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Abstract

In recent years there has been an increase in the amount of content uploaded by the users
to pages the goal of which is the management of contents, instead of their generation and
distribution. There has also been a qualitative jump in the connectivity and ubiquity of in-
formation technologies, which has made possible for a huge amount of images to be generated
distributively. Some examples of this trend are the popularization of the integrated cameras
in mobile devices and tablets, the development of new smart digital cameras connected to the
internet, the popularization of social networks and on-line storage.

This kind of technologies blurs the line between the generation of content and its man-
agement, and makes it necessary the implementation of a new set of automations for its
processing. It is in this field where the smart algorithms for the automatic processing of
images is very useful. In this project one of these problems is analysed, developed and im-
plemented: the detection of faces and location of the eye centres in still images. The system
has been designed in order to analyse the quality of portrait images, but the potential direct
applications include content analysis, person counting, expression and person recognition ap-
plications, among others.

The developed method consists on an heuristic approach for discarding invalid face and
eye detections working over the Viola & Jones object detection [38] algorithm to detect the
faces and eyes bounding boxes. Afterwards, the eye centres are detected by using the fast ra-
dial symmetry transform [10] algorithm inside each eye bounding box. This kind of approach
is fast because of the intrinsic speed of the used algorithms, and by using the specific problem
information to discard incorrect detections, it is possible to relax the Viola & Jones detectors,
detecting more correct faces in exchange of letting many incorrect ones to be detected. In
that sense, information such as the intra-ocular distance or the eyes cross-correlation, along
with the maximization of the face probability given multiple candidates, is used to determine
if a face configuration is valid and select between multiple detected candidates.

It is the usage of the problem information that greatly improves the base accuracy of com-
bining both methods, yielding much better results than those of some commercial solutions.
In that sense, the algorithm is compared against the Neurotechnologies software, with the
developed method obtaining better results.
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1 Introduction

In this project an algorithm for the automated detection of faces and the eye centres is developed
and implemented which intends to replace the commercial solution presented by Neurotechnolo-
gies. This algorithm allows for the detection of these features in still images, as well as the
estimation of the probability of the detected features being correct.

This kind of task uses to be developed as a previous step to the extraction of information or
image processing, and for this reason first an analysis of the problem inside a bigger context is
performed. In the current case, the solution has been implemented as part of a software for the
automated analysis of portrait images, where the goal is to obtain a correct framing for the image,
as well as to determine its quality by evaluating the face frontality and inclination, illumination,
presence of shadows, face obstructions and background homogeneity, between other image features.

Figure 1: Sample processed images show-
ing the features detected by the methodol-
ogy.

The developed methodology is based on the Vi-
ola & Jones [38] object detection algorithm to detect
the faces and eyes centres, and uses an heuristic ap-
proach in order to discard false positives from the
faces, which allows the Viola & Jones algorithm to
be relaxed, detecting more true positives in exchange
of detecting many more false positives. The heuristic
approach also evaluates all possible face configuration
probabilities when more than two eyes are acceptable
for a given face, keeping the eyes pair that maximizes
the face probability. With the faces and eyes bound-
ing boxes detected and the false positives discarded,
the eyes centres are located by using the fast radial
symmetry transform algorithm [10]. This algorithm
is used in order to detect the centre of the iris radial
symmetry, and is combined with a binary mask in or-
der to discard false symmetries from shadows present
in the eye bounding box. Finally, an estimation of the face and eye centres probabilities is per-
formed by modelling some face configuration and eye centre features into two multivariate normal
distributions.

In the first part of this document an analysis of the general methodology for the facial analysis
is performed, analysing specific methods that currently exist at each step of the process. This
is done by evaluating a widely explored problem which includes face detection and face features
subtraction: face expression recognition. By analysing a broader well-studied problem, the main
steps that both tasks have in common can be explored and used as a guideline to build the new
methodology.

After analysing the currently existing methods for the different tasks, a custom methodology
is developed at Section 3, defining a set of algorithms to use at each problem sub-step, as well as
an heuristic approach to take into account the information specific to the problem of detecting
faces and their eye centres. Once developed, the library design is given in Section 4 by means of
a set of UML diagrams.

Finally, in Sections 5-6, an experimental methodology is proposed and executed consisting on a
10-fold cross validation over a dataset of 1000 frontal face images, where at each fold the algorithm
parameters are optimized and then the algorithm accuracy, precision and temporal cost evaluated.
A comparison is also performed between the proposed method and the commercial SDK developed
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Figure 2: Diagram showing the general flow of an application for the analysis of facial expressions.

by Neurotechnologies this library intends to replace though the usage of an independent testing
dataset of 266 images, which shows that the new method outperforms the commercial one in terms
of the recognition rate.

2 State of the art on facial analysis

In this section it is intended to perform an analysis of the general process currently used for
recognizing facial expressions, as well as categorizing the types of methods that are used in the
involved steps. This study is performed in order to analyse the best options for developing a
custom method for the detection of faces and extraction of its features.

The general structure of a face detection and analysis system can be divided into three steps
[47, 1], as it can be shown in Figure 2. First, the acquisition of the face(s) present in the image
is required, process that consists on its detection and posterior analysis of its orientation. Then
a set of features is subtracted, defining the state of the face. These features fall into one of two
general groups: based on the general analysis of the face appearance, or by subtracting a set of
specific features defining a state for certain regions.

Finally, the obtained features are analysed in order to determine which type of expression is the
face showing. This again can be done with two different general approaches. The first one consists
on analysing the features of a single image, while the other puts image sequences in context in
order to analyse the expression in a temporal context.

2.1 Face detection

Face detection on images is a specific case of the object detection methods, that have already been
studied in depth, and for which a group of highly efficient or flexible methods exists, depending
on the requirements of the application.

The image based methods initially were the most used algorithms for the detection of faces,
consisting in the used of conventional classifiers, where the information of the pixel intensity of
an image region is used as parameters of the features vector, classifying between face and non-
face classes. Following this approach, methods based on Support Vector Machines (SVM) [7] and
Artificial Neural Networks (ANN) [14] analyse difference image regions at different scales at a
specific resolution, using the image pixels as features for the feature vector.

There are other image based methods that do not use a classifier in order to determine if a
region displays a face. This is the case for the method developed by K.K. Sung and T. Poggio [25],
which uses a set of training faces to manually determine the number of clusters that are formed in
the pixel space, afterwards obtaining the mean face for each group and calculating its distribution.
When a new face is presented, the probability of it belonging to a face cluster is obtained from
the distances between the face and the mean faces.

The feature based methods, on the other hand, obtain a set of features from the image
by applying mathematical operations on it. This allows in many cases to obtain systems that
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Figure 3: Classification of the facial feature extraction and representation methods for the feature
based and appearance based methods.

work much faster and with equal or even higher accuracy, since many variations at the pixel level
are compensated when basing the features on the measure of symmetries and asymmetries of the
faces. This is the case for methods based on the object detection algorithm developed by P. Viola
and M.J. Jones [34, 39, 40].

Although both method families use to implement mechanisms to obtain invariance to scale and
illumination, they don’t use to be invariant to rotation. This means that when the orientation of
the faces is unknown, the images must be analysed for a wide set of orientations, multiplying the
computational cost. In order to solve this problem, some methods implement mechanisms for the
automatic recognition of a region orientation as a previous step to face detection. An example of
this type of methods it the one proposed by H.A. Rowley et al. [15].

Computationally speaking, the most efficient method is the one proposed by P. Viola and
M.J. Jones [39], commonly known as the Viola & Jones object detection method. Since it works
directly with the integral image in order to calculate the image characteristics, it is unnecessary
to rescale the image to calculate features at different scales, and reducing the computational cost
of calculating a feature to an arithmetic operation between region extremes. This method is
explained in greater detail on Section 3.1, at the development phase of the methodology.

2.2 Data extraction and representation

The second step in the process, that is, the extraction and representation of the data, can be
performed in many different ways, as it is shown in the classification on Figure 3. These methods
can be divided into two big groups, the ones based on the appearance and the ones based on features
of the face.

The feature basedmethods usually make use of the position and shape of the face components
(including eyes, mouth, eyebrows and nose) that characterize the facial expressions. This type of
features are defined under the standard FACS (Facial Action Coding System) [41], and are called
Action Units (AU). The description of the AU can be performed by means of two general types
of methods: The image based ones and the model based ones.
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The image based methods try to describe the AU by means of feature vectors that define the
specific image region form its graphic features. In this type of methods there are the local Gabor
filter banks [16] and the haar-like features [49].

The other group of methods is based on the description of the AU by fitting a previously
trained or manually described model to the image. This can be done by means of the location of
discrete features, like the Point Distribution Model (PDM) [4], or modelling the region by means
of a geometric model, like in the case of the Active Contour Model [32].

The appearance based models define the described element as a single block instead of
analysing interest regions. This type of model can be divided into two groups like in the previous
case.

The image based methods describe the whole face from a group of general descriptors, in a
manner similar to how the regions corresponding to AUs were analysed in the case of feature
based models. In this group there is the local Gabor filters bank [16], the Linear Discriminative
Analysis (LDA) [5], the singular values decomposition, the singular values decomposition (SVD)
[5] and the usage of haar-like features [22, 49].

In the case of model based methods, there are those methods that analyse random points of
the face, normally generating a model that defines the general structure of the face itself.. In
this type of methods fall the interest points tracking [44] method, which consists on analysing the
optical flow of an expression over a sequence of images, and the geometric deformation features
[18] method, which consists on analysing the geometric deformation of a model fit to the analysed
face with respect to the same model over the normalized face.

2.3 Facial expression recognition

Once obtained he feature vectors for the image or images sequence to analyse, these vectors are
used in a classification method that allows to identify he facial expression. These methods can
be grouped into wo general categories. By one side there ae the frame based methods, which
work over the feature vector of a single image to identify the expression. On the other hand,
the sequence based methods analyse the feature vectors of multiple contiguous frames in order to
take into account the temporal information when identifying the expression. Figure 4 shows a
classification of the existing types of methods for facial expression recognition.

The frame based methods are the simplest kind of methods. These are based in the classifi-
cation of a feature vector obtained from a single frame, and direct methods can be used to classify
the vector, like discriminative neural networks [29, 32, 5] or a direct comparison of the vector with
a prototype vector of the different facial expressions over a previously defined comparison space
[33].

Another group of methods implies the usage of a set of conventional binary classifiers assembled
by means of ECOC [45]. Some usage examples of this type of classifiers for classifying facial
expressions are the SVM and AdaBoost [36, 22, 49].

The sequence based methods, on the other hand, have into account the information of a
set of frames in temporal order, such that information about the expressions evolution over time
is taken into account when performing a classification. This type of methods can be classified into
two general groups.

By one side, it is possible to work over a set of static descriptors, each one of which contains
the information obtained in a single frame. This type of classification methods use techniques like
Dynamic Bayesian Networks (DBN) [48] or the Hidden Markov Models (HMM) [42] in order to
stablish a temporal relation between the frames, calculating the probability of a frame sequence
taking into account the probability of a frame given the previous ones.
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Figure 4: Classification of the facial expression recognition methods for the frame based methods
and the sequence based methods.

By the other side, if the used descriptor implicitly contains the temporal information, like the
deformation of a set of features, the same set of methods used to analyse individual frames can
be used over the new feature set. Some examples of this type of approaches can be seen in [35].

2.4 Multi-modal recognition of emotional states

Facial expression recognition is not the only technique used for the automatic recognition of
emotional states. In face, another very popular technique comes from voice analysis [46, 3],
in which different voice features are analysed over time, normally using probabilistic graphical
models, like the Hidden Markov Models.

Other studies have focused in the analysis of gestures, like the one seen in [6], or the physi-
ological information like the pulse, electrical conductivity of the skin, blood pressure, dilation of
the pupil, etc. Two examples of this approach are [23, 20].

For facial expression analysis, though, the techniques that better complement the available
information are those analysing the 3D information of the face [21, 12, 13] and its thermal images
[26, 2], since these data modalities have a spatial correspondence, as well as a temporal one in case
of sequences. This would allow the data sources to be aligned and better fused the information
modalities in the feature vector.

Even though many of these techniques have been individually studied in depth, it hasn’t been
until recently that multi-modal techniques have been implemented for emotion recognition. The
first ones to be developed, as well as the most obvious, were the ones based on the analysis of
audiovisual material, analysing both facial expressions and voices together [28, 30, 31, 37].

More recently bimodal techniques based in the analysis of facial expressions and gestures have
appeared [11], as well as for the voice and physiological state [24, 19], and multi-modal techniques
that combine the facial expressions and the voice with thermal images [50] or gesture information
[9].

In order to jointly analyse data from multiple modalities, there are different types of techniques,
as it can be seen in the scheme on Figure 5. These are classified into two general groups depending
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Figure 5: Classification of the fusion methods for multi-modal emotion recognition.

on the data being fused at the features level or at the decision level.

Data fusion at the decision level consists on first applying emotion recognition separately
with each data modality, and then giving preference to one of the two results with a rule based
system [28, 30] or with a pondered voting with previously established weights [11, 24, 19, 50, 43].

Feature level fusion consists on directly fusion the modalities at the data analysis stage.
This can be done by means of a direct features concatenation, where a classifier that uses the
most relevant features of each modality along the sequence is built [31, 24, 43], or using prob-
abilistic graphical models like a Dynamic Bayesian Network [37] in order to take into account
the probabilities of each modality in each step of the sequence with relation to the data and the
probabilities in the previous steps. This second group of methods usually obtain a higher mean
correct classification rate.

One of the fields that has not been given much attention is the usage of three-dimensional
information of the face in combination with information of other modalities. One of the reasons
for which these modalities have not been given much attention is that the information they offer
is only useful to increase the precision of the analysis of the facial expression, but does not add
complementary information about the emotional state.

Even though, a system that combines two-dimensional information with its corresponding
three-dimensional information to analyse facial expressions in sequences has been developed . It
has been presented by L. Yin et al. [27] as a validation method of a new database with 2D and
3D information for expression sequences. This method uses a two-dimensional Hidden Markov
Network, with a state for each frame of the sequence. This means that the information of the two
modalities is analysed jointly, and not through a linear combination of classifiers.

3 Development of the methodology

The developed methodology consists on multiple steps, which are illustrated in Figure 6. First
the face detection process is performed with the Viola & Jones face detection algorithm (Section
3.3), since it has been shown in Section 2.1 to be the fastest object detection method. Afterwards,
the same technique is applied for eyes detection inside the face regions, thus reducing the search
space for the location of the eyes centre.

In order to discard the eyes bounding box false positives inside of each face region, first a series
of sanity checks are performed (Section 3.4), afterwards evaluating all possible face configurations
(Section 3.6) and selecting the one maximising the probability given a pair of eyes. The rest of
face configurations are considered as false positives. This false positive filtering approach allows
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Figure 6: General steps of the methodology.

for the Viola & Jones detectors to be relaxed, increasing the detection rate over the True Positives
in exchange of detecting many false positives.

