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ABSTRACT

This work presents a Hand Pose Recognition system from 3D pointclouds based on an object recog-
nition approach that can be used in Human Computer Interaction applications. The system works in
real time in a normal laptop. For the description part of the system this work presents a novel 3D
descriptor called Spherical Blurred Shape Model (SBSM) that encodes the shape of an objet through
an spherical decomposition. Our evaluation shows high accuracy in a real test set, and investigates the
effect of the different system parameters.

Keywords: Kinect camera, Depth sensors, Human Computer Interaction, Hand Pose Recogni-
tion, 3D descriptors, real time system
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Chapter 1

Introduction

The human hand is capable of performing multitude of different poses, being able to recognize
thoses poses is very useful for several applications, such as Human Computer Interaction, gestural
communication and robotics.

Traditionally the hand pose recognition problem is addressed using normal cameras that capture 2D
rgb or graylevel images. These approaches usually rely on color information [1] , shape information [2],
or both [3] to segment the hand and describe it. Using 2D images makes the pose estimation a very
changelling problem because of the great variability of hand poses that can have a similar 2D image. In
order to surpass this difficulty it is common to infer 3D information [4] from shading, movement or other
cues, but this greatly increases the computational complexity, making it difficult to allow for a real time
system.

In the present days with the advent of the kinect-like sensors, RGBD images can be obtained with a
resolution of 640x480 pixels at 30 frames per second. These sensors can capture depth images in a range
from 0.8 to 3.5 meters and are more affordable than other kind of technologies with the same features.

With depth data the use of 2D shape descriptors like the Histogram of Oriented Gradients or the
Haar-like filters do not suit the particularities of the 3D information, since they do not encode the spatial
relation that exist between points in the depth axis.

Several 3D descriptors have been presented in the literature. The Feature Point Histogram [5] is
a local descriptor that is used to recognize points conforming a plane, a cilinder or other geometric
primitives. This geometric information is useful when classifying every day objects like cans, glasses or
doors and can be employed in scene analysis. The Fast Point Feature Histogram (FPFH) [6], optimizes
the PFH computation to make it usable in real time 3D registration applications.

Other proposed feature for 3D pointclouds is the set of normals of the surface defined by a given
point and its neighbors [7][8]. The normals can be useful to recognize 3D objects as they encode the
implicit surface that neighboring points define, yet they depend on the density of the underlying points
to give accurate results.
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CHAPTER 1. INTRODUCTION 2

The spherical harmonics [9] can be used to make 3D descriptors invariant to rotation [10] or directly
as features [11].

Conformal factors [12] measure the relative curvature of a vertex given the total curvature. The
result can be viewed as a vector, that is not only invariant to rigid body transformations, but also to
changes in pose (given that the changes in pose do not modified the edge lengths). Yet conformal factors
require vertex computation which can be a problem in frames from kinect-like devices, because they
frecuently present holes that difficult a correct vertex calculation.

A descriptor based on FPFH suitable not only to object recognition but to pose estimation is the
Viewpoint Feature Histogram (VFH) [13], which combines an extended version of FPFH with statistics
between the viewpoint and the surface normals on the object.

Although new descriptors suitable for describing 3D information are appearing, still the research
on 3D point cloud descriptors is an open issue. This work proposes a novel descriptor called Spherical
Blurred Shape Model (SBSM) that is based on [15]. The SBSM is a global descriptor that encodes the
shape of an object with an spherical decomposition.

Our system employs the SBSM descriptor to encode the shape of the hand. We have integrated the
descriptor with a statistical classifier in order to recognize the different hand poses and have obtained a
high recognition rate in our test set.

This Master Thesis has been made in an internship at Oblong, a company that develops futuristic
Human Computer Interaction systems. Oblong has made previous work in hand pose recognition. In
[14] they developed an approach based on an extrema detection followed by a combination of global and
local features and a random forest classifier.

