entropy) at different scales of a
given point. In this way, we obtain a function of the entropy in the space of
scales. We consider significant saliency regions those that correspond to maxima
of that function, where the maxim entropy value is used to estimate the complex
salient magnitude. Now we define the notation and description of the stages of
the process.

Let HD be the entropy of a given descriptor D, Sp the space of significant
scales, and WD the relevance factor (weight). In the continuous case, the saliency
measure γD, a function of scale s and position x, are defined as:

γD(Sp, x) = WD(Sp, x)HD(Sp, x) (1)
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for each point x and the set of scales Sp at which entropy peaks are obtained.
Then, the saliency is determined by weighting the entropy at those scales by WD.
The entropy HD is defined as HD(s, x) = − ∫

p(I, s, x) log2 p(I, s, x)dI, where
p(I, s, x) is the probability density of the intensity I as a function of scale s and
position x. In the discrete case, for a region Rx of n pixels, the Shannon entropy
is defined as

HD(Rx) = −
n∑

i=1

PD,Rx
(i)log2PD,Rx

(i) (2)

where PD,Rx
(i) is the probability of descriptor D taking the value i in the local

region Rx, for n grey levels. The set of scales Sp is defined by the maxima of the
function HD in the space of scales Sp =

{
s : ∂HD(s,x)

∂s = 0, ∂2HD(s,x)
∂s2 < 0

}
These equations are illustrated by the detected local maxima in fig. 1. In the

figure, a point x is evaluated in the space of scales, obtaining two local maxima.
These peaks of the entropy estimation correspond to the representative scales
for the analyzed image point.

Fig. 1. Local maxima of function HD in the scale space S

The relevance of each position of the saliency at its representative scales is
defined by the inter-scale saliency measure WD(s, x) = s ∂

∂sHD(s, x).
Considering each scale s of Sp and the pixel x, we estimate WD in the discrete

case as,

WD(s, x) = s
|HD(s− 1, x)−HD(s, x)|+ |HD(s + 1, x)−HD(s, x)|

2
(3)

where s ∈ [1, ..., S], for S the total number of scales. Using the previous weighting
factor, we assume that the significant salient regions correspond to that locations
with high distortion in terms of the Shannon entropy and its peak magnitude.

2.2 Traditional grey-level and orientation saliency

Kadir et. al. [1] used the grey-level entropy to define the saliency complexity
of a given region. However, this approach falls short in front of clear cases of
different complexities. In fig. 2 one can observe different regions with the same
amount of pixels for each grey level and different visual complexity. Note that
the approach proposed by [1] gives the same entropy value for all of them.

A natural and well founded measure to solve this pathology is the use of
complementary orientation information. In the same work [1], Kadir et. al. con-
sidered the use of orientations with very limited and inconclusive results. The use
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Fig. 2. Regions of different complexity with the same grey level entropy.

of orientations as a measure of complexity involves several problems. In order to
exemplify those problems, suppose that we have the regions (a) and (b) of fig. 3.
Both regions have the same pdf (fig. 3(c)), although contain different number
of significant orientations with the same proportion (histograms of fig. 3(d) and
(e)).

(a) (b) (c) (d) (e)

Fig. 3. (a)(b) Two circular regions with the same content at different resolutions. (c)
Coincident pdf for the regions (a) and (b). (d) Orientations histogram for (a), and (e)
orientations histogram for (b).

To solve the commented problems, we propose a design of the normalized
orientation.

2.3 Normalized orientation entropy measure

The normalized orientation entropy measure is based on computing the entropy
using a pseudo-histogram of orientations. The usual way to estimate the his-
togram of orientations of a region is to use a range from 0 to 2π radians. However,
a very important information related to the orientation is omitted, the lack of
orientation, referred from now on as ’non-orientation’. Our proposed orientation
metric consists of computing the saliency including this non-orientations in the
modified orientation pdf.

Considering the k ≤ K most significant orientations using an experimental
threshold, where K is the total orientation magnitudes from a given region, we
compute the histogram hO. The normalization bin is then added as hO(n+1) =
K−k. In this way, the modified orientation pdf for the histogram hO is obtained
by means of:

PDFO(i) =
hO(i)∑n+1

j=1 hO(j)
, ∀i ∈ [1, .., n + 1] (4)

In order to obtain the orientation entropy value, we consider the first n values
of the normalized histogram. Note that the n + 1 position is not included in the
entropy evaluation since its goal is to normalize the first n positions, as shown
in eq. (4).
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2.4 Combining the saliency

In our particular case, the grey-level histogram is combined with the pseudo-
histogram of orientations. In this way, once estimated the two corresponding
pdf, we apply equations (1), (2), and (3) to each one, and the final measure
combination is obtained by means of the simple addition1 γ = γG + γO, where
γG and γO are estimated by equation (1) for the grey and orientation saliency,
and γ is the result, where the final significant saliency positions, magnitudes
(level of complexity), and scales are defined. This new saliency measure gives a
high complexity value when the region contains different grey levels information
(non-homogeneous region), and the shape complexity is high (high number of
gradient magnitudes at multiple orientations). The complexity order to detect
the salient regions is O(dl), where d is the number of image pixels, and l is the
number of scales searched for each pixel.