With the eyes bounding boxes detected, it is now possible to recalculate the face bounding box
in order for it to match the required standard, as it is explained in Section 3.8. This is necessary
due to the Viola & Jones technique detecting face symmetries that do not necessarily require the
eyes to be in an exact position inside of the face rectangle, leaving a non-centred framing. With
the eyes bounding boxes located, it is possible to correct this problem.

Once the optimal pair of eyes is selected, the centres of the eyes are located. This is done
by first scaling each eye bounding box to a fixed size and applying a methodology based on the
fast radial symmetry transform (Section 3.5). Finally, the evaluation of the eyes pair centres is
performed by means of the same technique used for face configurations (Section 3.7).

3.1 The Viola and Jones object detector

The Viola & Jones object detector [38] used for the detection of faces and eyes consists on a
cascade classifier that uses Haar-like features. This kind of detectors define a set of features,
which are measured over face candidates and used in a binary cascade classifier in order to decide
if the face candidate belongs to the object or non-object class. This process is performed over a
sliding window that moves through the whole image at different scales.

The sliding window: In order to detect all of the objects inside of an image, with this type of
method all of the possible candidates have to bee analysed. This is performed by using a window
of fixed proportions that is displaced through all possible positions of the image for a wide range
of scales, between a defined minimum and maximum equal to the image size. For each scale and
position of the sliding window, the image segment falling inside of the window is a candidate to
the object being detected.

The Haar-like features: For each candidate a set of real-valued features is subtracted. Each
feature corresponds to the difference between the sum of pixel intensities from the positive and
negative regions of the candidate. The positive and negative regions of a feature are defined by a
mask, as it can be seen in Figure 7. Using rectangular regions and the integral image, the sum
of pixels of a regions can be rapidly calculated by using the values at the extremes of the region,
according to the formula area = imgbr + imgul − imgur − imgbl.

The cascade classifier: In order to speed up the detection process, a cascade classifier is
used, which at each step uses an AdaBoost classifier using a subset of the features. The AdaBoost
classifier is trained in order to discard as many candidate regions as possible without discarding
true positives, such that at each step a set of candidates is discarded. By using this method,
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Figure 7: Example of a set of Haar-like features. The white regions indicate positive regions of
the image, while the black ones are negative regions.

only a small subset of the features needs to be calculated in most cases, discarding most non-face
regions at the first steps of the cascade classifier.

This type of classifier returns a rectangular region of the same proportions as the detection
window, and in the developed methodology is used first for face detection, and then inside the
corresponding regions in order to detect the bounding box for the eyes.

3.2 The fast radial symmetry transform

The fast radial symmetry transform [10] is a technique developed by G. Loy and A. Zelinsky in
2002 that allows for the detection of radial symmetries in images in a fast manner. This algorithm
consists on a series of steps that take into account the gradient direction at each image position,
as well as its intensity, in order to cast a positive vote in the positive direction of the gradient,
and a negative vote in the negative direction, as it is illustrated in Figure 8.

Figure 8: The fast radial symmetry trans-
form algorithm votes positively in the gra-
dient direction (blue), and negatively in
the opposite direction (red).

The specific steps followed by the algorithm are
the following ones:

Step 1: Generate convolutions
The first step of the process is to generate a ver-
tical and an horizontal convolution image. These
images are generated from a mask that performs
a Gaussian smoothing in the direction opposite to
the edge detection direction, and a Laplace trans-
form in the other direction, effectively performing
a vertical/horizontal smoothed edge detection.

Step 2: Calculate intensity map
An intensity map of the gradients is performed,
where for each pixel the vertical and horizontal
convolution intensity are linearly combined to ob-
tain the module of the linear combination. After
calculating this value for each pixel of the image,
this gradient intensity map is normalized.

Step 3: Generate radial symmetry map

Step 1: Create a real-valued matrix of the same dimensions of the original one with all values
set to zero.

Step 2: For each pixel of the original image, the direction of the gradient is obtained by using
the value for that pixel at both convoluted images as vector modules.

Step 3: Following the direction of the gradient, the values on the symmetry map at a distance
equal to the evaluated symmetry radius are voted positively in the positive direction of the
gradient, and negatively at the opposite direction. The value added to these positions is
defined at Equation 1.

The obtained symmetry map represents the level of radial symmetry of each pixel at the
evaluated radius. As seen in Equation 1, the degree of symmetry represented at the position is
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defined by the α parameter, with a higher value representing a higher degree of symmetry. The
kappa parameter, on the other hand, is a constant that has empirically been found to have an
optimal value of 8.0 for a radius value equal or lower than 1, and of 9.9 for higher radius values.

diro = (symmd < symmo)?− 1 : 1

symmd = symmd +
inteo
kappa

·
(
diro
kappa

)α (1)

3.3 Faces and eyes detection

Face detection is a procedure that is performed in multiple steps and is slightly related to the eyes
detection. First, all face candidates in the image are detected by means of a Viola & Jones object
detector, explained in Section 3.1. Then, the same methodology is used in order to detect the
eye candidates inside of the face regions. The eyes bounding boxes detection is performed in the
first place to reduce the execution time in posterior steps of the method, but they are also used
in order to discard faces false positives.

Once the eye candidates bounding boxes are located for a given face, a procedure is performed
in order to detect the best eyes pair, since false positives could have been detected. This procedure
consists on first processing the eye candidates in the following manner:

1. Remove candidates located at the lower half of the face

2. Remove candidates located too close to the face bounding box

3. Classify candidates according to their geometric centre being at the left or right half of the
face

Afterwards, all possible combinations of left and right eye candidates are evaluated, also fol-
lowing a multi-step methodology explained below:

1. For each candidate pair

(a) Discard if eyes too close or far apart
(b) Evaluate face probability given the eyes pair

2. Select pair with the highest score

3. Discard all other candidates

3.4 False positives discarding

Once detected the bounding boxes for the faces and eyes candidates, the next step is to discard the
false positives. This can be done by defining a set of rules that must be fulfilled by the detected
bounding boxes in order to be considered correct, discarding all the others. The pseudo-code for
the methodology followed for discarding false positives is shown in Figure 9.

First, all faces with an intensity heterogeneity lower than a given threshold are discarded.
This discards the false positives corresponding to mostly homogeneous areas that thanks to small
illumination fluctuations fulfil the symmetry criteria required by the Viola & Jones detector. The
rest of true positive candidates are evaluated by using the face configuration defined by the face
candidate and its eyes, which means that first the false positives for the eyes must be discarded.
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for all face ∈ candidates do
if heterogeneity(face.area) < HETEROGENEITY_THRESHOLD then
candidates.remove(face)
continue

end if

eyesLeft← []
eyesRight← []
for all eye ∈ face.eyes do
if eye.centreY > face.centreY then
continue

end if
if eye.centreX < face.centreX then
eyesLeft← eye

else
eyesRight← eye

end if
end for

if |eyesLeft| = 0 and |eyesRight| > 0 then
eyesLeft← eyesRight
eyesLeft.left = eyesRight.right
eyesLeft.right = eyesRight.left

else if |eyesRight| = 0 and |eyesLeft| > 0 then
eyesRight← eyesLeft
eyesRight.left = eyesLeft.right
eyesRight.right = eyesLeft.left

end if

pairs← ∀[left, right]|left ∈ eyesLeft, right ∈ eyesRight
bestPair ← NULL
for all pair ∈ pairs do
dist← eyesDistance(pair.left)
if dist > MIN_DISTANCE and dist < MAX_DISTANCE then
pair.prob← probability(face, pair)
if pair.prob > bestPair.prob then
bestPair ← pair

end if
end if

end for

if bestPair = NULL then
candidates.remove(face)
continue

end if

face.eyes← {bestPair.left, bestPair.right}
end for

Figure 9: Pseudo-code describing the developed methodology for discarding face and eye false
positives and assigning the pair of eyes bounding boxes maximizing the face probability to each
face.
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In order to discard the eyes false positives for a given face, first the eye candidates found at
the lower half of the face bounding box are discarded. Afterwards, the eyes are classified between
left and right eye candidates, and all possible pairs of left and right candidates are evaluated by
using the probability of the face configuration given a pair of eyes. If there are no left or right eye
candidates, the present candidates detected at one side of the face are projected to the other side,
and accepted as candidate eyes as long as the difference in pixel intensities between the original
and the projected eye bounding boxes is lower than a given threshold. Since a face can only have
two eyes, the problem is now reduced to determining which one of the pairs is the best one.

All of the eye pairs for which the distance between the eyes bounding box centres are too close
or too far away are discarded, and the remaining pairs are evaluated by calculating the probability
of the face configuration for a given pair as explained in Section 3.6. The pair of eye candidates
maximizing the face probability is taken as valid, discarding the others. If there is no valid pair
of eyes remaining for the evaluation, the whole face candidate is discarded.

In order to perform the explained procedure, a series of constants defining certain restrictions
imposed to the face and eye candidates have been found. These constants must be empirically
determined, as it is done in Section 6.1, and are the following ones:

• Minimum face intensity heterogeneity

• Minimum eyes pair cross-correlation

• Minimum and maximum intra-ocular distance

3.5 Eyes centre location

In order to locate the eye centres, an approach that uses the fast radial symmetry transform
method explained in Section 3.2 is used. the pseudo-code for the specific algorithm is shown in
Figure 10, with the general steps of the procedure being the following ones:

Step 1: Scaling
The bounding box of the eye is scaled to a fixed size of 100x60 pixels in order to reduce the
computation time and use the same test radii.

Step 2: Radius estimation
The fast radial symmetry transform technique is applied for radii values between a minimum
and a maximum defined in the optimization step at Section 6.1.4. Only the positive gradient
direction is taken into account, and the selected optimal radius is the one that has the highest
symmetry value in any of the image pixels of its symmetry map.

Step 3: Obtention of the symmetry map
The symmetry map for the optimal radius is merged with the symmetry maps for the imme-
diately inferior and superior radii. This compensates for the pixelling of the image and the
imperfection of the circumference due to a perspective distortion.

Step 4: Centre selection
The position of the pixel with the highest symmetry value of the symmetry map is the position
of the eye centre.

Since an image rescaling is performed at the first step of the process, the eye iris has a similar
size in all cases, independently of the original resolution of the image. This allows by one side
to estimate the approximate radius of the iris (between 5 and 10 pixels), and by the other to
estimate the distortion at the iris edge because of pixelated images (about a pixel around the
optimal radius). In this manner, all of the parameters for the algorithm can be determined with
invariance to the processed image. These parameters are empirically determined in Section 6.1,
and are the following ones:
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Require: face 6= ∅
for all eye ∈ face.eyes do
rato← 100/eye.width
eyebb ← scale(eye.boundingbox, ratio)
mask ← binaryMask(eyebb,MASK_THRESHOLD)
symmaps← new Map[RADIUS_MIN .. RADIUS_MAX]

maxrad← {value← 0,map← 0}
for all radius ∈ [RADIUS_MIN .. RADIUS_MAX] do
symmapsradius ← symmetryTransform(eyebb, radius, SYMMETRY_DEGREE)
symmapsradius ← applyMask(symmapsradius,mask)
if max(symmapsradius > maxrad.value) then
maxrad← {value← max(symmapsradius),map← radius}

end if
end for

symmap← new Map
for all radius ∈ [maxrad.map− 1 ..maxrad.map+ 1] do
symmap← symmap+ symmapsradius

end for

[intensity, x, y]← max(symmap)
eye.centre.x← eye.left+ (x− eye.left) · ratio−1

eye.centre.y ← eye.top+ (y − eye.top) · ratio−1

end for

Figure 10: Pseudocode describing the developed methodology for locating the eyes centre by
generating the symmetry maps for a range of test radii, afterwards merging the best one with its
neighbors.

16



Figure 11: Quantile-Quantile plot comparing the distribution of the eyes mean surface samples
with the standard normal distribution.

• Radial symmetry test radii

• Eyes binary mask threshold

• Fast radial symmetry degree

3.6 Face detection probability estimation

In order to estimate the probability of a face being correctly detected, a different method from the
one used to detect them in the first place must be used. This is due to the face and eyes detection
algorithm, which even though it is very efficient computationally, is a binary classification tool
that does not offer a certainty margin for the obtained detections.

The used criterion in order to estimate the probability of the detected face really being a face
is the analysis of a set of features of the eyes bounding box distribution inside of the face bounding
box. More precisely, the three following features have been used:

Relative mean eyes area: This feature describes the mean area of the eyes bounding boxes
for a given face, relative to the area of the face bounding box. Since the bounding boxes for the
detections are always orthogonal with respect to the image, the relation between the face and the
eyes in an image changes with the face inclination.

Relative distance between the eyes: It is the euclidean distance between the centres of
the eyes bounding boxes divided by the width of the face bounding box. This distance is an
estimation of the separation between the eyes that is invariant to the face size.

Relative mean eyes height: It is the distance from the upper part of the face bounding box
to the mean height of the eyes bounding box centres, divided by the height of the face bounding
box. This value indicates where the eyes are located vertically in the face.

These three features fulfil the condition of being invariant in relation to the orientation of
the face, such that the developed statistic cannot suffer from a significant bias in the selected
sample due to a preferred orientation of the faces. Furthermore, all of the features follow a normal
distribution for the vast majority of the samples, as it can be seen in the plots comparing the
normal distribution against the distributions followed by these features by means of a Quantile-
Quantile plot, which can be seen in Figures 11-13.

As it can be seen from the plots, even though the distribution doesn’t strictly follow a normal
distribution, because of the small number of instances of small probability (outside of the two first
quantiles), it does follow a normal distribution for the vast majority of the distribution. For that
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Figure 12: Quantile-Quantile plot comparing the distribution of the intra-ocular distance samples
with the standard normal distribution.

Figure 13: Quantile-Quantile plot comparing the distribution of the eyes mean height samples
with the standard normal distribution.

18



reason, considering that the individual features follow a normal distribution, a three-dimensional
multivariate normal distribution has been generated by using each one of the individual features
as a dimension of the problem.

A multivariate normal distribution is defined as x ∼ Nk(µ, Σ), where µ is a vector of length k
containing the mean for each dimension, and Σ represents the covariance matrix of k ·k dimensions.
In order to estimate the µ and Σ values of the distribution, a sampling of 1000 instances has been
used for which the ground truth is known. The obtained sample means µ can be seen in the
following table:

Mean eyes area 3.834430
Distance between the eyes bounding boxes 0.382549

Mean eyes vertical distance 0.387347

Table 1: Means vector for the faces multivariate normal distribution.

The covariance matrix for that multivariate distribution is the following one:

Feature 1 Feature 2 Feature 3
Feature 1 1.318857 0.004796 0.000298
Feature 2 0.004796 0.001377 -0.000270
Feature 3 0.000298 -0.000270 0.000582

Table 2: Covariance matrix for the faces multivariate normal distribution.