1.1 Objectives

Develop and implement the SBSM pointcloud descriptor and study their properties. Design a Hand
Pose Recognition System using the SBSM descriptor that works in real time and is suitable for Human
Computer Applications. Study the integration of this system into the stack of technologies that Oblong
have and implement an example.

The rest of this report is organized as follows: A complete review of the system that describe the
links between the different parts is discussed in section 2. Each of the system parts are described in
detailed in its own section, the detector 3, the descriptor 4 and the classificator 5. The results of this
work are presented in section 6 and the conclusions in section 7. An appendix with explanations about
the particularities of the Oblong platform is developed in A. We conclude with the bibliography.



Chapter 2

System Overview

We treat the hand pose recognition problem with an object recognition approach, that is, we de-
compose the problem into three subproblems: detection, description and classification. In the detection
stage the hands are extracted from the scene. Then in the description stage the hands are described
to extract meaningful information that can be used to differentiate between poses. Finally the hand is
classified in the different poses that we want to recognize.

This approach is based on the use of a statistical learner, a classifier. A classifier is an algorithm that
can learn to differentiate between input samples based on: annotated samples known as the training set,
in this case we call this a supervised classifier, a measure of similarity between samples but without being
annotated, in this case we call this an unsupervised classifier. Our system uses a supervised classifier
called Support Vector Machine (SVM).

Given that we are going to use supervised learning we need annotated samples to train the classifier.
The set of annotated samples forms a dataset. Part of the dataset is used to train the SVM and is called
the training set. The other part is used to test the performance and is called the test set.

The training and testing procedures are offline methods in the sense that there is no real time
stream of input data to the system but instead is the dataset instances what are used. Once the system
is trained and tested then we will use the trained system in an online schema connected to real time
inputs. Consequently we can divide the system in two parts: the batch pipeline and the real time

Figure 2.1: Batch pipeline (training).
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CHAPTER 2. SYSTEM OVERVIEW 4

Figure 2.2: Hand classes.

pipeline.
The batch pipeline is used to generate a dataset, train the svm, and test the system, as shown in

fig. 2.1. In the batch pipeline first the Kinect sensor captures a frame. We use the Point Cloud Library
(PCL) [16] to capture and process the frames. PCL is an open source C++ library that provides with an
API for pointcloud processing. The PCL have bundled a kinect driver the OpenNI grabber framework,
that we use to obtain 3D pointclouds that have 3D and rgb data. This pointclouds are saved to disk
in pcd format files, which is the standard format when working with pointclouds in PCL. This library
include utilities to save and load those files.

The files are loaded by the Hand extractor module, which is explained in detailed in section 3. The
output of this module is again a pcd file but this time only containing the hand pointclouds and not
the hole scene. After that each of the files are selected for training or test with a certain probability (in
our experiments we set the probability of belonging to training to 0.75). Then the descriptor module
computes a feature vector that is stored in a file in libSVM format. LibSVM [17] is the library that we
use that implement SVMs efficiently.

We have recorded a dataset of 9 classes, 8 of them correspond to the hand poses that appear in fig.
2.2. The other class represent the rest of all the possible inputs. In figure 2.4 we can see an example
of the dataset. We have stored 700 samples per class. Every sample is a hand pointcloud that contains
the coordinates position of every point and its rgb values. The scene pointclouds that the kinect sensor
produce contain 640*480=307200 points. However this number is reduced by the detector. The average
hand pointcloud size in the dataset have 6437 points.

The SVM is trained using libSVM with the training data. The result of that training is a model
file containing the support vectors. With the support vector machine trained, the next thing to do is to
test that training. We use the separated instances that are stored in the test file to obtain an accuracy
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score. The results are presented in section 6.
The real time pipeline is shown in fig. 2.3. The main differences between the batch pipeline and

the real time one is that the real time pipeline does not rely on saving the different outputs in files in
the intermediate steps. Also note that the trained support vectors obtained with the batch pipeline
are employed here for the classification. The last blocks of the pipeline are optional. The visualization
block shows the results in real time, placing a blue sphere in the descriptor position and printing the
name of the class recognized by the SVM. The Oblong gripes block transforms the recognized class in a
format that Oblong applications can understand, and sends it to a pool. The Oblong particularities are
explained in more detail in appendix A.

