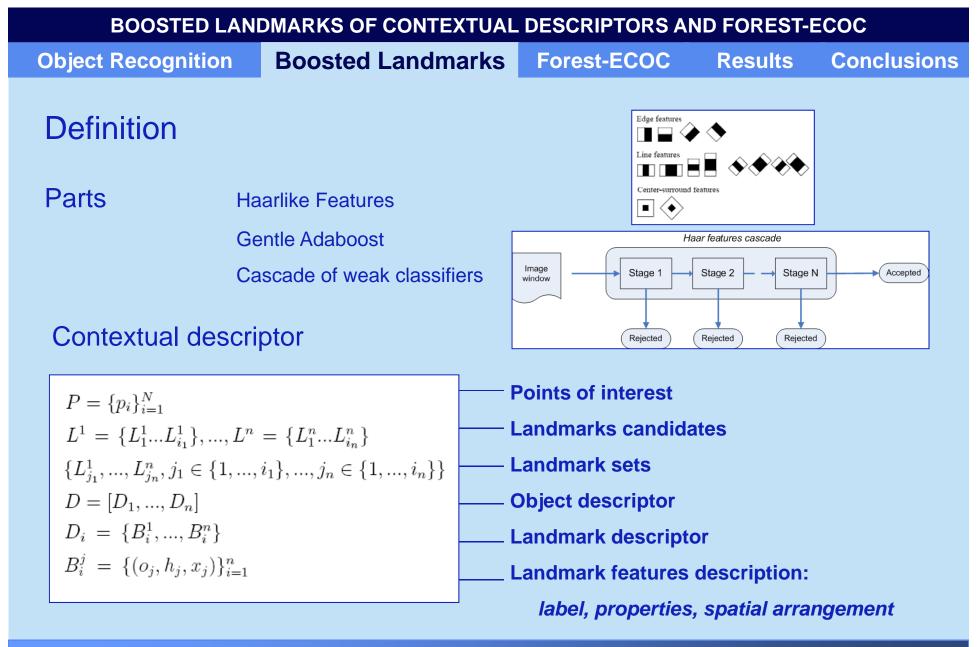
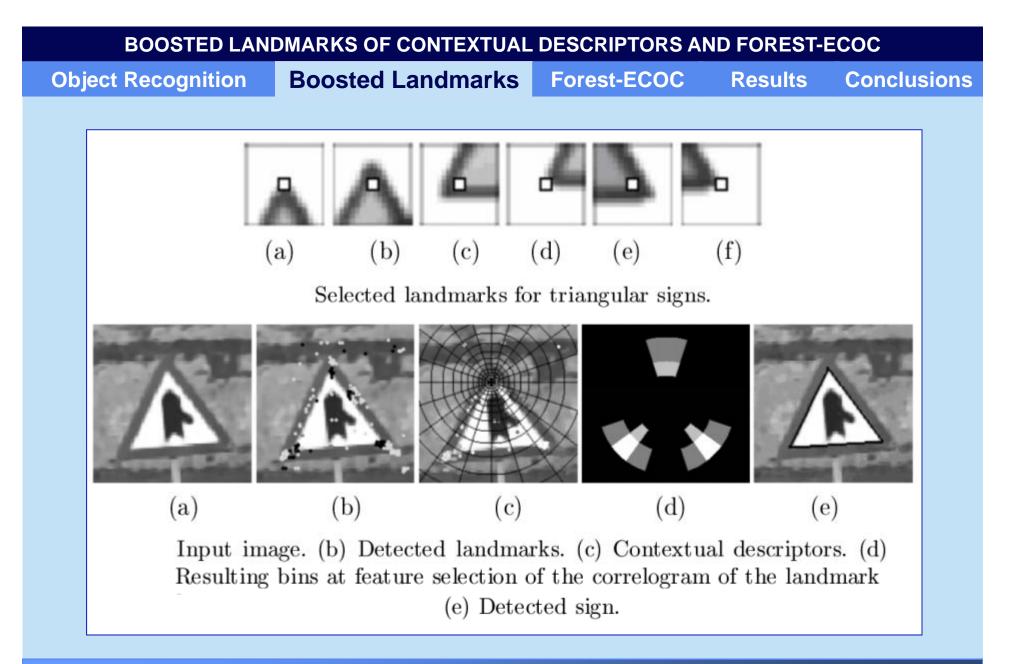
Sergio Escalera Oriol Pujol Petia Radeva