In order to determine the probability of a new instance being a face, the inverse cumulative
probability of that instance is calculated over the multivariate normal distribution. That is, the
probability of a random distribution instance having a feature vector that is as much or less
probable tan the measured ones. While the calculation of the cumulative distribution can be
easily calculated for a simple normal distribution, in multivariate normal distributions the precise
calculation of this value involves the calculation of the integral area bounded by the sigma values
for the given sample value at each dimension, which is a complex calculation that is performed by
approximation.

This process is simplified by comparing the probability density of the evaluated instance against
a set of random samples drawn from the distribution, determining the proportion of them with a
higher probability density than the current one. By generating the random samples and calculating
their probability density when first initializing the random distribution, the inverse cumulative
distribution estimation is reduced to calculating the ratio of samples with a higher values.

3.7 Eyes centre detection probability estimation

In order to estimate the detection probability of the eyes centre, a procedure similar to the one
seen in Section 3.6 for evaluating the faces probability is used. In this case, though, the eyes pair
is evaluated jointly instead of individually. This is due to the fact that while in the case of faces
the internal features of these can be used, for the eyes the available features only make sense when
compared against the same features of the other eye. In this way, the position of one eye centre
inside of its bounding box can be any, but must be approximately the same one the other eye has.

In order to evaluate this correspondence in the positions given an eyes pair, a multivariate
normal distribution over a two-dimensional space, were the used features are the difference in the
vertical displacement and the difference in the horizontal displacement, which are now explained
in more detail:

Vertical displacement difference: It is the difference between the right eye vertical position
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Figure 14: Quantile-Quantile plot comparing the sample distribution of the difference in the
vertical direction of the eyes pair centres against the standard normal distribution.

Figure 15: Quantile-Quantile plot comparing the sample distribution of the difference in the
horizontal direction of the eyes pair centres against the standard normal distribution.

relative to its eye bounding box, and that of the right eye. The position in both cases is normalized
by the height of the corresponding bounding box.

Horizontal displacement difference: It is the difference between the right eye horizontal
position relative to its eye bounding box, and that of the right eye. The position in both cases is
normalized by the width of the corresponding bounding box.

Both features, like in the case of the features used to calculate the faces probability, have been
analysed over a sample of 1000 instances for which the ground truth is known in order to check
that they follow a normal distribution my using the Quantile-Quantile plots, which can be seen
in Figures 14 i 15. The plots show that the distribution of the population sample in both cases
follows a normal distribution except for big sigma values, which means a normality presumption
can be made for the studied features.

The bi-variant normal distribution x ∼ N2(µ, Σ) which is derived of the used population
sample has as mean µ the following values:

Vertical displacement difference -0.019012
Horizontal displacement difference -0.006474

Table 3: Means vector for the eyes multivariate normal distribution.

As for the covariance matrix of the Σ distribution, it takes the following values:
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Feature 1 Feature 2
Feature 1 0.011814 -0.000857
Feature 2 -0.000857 0.005455

Table 4: Covariance matrix for the eyes multivariate normal distribution.

3.8 Face bounding box optimization

While the Viola & Jones object detection algorithm gives an approximate position including the
face itself when performing face detection, the face framing that is required of the algorithm is
much more precise. The standard to be followed is a cropped version of the ISO/IEC 19794-5
standard [8], where the vertical bounds are located at the face sides leaving the ears outside, and
the horizontal bounds are located under the chin and over the eyebrows respectively. This type
of framing is illustrated in Figure 16.

Figure 16: Bounds of the face
framing to be detected by the
algorithm.

The reason why the bounding box given by the Viola & Jones
algorithm is just an approximation is that the algorithm works
by detecting symmetries and asymmetries between regions, which
yields imprecise detections. Also, the final detections are made
by averaging multiple spatially close detections into a single one,
which means the final bounding box is skewed in the direction
where more detections are found, which is a problem when faces
are not completely frontal.

In order to solve this, the positions of the eyes bounding box
centres (not the eye centres themselves) are used in order to re-
calculate the bounding box. This can be done because of the eyes
always maintaining a relation between their separation and the
face width, and a precise vertical position. These proportions are
empirically estimated from averaging the true proportions of the
1000 images dataset. The proportions found with this method are
the following ones:

• Face width to eyes separation (2.11) - Factor describing the distance between the face
left and right bounds relative to the distance between the eyes.

• Face height to eyes separation (2.12) - Factor describing the distance between the face
upper and lower bounds relative to the distance between the eyes.

• Eyes mean height to eyes separation (-0.53) - Factor describing the distance from the
face upper bound to the mean eyes vertical position relative to the distance between the
eyes.

3.9 Error handling

Another factor to take into account when designing the library is the management of special cases,
where the image either is invalid or no results are found on it. In order to manage these cases, a
series of checks are performed in different points of the methodology. The following list explains
the cases and the detection procedure followed to determine them:

• No error occurred - If no error is found, that is, the image is bigger than the minimal size
and one or more faces have been detected and accepted, no error is thrown.
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Figure 17: Use cases diagram for the developed library.

• Image is too small - This error occurs when the provided image is too small for the method-
ology to detect any face, even at the maximum possible resolution. This error is detected
and thrown at the beginning of the algorithm by checking the original image size.

• No faces found - This error occurs when the Viola & Jones cascade classifier for the faces
doesn’t detect any face candidate. This type of error is checked after applying the face
detection cascade classifier, and before detecting the eye candidates and discarding the false
positives.

• No eyes found - This error occurs when no valid eye candidates are found, although there
have been face candidates detected. This type of error is checked after performing face and
eyes candidates detection and discarding the false positives, throwing the error if all face
candidates are discarded.

4 Library design

In this chapter, a design for the library is developed based on the general methodology, specific
techniques and modelled distributions seen during the development phase of the methodology
in Section 3. The library design is realized by using the Unified Modelling Language (UML),
first defining the general use cases the library must implement, and afterwards a class design to
implement these use cases and the sequence diagrams specifying the execution flow of these use
cases over the classes design.

4.1 Use cases

The use cases taken into account for the library design are the ones shown in the use cases diagram
of Figure 17. As it can be seen, four use cases are taken into account, all of them interfacing with
the host application.

The set parameters use case: Sets the values for the methodology parameters. While a
set of experimentally chosen parameters are used by default, these can be modified in order to
fine-tune the methodology to specific ethnicities, ages rank or sex.

The process image use case: Processes a given input image, detecting and scoring all of
the faces and their corresponding eye centres. It also performs a small set of checks on the image
in order to determine its validity, and returns the corresponding error code if required.

The free results use case: Frees a provided results structure previously obtained from the
process image use case.

The get error string use case: Returns a string describing the error code obtained on the
last usage of the process image use case. If no error occurred, a string stating so is returned.

22



Figure 18: Classes diagram for the developed library.

4.2 Classes design

The developed library is internally structured by using object-oriented programming by following
the scheme described in Figure 18, and uses an interface that creates a new instance of the
Faceanalyser class in order to communicate with external applications. This type of structure
allows for an easy reuse of the library source code in environments other than as an external
library by removing the library interface and directly creating instances of the main class, and
also allows for an easy parallelization of the library, since each Faceanalyser object creates its
own collection of objects for the rest of classes it uses, not sharing any dynamic memory between
instances.

The library classes structure is divided between a main class Faceanalyser, that implements
the library calls, the FaFace class, implementing the principal methods for both face detection and
eyes centre location, the FaConfiguration class, which serves as a storage for the different param-
eters, the FaScore function, which scores the probabilities for both the faces and eye centres, and
the RadialSymmetry and MultivariateNormal classes, which implement the fast radial symmetry
transform and the multivariate normal distribution methods respectively. These classes and their
main methods are explained in detail in this section.

Faceanalyser class

This class implements the main methods of the library interface, and by instantiating it, their
associated FaFace and FaConfiguration objects are instantiated and assigned to itself. When
the library is loaded, a new Faceanalyser object is created, and all of the interface functions are
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pointed to their corresponding Faceanalyser instance methods.

findFace(image, width, height, faces): errorCode

This method implements the main library call, in charge of detecting the faces and eye centres
inside of image with size width · height. A pointer to a structure containing the detected compo-
nents is stored inside the faces parameter, with the function returning zero when successful, and
the corresponding error code if not.

freeResult(faces: **Cares)

This method is in charge of freeing the memory of the previously allocated structure containing
the information on the detected faces, which was generated by the findFace method.

obtainErrorString(): errorString

This method returns an explanatory string for the error code obtained from the last call to
the findFace method. In there was no error, a string stating so is returned.

setParameters(heteFace, heteEyes, minRad, maxRad, thrMask, minDist, maxDist, symAlpha)

This method sets the methodology parameters for both face detection and eyes centre loca-
tion by calling the required setters of the FaConfiguration object associated to this Faceanalyser
instance.

FaFace class

This class implements the general methodology for face and eyes detection with False Positives
discarding, as well as the binary mask generation itself. The specific algorithms for the face and
eyes bounding box detections as well as the algorithm for the eyes centre location, though, are
found in other classes used by this one.

FaFace(parent, image)

This method corresponds to the class constructor, and its main function is to first store the
parent class, which is the Faceanalyser object passed as parameter and is used to access the
methodology configuration, and to then perform the face detection and eyes centre location pro-
cedure.

getNumFaces(): numFaces

This method returns the number of faces detected on the image.

getFaces(): faces

This method returns a vector of Cara structures containing the information on the faces
detected over the image.

detectFaces(classifier): foundSomething

This method applies the classifier haar-like cascade classifier to the image, storing the detected
face bounding box candidates into the object attributes along with the number of detected faces.
It returns a boolean value indicating if any face has been found.
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detectEyes(classifier, face): foundSomething

This method applies the classifier haar-like cascade classifier to the image region corresponding
to the face passed by parameter. It stores the detected eyes bounding box candidates inside of the
face structure that was passed by parameter, and returns a boolean indicating if any candidate
has been found.

detectEyeCentre(eye): centre

This method is in charge of detecting the eye centre inside the bounding box of the eye passed
by parameter. It does so by first determining the optimal eye radius and merging the neighbouring
symmetry maps, as explained in Section 3.5. The fast radial symmetry transform algorithm is
called from this function by creating a temporal object of the RadialSymmetry class. It returns
the point coordinates of the detected eye centre.

getEyesPair(face, eyes, ret): foundPair

This method evaluates all accepted individual eyes by first discarding the ones found at the
lower half of the face, and then evaluating all pairs of left and right eye candidates by following
the criteria described in Section 3.4. The best pair, if any valid pair is found, is stored at the ret
vector that was passed by parameter. The return value is a boolean indicating if a valid pair has
been found.

createBinaryMask(image, width, height, threshold, mask)

This method creates a binary mask that is to be applied to the symmetry map when looking
for the centre of an eye. The mask is created for the provided image image, with all intensity
values under threshold being considered as positive mask values (for the normalized image). The
resulting mask is stored at the mask buffer passed by parameter.

FaConfiguration class

This class stores the values for the different parameters used by the algorithm. A pre-defined
set of experimentally chosen values are used to initialize the parameters, although these can be
changed through a series of class methods. The methods for modifying these values, as well as
the values set by each one, are the following ones:

• setMinFaceHeterogeneity(value) - sets the minimum face heterogeneity value.

• setMinEyesCrossCorrelation(value) - sets the minimum value for an eyes pair cross-correlation.

• setEyeRadii(min, max) - sets the minimum and maximum test radii when determining the
optimal eye radius.

• setMaskThreshold(value) - sets the intensity threshold for generating the binary mask for
eye centre location.

• setEyesDistance(min,max) - sets the minimum and maximum intra-ocular distance when
selecting eye candidate pairs.

• setSymmetryParam(value) - sets the symmetry degree for the fast radial symmetry transform
method.
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FaScore class

The FaScore class is the one in charge of scoring both the faces and pair of eye centres, and it
does so by making use of the MultivariateNormal class, which it instantiates into two objects for
the faces multivariate normal distribution and the eyes one. The parameters used for the two
distributions are the ones previously determined experimentally in Section 3.6 for the eyes, and
in Section 3.7 for the eyes pair centres.

scoreDetectionProbabilities(face)

This method evaluates the probabilities of both the face and eyes pair centres for the attributes
of the face passed by argument by calling the scoreFaceDetection and scoreEyesDetection methods.
The results are stored inside of the face structure.

scoreFaceDetection(face, eyeLeft, eyeRight)

This method evaluates the probability of the face by taking into account the configuration
conformed by the face and eyes bounding boxes. In order to do so, it measures the parame-
ters previously selected in Section 3.6 and calculates the inverse cumulative probability of them
belonging to the multivariate normal distribution.

scoreEyesDetection(eyeLeft, eyeRight)

This method evaluates the probability of the eyes pair centres by measuring the parameters
previously selected in 3.7 and calculating the inverse cumulative probability of them belonging to
the bivariate normal distribution.

RadialSymmetry class

This class implements the fast radial symmetry transform algorithm, as well as some smaller algo-
rithms that are required for it to work. The class is structured such that each instantiated object
corresponds to the processing of a specific image, being able to perform multiple executions for
different values of the transform parameters over the same image. By not allowing the processing
of different images inside the same transform, the common steps of the algorithm can be recycled,
only calculating them once at the object constructor.

RadialSymmetry(image, width, height)

This method corresponds to the class constructor, and is in charge of storing the image to be
processed and generating its vertical and horizontal Laplacian convolution, as well as the map of
gradient intensities.

∼RadialSymmetry(image, width, height)

this method corresponds to the class destructor, and is in charge of freeing the memory for
the map of gradient intensities and vertical and horizontal Laplacian convolutions, which were
allocated by the constructor.

applyTransform(rad, alpha, beta, ret)

This method implements the fast radial symmetry transform. When called, it applies the
transform over the image assigned to the object by using the symmetry degree value alpha passed
by parameter. The result is stored to the buffer of the same size of the original image ret, which
is passed by parameter.

26



convolute2d(image, width, height, direction, ret)

This method applies a transform over the provided image by applying a squared 5-by-5 matrix
that performs a Laplacian transform over the direction specified by the parameter direction, and
performs a Gaussian smoothing in the orthogonal direction. The resulting transformed image is
stored in the ret buffer, which is passed by parameter and is of the same size of the image.

normalizeMatrix(matrix, nPos, ret)

This method performs a normalization over the input matrix matrix whith nPos positions
inside the array. The normalized matrix is stored inside the ret buffer of the same size of the
original matrix.

MultivariateNormal class

This class implements a multivariate normal distribution, allowing for the generation of random
samples following the probability distribution defined by the multivariate normal, as well as to
calculate the Probability Density Function (PDF) and Cumulative Distribution Function (CDF)
for a given instance.