Figure 2.3: Real time pipeline.

Figure 2.4: Samples from the dataset. One picture per class.



Chapter 3

Detector

The detector module have the task of segmenting the hand from the input pointcloud if it exist.
We designed an heuristic that works well in most situations. When a person is performing gestures the
most common position for the hands is to be in front of the body. We focus only on gestures that are
perpendicular to the viewpoint of the camera, this way the surface that the hand offers to the camera is
maximal, and therefore these gestures are easier to recognize with depth sensors.

Figure 3.1: Detected hand.

The hand detection algorithm is presented in Algorithm 1. The input of the algorithm is a pointcloud
and two thresholds, one in the z component and the other in the distance. A pointcloud in this context
mean a set of three dimensional points, the rgb data is not used. First the nearest point to the camera
is obtained, this point is called the frontpoint. The hand points should have a z component that lies
between the frontpoint z component, and a threshold. If a point is between the frontpoint z component
and a threshold we check the distance from this point to the frontpoint. If this distance is lower than a
threshold we add this point to the Hand pointcloud. In addition we calculate C, the mean point of the

6



CHAPTER 3. DETECTOR 7

Algorithm 1 Detector algorithm
Require: a pointcloud I (with n points), a threshold T , a z threshold TZ.
Ensure: a point cloud H (with m points, m ≤ n), a center point C.
1: smallz ← I

(0)
z

2: for each point α ∈ I do
3: if αz < smallz then
4: smallz ← αz

5: frontpoint← α
6: end if
7: end for
8: zthreshold← smallz + TZ
9: accx← 0, accy ← 0, accz ← 0, pcount← 0

10: for each point b ∈ I do
11: if bz < zthreshold then
12: d←

√
(bx − frontpointx)2 + (by − frontpointy)2 + (bz − frontpointz)2

13: if d < T then
14: Add b to H
15: accx← accx+ bx, accy ← accy + by, accz ← accz + bz
16: pcount← pcount+ 1
17: end if
18: end if
19: end for
20: Cx ← (accx/pcount), Cy ← (accy/pcount), Cz ← (accz/pcount)

Hand pointcloud.
This system is very effective but have some limitations, it can only detect one hand at a time, and

leave the responsability of checking whether the detection is really a hand or not to the subsequent steps.
This works for some applications where the kinect is pointing to a clear area where the only possible
object is a person performing gestures in front of the camera. But fails in other settings where the kinect
is placed in a busy area where non hands objects can appear and disappear.



Chapter 4

SBSM descriptor

We have designed a descriptor called Spherical Blurred Shape Model (SBSM), that is inspired in
[18][15]. The descriptors can be classified in local or global. A local descriptor divides the input in a
series of elements that are encoded using the same algorithm. In contrast global descriptors only have
meaning if applyied to the whole input. SBSM is a global descriptor that describes the shape of an
input 3D pointcloud. The description of the shape is achieved decomposing the input pointcloud in bins
defined by an spherical grid.

By defining a spherical grid around the center of the input cloud, the spatial arrangement of object
parts is shared among the regions defined by concentric spheres and angular sectors. Additionaly we
propose a method to achieve a rotation invariant descriptor by rotating the grid according to the pre-
dominant region density. We divide the description of the algorithm into three main steps: the definition
of the grid, the descriptor computation, and the rotation invariant procedure.

4.1 Grid definition

Given a number of layers Nl, a number of angular divisions Nθ, a radius R, a center point C, and a
3D pointcloud I, a grid G is defined as a division of the sphere of radius R centered in C in spherical
coordinates (see fig. 4.1). The number of layers Nl indicates the divisions in the r component, the
number of angular divisions Nθ indicates the divisions in θ and in ϕ. The result is a series of concentric
spheres with increasing radius and angular subdivisions. For example if we have a grid with 6 layers and
13 angular divisions the result will look like figure 4.2. Note that since θ ∈ [0, π], and ϕ ∈ [0, 2π] the
angular distance between adjacent bins is π

Nθ
in θ and 2π

Nθ
in ϕ.
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Figure 4.1: Spherical coordinates.