3 Results

We compare the presented CSR with the Harris-Laplacian, Hessian-Laplacian,
and the grey-level saliency in terms of repeatability and false alarm rate. The
parameters used for the region detectors are the default parameters given by
the authors [11][1][3]. The number of regions obtained by each method strongly
depends on the image type since each one responds to different type of features.
Nevertheless, we use the 20% maximum responses of each detector to analyze
the robustness of the most significant salient regions.

In order to validate our results, we selected the samples of fig. 4 from the
public Caltech repository database. In this set of samples, we applied a set of
transformations: rotation (10 degrees per step up to 100), white noise addition
(0.1 of the variance per step up to 1.0), scale changes (15% per step up to
150), and affine distortions (5 pixels x-axis distortion per step up to 50). The
mean results for the repeatability and false alarm ratios are shown in fig. 5.
We consider the repeatability defined as the percentage of the initial detected
regions that is maintained in the space of transformations, and the false alarm
rate as the percentage of detected regions that do not have a correspondence in
the initial image. Observing the figures, one can see that the CSR regions obtain
better performance in terms of repeatability, obtaining the highest percentage of
intersected regions for all types of image distortions. For the case of false alarm
rate, the CSR and the Hessian Laplace methods are the best, obtaining similar
results.

The next experiment is to apply the CSR regions to video sequences to show
its temporal robustness. We have used the video images from the Ladybug2
spherical digital camera from Point Grey Research group [13]. The car system
has six cameras that enable the system to collect video from more than 75%
of the full sphere [13]. Besides, we have tested road video sequences from the

1 We have experimentally observed that this simple combination obtains the most
relevant results in comparison with other kinds of combinations.
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Fig. 4. Caltech database samples used to test the keypoint detectors.

Geovan Mobile Mapping process from the Institut Cartogràfic de Catalunya [14].
For both experiments we have analyzed 100 frames, using the SIFT descriptor
[4] to describe the regions. The matching is done by similar regions descriptors
in a neighborhood of the detected CSRs. The smoothed oriented maps from
CSR matchings are shown in fig. 6 and fig. 7. Fig. 6(a) shows the oriented map
in the first analyzed frame of [13]. Fig. 6(b) focuses on the right region of (a).
One can see that the matched complex regions correspond to singularities in the
video sequence and approximates roughly the video movement. From the road
experiment of fig. 6, where appear cars and traffic signs (fig. 6(a) and (b)), the
oriented map is shown in fig. 6(c), where the amplified right region shown in
fig. 6(d) shows the correct temporal behavior of the road video sequences.

4 Conclusions

We have presented a novel set of salient features, the Complex Salient Regions
(CSR). These features are based on complex image regions estimated at real-time
using an entropy measure. The presented CSR analyzes the complexity of the re-
gions using the grey-level, and orientations information. We introduced a novel
procedure to consider the anisotropic features of image pixels that makes the
image orientations useful and highly discriminable in object recognition frame-
works. One can use the complexity criteria to adjust the detector requirements
in a compromise between robustness and computational time. The novel set of
features is highly invariant to a great variety of image transformations, and leads
to a better repeatability and lower false alarm rate than the state-of-the-art key-
point detectors. These novel salient regions show robust temporal behavior on
real video sequences, and can be potentially applied to real-time matching and
image retrieval problems (less than 1 second in 800×640 medium resolution im-
ages), avoiding the exponential number of features and time complexity of the
exhaustive methods.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. (a)(b)Hit rate (H) and false alarm rate (FA) for scale, (c)(d) rotation, (e)(f)
white noise, and (g)(h) affine invariants in the space of transformations.
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(a) (b)

Fig. 6. (a) Smoothed oriented CSR matches, (b) Zoomed right region.

(a) (b) (c) (d)

Fig. 7. (a)(b) Samples, (c) Smoothed oriented CSR matches, (d) Zoomed right region.
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