MultivariateNormal(nDims, means, covariances)

This method is the constructor for the class, and its main task is to assign the multivariate
distribution means and covariances, as well as to draw an initial number of random samples from
the distribution and to calculate their probability density. These random samples are used for
calculating the probability density of a sample when required. The higher the number of generated
samples is, the better the cumulative density estimation, with a minimum of 31 samples required
to approximate the distribution. In this implementation, 1000 samples are initially generated.

generateSample(): sample

This method generates and returns a random sample following the probability distribution
defined by the multivariate normal assigned to this class.

getProbabilityDensity(sample): probability

This method returns the probability density of the sample passed by parameter.

getCumulativeDistribution(sample): cumulative

This method returns the cumulative distribution of the sample passed by parameter. In order
to calculate it, the probability density of the sample is obtained, and the proportion of the initially
generated samples having a higher or equal probability density is calculated. This proportion is
returned as the cumulative distribution for that value.

FaCascadeClassifier class

This class is a class specialization that inherits the CascadeClassifier class provided by the OpenCV
library. It is implemented in order to allow the class to be constructed by passing it directly a
string with the contents of the XML classifier, which allows for the storage of the classifiers data
inside of the library source code instead of depending on an external file. Thus, the only method
overwritten by the FaCascadeClassifier class is the constructor.
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4.3 Sequence diagrams

In this the interaction between classes and methods is explained for the different use cases, as well
as for the library initialization. In order to do so, sequence diagrams are used to visualize these
interactions, also describing the general flow of the use case.

4.3.1 Library initialization

The library initialization is the process executed when the library is first loaded by the application.
This initialization consists on setting up the classifiers required in order to detect the face and eyes
bounding boxes, as well as the multivariate normal distributions used to estimate the detection
probabilities.

The sequence diagram shown in Figure 19 describes the execution flow of the library when
initialized. As it is shown, the main task of the initialization process is to create the object
describing the library configuration, to create both the face and eye cascade classifiers and to
create the FaScore instance in charge of estimating the face and eye centres probabilities.

The FaScore instance, when initialized, is in charge of creating both the face and eye centres
multivariate distributions used to estimate the detection probabilities. These distributions are
initialized by using the means vectors and covariances matrices previously determined in Section
3.6 for the faces and in Section 3.7 for the eye centres. The MultivariateNormal instances, in turn,
generate a set of instances for the defined distributions and calculate their probability density
when initialized.

The FaConfiguration instance, which is assigned to the Faceanalyser object representing the
library, is in turn in charge of setting the initial values for the methodology parameters, which
were found experimentally over a dataset of 1000 images.

Finally, the face and eye detectors initialization is performed by loading the XML strings
representing the cascade of AdaBoost classifiers, which are embedded into the library code, into
their corresponding FaCascadeClassifier instances.

4.3.2 Parameters definition

The parameters definition use case is in charge of modifying the values for the methodology
parameters, stored inside of the FaConfgiruation class. This class implements a series of methods
to modify the parameter values when required, which are called from the Faceanalyser class when
setting the methodology parameters. This process is represented in the sequence diagram shown
in Figure 20.

The FaFace instance processing the image, on the other hand, queries this class when it requires
the value of one of these parameters.

4.3.3 Faces and eye centres detection

The faces and eye centres detection use case is in charge of performing the faces detection and eye
centres location tasks, which are the central objectives of the library. The use case takes an image
as input and analyses it, returning an output structure indicating the number of faces detected,
and for each detection, the data on the face and eyes bounding boxes and eye centres, as well as
their corresponding probabilities.

The sequence diagram shown on Figure 21 shows the execution flow for this use case. The
first step of the process is the creation of a worker object of the FaFace class, which is in charge
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Figure 19: Sequence diagram describing the library initialization process.

29



Figure 20: Sequence diagram describing the parameters definition use case.

of performing the detection procedure itself upon initialization. This object first performs face
detection on the image passed through the constructor, which yields a set of candidates faces over
each one of which the eyes are detected. Afterwards, the best eyes pair for each face is determined
by selecting the one maximizing the face probability, which is measured by using the FaScore
instance created during the library initialization.

If a valid eyes pair is found for a given face, the FaFace constructor creates an instance of
the SymmetryTransform class for each eye, which generates the gradient transforms and gradient
intensity maps for the given eye image. Afterwards a series of fast radial symmetry transforms
are executed using this class in order to determine the optimal eye radius for the eye, and the eye
centre is determined from the optimal eye radius symmetry map merged with the neighbouring
symmetry maps. The FaFace objects are destroyed after determining the eye centres.

With the eye centres located for the accepted face detections, the face and eye centres prob-
abilities are estimated by using the FaScore class, which is in charge of measuring the features
for both the face configuration and eye centres, afterwards passing them to their correspond-
ing MultivariateNormal instances in order to calculate the inverse cumulative densities for these
instances.

Once the object initialization finishes, the results can be gathered by calling the two getter
methods of the FaFace class, which return the number of faces detected and the vector containing
the information on these faces.

4.3.4 Results elimination

The results elimination use case is used to free the previously allocated memory region containing
the information on the detected faces, which was obtained through the faces and eye centres
detection use case.

The sequence diagram shown on Figure 22 describes the implementation of the use case, which
is simple and contained inside the Faceanalyser instance representing the library. The process
consists on iterating over the list of face detections contained inside of the results structure and
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Figure 21: Sequence diagram describing the face and eye centres detection use case.
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Figure 22: Sequence diagram describing the results elimination use case.

Figure 23: Sequence diagram describing the error message obtention use case.

freeing the memory regions for these detections individually. Once all of the face structures are
freed, the general results structure is also deleted.

4.3.5 Error message obtention

The error message obtention use case is a simple use case which uses the error code obtained from
the last processed image to select a pre-defined error string. A reference to this error string is
returned by the use case. The sequence diagram for this use case is shown in Figure 23.

5 Experimental methodology

The algorithm is evaluated both in terms of the recognition rate (accuracy) and the temporal cost
evaluated in function of different parameters. In order to assess the accuracy and temporal cost of
the proposed algorithm both for face detection and eye centre location, the 10-fold cross-validation
technique is used over a dataset of 1000 images, selecting the parameters for the method over the
training partitions, and then measuring both accuracies over the test fold.

5.1 The tested dataset

The dataset used to perform the tests consists on a set of 1000 images, which is balanced both
in terms of gender and ethnicity. More precisely, the dataset consists on 200 images for each one
of five major ethnicity groups, with 100 images for each gender and ethnicity. The ethnic groups
taken into account are the following ones:

• European - This group includes the population of Europe, the northern-most part of Africa,
and most of the north American population.

• Middle eastern - This group includes both the population of middle east and part of the
north-east African population.

• Asian - This group includes the various ethnic groups of Asia and the islands connecting
Asia with Australia.
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Figure 24: Sample images of the dataset showing the variability of the images in terms of ethnicity
and gender.

• African - This group includes the population of the central and southern Africa.

• South American - It includes the various ethnicities native to central and southern Amer-
ica.

The goal of using a balanced dataset is to prevent the algorithm from being evaluated over
a non-representative sample of the population. Also, by using a dataset with a big number of
individuals, it is possible to approximate the face detection accuracy binomial distribution, which
measures the face detection ratio, to a normal distribution [17]. The variability of the dataset is
shown qualitatively in Figure 24, where sample images are shown for each ethnicity and gender.

In order to assess the correctness of the results obtained by the algorithm, a ground truth for
the data set is required against which the results can be compared. This ground truth is created
by manually tagging the features to be detected into the images, that is, manually marking the
upper-left and bottom-right corners of the face bounding box and the eye centres for each image.

5.2 Accuracy analysis

The accuracy of the algorithm is measured by using a 10-fold cross-validation procedure, which
allows for the use of the whole dataset both for parameter selection and accuracy measurement
without over-fitting the model.

In order to perform the 10-fold cross-validation, first the dataset is divided into 10 parts, each
one of them with equal number of individuals for each ethnicity and gender. With the dataset
divided into 10 parts, a parameter selection and accuracy validation is performed, where 9 out of
the 10 parts are used for selecting the parameter, and the remaining part is used to validate the
accuracy of the model with the parameters selected at the previous step. This is done 10 times,
at each step using a different part for testing. This procedure is better illustrated in Figure 25.

During the parameter selection step of each fold, the different parameters affecting the algo-
rithm performance are adjusted, either individually or pair-wise with another parameter, when
both parameters are inter-related. All of the parameters affect either the false positives discarding
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Figure 25: Partitions selection for each 10-fold cross-validation fold. At each fold, a different par-
tition is selected as test partition (coloured grey), using the rest for parameter selection (coloured
white).

procedure for the face and eye bounding boxes, or the eye centre detection accuracy.

For the parameters affecting the false positives discarding, the criterion for selecting a value for
a given parameter is to select the parameter value that maximizes the number of true positives,
while at the same time but less importantly minimizes the number of false positives. The rest of
parameters not being optimized are left unused, with no false positive being filtered by them. By
selecting the parameter values in this manner, the overall algorithm false positives are reduced
while keeping all of the true positives. The parameters for filtering false positives are the following
ones:

• Minimum face heterogeneity - Minimum intensity heterogeneity required in order to
consider a face bounding box as valid.

• Maximum eyes pair cross-correlation - Maximum allowed cross-correlation between the
pixel intensities of two eye bounding boxes when extrapolating one of them from the other.

• Allowed intra-ocular distance - Includes both the minimum and maximum allowed dis-
tance between a pair of eyes bounding box centres. Both parameters are selected simulta-
neously through a grid search.

For the parameters affecting the eye centre, the criterion for selecting a given parameter value
is to maximize the area under the curve for the error margin versus accuracy plot. This plot
represents in one dimension the allowed euclidean distance between the detected eye centre and
the ground truth, divided by the face width, and in the other dimension the number of true
positives given the allowed error margin. If a higher percentage of the area falls under the curve,
it means that the overall precision of the method is higher. The parameters affecting the eye
centre detection accuracy are the following ones:

• Radial symmetry test radii - Includes both the minimum and maximum test radius
values to be tested when determining the optimal radius of the iris. These two parameters
must be optimized at the same time through a grid search.

• Eyes binary mask threshold - This threshold defines the intensity value for the normalized
eye bounding box pixels under which the eye centre is to be searched. Any eye bounding
box pixel with a higher value is ignored.

• Fast radial symmetry transform degree - This parameter determines the degree of
symmetry that is forced when applying the fast radial symmetry transform algorithm. A
higher value requires a higher level of symmetry at the given region in order to detect it.

Once the 10-fold cross-validation has determined the optimal parameters for each fold and
obtained the results of processing the images of their corresponding test folds, the results for all
the test folds are put together, resulting in a set of processed test images containing all of the
images of the original dataset. Over this dataset of processed images, the accuracy is measured
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for both the face detection accuracy and eyes centre detection accuracy, also analysing other
characteristics of the model through the ROC curve and other criteria.

Finally, the algorithm accuracy is compared with the commercial methodology developed by
Neurotechnologies over a different dataset of 266 instances for which the detection results using
the commercial methodology are available.

5.3 Temporal cost analysis

In order to evaluate the temporal cost of the methodology, the same dataset used for the accuracy
assessment is used, with the parameters fixed to the optimal values found when taking into account
the whole dataset for parameter selection, except for the parameters being evaluated. The ex-
perimental set-up to evaluate the temporal cost of processing an image consists on an cc2.8xlarge
Amazon instance with a Windows Server 2012 operating system installed. This configuration
consists on two Intel(R) Xeon(R) CPU E5-2670 CPUs at 2.60GHz, each one consisting on 8 cores
with hyper-threading, which is effectively equivalent to a 32-core machine at 2.60GHz. It also has
60GB of DDR3 memory. Each image is processed 31 times in order to obtain a statistically signif-
icant mean processing time, with the whole workload being divided into 14 independent processes
run simultaneously.

The temporal cost is first evaluated in function of the image surface area, which determines the
search space for the faces, and the minimum face heterogeneity parameter, which determines the
search space for the eyes. These two characteristics, while one being dependant on the data and
the other dependant on the methodology, both directly affect the search spaces for the cascade
classifiers. Afterwards, the temporal cost is evaluated relative to the number of test radii for
the eyes centre location, since it has a direct impact on the number of arithmetic operations to
perform by determining the number of testing symmetry transforms.

6 Experiments

6.1 Parameter selection

In the following subsections, each parameter or set of inter-related parameters is analysed for each
individual fold, selecting its optimal value. In order to do so, either a linear search or a grid search
is performed over a set of test values of the parameters, afterwards selecting the parameter value
that maximizes the rate of true positives. As a second selection criteria, when optimizing the
False Positives filtering parameters, the value minimizing the total number of False Positives is
selected.

6.1.1 Minimum face heterogeneity

The minimum face heterogeneity parameter describes the minimum heterogeneity allowed for the
intensity values of a face candidate bounding box pixels in order to prevent it from being discarded.
This parameter affects the false positive discarding process, and as such must be optimized such
that the number of false positives is a s low as possible without discarding any true positive.

The results from linearly testing a range of values for the parameter are seen in Figure 26,
where it is shown that for all 10 folds the optimal value for the parameter is found at 0.065. Even
though this parameter has only a statistically significant improvement for values of the parameter
over 0.1, it is the lowest value with the best true positive rate.

Appendix A shows the precise True Positive values obtained with a 95% confidence interval,
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Figure 26: Plots representing the True Positives rate and total number of False Positives relative
to the selected value for the minimum face heterogeneity parameter.

Value TP rate FP
Fold 1 0.065 0.9611± 0.9611 26
Fold 2 0.065 0.9644± 0.0062 24
Fold 3 0.065 0.9589± 0.0066 26
Fold 4 0.065 0.9622± 0.0064 26
Fold 5 0.065 0.9589± 0.0066 26
Fold 6 0.065 0.9600± 0.0065 27
Fold 7 0.065 0.9567± 0.0068 27
Fold 8 0.065 0.9600± 0.0065 25
Fold 9 0.065 0.9578± 0.0067 28
Fold 10 0.065 0.9589± 0.0066 26

Table 5: Table showing the selected value for the minimum face heterogeneity parameter at each
fold, with the obtained True Positive rate, its 95% confidence interval and total number of False
Positives for this value.

with the optimal value for each fold highlighted. From this table, the optimal value for the
parameter at each fold, as well as its accuracy and confidence interval can be obtained. These
values are the ones shown at Table 5.

6.1.2 Maximum eyes pair cross-correlation

The maximum eyes pair cross-correlation parameter describes a maximum value threshold for the
eyes bounding box cross-correlation of the pixel intensities when one of the eye bounding boxes
is extrapolated from the other. If the cross-correlation value is below the parameter value, the
extrapolated eye bounding box is accepted as valid, allowing for the face to also be considered
valid. A too high value for the parameter increases the False Positives rate by detecting invalid
eyes, while a value that is too low decreases it by preventing the detection of some eye candidates.