INDEX

- 1. Object Recognition
- 2. Boosted Landmarks
- 3. Forest-ECOC
- 4. Results
- 5. Conclusions

BOOSTED LANDMARKS OF CONTEXTUAL DESCRIPTORS AND FOREST-ECOC Boosted Landmarks Object Recognition Forest-ECOC Results Conclusions **Bottom-Up Approaches** Edges, Valleys, Contours ... Saliency (Kadir, Fergus, Fei-Fei, Perona, Zisermann) Region based ... **Keypoint detector** Harris (Lowe, Buhmann) (full image processing) Covariance Affine Regions (Torralba) SIFT (Lowe, Torralba) Feature histograms (Buhmann) Patch based Gabor, Haar-like (Torralba) Description (patch) Disassociated dipoles (Baró) Boosting Context (Amores), Boosted Landmarks (Escalera) Mutual Information (Ullmann) **Object landmark** Boosting (Torralba) **Dimensionality Reduction** selection ClusteringNDA, LDA, MDS, ND (Torralba, Buhmann) Fergus, Fei-Fei PCA region to probabilistic model Descriptors array (Torralba, Lowe, Ullmann) **Probabilistic models** Parts based **Object modelling** (Buhmann, Fergus, Fei-Fei, Torralba) Graphical Models (Bayessian networks) **Gaussian Miture Models** Gist -> Steerable pyramid (Torralba) Top-down Approaches (Presence of an object)





Object Recognition

Boosted Landmarks

Forest-ECOC

C Results

Conclusions

Error Correcting Output Codes

•Design a codeword for each class of N_c classes (up to N_c codewords).

•Arranging the codewords as rows of a matrix we define the "coding matrix" *M*, composed

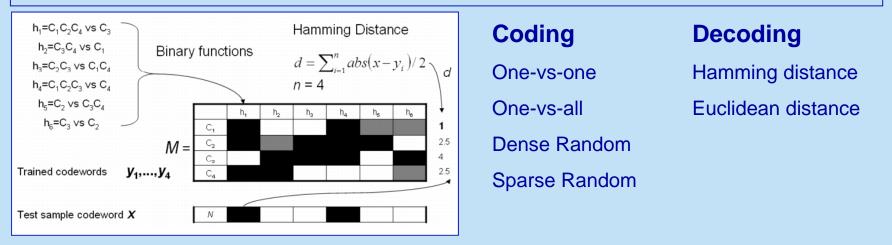
by -1, 0 or 1, that representeds as *n* binary learning problems (dichotomies),

•Each dichotomy corresponds to a column of the ECOC matrix.

•Each dichotomy defines a partition of classes

•As a result of the outputs of the *n* binary classifiers, a code is obtained for each data point in the test set.

•This code is compared with the base codewords of each class defined in the matrix *M*, and the data point is assigned to the class with the "closest" codeword.



Object Recognition

Boosted Landmarks

Forest-ECOC

Results

Conclusions

Forest-ECOC

Given n classes: C_1, \ldots, C_n and T the number of optimal tree structures to be embedded:

Step 1. Initialize the root node with the set $N_0 = \{C_1, \ldots, C_n\}$

Step 2. Generate the tree structures:

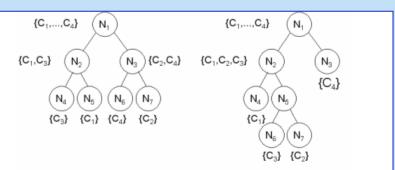
• For each node N_j consider the T partitions $\wp_{kj} = \{\{\wp_j^1, \wp_j^2\} | N_j = \wp_j^1 \bigcup \wp_j^2\}, k = 1 \dots T$ that attain the minimal empirical error for the subproblem defined by the partition \wp_{kj} .

$$\wp_k = \underset{\tilde{\wp}}{\operatorname{argmin}} \left(e(\mathcal{H}(\tilde{\wp}, \mathbf{x}), \mathbf{l}) \right) \tag{1}$$

where e(H(., x), l) stands for the empirical error between the hypothesis result H(., x) on the data set x and the respective class labels l.

