

Human Pose Recovery and Behavior Analysis group

Posture Analysis and Range of Movement Estimation using Depth Maps

Miguel Reyes, Albert Clapés, Luis Felipe Mejía, José Ramírez, Juan R. Revilla, and Sergio Escalera

All rights reserved HuBPA©

- 1. Motivation
- 2. System Architecture
 - Static posture (SP) analysis
 - Data alignment and noise removal
 - Matching protocol
 - Spine curvature (SC) analysis
 - Range of movement (RoM) estimation
- 3. Results
- 4. Applications
- 5. Conclusions

1

Motivation

- **80% of the world population** is affected of **back pain** during his life.
- Many current practices to analyze back problems are expensive, subjective, and invasive.
- A **novel tool** for posture and range of movement estimation based on the analysis of 3D information from depth maps:
 - Reeducating to prevent MSDs.
 - Tracking the patient's evolution in rehab.

Results

Applications Conclusions

- keypoints are manually set from RGB data displayed in the screen.
- The relations (threedimensional measurements) are established among the keypoints defined by the user.
- We define a protocol as a set of keypoints and the relations among them.
- Given a new set of points, we could apply a predefined protocol or perform a free analysis.

• Sum of least squares minimization.

$$\operatorname{argmin}_{C'} \sum_{i=1}^{N} \left\| C'_{i} - T_{i} \right\|^{2}$$

• Soft pre-alignment using *Iterative Closest Point* (ICP).

$$E(\mathcal{R}, \mathcal{T}) = \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} \| T_i - \mathcal{R}(C_j) - \mathcal{T} \|^2$$

• Correspondence relaxation based on adjacency matrix A.

$$A(i,j) = \begin{cases} 1 & \text{if } M(i,j) < \theta_M \\ 0, & \text{otherwise.} \end{cases}$$

6

Human Pose and Behavior Analysis group

Spine Curvature (SC) analysis

System architecture

Results

Applications

Conclusions

Results

Applications

Conclusions

- Noisy depth maps
 - Statistical noise removal.
 - Filling Holes (Inpaint Naive Strokes*).

M. Bertalmio, A. L. Bertozzi, G. Sapiro, "Navier-Stokes, Fluid Dynamics, and Image and Video Inpainting", Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE, Dec. 2001, Kauai, HI, volume I, pp. I-355-I362

Results

Applications Conclusions

• Random Forest limbs pixel-level labeling.

$$f_{\theta}(D, \mathbf{x}) = \mathbf{D}_{\left(\mathbf{x} + \frac{\mathbf{u}}{\mathbf{D}_{\mathbf{x}}}\right)} - \mathbf{D}_{\left(\mathbf{x} + \frac{\mathbf{v}}{\mathbf{D}_{\mathbf{x}}}\right)},$$
$$P(l_{i}|D, \mathbf{x}) = \frac{1}{\tau} \sum_{j=1}^{\tau} P_{j}(l_{i}|D, \mathbf{x})$$

• Skeletal model extraction from the segmented limbs.

- Data and settings
 - SPA
 - 500 tests labeled by three different observers (inter-observer correlation > 99% for all planes).
 - A test contains a set of angles and distances, placing twelve infrared led markers on the body of the subject.
 - 20 subjects.
 - Automatic validation of the tests: infrared markers are detected by means of thresholding a HSV infrared-filtered image.

• SCA

- 10 subjects.
- Leroux protocol, placing nine markers over the spine.
- The relationship between lateral anthropometric and radiographic measures was assessed with the mean of the differences.

- Validation
 - AVV correspond to the average absolute value
 - '°' corresponds to the degree.
 - SPA

Distance subject-device (m)	1,3	1,9	2,2
AAV (o movement)	2,2	3,8	5,2
AAV (mm)	0,98	1,42	2,1
AAV (\circ angles)	0,51	1,04	1,24
AAV (%)	0,46	0,77	1,3
Standard Error (%)	1,01	1,18	1,71

Pose and range of movement precision.

- Validation
 - SP

Curvature	X-Ray Mean (SD) Range	Flexicurve Mean (SD) Range	Difference Mean (SD) Range	Absolute Difference Mean (SD)	≤5° n	$5^{\circ} < x \le 10^{\circ}$ N	> 10° N
Thoracic	43.7 (11.0) 18° to 71°	42.9 (8.8) 26° to 65°	0.8 (8.1) -16° to 16°	6.5 (4.7)	26	12	9
Lumbar	40.5 (10.1) 22° to 62°	40.0 (7.9) 21° to 59°	0.5 (8.3) -17° to 16°	6.8 (4.6)	23	13	11

Results

Applications

Conclusions

Hupba	Human Pose and Behavior Analysis group	Conclusions		
System architecture	Results	Applications	Conclusions	

- Semi-automatic posture analysis and range of movement estimation using multi-modal data (rgb + depth).
- Provides assistance in the posture reeducation task to prevent and treat MSDs.
- Gaussian noise is removed and depth map is reconstruct as a preprocessing step.
- Keypoints defined by the physician are matched using a **novel point-to-point fitting procedure**.
- High precision in terms of distance, degree, and range of movement estimation.
- **Clinical specialists** supports its inclusion in the **clinical routine**.

Human Pose Recovery and Behavior Analysis group

Thanks

Miguel Reyes, Albert Clapés, Luis Felipe Mejía, José Ramírez, Juan R. Revilla, and Sergio Escalera

All rights reserved HuBPA©