In order to determine the optimal values for the maximum eyes pair cross-correlation param-
eter, a a range of values has been tested in a linear search at each fold. The results of these linear
searches can be seen in Figure 27, where it is shown that in most cases the highest True Posi-
tives value minimizing the number of False Positives is of 0.17, although the confidence intervals
indicate that at the 95% Confidence Interval there is no significant difference in the True Positive
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Figure 27: Plots representing the True Positives rate and total number of False Positives relative
to the selected value for the maximum eyes pair cross-correlation parameter.

Value TP rate FP
Fold 1 0.110 0.9678± 0.0059 42
Fold 2 0.170 0.9711± 0.0056 46
Fold 3 0.170 0.9656± 0.0061 47
Fold 4 0.170 0.9689± 0.0058 48
Fold 5 0.170 0.9667± 0.0060 49
Fold 6 0.170 0.9678± 0.0059 46
Fold 7 0.170 0.9644± 0.0062 49
Fold 8 0.170 0.9656± 0.0061 45
Fold 9 0.170 0.9656± 0.0061 52
Fold 10 0.170 0.9667± 0.0060 45

Table 6: Table showing the selected value for the maximum eyes pair cross-correlation parameter
at each fold, with the obtained True Positive rate, its 95% confidence interval and total number
of False Positives for this value.

values for the explored range.

Appendix B shows the precise True Positive rate obtained with a 95% confidence interval, for
each parameter value at each fold. From this table, the optimal value for the parameter at each
fold, as well as its accuracy and confidence interval can be obtained. These values are the ones
shown at Table 6.

6.1.3 Allowed distance between eyes

The allowed distance between eyes is a set of two parameters defining the minimum and maximum
distances allowed between the eyes bounding box centres. Since both parameters play a role in
the process of discarding eye pairs candidates, and in many cases there are multiple pairs to select
even if some valid ones are discarded, these parameters must be optimized at the same time.

A grid search is used in order to optimize both parameters, where one dimension of the search
corresponds to the minimum distance, and the other to the maximum. Figure 28 shows the
results of the grid search over the 10 folds. Each pair of grid plots represents the True Positive
rates and number of False Positives for a given fold, with the colour representing the TP/FP value
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Figure 28: True Positives rate and total number of False Positives surfaces for the minimum and
maximum distance between eyes, for each fold.

Min. Value Max. Value TP rate FP
Fold 1 0.29 0.50 0.9656± 0.0061 26
Fold 2 0.29 0.50 0.9678± 0.0059 24
Fold 3 0.29 0.50 0.9622± 0.0064 26
Fold 4 0.29 0.51 0.9667± 0.0060 24
Fold 5 0.29 0.50 0.9633± 0.0063 26
Fold 6 0.29 0.50 0.9644± 0.0062 26
Fold 7 0.29 0.50 0.9611± 0.0064 27
Fold 8 0.29 0.50 0.9633± 0.0063 25
Fold 9 0.29 0.50 0.9622± 0.0064 28
Fold 10 0.29 0.50 0.9633± 0.0063 26

Table 7: Table showing the selected values for the intra-ocular distance minimum and maximum
values at each fold, with the obtained True Positive rate, its 95% confidence interval and total
number of False Positives for these values.

at each point of the grid. It can be seen that the optimal True Positives rate value minimizing
the number of False Positives is found in most cases for a minimum intra-ocular distance of 0.29
and a maximum intra-ocular distance of 0.5.

Appendix C shows the precise True Positive rate obtained with a 95% confidence interval, for
each set of parameter values at each fold. From these tables, the optimal values for the parameters
at each fold, as well as its accuracies and confidence intervals can be obtained. These values are
the ones shown at Table 7.

6.1.4 Radial symmetry test radii

The radial symmetry test radii parameters are a set of two parameters defining the lower and
upper bound for the test radii to take into account when looking for the optimal radius of the
iris to use when detecting the eye centre. The selection of a good range of test radii is critical
for locating the eyes centre, since testing values that are too small or too big could mean that
symmetries other than that of the iris could be detected, locating the eye centre in the wrong
place.

38



Figure 29: True Positives rate surfaces for the minimum and maximum test radii over the radial
symmetry method, for each fold.

Min. Radus Max. Radius TP rate
Fold 1 12 21 0.97628± 0.00079
Fold 2 10 21 0.97624± 0.00080
Fold 3 12 21 0.97630± 0.00080
Fold 4 12 20 0.97605± 0.00080
Fold 5 11 21 0.97651± 0.00079
Fold 6 12 21 0.97652± 0.00080
Fold 7 11 21 0.97632± 0.00080
Fold 8 12 21 0.97614± 0.00081
Fold 9 12 21 0.97629± 0.00081
Fold 10 12 21 0.97600± 0.00082

Table 8: Table showing the selected values for the radial symmetry test radii minimum and
maximum test radius at each fold, with the obtained True Positive rate and its 95% confidence
interval for these values.

In order to determine the optimal minimum and maximum test radii, a grid search is performed
testing the accuracy for both parameters at the same time. These parameters must be optimized
jointly, since the detection of high symmetry values for small radius values could discard other
symmetry values detected at the higher end of the test radius values, and the same could happen
in the opposite direction. Figure 29 shows the grid search results by using a True Positive rates
surface for each fold, showing that the True Positives rate increases the closer both values are
to a minimum test radius between 0.13 and 0.14, and a maximum test radius between 0.20 and
0.21. This indicates that a wider range of test radii is not necessarily better, existing an optimal
exploration range.

The precise True Positive values within a 95% Confidence Interval are shown in Appendix D
for each fold and pair of tested parameter values. These results are summarized in Table 8, where
the best parameter values for the minimum/maximum test radius are shown, along with its True
Positives rate within a 95% Confidence Interval.

6.1.5 Eyes binary mask threshold

The binary mask threshold defines the intensity value of the eye bounding box with normalized
intensities for which all intensity values of the bounding box under this value are marked as
positive for the binary mask. This parameter influences the region of the eye bounding box to be
considered when looking for the eye centre.

In order to determine the optimal value for the parameter, a linear search is performed for a
range of value candidates. The results from this search are shown in Figure 30. From this figure,
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Figure 30: Area under the curve for the error margin versus True Positives rate plot with a 95%
confidence interval, relative to the eyes binary mask threshold, for each fold.

Value TP rate
Fold 1 0.260 0.9761± 0.0008
Fold 2 0.260 0.9759± 0.0008
Fold 3 0.260 0.9760± 0.0008
Fold 4 0.260 0.9758± 0.0008
Fold 5 0.280 0.9758± 0.0008
Fold 6 0.260 0.9760± 0.0008
Fold 7 0.260 0.9757± 0.0008
Fold 8 0.260 0.9758± 0.0008
Fold 9 0.260 0.9759± 0.0008
Fold 10 0.260 0.9755± 0.0008

Table 9: Table showing the selected value for the eyes binary mask threshold parameter at each
fold, with the obtained True Positive rate and its 95% confidence interval for this value.

it can be seen that the optimal eyes binary mask threshold is found for a value between 0.24 and
0.28 depending on the fold, although the optimal value improvement is not significant within the
95% confidence interval.

The precise values for each fold, as well as its confidence interval, are shown on Appendix
E, where the table shows the accuracy within a 95% confidence interval for each parameter test
value and fold, highlighting the best accuracy value for each fold. The selected values for each
fold, along with its True Positives rate within a 95% confidence interval and the number of False
Positives are shown in Table 9.

6.1.6 Fast radial symmetry degree

The fast radial symmetry degree parameter defines the degree of symmetry required in order to
consider that there is a radial symmetry at a given point and for a given radius. The higher
this parameter is, more circular must the analysed component be in order to be detected when
applying the fast radial symmetry transform method. By increasing this parameter value, it is
possible to discard some symmetries not corresponding to the retina, since they have a lower
symmetry degree. A parameter value that is too high might discard the retina altogether.

In order to select a value for this parameter, a linear search is performed for each fold over a
range of test values. The result of the linear search can be seen in Figure 31, where it is shown that
for all folds the optimal value of the parameter can be any value between 1 and 1.75, although the
True Positives rate is significantly better for a 95% confidence interval only compared to values of
the parameter higher or equal than 3.
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Figure 31: Area under the curve for the error margin vs. True Positives rate plot with a 95%
confidence interval, relative to the fast radial symmetry degree parameter, for each fold.

Value TP rate
Fold 1 1.5 0.9766± 0.0008
Fold 2 1.5 0.9764± 0.0008
Fold 3 1.5 0.9768± 0.0008
Fold 4 1.5 0.9766± 0.0008
Fold 5 1.5 0.9766± 0.0008
Fold 6 1.5 0.9766± 0.0008
Fold 7 1.5 0.9764± 0.0008
Fold 8 1.5 0.9762± 0.0008
Fold 9 1.5 0.9766± 0.0008
Fold 10 1.5 0.9764± 0.0008

Table 10: Table showing the selected value for the fast radial symmetry degree parameter at each
fold, with the obtained True Positive rate and its 95% confidence interval for this value.

The specific values for the True Positives rate within a 95% confidence interval for each pa-
rameter value and fold can be seen in Appendix F. The selected parameter values at each fold,
along with its True Positives rate value within a 95% confidence interval are summarized on Table
10

6.1.7 Selected parameter values

In the previous sections, the optimal values for each parameter and fold have been selected. These
parameters are used in the following sections in order to obtain the final results for all dataset
instances, using the parameters of each fold to evaluate the images on the test partition. Table
11 summarizes the obtained parameter values at each fold.

6.2 Face detection accuracy

This section analyses the obtained accuracies for face detection over the test partitions of each
fold, both individually and by taking into account all of the test partitions together. In order to do
so, the best parameters found in Section 6.1 for each fold are used to evaluate their corresponding
test partitions. Afterwards the results of these evaluations are pooled together in order to use the
whole dataset to evaluate the overall method accuracy. The results of this process are shown in
Table 12.

It can be seen that while for the different folds the mean accuracy varies in widely and the
confidence intervals allow for variations of around a two percent, when taking into account the
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minFH maxECC minDE maxDE minRSR maxRSR thrEBM radSD
Fold 1 0.065 0.11 0.29 0.50 12 21 0.26 1.5
Fold 2 0.065 0.17 0.29 0.50 10 21 0.26 1.5
Fold 3 0.065 0.17 0.29 0.50 12 21 0.26 1.5
Fold 4 0.065 0.17 0.29 0.51 12 20 0.26 1.5
Fold 5 0.065 0.17 0.29 0.50 11 21 0.28 1.5
Fold 6 0.065 0.17 0.29 0.50 12 21 0.26 1.5
Fold 7 0.065 0.17 0.29 0.50 11 21 0.26 1.5
Fold 8 0.065 0.17 0.29 0.50 12 21 0.26 1.5
Fold 9 0.065 0.17 0.29 0.50 12 21 0.26 1.5
Fold 10 0.065 0.17 0.29 0.50 12 21 0.26 1.5

Table 11: Table showing the selected values for the different parameters of the developed method-
ology at each fold. The parameters are minimum face heterogeneity (minFH), maximum eyes pair
cross-correlation (maxECC), min/max allowed distance between eyes (minDE, maxDE), min/max
radial symmetry test radii (minRSR, maxRSR), eyes binary mask threshold (thrEBM) and fast
radial symmetry degree (radSD).

TP rate FP
Fold 1 0.9500± 0.0218 3
Fold 2 0.9100± 0.0286 7
Fold 3 0.9700± 0.0171 3
Fold 4 0.9400± 0.0237 4
Fold 5 0.9700± 0.0171 4
Fold 6 0.9600± 0.0196 4
Fold 7 0.9900± 0.0099 1
Fold 8 0.9700± 0.0171 6
Fold 9 0.9800± 0.0140 1
Fold 10 0.9700± 0.0171 5

0.9610± 0.0061 38

Table 12: Table showing the True Positives rate within a 95% Confidence Interval and number of
False Positives over the test partition of each fold and the overall values for the combination of
the results at each test partition.
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Men Women Both
European 1.0000± 0.0000 0.9800± 0.0140 0.9900± 0.0070
Middle eastern 0.9700± 0.0171 0.9400± 0.0237 0.9550± 0.0147
Asian 0.9900± 0.0099 0.9700± 0.0171 0.9800± 0.0099
African 0.9200± 0.0271 0.8800± 0.0325 0.9000± 0.0212
South American 0.9700± 0.0171 0.9900± 0.0099 0.9800± 0.0099

0.9700± 0.0076 0.9520± 0.0096

Table 13: Test accuracies using all of the test partitions for each ethnicity and gender.

(a) Faces error margin vs. accuracy (b) Eyes error margin vs. accuracy

Figure 32: Recall relative to error margin for both face detection (left) and eyes centre location
(right).

instances of all test partitions together the algorithm achieves a mean accuracy of 0.9610± 0.0061
at the 95% Confidence Interval. Also, over the dataset of 1000 images only 38 False Positives
have been found. In Section 6.4 these False Positives are evaluated in more detail by taking into
account the probability assigned to them compared to that of the True Positives.

When using the test partitions of all folds to analyse the accuracies at the ethnicity and
gender level, as it is shown in Table 13, differences appear. At the gender level, the accuracy
of the system is slightly higher in the case of men, with a 97% compared to the 95.2% accuracy
in the case of women, difference that is statistically significant. In the case of ethnicities, while
the European, Asian and south American detection accuracies are similar, with no statistically
significant differences at the 95% Confidence Interval, the middle eastern and African detection
accuracies are much lower with a 95% and 90% detection accuracy respectively. These accuracies
are much lower specially in the case of women, due to the common use of kerchiefs in the case
of middle eastern women, and because of a low colour variability in the face intensities for both
African men and women.

6.3 Error margin versus Recall

One of the analysed measures in order to assess the accuracy of the method is the error margin
versus recall curve, where the recall (True Positives rate) of the method is evaluated with relation
to the allowed error margin. This type of plot applies both to the face detection and eyes centre
location, and is useful in order to get a better insight into the accuracy of the methodology when
the accuracy itself is not defined by an absolute value, but rather it is defined by a real value. The
curves for both face detection and eyes centre detection are shown in Figure 32.

For the face detection, the used measure for the error margin is one minus the proportion of
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area overlap between the ground truth face bounding box and the detected one, which is defined
as overlap = 1− (facegt ∩ facedetected)/(facegt ∪ facedetected).

Figure 32a shows the curve describing the faces detection accuracy relative to the allowed error
margin. From that curve, it can be seen that most faces are found with an error margin between
the 5% and 20%, and that 90% of the ground truth faces are detected with an area mismatch
inferior to the 25%. This amounts to most of the True Positives, since as seen in Section 6.2 the
algorithm accuracy is of the 96.1%.

For the eyes centre detection, the used measure for the error margin is the euclidean distance
between the ground truth eye centre and the detected one divided by the ground truth intra-ocular
distance, that is, distance = dist(gtxe, detectedxe)/gtw. By dividing the euclidean distance to the
ground truth by the face width, the error margin is made invariant to the scale of the face.