- Partitions $\wp_{kj}, k = 2, ..., T$ define T-1 roots of new trees of the forest.
- Include each binary classifier h_j for each internal node of the trees as a column in the Forest-ECOC matrix M, using the following rule for each class C_r :

$$M(r,j) = \begin{cases} 0 & \text{if } C_r \notin N_j \\ +1 & \text{if } C_r \in \wp_j^1 \\ -1 & \text{if } C_r \in \wp_j^2 \end{cases}$$
(2)



Two optimal trees for a toy problem.

	H ₁	H ₂	H ₃	H_4	H₅	H ₆
C ₁	1	1	0	1	1	0
C ₂	-1	0	1	1	-1	-1
C ₃	1	-1	0	1	-1	1
C ₄	-1	0	-1	-1	0	0

Forest-ECOC matrix for a toy problem, where H_1 , H_2 and H_3 correspond to classifiers of N_1 , N_2 and N_3 from the first tree of figure 5, and H_4 , H_5 and H_6 to N_1 ', N_2 ' and N_5 ' from the second tree.

Object Recognition

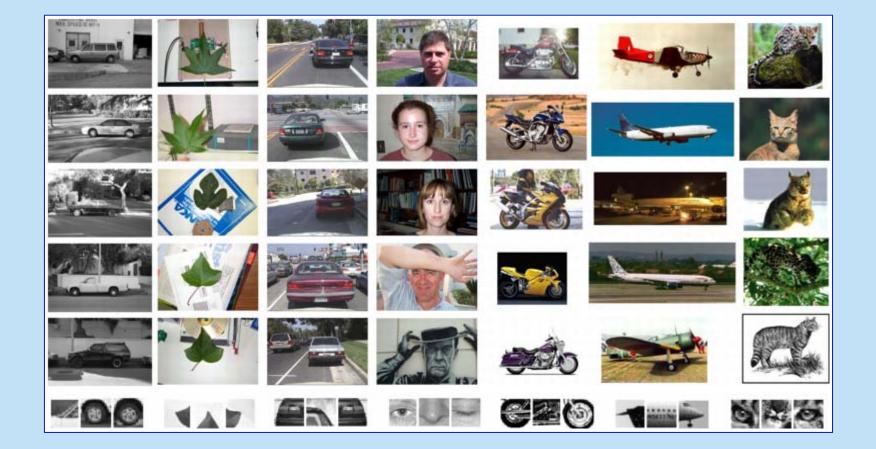
Boosted Landmarks

Forest-ECOC

C Res

Results C

Conclusions



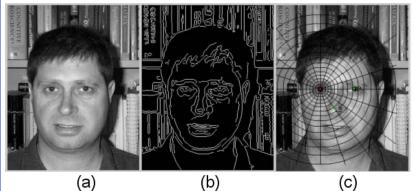
Object Recognition

Boosted Landmarks

