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Sequential Learning is...

Samples

Labels Classification Task.

Neighboring labels have 
some kind of relationship,

but neighboring samples 
does not provide any 
information about this 
relationship.
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Sequential Learning is...
Classification Task.

Neighboring labels have 
some kind of relationship.

but neighboring samples 
does not provide any 
information about this 
relationship.

Samples

Labels

 Example Application:  Object classification inside images:
Each pixel is a sample. Each sample belongs to an object.
Exist a spatial relationship between labels of neighboring samples.

How to exploit 
relationship between labels 
for improving classification? 
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Stacked Sequential 
Learning Generalization
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Stacked Learning scheme of 2 classifier.

Neighborhood relationship function.

Extended data set. Combine the input 
space with a vector of extended features.
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Neighborhood relationship 
function 
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(1) C. Gatta, E. Puertas, O. Pujol, Multi-scale stacked sequential learning. Pattern Recognition (2011). 

Sliding Windows.

Multi-scale decomposition 
using Gaussian Filters. (1)

Set of reduced features able 
to capture long-distance 
relationships.
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Multi-Scale Stacked 
Sequential Learning
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Multi-Class Multi-Scale 
Stacked Sequential Learning

1. Multi-class classifiers using 
Adaboost + ECOC.

2. Use Adaboost margins as 
confidence values.

3. Confidence map for each 
class.

4. Multi-scale decomposition of 
each Confidence map.
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Multi-Class Multi-Scale 
Stacked Sequential Learning

1. Multi-class classifiers using 
Adaboost + ECOC.

2. Use Adaboost margins as 
confidence values.

3. Confidence map for each 
class.

4. Multi-scale decomposition of 
each Confidence map.
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Multi-Class Multi-Scale 
Stacked Sequential Learning

1. Multi-class classifiers using 
Adaboost + ECOC.

2. Use Adaboost margins as 
confidence values.

3. Confidence map for each 
class.

4. Multi-scale decomposition of 
each Confidence map
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Multi-Class Multi-Scale 
Stacked Sequential Learning

1. Multi-class classifiers using 
Adaboost + ECOC.

2. Use Adaboost margins as 
confidence values.

3. Confidence map for each 
class, from ECOC decoding

4. Multi-scale decomposition 
of each Confidence map
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Multi-Class Multi-Scale 
Stacked Sequential Learning

5. Sampling and vector of 
extended features 
formation. 
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Drawback: The increase of 
Extended Features 

size:
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 Experimental settings

Etrims 5 and 9 classes.

4 and 8 objects 
annotated per image.

Simple Features (RGB)

6-folds, 50 train, 10 test.
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60 annotated 
building images. 

4-objects 8-objects
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Results

Methods:

MMSSL standard,

MMSSL compressed.

Adaboost + graph cut alfa 
expansion.

Adaboost
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Results

Methods:

MMSSL standard,

MMSSL compressed.

Adaboost + graph 
cut alfa expansion.

Adaboost
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Conclusions

Multi-class extension of Multi-scale 
stacked sequential learning

Confidence maps obtained from binary 
classifiers and ECOC framework.

Compression strategy for reducing 
the number of extended set features.
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Future Work

Study alternative neighborhood relationship 
functions 

Find problem dependent compression 
coding strategies for the confidence maps

Study compression strategies for  
neighborhood samplings and scales.
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Thanks!
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