Figure 32b shows the curve describing the eye centres detection accuracy relative to the allowed
error margin. In that case, it can be seen that 90% of the ground truth eye centres are located
within an error margin of 4% of the face bounding box width. Another feature that can be seen in
the face is a second steep increase of the accuracy past the 6% error margin. This second increase
corresponds to the detection of other symmetries not corresponding to the eye centre. While
the algorithm detects 92% of the eye centres with high precision, in the other 4% of located eye
centres (of the 96% of face True Positives) the eye centres are completely missed, being detected
somewhere else inside of the eye bounding box.

The algorithm accuracy can be qualitatively evaluated through the examples shown in Figure
33, where processed images for each ethnicity and gender are shown in the two first rows. The
last row shows examples of the most common detection errors made by the algorithm.

In the first case, it is shown that some image regions can be considered faces without corre-
sponding to real face regions. This happens because of the region displaying the same intensity
symmetries used by the Viola & Jones object detector to locate both the face and the eyes. The
second type of error, shown in the second image of the third row, is similar to the first one, but
happens specifically because of the detection of a face in the region corresponding to the chin of
another face. This happens because of the mouth being interpreted as a pair of eyes in some cases.

In the case of the image on the third row and third column, the face is not detected at all
because of the Viola & Jones having problems when the intensity differences between regions
being too low. This happens on faces with a low variation on intensity, and is the reason why the
accuracy of the overall methodology is lower in the case of the African ethnicity.

The last two error types, corresponding to a bad location of the eye centres, both happen
because of the detection of another radial symmetry in a different region of the eye bounding
box. In the first case, the error is due to an excessive inclination of the face, which makes the eye
estimated eye bounding box for the left eye fall slightly outside of the eye centre. This forces the
algorithm to look for other symmetries, in this case taking the shadow of the ocular cavity. In the
second case, the algorithm detects the extreme of the eyebrow instead of the real eye centre.

6.4 Precision versus Recall

The precision versus recall curve, also known as the Receiver Operating Characteristic (ROC)
curve, is a plot that represents the detected True Positive rate (recall) relative to a given False
Positive rate (precision), where the ratios are relative to the total amount of true/false positives
detected (not the ground truth). This type of plot displays a linear relation between true/false
positive rates when the true positives are homogeneously distributed across the false positives for
the analysed selection criteria.

The analysis of the ROC curve can only be applied to the detection of faces, since there are
no false positives for the eyes given the true faces, only a certain error margin. Figure 34 shows
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Figure 33: Sample processed images of the dataset showing the variability of the images in terms
of ethnicity and gender, as well as the most common detection errors.

the ROC curve for the faces, where the threshing value used to determine the true/false positive
ratios is the face probability, considering all true/false positive faces above a given probability
value.

The relation that is found through the ROC curve shows that the relation between True
Positives and False Positives is not linear, with many True Positives being found for the False
Positives with higher probability of being faces. Up to 90% of True Positives can be found taking
into account less than 50% of False Positives, which means that while there is a small number of
false positives that are not directly discarded by the methodology, these tend to have a smaller
probability assigned, being more easily discarded by the algorithm.

6.5 Comparison with other solutions

In this section a comparison is performed between the developed methodology and the off-the-
shelf solution proposed by Neurotechnologies. In order to perform this comparison, an independent
dataset of 266 images is used, adjusting the parameters of the Faceanalyser methodology by using
the dataset of 1000 images to perform the same grid search procedure followed in Section 6.1 but
without using 10-fold cross-validation. By using an independent dataset for parameter selection
and the new dataset for testing both methodologies, over-fitting of the developed methodology is
prevented. The optimal parameters found are shown in Table 14.

Figure 35 shows the comparison between both solutions in terms of face detection accuracy and
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Figure 34: ROC curve for the face detection using the face probability to threshold the parameters.

Value
Minimum face heterogeneity 0.065
Maximum eyes cross-correlation 0.17
Minimum intra-ocular distance 0.29
Maximum intra-ocular distance 0.50
Minimum eye symmetry test radii 0.12
Maximum eye symmetry test radii 0.21
Eyes binary mask threshold 0.26
Fast radial symmetry degree 1.5

Table 14: Selected parameter values using the full 1000-images dataset in order to compare the
Faceanalyser and Neurotechnologies solutions.
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(a) Faces error margin vs. accuracy (b) Eyes error margin vs. accuracy

Figure 35: Recall relative to the allowed error margin of both the Faceanalyser and Neurotechnolo-
gies solutions for face detection (left) and eyes centre detection (right) within a 95% Confidence
Interval.

eyes detection accuracy. As it can be seen, while the developed method is in average better than
the Neurotechnologies in both cases, in the case of face detection the confidence intervals slightly
overlap for any possible allowed error margin values, which means that at the 95% Confidence
Interval it cannot be told which of both methods is better.

In the case of eye centre location, though, there is no overlap of the Confidence Intervals for
error margin values lower than the 3% of the face width, which covers about 80% of the processed
images in the proposed methodology, and only about the 75% in the case of the Neurotechnologies
solution. The Neurotechnologies solution increases its accuracy relative to the error margin past
this point at a higher pace, although not yielding significantly better results. This illustrates a
characteristic of the developed methodology that was previously seen in Section 6.3, the detected
eye centres are either located with high precision (higher than the commercial solution it is com-
pared against) when correctly detected, or completely missed otherwise because of an alternative
symmetry not corresponding to the eye centre being found.

6.6 Temporal cost

The temporal cost for the methodology is evaluated relative to the image size, which is the main
constraint of the input data affecting the computational cost, and the algorithm parameters mini-
mum face heterogeneity and the test radii range, which both affect the amount of computations to
be performed on an image. The rest of parameters are fixed to the values found when performing
the parameter selection over the whole dataset, which were previously seen in Table 14.

The image size, as it is shown in Figure 36, increases in a linear trend as the surface area of
the image increases, with the temporal cost stabilizing at about 4 seconds. This is due to the fact
that the exploration area for the Viola & Jones object detection models for both the faces and the
eyes have a bigger area to explore, but the radial symmetry algorithm still maintains the same
cost, working over a bounding box region that is rescaled to a fixed size. Past the 8.5 · 105 pixels
mark, the algorithm costs stabilizes because of a downscaling of the image to a maximum width
of 1024 pixels.

Figures 37a and 37b show the mean temporal cost of processing an image relative to the
minimum face heterogeneity and test radii range parameter values. For the minimum face hetero-
geneity parameter, it can be seen that while the temporal cost remains constant until a value of
0.06 is reached, past which it descends linearly. This is due to the fact that past this value face
candidates are being discarded because of a low face heterogeneity, which prevents the algorithm
from further analysing them.
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Figure 36: Mean temporal cost of processing an image relative to the surface area of the image.

(a) For the minimum face heterogeneity. (b) For the test radii range.

Figure 37: Mean temporal cost of the methodology relative to the value of the method parameters
affecting the number of operations to perform.

In the case of the test radii range, which represents the difference between the maximum and
minimum radial symmetry test radii, the cost increases linearly. This result was to expect, since
the eye centre detection is the most costly step of the algorithm, and the number of times the
fast radial symmetry transform technique must be applied is directly proportional to the test radii
range.

When comparing the increases in the mean time taken to process an image in function of
the three analysed parameters, it can be seen that the most significant one is the image size.
This is due to the algorithm having a bigger area to perform face detection, and in consequence a
higher probability of detecting false positives, which must be analysed afterwards before discarding
them.

7 Conclusions

In this work, a methodology has been proposed for face detection and eyes centre location in
still images based on the Viola & Jones object detection and the fast radial symmetry transform
techniques. The method uses specific information on the problem domain in order to increase
the face detection rate and eyes centre location precision without increasing the False Positive
rate. In order to do so, the mentioned techniques have been combined with domain-specific
knowledge to filter out False Positives and increase the eyes centre location precision, allowing
the initial detection process to be relaxed. Also, the domain-specific knowledge has been used to
model multivariate normal distributions that allow for the face and eye centre probabilities to be
estimated.

The proposed method has turned out to be highly accurate both in terms of face detection and
eyes centre location, with a relevant statistical estimation of the detection probabilities for the
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faces that is capable of assessing the validity of the detections under certain circumstances. This
permits the discarding of invalid faces when more than one is detected in a controlled environment,
which is the purpose of the statistic. As such, it has been shown that the probability of a face being
correctly detected can be estimated from the relation of the Viola & Jones bounding boxes for
the face itself and the eyes bounding box, these maintaining a specific relative ratio and position
that is characteristic of the trained detectors and that follows a multivariate normal distribution
in the case of faces.

Also, the usage of a set of constraints in order to filter the face candidates by using the
configuration of the face and eyes bounding boxes has been proven successful in discarding the
False Positives of the face, with only 38 False Positives detected over a set of 1000 images.

With a 96.1% mean accuracy over face detection, the algorithm has also been found to have
a variable accuracy with relation to gender and ethnicity, with an accuracy over the 97% in the
case of Europeans, Asians and South Americans, and low accuracies for Middle Eastern (95.5%)
and African (90%) people. In the case of eyes centre location, the methodology has been found
to have a high precision, detecting more than 90% of the cases with an error margin lower than
the 3% of face width, and all of the eye centres of within a 13% of the face width for the detected
faces.

In terms of temporal cost, the algorithm has been shown to vary linearly with relation to
the image surface area and the minimum face heterogeneity and range of test radii parameters.
Since the two methodology parameters are fixed when deploying the library, and considering the
parameters selected by using the whole 1000-images dataset as the final ones, it can be seen
that the algorithm is expected to take between 1.25 and 5 seconds to process an image, with the
upper bound being at 5 seconds, since the image size is rescaled past a certain size. Also, it has
been found that the most influential parameter is the image size, not the algorithm parameters
themselves. This is due to a bigger area to analyse which implies a higher cost for the Viola &
Jones face detection algorithm, as well as a higher chance of detecting false positives, which must
be analysed before discarding them.

When compared to the solution developed by Neurotechnologies, the proposed methodology
has been shown to have a slightly better, although not statistically significant, face detection
accuracy relative to the allowed error margin. For the eyes centre detection, on the other hand,
the accuracy is much higher and statistically significant for small error margins, which means the
eye centres are located with higher precision.

8 Future work

In this work a methodology for the detection of faces and location of the eye centres in individual
images has been developed, implemented and evaluated which uses the context information of the
images in order to increase the accuracy of more generic methods. This concept could be extended
to the temporal domain, using the context information of video sequences to locate the desired
features more precisely on individual frames.

More precisely, it is possible to create probabilistic models which take into account the detected
features as well as the probabilities assigned to them at each frame to help determine the location
of these features on contiguous frames. Two techniques to consider are Markov chains and Kalman
filters, with both approaches using the information on the detections at the frame level over the
whole sequence in order to correct detection errors at individual frames.
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A Accuracy tables for the face heterogeneity parameter selection

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.040 0.9611± 0.0064 0.9644± 0.0059 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.045 0.9611± 0.0064 0.9644± 0.0062 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.050 0.9611± 0.0064 0.9644± 0.0062 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.055 0.9611± 0.0064 0.9644± 0.0062 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.060 0.9611± 0.0064 0.9644± 0.0062 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.065 0.9611± 0.0064 0.9644± 0.0062 0.9589± 0.0066 0.9622± 0.0064 0.9589± 0.0066
0.070 0.9600± 0.0065 0.9622± 0.0064 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067
0.075 0.9589± 0.0066 0.9600± 0.0065 0.9544± 0.0070 0.9578± 0.0067 0.9556± 0.0069
0.080 0.9578± 0.0067 0.9589± 0.0066 0.9533± 0.0070 0.9567± 0.0068 0.9544± 0.0070
0.085 0.9489± 0.0073 0.9489± 0.0073 0.9433± 0.0077 0.9478± 0.0074 0.9444± 0.0076
0.090 0.9444± 0.0076 0.9433± 0.0077 0.9378± 0.0081 0.9433± 0.0077 0.9400± 0.0079
0.095 0.9322± 0.0084 0.9289± 0.0086 0.9256± 0.0087 0.9289± 0.0086 0.9278± 0.0086
0.100 0.9211± 0.0090 0.9189± 0.0091 0.9122± 0.0094 0.9167± 0.0092 0.9156± 0.0093
0.105 0.9089± 0.0096 0.9078± 0.0096 0.9011± 0.0100 0.9056± 0.0097 0.9067± 0.0097
0.110 0.8833± 0.0107 0.8833± 0.0107 0.8789± 0.0109 0.8822± 0.0107 0.8822± 0.0107
0.115 0.8667± 0.0113 0.8656± 0.0114 0.8667± 0.0113 0.8656± 0.0114 0.8656± 0.0114
0.120 0.8278± 0.0126 0.8289± 0.0126 0.8333± 0.0124 0.8278± 0.0126 0.8289± 0.0126

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
0.040 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.045 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.050 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.055 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.060 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.065 0.9600± 0.0065 0.9567± 0.0068 0.9600± 0.0065 0.9578± 0.0067 0.9589± 0.0066
0.070 0.9578± 0.0067 0.9544± 0.0070 0.9578± 0.0067 0.9556± 0.0069 0.9567± 0.0068
0.075 0.9556± 0.0069 0.9522± 0.0071 0.9556± 0.0069 0.9544± 0.0070 0.9544± 0.0070
0.080 0.9544± 0.0070 0.9511± 0.0072 0.9544± 0.0070 0.9533± 0.0070 0.9544± 0.0070
0.085 0.9478± 0.0074 0.9422± 0.0078 0.9456± 0.0076 0.9444± 0.0076 0.9456± 0.0076
0.090 0.9433± 0.0077 0.9367± 0.0081 0.9411± 0.0078 0.9389± 0.0080 0.9400± 0.0079
0.095 0.9300± 0.0085 0.9244± 0.0088 0.9289± 0.0086 0.9256± 0.0087 0.9267± 0.0087
0.100 0.9167± 0.0092 0.9144± 0.0093 0.9156± 0.0093 0.9144± 0.0093 0.9133± 0.0094
0.105 0.9078± 0.0096 0.9022± 0.0099 0.9033± 0.0099 0.9033± 0.0099 0.9022± 0.0099
0.110 0.8856± 0.0106 0.8756± 0.0110 0.8811± 0.0108 0.8789± 0.0109 0.8778± 0.0109
0.115 0.8678± 0.0113 0.8622± 0.0115 0.8656± 0.0114 0.8611± 0.0115 0.8622± 0.0115
0.120 0.8356± 0.0124 0.8244± 0.0127 0.8311± 0.0125 0.8244± 0.0127 0.8267± 0.0126
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B Accuracy tables for the eyes heterogeneity parameter selection