Figure 4.2: Spherical grid with 6 layers and 13 angular divisions. The blue sphere represents
the SBSM descriptor. The green spheres represents the bins positions.

4.2 Descriptor Computation

The descriptor procedure is detailed in Algorithm 2. The input cloud I is translated to the center
of the descriptor C. The spherical grid is implicitly defined by a vector of centroids. Each centroid is
calculated in spherical coordinates and stored it in cartesian coordinates. Every point in the input cloud
I, that lies inside the descriptor sphere, is assigned to a bin, incrementing their value. The neighboring
bins of each point are increased by a factor that depend on the distance from the point to their centroids.
This propagates the weights of a bin to its neightbors smoothing the differences between adjacent bins
and making the description tolerant to irregular deformations. Finally the descriptor is normalized
dividing each bin by the number of points n. Regarding the computational complexity, note that, for an
input point cloud I with n points only O(n) operations are required.



CHAPTER 4. SBSM DESCRIPTOR 10

Figure 4.3: SBSM descriptor. The descriptor is represented as a blue sphere. The center of the
descriptor is marked by a red sphere. The bins of the descriptor are shown as green spheres
with a radius proportional to the bins values.

O

(a) Quaternion q1.

O

(b) Quaternion q2.

Figure 4.4: Quaternions calculation. ~T1 and ~T2 are the principal components of the descriptor.

4.3 Rotation invariant descriptor

In order to make the descriptor invariant to rotation we use a second procedure in the SBSM
algorithm. We look for the radial sector T1 that maximizes the sum of the descriptor values. And for
T2 that is the second largest radial sector. These sectors are then taken as a reference for rotating the
descriptor. Given that we are performing a rotation in a three dimensional space, and that we want
the alignment of two spheres, we need two quaternions to store it. This operation can be viewed as the
transformation of three orthogonal vectors that form a basis. We use the principal axis of the descriptor
T1 and the X axis to compute the first quaternion (see fig. 4.4a). Then the secondary axis of the
descriptor T2 is used. The projection of T2 in the Y-Z plane and the Y axis are used to compute the
second quaternion (see fig. 4.4b). The rotation of the descriptor is achieved using the quaternions to
rotate the bins of the descriptor. The details can be viewed in Algorithm 3.
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Algorithm 2 Descriptor algorithm
Require: a pointcloud I (with n points), a radius R, a number of angular divisions Nθ, a center

point C, and a number of layers Nl.
Ensure: the descriptor vector v.
1: Translate the origin of I to C: I(x) ← I(x) − C,∀x ∈ [1, n]
2: δϕ ← 2π/Nθ, δθ ← π/Nθ, δr ← R/Nl, as the step in each of the spheric components
3: Compute the grid centroids: B = {b(1,1,1), ..., b(Nl,Nθ,Nθ)} such that b(i,j,k) is the center of

a bin of B between distances [(i − 1) ∗ δr, i ∗ δr] to the origin of coordinates and between
interval angles [(j − 1) ∗ δθ, j ∗ δθ] in θ, and between angles [(k − 1) ∗ δϕ, k ∗ δϕ] in ϕ

4: initialize the descriptor with zeros: v(i,j,k) ← 0, ∀i ∈ [1, Nl], j ∈ [1, Nθ], k ∈ [1, Nθ]
5: for each point α ∈ I do
6: transform α to spherical coordinates: rα =

√
α2
x + α2

y + α2
z,

θα =



arctan(

√
α2
x+α2

y

αz
) αz > 0

π
2 αz = 0

π + arctan(

√
α2
x+α2

y

αz
) αz < 0

, ϕα =



arctan(
αy

αx
) αx > 0, αy > 0

2π + arctan(
αy

αx
) αx > 0, αy < 0

π
2 sgn(αy) αx = 0

π + arctan(
αy

αx
) αx < 0

7: calculate the bin that correspond to α: binr = b rαδr c,binθ = b θαδθ c , binϕ = bϕα

