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Abstract

Head pose recovery and shape estimation are two tasks of Computer Vision with wide
fields of application which usually are applied together in order to extract information from
face images. The range of applications for these tasks include face recognition [37, 6], 3D
modelling [5] and vigilance monitoring [22, 4], which are useful, among others, for procedures
such as driver attention estimation, security systems and computer graphics.

The focus of current research in this area is the development of more robust and accu-
rate approaches that can perform head pose recovery and shape estimation in a faster way,
being able to perform both tasks in real-time without the use of expensive hardware. While
approaches have been developed for real-time shape estimation [14, 9, 38] and head pose re-
covery [29, 20], these algorithms perform only one of these tasks, with the methods capable
of performing both of them barely being efficient enough to run in real-time using commodity
hardware [1]. Some exceptions are the compound techniques, where the 2D geometry is first
obtained, afterwards fitting a 3D model to that geometry.

In this work, a new algorithm based on the Supervised Descent Method (SDM) [38] is
proposed, which is capable of simultaneously recovering the 3D geometry of the face and es-
timating the head pose, given a grayscale image. The main differences between SDM and the
new proposed approach are the use of a parametric ASM model instead of directly regressing
the model shape, the use of SIFT descriptors at the landmarks adapted to the shape scale,
and a robust method to estimate the final fitting from multiple initializations.

Furthermore, two approaches are studied and compared in order to extend the original
2D method to the fitting of 3D geometries in grayscale images: The frist approach consists
on using an iterative alignment method in order to adjust a 3D ASM model to the obtained
2D shape, while the second consists on directly fitting the 3D model to the image.
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1 Introduction

Two recurring problems in computer vision are the recovery of an object geometry and estimation
orientation in space. The object geometry, or shape, is defined as a set L = {Li|Li = 〈xi, yi[, zi]〉}
of landmarks, where each landmark corresponds to a point location, consistently labeled among
different shapes. The problem of locating each landmark in the image plane by giving its 2D or 3D
coordinates is referred to as geometry fitting or shape alignment. The problem of pose estimation
for rigid or semi-rigid objects, as in the case of heads, consists on determining the orientation of
the object in the given image. This is done by determining the rotation angle of the object when
considering the space where the object is found as a plane, or by giving the three rotation angles
consisting on roll, pitch and yaw in the case of an object positioned in a 3D space.

In this work, a method is developed which performs facial shape alignment and head pose
recovery on intensity images, locating a set of 2D/3D specific face landmarks, and giving the three
angles of rotation specifying the orientation of a face image relative to the camera point of view.
The proposed algorithm is based on the Supervised Descent Method (SDM), developed by Xiong
and De la Torre [38], an algorithm that implements a cascade of linear regressors estimating the
descent direction of each landmark. In order to do so, SDM is initialized with the mean face
shape, and for each cascade step, a fast Scale-Invariant Feature Transform (SIFT) [26] descriptor
is extracted at each estimated landmark location. The SIFT descriptors are then concatenated and
a Principal Component Analysis (PCA) [30] transform is applied to reduce their dimensionality.
The resulting feature vector is used as input of the linear regressor to estimate the descent direction
and step length for each landmark, obtaining a better estimate of the shape for the next cascade
step. This method is explained with more detail in Section 3.1.

The proposed method modifies the SDM algorithm by optimizing the deformation weights
corresponding to an Active Shape Model (ASM) [13] describing the allowed variability of a face
model, instead of directly adjusting the position of the face landmarks. Furthermore, the position
of the model in the image, its scale and rotation angle, are also optimized. Another change
introduced in the new method is the use of adaptable SIFT windows, which are resized according
to the scale parameter at each cascade step. Finally a new approach to selecting the best fit
among different initializations is used, keeping the centroid fit (the one minimizing the the sum
of euclidean distances to the other fits).

From the proposed parameterized approach for the 2D shape regression, two different ap-
proaches are developed to obtain the 3D face geometry and head pose. The first one consists
on aligning a 3D ASM to the 2D geometry by means of a restricted camera model [18] in order
to obtain the corresponding 3D geometry and head pose. The second one extends the proposed
2D shape regression method to directly regress the 3D geometry. This is done by regressing the
weights of the 3D ASM and the parameters of the restricted camera model.

In the rest of the document, first, an overview on the state of the art on both face shape
estimation and head pose recovery is given in Section 2, explaining the main types of methods
and some examples of each. Afterwards, the proposed method is explained in Section 3, showing
the differences between the current approach and the SDM method it is based on, also detailing
how other techniques are integrated at different steps of the process.

Finally, the experimental methodology is proposed in Section 4 with a series of experiments
to assess both the accuracy of fitting the landmarks of the proposed 2D/3D methods, and the
accuracy of the head pose estimation for the 3D methods, as well as the required execution time
for each proposed technique. The results for these experiments are then described in Section 5,
showing a slight improvement in the accuracy for the parametric approach over the SDM method it
is based on, while still maintaining the same average computational time. From the two proposed
3D geometry fitting approaches, the direct 3D regression approach is found to obtain an equivalent
accuracy when compared to first performing a 2D regression and then aligning a 3D ASM model
to it, but with the direct 3D regression being much faster.
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2 State of the art

In the case of faces, the geometry can be estimated as a set of 2D/3D landmarks at anatomical
locations of the face, while the pose is always specified in terms of roll pitch and yaw. In this section
the main techniques currently used for estimating both the shape and pose of a face are explained,
commenting on their performance and weaknesses. First the shape estimation [13, 15, 27, 38] and
pose estimation [19, 18, 8, 20] techniques are explained separately, afterwards explaining some
approaches which are capable of performing both processes simultaneously [39, 32, 1].