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.080 0.9667± 0.0060 0.9689± 0.0058 0.9633± 0.0063 0.9667± 0.0060 0.9644± 0.0062
0.090 0.9667± 0.0060 0.9689± 0.0058 0.9633± 0.0063 0.9667± 0.0060 0.9644± 0.0062
0.100 0.9667± 0.0060 0.9689± 0.0058 0.9633± 0.0063 0.9667± 0.0060 0.9644± 0.0062
0.110 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.120 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.130 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.140 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.150 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.160 0.9678± 0.0059 0.9700± 0.0057 0.9644± 0.0062 0.9678± 0.0059 0.9656± 0.0061
0.170 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060
0.180 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060
0.190 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060
0.200 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060
0.210 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060
0.220 0.9678± 0.0059 0.9711± 0.0056 0.9656± 0.0061 0.9689± 0.0058 0.9667± 0.0060

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
0.080 0.9656± 0.0061 0.9622± 0.0064 0.9644± 0.0062 0.9633± 0.0063 0.9644± 0.0062
0.090 0.9656± 0.0061 0.9622± 0.0064 0.9644± 0.0062 0.9633± 0.0063 0.9644± 0.0062
0.100 0.9656± 0.0061 0.9622± 0.0064 0.9644± 0.0062 0.9633± 0.0063 0.9644± 0.0062
0.110 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.120 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.130 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.140 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.150 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.160 0.9667± 0.0060 0.9633± 0.0063 0.9644± 0.0062 0.9644± 0.0062 0.9656± 0.0061
0.170 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
0.180 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
0.190 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
0.200 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
0.210 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
0.220 0.9678± 0.0059 0.9644± 0.0062 0.9656± 0.0061 0.9656± 0.0061 0.9667± 0.0060
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C Accuracy tables for the eyes min/max distance parameters selection

Fold 1
0.480 0.490 0.500 0.510 0.520

0.280 0.9633± 0.0063 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061
0.290 0.9633± 0.0063 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061
0.300 0.9622± 0.0064 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062
0.310 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.320 0.9556± 0.0069 0.9578± 0.0067 0.9578± 0.0067 0.9578± 0.0067 0.9578± 0.0067

Fold 2
0.480 0.490 0.500 0.510 0.520

0.280 0.9656± 0.0061 0.9678± 0.0059 0.9678± 0.0059 0.9678± 0.0059 0.9678± 0.0059
0.290 0.9656± 0.0061 0.9678± 0.0059 0.9678± 0.0059 0.9678± 0.0059 0.9678± 0.0059
0.300 0.9644± 0.0062 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060
0.310 0.9644± 0.0062 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060
0.320 0.9589± 0.0066 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064

Fold 3
0.480 0.490 0.500 0.510 0.520

0.280 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.290 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.300 0.9589± 0.0066 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.310 0.9578± 0.0067 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065
0.320 0.9544± 0.0070 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068

Fold 4
0.480 0.490 0.500 0.510 0.520

0.280 0.9644± 0.0062 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060
0.290 0.9644± 0.0062 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060
0.300 0.9644± 0.0062 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060 0.9667± 0.0060
0.310 0.9633± 0.0063 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061 0.9656± 0.0061
0.320 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064

Fold 5
0.480 0.490 0.500 0.510 0.520

0.280 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.290 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.300 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.310 0.9589± 0.0066 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.320 0.9533± 0.0070 0.9556± 0.0069 0.9556± 0.0069 0.9556± 0.0069 0.9556± 0.0069
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Fold 6
0.480 0.490 0.500 0.510 0.520

0.280 0.9622± 0.0064 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062
0.290 0.9622± 0.0064 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062 0.9644± 0.0062
0.300 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.310 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.320 0.9544± 0.0070 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068

Fold 7
0.480 0.490 0.500 0.510 0.520

0.280 0.9600± 0.0065 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.290 0.9600± 0.0065 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.300 0.9589± 0.0066 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065
0.310 0.9578± 0.0067 0.9589± 0.0066 0.9589± 0.0066 0.9589± 0.0066 0.9589± 0.0066
0.320 0.9522± 0.0071 0.9533± 0.0070 0.9533± 0.0070 0.9533± 0.0070 0.9533± 0.0070

Fold 8
0.480 0.490 0.500 0.510 0.520

0.280 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.290 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.300 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.310 0.9589± 0.0066 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.320 0.9533± 0.0070 0.9556± 0.0069 0.9556± 0.0069 0.9556± 0.0069 0.9556± 0.0069

Fold 9
0.480 0.490 0.500 0.510 0.520

0.280 0.9611± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.290 0.9611± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.300 0.9600± 0.0065 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.310 0.9589± 0.0066 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065 0.9600± 0.0065
0.320 0.9533± 0.0070 0.9544± 0.0070 0.9544± 0.0070 0.9544± 0.0070 0.9544± 0.0070

Fold 10
0.480 0.490 0.500 0.510 0.520

0.280 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.290 0.9611± 0.0064 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063 0.9633± 0.0063
0.300 0.9600± 0.0065 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064 0.9622± 0.0064
0.310 0.9589± 0.0066 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064 0.9611± 0.0064
0.320 0.9544± 0.0070 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068 0.9567± 0.0068
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D Accuracy tables for the eyes symmetry min/max test radii parame-
ters selection

Fold 1
0.160 0.170 0.180 0.190

0.080 0.97255± 0.00092 0.97414± 0.00087 0.97479± 0.00085 0.97511± 0.00084
0.090 0.97266± 0.00091 0.97432± 0.00086 0.97489± 0.00084 0.97526± 0.00083
0.100 0.97294± 0.00090 0.97459± 0.00085 0.97522± 0.00083 0.97555± 0.00082
0.110 0.97321± 0.00089 0.97468± 0.00085 0.97535± 0.00082 0.97579± 0.00081
0.120 0.97391± 0.00085 0.97516± 0.00082 0.97565± 0.00081 0.97589± 0.00080
0.130 0.97403± 0.00085 0.97512± 0.00083 0.97535± 0.00082 0.97567± 0.00081
0.140 0.97399± 0.00086 0.97499± 0.00084 0.97508± 0.00083 0.97530± 0.00084
0.150 0.97452± 0.00085 0.97472± 0.00085 0.97493± 0.00084 0.97518± 0.00084

Fold 1
0.200 0.210 0.220 0.230

0.080 0.97547± 0.00083 0.97582± 0.00082 0.97575± 0.00082 0.97585± 0.00081
0.090 0.97564± 0.00082 0.97596± 0.00081 0.97588± 0.00081 0.97600± 0.00080
0.100 0.97579± 0.00081 0.97606± 0.00080 0.97598± 0.00080 0.97609± 0.00079
0.110 0.97591± 0.00081 0.97615± 0.00080 0.97605± 0.00080 0.97621± 0.00079
0.120 0.97616± 0.00080 0.97628± 0.00079 0.97608± 0.00079 0.97622± 0.00078
0.130 0.97590± 0.00080 0.97589± 0.00080 0.97572± 0.00080 0.97584± 0.00079
0.140 0.97556± 0.00082 0.97567± 0.00081 0.97544± 0.00081 0.97555± 0.00080
0.150 0.97542± 0.00082 0.97547± 0.00081 0.97529± 0.00080 0.97534± 0.00079

Fold 2
0.160 0.170 0.180 0.190

0.080 0.97269± 0.00091 0.97418± 0.00087 0.97481± 0.00086 0.97533± 0.00084
0.090 0.97287± 0.00091 0.97439± 0.00087 0.97494± 0.00085 0.97545± 0.00084
0.100 0.97315± 0.00089 0.97470± 0.00085 0.97524± 0.00084 0.97583± 0.00082
0.110 0.97353± 0.00088 0.97480± 0.00085 0.97549± 0.00082 0.97589± 0.00082
0.120 0.97403± 0.00086 0.97522± 0.00084 0.97560± 0.00082 0.97595± 0.00081
0.130 0.97427± 0.00085 0.97538± 0.00082 0.97539± 0.00083 0.97586± 0.00082
0.140 0.97454± 0.00084 0.97524± 0.00083 0.97534± 0.00084 0.97565± 0.00083
0.150 0.97492± 0.00084 0.97504± 0.00085 0.97498± 0.00085 0.97536± 0.00084

Fold 2
0.200 0.210 0.220 0.230

0.080 0.97559± 0.00083 0.97589± 0.00083 0.97599± 0.00082 0.97598± 0.00081
0.090 0.97576± 0.00082 0.97603± 0.00082 0.97613± 0.00081 0.97613± 0.00080
0.100 0.97592± 0.00082 0.97624± 0.00080 0.97623± 0.00080 0.97622± 0.00080
0.110 0.97594± 0.00081 0.97614± 0.00081 0.97611± 0.00081 0.97616± 0.00080
0.120 0.97600± 0.00082 0.97607± 0.00081 0.97599± 0.00081 0.97602± 0.00081
0.130 0.97589± 0.00082 0.97598± 0.00081 0.97582± 0.00081 0.97582± 0.00081
0.140 0.97565± 0.00083 0.97580± 0.00082 0.97556± 0.00083 0.97554± 0.00082
0.150 0.97548± 0.00083 0.97540± 0.00083 0.97530± 0.00082 0.97526± 0.00081
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Fold 3
0.160 0.170 0.180 0.190

0.080 0.97258± 0.00093 0.97417± 0.00088 0.97481± 0.00086 0.97522± 0.00085
0.090 0.97279± 0.00092 0.97439± 0.00087 0.97495± 0.00085 0.97540± 0.00084
0.100 0.97306± 0.00091 0.97471± 0.00085 0.97532± 0.00084 0.97572± 0.00082
0.110 0.97346± 0.00089 0.97488± 0.00085 0.97559± 0.00082 0.97592± 0.00082
0.120 0.97422± 0.00085 0.97533± 0.00083 0.97579± 0.00082 0.97602± 0.00081
0.130 0.97428± 0.00085 0.97539± 0.00082 0.97544± 0.00083 0.97576± 0.00082
0.140 0.97450± 0.00085 0.97522± 0.00084 0.97524± 0.00084 0.97546± 0.00084
0.150 0.97474± 0.00085 0.97499± 0.00085 0.97516± 0.00085 0.97542± 0.00084

Fold 3
0.200 0.210 0.220 0.230

0.080 0.97562± 0.00083 0.97583± 0.00083 0.97589± 0.00082 0.97592± 0.00082
0.090 0.97581± 0.00082 0.97599± 0.00082 0.97604± 0.00081 0.97608± 0.00081
0.100 0.97600± 0.00082 0.97624± 0.00080 0.97619± 0.00081 0.97622± 0.00080
0.110 0.97615± 0.00081 0.97628± 0.00080 0.97621± 0.00081 0.97630± 0.00080
0.120 0.97624± 0.00081 0.97630± 0.00080 0.97615± 0.00080 0.97622± 0.00080
0.130 0.97593± 0.00081 0.97597± 0.00080 0.97575± 0.00082 0.97581± 0.00081
0.140 0.97574± 0.00083 0.97580± 0.00081 0.97548± 0.00083 0.97552± 0.00082
0.150 0.97565± 0.00082 0.97550± 0.00082 0.97534± 0.00082 0.97536± 0.00080

Fold 4
0.160 0.170 0.180 0.190

0.080 0.97245± 0.00093 0.97389± 0.00088 0.97454± 0.00085 0.97492± 0.00084
0.090 0.97255± 0.00092 0.97400± 0.00087 0.97462± 0.00085 0.97504± 0.00084
0.100 0.97275± 0.00091 0.97427± 0.00086 0.97494± 0.00084 0.97532± 0.00083
0.110 0.97327± 0.00089 0.97457± 0.00085 0.97534± 0.00082 0.97560± 0.00082
0.120 0.97397± 0.00085 0.97516± 0.00083 0.97556± 0.00081 0.97582± 0.00081
0.130 0.97416± 0.00085 0.97523± 0.00081 0.97531± 0.00082 0.97566± 0.00081
0.140 0.97445± 0.00084 0.97511± 0.00083 0.97518± 0.00083 0.97536± 0.00083
0.150 0.97468± 0.00084 0.97487± 0.00084 0.97501± 0.00083 0.97520± 0.00083

Fold 4
0.200 0.210 0.220 0.230

0.080 0.97524± 0.00084 0.97548± 0.00083 0.97559± 0.00082 0.97559± 0.00082
0.090 0.97538± 0.00083 0.97562± 0.00082 0.97572± 0.00081 0.97573± 0.00081
0.100 0.97553± 0.00082 0.97582± 0.00081 0.97581± 0.00081 0.97582± 0.00081
0.110 0.97578± 0.00081 0.97591± 0.00080 0.97588± 0.00081 0.97590± 0.00080
0.120 0.97605± 0.00080 0.97601± 0.00080 0.97590± 0.00080 0.97590± 0.00080
0.130 0.97585± 0.00080 0.97574± 0.00080 0.97557± 0.00081 0.97552± 0.00081
0.140 0.97558± 0.00082 0.97552± 0.00081 0.97529± 0.00082 0.97526± 0.00082
0.150 0.97548± 0.00081 0.97525± 0.00082 0.97508± 0.00081 0.97506± 0.00080
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Fold 5
0.160 0.170 0.180 0.190

0.080 0.97251± 0.00093 0.97407± 0.00087 0.97487± 0.00085 0.97537± 0.00083
0.090 0.97265± 0.00092 0.97424± 0.00087 0.97497± 0.00084 0.97551± 0.00083
0.100 0.97292± 0.00091 0.97454± 0.00085 0.97532± 0.00083 0.97582± 0.00081
0.110 0.97331± 0.00089 0.97469± 0.00085 0.97557± 0.00081 0.97597± 0.00081
0.120 0.97405± 0.00085 0.97520± 0.00083 0.97576± 0.00081 0.97606± 0.00080
0.130 0.97404± 0.00086 0.97512± 0.00082 0.97540± 0.00082 0.97578± 0.00081
0.140 0.97439± 0.00085 0.97507± 0.00084 0.97527± 0.00083 0.97546± 0.00083
0.150 0.97452± 0.00086 0.97485± 0.00085 0.97502± 0.00084 0.97528± 0.00084

Fold 5
0.200 0.210 0.220 0.230

0.080 0.97576± 0.00082 0.97615± 0.00081 0.97615± 0.00081 0.97619± 0.00080
0.090 0.97592± 0.00082 0.97629± 0.00080 0.97629± 0.00080 0.97633± 0.00079
0.100 0.97610± 0.00081 0.97651± 0.00079 0.97640± 0.00079 0.97644± 0.00079
0.110 0.97622± 0.00080 0.97651± 0.00079 0.97638± 0.00079 0.97648± 0.00078
0.120 0.97634± 0.00079 0.97648± 0.00079 0.97631± 0.00079 0.97640± 0.00078
0.130 0.97605± 0.00080 0.97622± 0.00079 0.97599± 0.00080 0.97607± 0.00079
0.140 0.97576± 0.00082 0.97599± 0.00080 0.97574± 0.00081 0.97582± 0.00080
0.150 0.97560± 0.00082 0.97563± 0.00082 0.97544± 0.00082 0.97548± 0.00080