δϕ
c

8: increment the descriptor bin: v(binr,binθ,binϕ) ← v(binr,binθ,binϕ) + 1
9: for each bi ∈ Neighbors(b(binr,binθ,binϕ)) do

10: distance between the point and the centroid: d← |α− bi|2
11: update the descriptor bins: vbi ← vbi + e−d/R

12: end for
13: end for
14: for each point β ∈ v do
15: normalize the descriptor: β ← β

n
16: end for
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Algorithm 3 Rotation invariance algorithm
Require: the descriptor vector v, a number of angular divisions Nθ, a number of layers Nl, and

the grid centroids B.
Ensure: the rotation invariant descriptor vector v.
1: Compute the principal orientations: f(θ, ϕ) =

∑Nl
r=1 v

(binr,binθ,binϕ), T1 = argmax
θ,ϕ

f(θ, ϕ),

T2 = {θ′′, ϕ′′|{∀θ′, ϕ′} − T1 : f(θ
′, ϕ′) ≤ f(θ, ϕ), f(θ, ϕ) ≤ f(T1)}

2: Compute quaternion q1: âx = (1, 0, 0), compute ~T1 the orientation vector in cartesian
coordinates, q1 is computed from ~T1 to âx

3: Compute quaternion q2: ây = (0, 1, 0), compute ~T2 the orientation vector in cartesian

coordinates, ~T2yz = ~T2 ∗

 0 0 0
0 1 0
0 0 1

, q2 is computed from ~T2yz to ây

4: for every v(binr,binθ,binϕ) ∈ v do
5: Compute the rotated bin: brot ← q2 ∗ q1 ∗ b(binr,binθ,binϕ)

6: Assign the rotated bin: vbrot ← vb

7: end for



Chapter 5

Classification

Our system uses a Support Vector Machine (SVM) [19], a discriminative classifier that has proved
to be one of the most robust classifiers. We rely on the libSVM implementation [17] of SVM to classify
our input instances. In our case the input instances are hands shapes described by the proposed SBSM
descriptor.

Given that we want to recognize between several hand poses our problem is a multiclass classifi-
cation problem. SVMs are binary classifiers, therefore they are only able to solve two class problems.
Nevertheless the multiclass problem can be solved combining SVMs. "One vs. all" and "one vs. one"
are two different ways of combining binary classifiers to solve a multiclass problem. If n is the number of
classes, "one vs. all" works dividing the problem in n subproblems where each class is classified against
the rest. The class that obtains the highest output function is considered to be the class prediction. On
the other hand "one vs. one" groups the classes in pairs and classify each pair separately. The number
of classifiers needed for one vs. one is K = n(n−1)

2 . Every classifier makes a vote on one class, and the
class with most votes is assigned as the predicted class. In our case we use libSVM that implements
"one vs. one" to solve the multiclass problem.

All the SVMs work maximizing the margin that separates the samples from different classes. However
there exists different SVM formulations for classification. In this work we use the C-SVM formulation.
The C-SVM formulation considers the following problem. Given training vectors xi ∈ Rn, i = 1, ..., l, in
two classes, and an indicator vector y ∈ Rl such that yi ∈ {1,−1},

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (5.1)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l,

where φ(xi) maps xi into a higher-dimensional space and C > 0 is the regularization parameter.
Another important choice when using SVMs is the kernel. The kernel is the φ(xi) function that maps

13
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the input feature vector to a higher dimensional space. Some common choices for SVM kernels are:
linear, polynomial, radial basis function and sigmoid. The linear kernel is the simplest kernel and the
fastest to compute yet it can only classify according to a linear separability of the instances and when the
instances are non linearly separable it perform worse. The radial basis function is more computational
expensive but can deal with linear and non linear separability.