Forest-ECOC

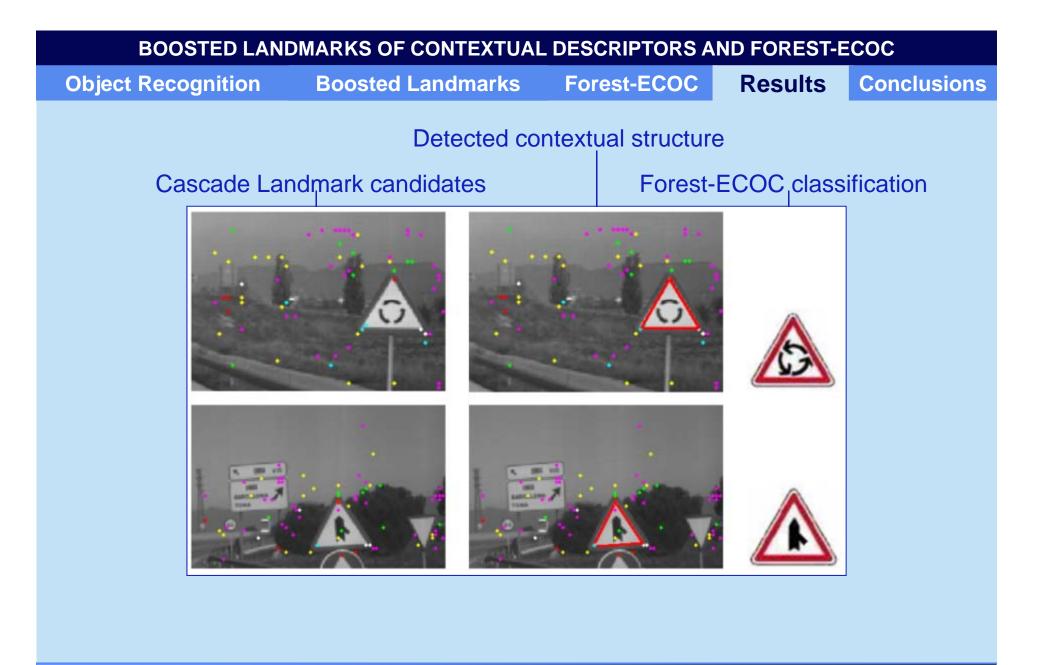
Results

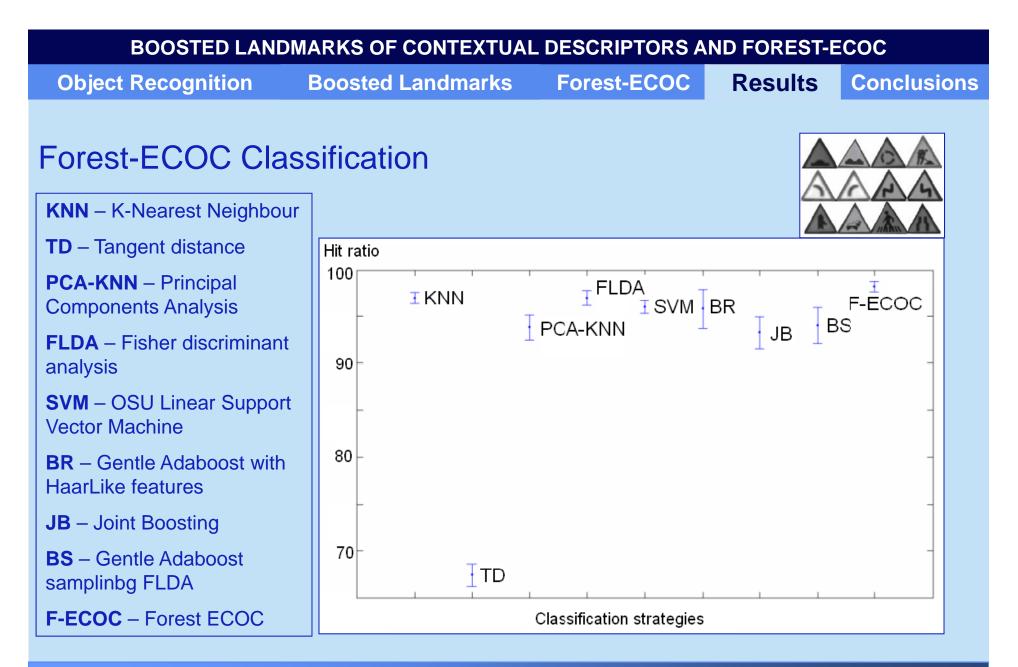
Conclusions



Fergus faces database. (a) Model. (b) Contour points information. (c) Correlogram for a detected landmark.

Category	Fergus	Boosting Context	Boosted Landmarks in Contextual Descriptors
Car (side)	88.50%	90.00%	96.63%
Face	96.40%	89.50%	97.72%
Motorbike	92.50%	95.00%	93.85%
car (rear)	90.30%	96.90%	$\boldsymbol{99.35\%}$
Plane	90.20%	94.50%	92.50%
Leaf	-	96.30%	98.85%
Spotted car	90.00%	86.50%	84.00%
Rank	2.50	1.86	1.57





Object Recognition

Boosted Landmarks

Forest-ECOC

Results

Conclusions

Aibo recognition demo

- Robust and invariant landmarks detection agains noise, slight affine deformations, illumination changes and partial occlusions.
- Robust detection.
- Competitive classification strategy with the state-of-art classification techniques.

Open

Changes of view

Deformable context

Thank you!