Fold 6
0.160 0.170 0.180 0.190

0.080 0.97255± 0.00093 0.97404± 0.00088 0.97483± 0.00085 0.97531± 0.00084
0.090 0.97269± 0.00093 0.97422± 0.00087 0.97493± 0.00085 0.97545± 0.00084
0.100 0.97302± 0.00091 0.97459± 0.00086 0.97535± 0.00083 0.97577± 0.00082
0.110 0.97353± 0.00088 0.97494± 0.00085 0.97573± 0.00081 0.97605± 0.00081
0.120 0.97411± 0.00086 0.97527± 0.00083 0.97582± 0.00081 0.97604± 0.00081
0.130 0.97425± 0.00086 0.97533± 0.00083 0.97550± 0.00083 0.97574± 0.00082
0.140 0.97450± 0.00085 0.97515± 0.00084 0.97524± 0.00084 0.97556± 0.00084
0.150 0.97471± 0.00086 0.97499± 0.00085 0.97513± 0.00085 0.97545± 0.00083

Fold 6
0.200 0.210 0.220 0.230

0.080 0.97569± 0.00083 0.97603± 0.00082 0.97600± 0.00082 0.97597± 0.00081
0.090 0.97585± 0.00082 0.97616± 0.00081 0.97613± 0.00081 0.97611± 0.00080
0.100 0.97603± 0.00081 0.97639± 0.00080 0.97625± 0.00080 0.97623± 0.00080
0.110 0.97628± 0.00080 0.97651± 0.00079 0.97636± 0.00080 0.97639± 0.00079
0.120 0.97635± 0.00080 0.97652± 0.00080 0.97631± 0.00080 0.97630± 0.00079
0.130 0.97602± 0.00081 0.97616± 0.00080 0.97589± 0.00081 0.97592± 0.00081
0.140 0.97592± 0.00082 0.97598± 0.00081 0.97568± 0.00082 0.97568± 0.00082
0.150 0.97581± 0.00082 0.97569± 0.00082 0.97559± 0.00081 0.97556± 0.00080
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Fold 7
0.160 0.170 0.180 0.190

0.080 0.97229± 0.00094 0.97378± 0.00089 0.97442± 0.00087 0.97501± 0.00085
0.090 0.97248± 0.00093 0.97400± 0.00088 0.97457± 0.00087 0.97519± 0.00085
0.100 0.97277± 0.00092 0.97433± 0.00087 0.97496± 0.00085 0.97555± 0.00083
0.110 0.97315± 0.00090 0.97455± 0.00087 0.97527± 0.00083 0.97572± 0.00083
0.120 0.97371± 0.00087 0.97491± 0.00085 0.97535± 0.00083 0.97570± 0.00082
0.130 0.97384± 0.00087 0.97500± 0.00084 0.97510± 0.00084 0.97555± 0.00083
0.140 0.97408± 0.00086 0.97492± 0.00085 0.97500± 0.00085 0.97531± 0.00085
0.150 0.97440± 0.00086 0.97477± 0.00086 0.97485± 0.00086 0.97518± 0.00084

Fold 7
0.200 0.210 0.220 0.230

0.080 0.97546± 0.00084 0.97581± 0.00083 0.97584± 0.00082 0.97580± 0.00082
0.090 0.97565± 0.00083 0.97598± 0.00082 0.97600± 0.00081 0.97598± 0.00081
0.100 0.97594± 0.00082 0.97630± 0.00080 0.97622± 0.00081 0.97619± 0.00080
0.110 0.97607± 0.00081 0.97632± 0.00080 0.97623± 0.00081 0.97626± 0.00080
0.120 0.97611± 0.00081 0.97628± 0.00081 0.97611± 0.00081 0.97612± 0.00080
0.130 0.97590± 0.00082 0.97603± 0.00080 0.97578± 0.00081 0.97578± 0.00081
0.140 0.97558± 0.00083 0.97573± 0.00081 0.97543± 0.00083 0.97542± 0.00082
0.150 0.97561± 0.00082 0.97559± 0.00082 0.97544± 0.00081 0.97541± 0.00080

Fold 8
0.160 0.170 0.180 0.190

0.080 0.97214± 0.00094 0.97372± 0.00089 0.97455± 0.00087 0.97501± 0.00085
0.090 0.97226± 0.00094 0.97388± 0.00089 0.97462± 0.00086 0.97510± 0.00085
0.100 0.97250± 0.00093 0.97417± 0.00087 0.97495± 0.00085 0.97542± 0.00084
0.110 0.97290± 0.00091 0.97433± 0.00087 0.97522± 0.00083 0.97557± 0.00083
0.120 0.97382± 0.00087 0.97500± 0.00084 0.97554± 0.00082 0.97579± 0.00082
0.130 0.97385± 0.00087 0.97496± 0.00084 0.97511± 0.00084 0.97542± 0.00083
0.140 0.97407± 0.00086 0.97479± 0.00085 0.97490± 0.00085 0.97509± 0.00085
0.150 0.97446± 0.00086 0.97447± 0.00087 0.97465± 0.00086 0.97501± 0.00085

Fold 8
0.200 0.210 0.220 0.230

0.080 0.97532± 0.00085 0.97561± 0.00084 0.97558± 0.00083 0.97555± 0.00083
0.090 0.97546± 0.00084 0.97570± 0.00083 0.97567± 0.00083 0.97564± 0.00082
0.100 0.97566± 0.00083 0.97594± 0.00081 0.97580± 0.00082 0.97577± 0.00082
0.110 0.97581± 0.00082 0.97597± 0.00081 0.97582± 0.00082 0.97584± 0.00082
0.120 0.97607± 0.00081 0.97614± 0.00081 0.97591± 0.00081 0.97591± 0.00081
0.130 0.97569± 0.00082 0.97573± 0.00081 0.97543± 0.00083 0.97541± 0.00082
0.140 0.97536± 0.00084 0.97548± 0.00083 0.97516± 0.00084 0.97509± 0.00083
0.150 0.97531± 0.00083 0.97514± 0.00084 0.97499± 0.00083 0.97496± 0.00082
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Fold 9
0.160 0.170 0.180 0.190

0.080 0.97270± 0.00093 0.97421± 0.00088 0.97476± 0.00086 0.97514± 0.00085
0.090 0.97277± 0.00093 0.97430± 0.00088 0.97482± 0.00086 0.97526± 0.00085
0.100 0.97301± 0.00092 0.97454± 0.00086 0.97513± 0.00085 0.97555± 0.00084
0.110 0.97328± 0.00090 0.97469± 0.00086 0.97547± 0.00083 0.97575± 0.00083
0.120 0.97402± 0.00087 0.97520± 0.00084 0.97571± 0.00082 0.97588± 0.00082
0.130 0.97418± 0.00086 0.97528± 0.00083 0.97539± 0.00083 0.97568± 0.00083
0.140 0.97422± 0.00086 0.97501± 0.00085 0.97505± 0.00085 0.97534± 0.00085
0.150 0.97447± 0.00087 0.97476± 0.00086 0.97489± 0.00086 0.97523± 0.00085

Fold 9
0.200 0.210 0.220 0.230

0.080 0.97543± 0.00084 0.97574± 0.00084 0.97573± 0.00083 0.97572± 0.00083
0.090 0.97556± 0.00084 0.97586± 0.00083 0.97584± 0.00082 0.97584± 0.00082
0.100 0.97572± 0.00083 0.97611± 0.00081 0.97599± 0.00082 0.97598± 0.00081
0.110 0.97596± 0.00082 0.97626± 0.00081 0.97612± 0.00082 0.97613± 0.00081
0.120 0.97611± 0.00082 0.97629± 0.00081 0.97606± 0.00081 0.97609± 0.00081
0.130 0.97591± 0.00082 0.97607± 0.00081 0.97578± 0.00082 0.97582± 0.00081
0.140 0.97562± 0.00084 0.97583± 0.00082 0.97549± 0.00083 0.97551± 0.00082
0.150 0.97550± 0.00083 0.97540± 0.00083 0.97521± 0.00083 0.97522± 0.00081

Fold 10
0.160 0.170 0.180 0.190

0.080 0.97218± 0.00094 0.97364± 0.00089 0.97450± 0.00087 0.97496± 0.00085
0.090 0.97224± 0.00094 0.97374± 0.00089 0.97453± 0.00086 0.97506± 0.00085
0.100 0.97241± 0.00093 0.97401± 0.00088 0.97482± 0.00086 0.97527± 0.00084
0.110 0.97295± 0.00091 0.97431± 0.00087 0.97509± 0.00084 0.97546± 0.00084
0.120 0.97376± 0.00087 0.97488± 0.00085 0.97535± 0.00083 0.97561± 0.00083
0.130 0.97380± 0.00087 0.97488± 0.00084 0.97497± 0.00085 0.97532± 0.00084
0.140 0.97402± 0.00087 0.97466± 0.00086 0.97474± 0.00086 0.97498± 0.00086
0.150 0.97427± 0.00087 0.97456± 0.00087 0.97473± 0.00086 0.97497± 0.00086

Fold 10
0.200 0.210 0.220 0.230

0.080 0.97536± 0.00084 0.97560± 0.00084 0.97560± 0.00083 0.97558± 0.00083
0.090 0.97540± 0.00084 0.97563± 0.00084 0.97563± 0.00083 0.97562± 0.00083
0.100 0.97562± 0.00083 0.97590± 0.00082 0.97579± 0.00083 0.97577± 0.00082
0.110 0.97577± 0.00082 0.97592± 0.00082 0.97582± 0.00082 0.97584± 0.00082
0.120 0.97594± 0.00082 0.97600± 0.00082 0.97581± 0.00082 0.97582± 0.00081
0.130 0.97562± 0.00083 0.97573± 0.00082 0.97551± 0.00083 0.97550± 0.00082
0.140 0.97530± 0.00084 0.97546± 0.00083 0.97519± 0.00084 0.97516± 0.00083
0.150 0.97533± 0.00084 0.97525± 0.00084 0.97510± 0.00083 0.97504± 0.00082
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E Accuracy table for the eyes binary mask threshold parameter selec-
tion

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.160 0.9755± 0.0008 0.9755± 0.0008 0.9756± 0.0008 0.9752± 0.0008 0.9753± 0.0008
0.180 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9754± 0.0008
0.200 0.9757± 0.0008 0.9755± 0.0008 0.9757± 0.0008 0.9754± 0.0008 0.9756± 0.0008
0.220 0.9759± 0.0008 0.9757± 0.0008 0.9759± 0.0008 0.9756± 0.0008 0.9756± 0.0008
0.240 0.9759± 0.0008 0.9758± 0.0008 0.9759± 0.0008 0.9757± 0.0008 0.9757± 0.0008
0.260 0.9761± 0.0008 0.9759± 0.0008 0.9760± 0.0008 0.9758± 0.0008 0.9757± 0.0008
0.280 0.9761± 0.0008 0.9759± 0.0008 0.9760± 0.0008 0.9757± 0.0008 0.9758± 0.0008
0.300 0.9758± 0.0008 0.9758± 0.0008 0.9759± 0.0008 0.9756± 0.0008 0.9757± 0.0008
0.320 0.9757± 0.0008 0.9757± 0.0008 0.9758± 0.0008 0.9755± 0.0008 0.9756± 0.0008

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
0.160 0.9754± 0.0008 0.9751± 0.0008 0.9753± 0.0008 0.9754± 0.0008 0.9749± 0.0008
0.180 0.9755± 0.0008 0.9752± 0.0008 0.9754± 0.0008 0.9754± 0.0008 0.9750± 0.0008
0.200 0.9756± 0.0008 0.9753± 0.0008 0.9755± 0.0008 0.9757± 0.0008 0.9751± 0.0008
0.220 0.9757± 0.0008 0.9755± 0.0008 0.9757± 0.0008 0.9759± 0.0008 0.9754± 0.0008
0.240 0.9758± 0.0008 0.9756± 0.0008 0.9758± 0.0008 0.9759± 0.0008 0.9754± 0.0008
0.260 0.9760± 0.0008 0.9757± 0.0008 0.9758± 0.0008 0.9759± 0.0008 0.9755± 0.0008
0.280 0.9760± 0.0008 0.9756± 0.0008 0.9758± 0.0008 0.9759± 0.0008 0.9755± 0.0008
0.300 0.9759± 0.0008 0.9755± 0.0008 0.9756± 0.0008 0.9758± 0.0008 0.9754± 0.0008
0.320 0.9757± 0.0008 0.9754± 0.0008 0.9754± 0.0008 0.9757± 0.0008 0.9753± 0.0008
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F Accuracy table for the fast radial symmetry degree parameter selec-
tion

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
0.750 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9755± 0.0008
1.000 0.9766± 0.0008 0.9764± 0.0008 0.9768± 0.0008 0.9766± 0.0008 0.9766± 0.0008
1.250 0.9766± 0.0008 0.9764± 0.0008 0.9768± 0.0008 0.9766± 0.0008 0.9766± 0.0008
1.500 0.9766± 0.0008 0.9764± 0.0008 0.9768± 0.0008 0.9766± 0.0008 0.9766± 0.0008
1.750 0.9766± 0.0008 0.9764± 0.0008 0.9768± 0.0008 0.9766± 0.0008 0.9766± 0.0008
2.000 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9755± 0.0008
2.250 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9755± 0.0008
2.500 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9755± 0.0008
2.750 0.9755± 0.0008 0.9754± 0.0008 0.9755± 0.0008 0.9752± 0.0008 0.9755± 0.0008
3.000 0.9735± 0.0009 0.9736± 0.0009 0.9737± 0.0009 0.9734± 0.0009 0.9735± 0.0009

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
0.750 0.9755± 0.0008 0.9752± 0.0008 0.9752± 0.0008 0.9755± 0.0008 0.9751± 0.0008
1.000 0.9766± 0.0008 0.9764± 0.0008 0.9762± 0.0008 0.9766± 0.0008 0.9764± 0.0008
1.250 0.9766± 0.0008 0.9764± 0.0008 0.9762± 0.0008 0.9766± 0.0008 0.9764± 0.0008
1.500 0.9766± 0.0008 0.9764± 0.0008 0.9762± 0.0008 0.9766± 0.0008 0.9764± 0.0008
1.750 0.9766± 0.0008 0.9764± 0.0008 0.9762± 0.0008 0.9766± 0.0008 0.9764± 0.0008
2.000 0.9755± 0.0008 0.9752± 0.0008 0.9752± 0.0008 0.9755± 0.0008 0.9751± 0.0008
2.250 0.9755± 0.0008 0.9752± 0.0008 0.9752± 0.0008 0.9755± 0.0008 0.9751± 0.0008
2.500 0.9755± 0.0008 0.9752± 0.0008 0.9752± 0.0008 0.9755± 0.0008 0.9751± 0.0008
2.750 0.9755± 0.0008 0.9752± 0.0008 0.9752± 0.0008 0.9755± 0.0008 0.9751± 0.0008
3.000 0.9737± 0.0009 0.9733± 0.0009 0.9732± 0.0009 0.9737± 0.0009 0.9731± 0.0009
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