The Radial Basis Function has the form K(xi,xj) = e−γ‖xi−xj‖2

. Note that the γ parameter needs
to be set before we can train the SVM. Using a C-SVM formulation with a Radial Basis Function as the
kernel we have to configured two parameters before training: the C and the γ parameters. These are
called the SVM hyperparameters.



Chapter 6

Experiments

In this chapter we explain the experiments performed. First we study how the SBSM parameters
affects the overall accuracy. Then we analyze the procedure made to improve the selection of the SVM
hyperparameters. Then we examine the effect of the neighbors propagation in the SBSM descriptor.
Then we test the computational complexity of each part of the real time system. And finally we show
an example of the integration of our system with the Oblong stack.

All the experiments have been made with the following experimental setups:

• The hand extractor module threshold was set to 9 cm with a trial and error procedure.

• The dataset was splited randomly between training (75%) and test (25%).

• The radius of the SBSM descriptor was set to 17 cm.

• The rotation invariant procedure of SBSM was not used.

• We use a Radial Basis Function(RBF) kernel for the SVM.

• The SVM hyperparameters (C, γ) were set through 5 fold cross-validation on the training set.

• Every experiment was repeated 5 times with different random separations between training and
test.

6.1 Influence of the number of SBSM grid divisions

The SBSM descriptor parameters (Nl, Nθ) were selected so that they maximize the classification
accuracy. We have tried all the possible combinations between the number of layers (Nl ∈ [1, 6]) and
the number of angular divisions (Nθ ∈ [4, 36]).

To select the SVM hyperparameters we use a greedy algorithm instead of exploring all the possible
values. This greedy algorithm climbs the space formed by the parameters C and γ and stops when it
reaches a 92% value of cross validation accuracy. Then the SVMs are trained and tested. The testing

15
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Figure 6.1: System accuracy as a function of the number of layers (Nl) and the number of
angular divisions (Nθ).

procedure is the result of applying the trained SVM to the test samples. We use the accuracy of the
testing procedure as a performance measure for the classifier.

The experiment results are shown in figure 6.1. The purpose of this experiment was to study the
relation between the SBSM parameters and the accuracy of the descriptor. Our results show that even
for small Nl and Nθ we can achieve high accuracy values. Also the figure 6.1 shows that the accuracy
for a sufficiently big Nθ (Nθ ∈ [15, 40]) only depends on the Nt values and that even this variation is
small. Note that since we stop the cross-validation procedure to select the SVM hyperparameters when
it reachs the 92% we can not assure that the accuracy value for a given Nl and Nθ is the maximum.
Instead the figure expresses a rough approximation of that maximum.

In the following we perform experiments with the SBSM parameters fixed to Nl = 6 and Nθ =

13. These values were selected because they gave us a good balance between high acuracy and con-
strained length of the descriptor. The length of the descriptor depends on the SBSM parameters as:
lengthSBSM = Nl ∗N2

θ . And this length has an impact on the complexity of the classifier. So a smaller
length is desirable.
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Figure 6.2: Hyperparameter selection using five fold cross validation and an exhaustive search.

6.2 Hyperparameter selection with cross validation

The next experiment that we perform was a fine tune of the SVM hyperparameters. We saw previ-
ously that we have used a greedy algorithm to climb the hyperparameters space. This time we explore
in detail such space, maximizing the cross validation accuracy (see fig. 6.2). Setting C = 25 = 32,
γ = 21.5 = 2.82, Nl = 6, and Nθ = 13 we obtain a classification accuracy of 99.28% (1517/1528) with a
feature vector of dimension Nl ∗N2

θ = 1014. These fine tuned parameters are used to train the classifier
that will be used in the real time pipeline.

6.3 The effect of the neighbors propagation in SBSM

We wanted to study the effect that the neighbors propagation of SBSM (see algorithm 2) has on the
accuracy of the shape description. Hence we have compared the accuracy of our system using SBSM
and a simplified version of SBSM that do not propagate weights to the neighboring bins. We called this
simplified version of SBSM a "Spherical Voxel Grid" (SVG), which is an extension of the standard 2D
image zonning descriptor used in many computer vision systems. To be a fair comparison we have used
the same experimetal setup for both approaches. The accuracy using the SBSM descriptor was 99.28%,
using the Spherical Voxel Grid the accuracy was 98.3376%. The small difference between the two tell us
that for this application the increment in accuracy do not worth the additional cost of using the SBSM
descriptor. However in other applications where the objects to be recognized have an irregular shape
the neighbor propagation can have a different effect in the system accuracy.
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Figure 6.3: Time spent (ms) in the computation of the descriptors as a function of the number
of input points n. In blue the SBSM descriptor, in black the Spherical Voxel Grid descriptor.

6.4 Computational cost

Given the importance of the Human Computer Interaction applications and the fact that these
applications require low latency algorithms to be feasible, it is important to study the computational
cost of our algorithms. We study the computational cost of the elements that constitute the real-time
pipeline (see fig. 2.3): hand detector, hand descriptor, and classifier. All the experiments were done in a
Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz with 4Gb of RAM laptop. The program runs in a single
thread of execution.

6.4.1 Descriptor

We analyze the computational cost of the SBSM descriptor and the Spherical Voxel Grid (SVG).
The computational cost of both algorithms depends on the number of points n of the input pointcloud I.
Both algorithms realize O(n) operations per input. However the SBSM descriptor does more work per
point. In figure 6.3 we can see how the time spent in the descriptor grows with n. The SVG descriptor is
faster than SBSM and we can see how this difference grows with n. Also note that the computation time
grows linearly with n. To perform this experiment both descriptors were set to the same parameters:

• Both descriptors uses Nl = 6, Nθ = 13.

• The points of I are synthetic points with a random position inside the descriptor sphere.

In figure 6.4 we can see how the framerate drops faster in the case of the SBSM descriptor that in the
Spherical Voxel Grid. However the SBSM descriptor maintain acceptable framerates at 5000 points. In
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Figure 6.4: Frames per second as a function of the number of input points n. In blue the SBSM
descriptor, in black the Spherical Voxel Grid descriptor.

our dataset the average number of points is 6437. So SBSM has an acceptable framerate in our case.

6.4.2 Detector

To study the computational cost of the detector we record the time spent in the detector module
while performing gestures in front of the kinect. We record 180 samples and calculate the mean and the
standard deviation. The average time spent in the detector was 14.590 ± 1.2940 ms, and the average
framerate was 68.949± 4.7038 fps.

6.4.3 Classifier

We study the computational cost of our classifier in the context of our real time system. The time
spent by the classifier was measure while performing gestures in front of the kinect device. We record
319 samples and calculate the mean and the standard deviation. The average computational cost of the
classification was 5.2635± 0.63316 ms, and the average framerate was 191.26± 18.867 fps.

6.5 Oblong integration

We have integrated our hand pose recognition system within the Oblong stack. Our application
sends data to a "pool", a communication channel abstraction, in a convenient format. To do that we
make use of the Oblong "plasma" library for the interprocess communication. This library handles the
transmission of messages called "proteins". In our case those messages contain the hand poses that
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our system recognize. Oblong encodes the hand configurations with a symbolic structure called "gripe"
(gripe is the acronym for gestural reduced instruction pose expression). Those messages are received by
the applications that are connected to the pool, that then can trigger events based on the recognized
hand poses. In figure 6.5 we can see an example Oblong application receiving data from our system.
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Figure 6.5: Our application in the left, the Oblong application in the right.



Chapter 7

Conclusions

Depth cameras can have a great impact on what is possible in Computer Vision problems by reducing
the ambiguities inherent to the 2D representation of a 3D world. Using a kinect camera we have
developed a real time Hand Pose Recognition system capable of recognize eight hand poses. This system
uses an object recognition approach to recognize the different poses. Following this approach the input
depth frames are first processed to extract the hands, then described and finally classified. We have
recorded a dataset with nine classes, representing eight different hand poses and a class representing
negative samples from the non-considered eight hand configurations. We have used this dataset to train
a multiclass SVM classifier. Our results show accuracy values above the 99% it the designed dataset.

For the descriptor part we have presented a novel shape descriptor for 3D data, the Spherical Blurred
Shape Model (SBSM), that segments the input pointcloud in zones using a spherical grid. This descriptor
copes with the irregular deformations by propagating the weights of a point to its neighboring bins.
Furthermore a technique to make this descriptor invariant to rotation was presented. We have studied
the influence of the parameters of SBSM on the accuracy of the system and also the effect of the neighbors
propagation in SBSM. The study of the computational cost of SBSM shows that SBSM performs well
under our average input pointcloud, allowing for real time applications.

Finally our real time system was integrated with the Oblong platform allowing to use their applica-
tions without additional wrappings.

As future work we will extend the dataset to been able to recognize more poses. Also we will compare
the SBSM descriptor with other 3D descriptors, and analyze how it performs with different types of data.
Moreover we plan to assess the performance of the rotation invariant procedure of SBSM. Regarding the
detector we want to further explore and analyze other alternatives to deal with more complex scenarios.
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Oblong concepts

Oblong industries is a company dedicated to, between other topics, Human Computer Interaction.
They build systems that simplify the way computers are controlled, allowing for novel interactions
between man and machine and expanding the notion of interfaces. To support this vision they have
software that can handles not only the incoming commands but the radical new ways in which information
can be displayed.

The Spatial Operating Environment (SOE) is a key concept that they developed in which the space
that surrounds the system has an explicit representation. This explicit representation allows among other
things to raise the level of abstraction in display technologies. For example in a setting with multiple
screens the average computer will treat them as separate entities and this difficults the programming
of multiscreen applications. In SOE applications all you need is a configuration file telling the system
where in the space are those screens and the orientations of each of them. The underlying software
will take care of the details of how to make the screens work, liberating the application programmer
from that task. This is particularly important in complex settings where you do not only have multiple
screens but also projectors and surfaces. Summarizing, computers communicate with humans through
interfaces, SOE generalizes the interfaces of a computer, embedding them in an spatial representation
of the surrounding world. This is not only true with the displays but also with the interaction devices
that "live" in the space.

G-Speak is the SDK that implements all of this functionality. In the moment of writing this report
there exist versions of this SDK in C/C++, Java and Ruby languages. G-Speak is compose of different
libraries that used in cooperation can help building complex applications. Without pretending to be
exhaustive the functionality of G-Speak covers:

• data structures and programming abstractions.

• networking, interprocess communication.

• events, time management.

23
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• video and audio.

• UI capabilities, graphical interfaces, gesture support.

G-speak uses a biologicaly inspired terminology for referring to its constructs. As for example the library
that implements interprocess communication is called "plasma". The messages that are send between
processes are "proteins" and the channel to communicate those proteins is called a "pool".

Another important concept related to gesture representation is the concept of gripe (short for gestural
reduced instruction pose expression). A gripe is the representation of a hand pose in a symbolic structure.
Its a seven length string of characters divided in two groups: the first five characters describe the
individual finger positions, and the last two describe the palm and finger orientation. These two groups
are separated by a colon.

The finger position characters are ordered pinky, ring, middle, index and thumb. Each of them can
have values: "ˆ" curled, "|" straight, and "x" palm normal. Except the thumb that has its own values:
"|" straight, ">" curled thumb and "-" out.

The palm and finger orientation can have six different values:

• Cranial: toward the head or up "ˆ".

• Caudal: toward the ground, or down "v".

• Anterior: in front of you, or away from the body "x".

• Posterior: behind you or toward the body ".".

• Medial: toward the middle of the body "-".

• Lateral: away from the middle of the body "+".

In figure A.1 an example of the gripes representation.

Figure A.1: Hand poses with gripes representation in white.
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