2.1 Shape estimation

There are three main types of shape estimation methods for face images, as shown in Figure 1.
The most basic approaches are those based on feature detection [7]. These consist on locating each
landmark individually, either by matching local image descriptors or by using a set of previously
known locations as a reference.

Shape estimation

Flexible models

Active Appearance
Models (AAM)

Active Shape
Models (ASM)

Elastic Graph
Matching (EGM)

Geometry
fitting

Feature
detection

Figure 1: Classification of facial shape estimation methods according to the type of information these make
use of.

More complex methods include shape regression [15, 11, 9, 38] and deformable models [25,
28, 16, 27]. They both have in common the joint detection of all desired landmarks, using all of
the available descriptors of the face appearance given the current face geometry to help locate
each landmark. While shape regression methods directly optimize the location of the landmarks,
deformable models use a previously trained model describing the allowed modes of variation of
the face in order to fit the model to the image. This last type restricts the overall shape of the
face as a whole, usually performing a dimensionality reduction on a set of training geometries in
order to explain the shape variations with a smaller set of parameters.

2.1.1 Feature detection

A naive approach to detecting the face shape consists on independently locating the face landmarks
[7, 14]. This can be done by applying an array of detectors to the face, each one of which directly
detects an individual feature or helps locating each feature separately.

An example of this type of approach is the method developed by Bonitto and Cumani [7], which
first performs a segmentation of the face region. With the segmented face, silhouette landmarks
are located by checking the curvature of the different pixels and selecting those matching the
desired one. Face landmarks are then located by using gradient intensity criteria at the location
and the relative position of the silhouette landmarks. While this method uses information on other
landmarks, only secondary landmarks (those found at the silhouette) are taken into account, and
these are estimated individually.

Another example is the method developed by Dantone et al. [14], which uses conditional
regression forests in order to locate a set of facial landmarks. Each tree is trained with a set of
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randomly selected facial patches from a subset of the training images, and uses both Haar-like
features and Gabor wavelets as features. At the terminal nodes, each tree specifies the relative
location at which each landmark is to be found. In order to locate the landmarks in a face region,
a dense grid of facial patches is fed to all trees, each casting a vote to where each facial feature
is located. While each regression tree helps locating all facial landmarks, the location of each
landmark is found independently of the rest, without updating the position of a landmark relative
to the estimated position of the rest.

2.1.2 Shape regression

The methods based on directly fitting the geometry adjust all the face landmarks simultaneously,
iteratively minimizing the fitting error of the geometry over the image [15, 11, 38]. These methods
are based on detecting the descent direction of each one of the landmarks, but using the same
input information at each landmark. This means there is a certain degree of correlation between
the different landmarks descent directions.

A simple and extremely fast model fitting the face geometry is Cascaded Pose Regression [15, 9],
which consists on a cascade of fern regressors. The algorithm is initialized with a set of initial
shapes, and at each step of the cascade the shape is adjusted by means of a fern regressor. The
regressor uses geometry-indexed pixel intensity differences as inputs and determines a variation
for each of the shape landmarks. The output of the different regressor determines an update to
the face geometry to be used in the next cascade step. Once each initial shape has been adjusted
to the image, the one minimizing the distance to the rest is kept as the best solution. While this
approach is very fast due to the simplicity of its features, it is for the same reason that it tends
to get stuck on local minima.

A similar more robust approach is the one developed by Cao et al. [11]. This approach uses
multiple regressors at each cascade step, indexing the feature pixels by using a linear interpolation
between two landmarks instead of a coordinate relative to a single landmark position. By using
multiple regressors at each step, the algorithm is more robust to local minima, also requiring less
cascade steps to converge.

A more accurate approach is the Supervised Descent Method (SDM) [38], developed by Xiong
and De la Torre. This method also starts with multiple initial face geometries which are fitted
to the face image through a cascade of linear regressors, afterwards using the mean fitted face as
the final solution. In order to do so, a simplified SIFT descriptor is generated for each of the n
landmarks of the face geometry at each cascade step i. These descriptors are then concatenated
into a single feature vector, and the dimensionality of the vector is reduced using PCA. This vector
of features Φi is then used as parameters of the linear regressors, with each regressor determining
an update to each of the 2 · n geometry parameters. During training, the linear regressors learnt
the descent direction and step length from the training data by indirectly minimizing the error
Φi − Φ∗ between the target and current descriptor values at each cascade step as explained in
Section 3.1. This method is less sensible to local minima thanks to the use of more robust features,
while still being fast enough to perform real-time fitting of video sequences.

2.1.3 Flexible models

The methods based on flexible models fit a non-rigid model to the facial structure for which the
pose is to be recovered [37, 28]. In this approach, the model is adjusted through a series of
parameters that define the geometry and restrict it instead of directly adjusting the landmarks.
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Elastic Graph Matching

The most basic flexible model is Elastic Graph Matching (EGM) [25], developed by Lades et
al.. This method consists on generating a deformable geometric model called bunch graph, where
different face features are represented as nodes of a graph gi = 〈V,E〉, with each edge E capturing
the relative position between two vertices. The vertices V describe the image position to match
through a jet of wavelet responses. In order to perform head pose estimation, a model bunch
graph is generated for each discrete pose, and given a new face image, the minimum distance to
each elastic graph is calculated and the pose of the one with the minimum distance assigned. In
order to fit a model bunch graph to the image, the formula describing the matching error seen in
Equation 1 is minimized through a two-step process.

Ctotal({xIi }) = λ
∑
i,j∈E

Se(
−→
∆I
ij ,
−→
∆M
ij )−

∑
i∈V

Sv(D
I(xIi ), D

M
i ) (1)

This equation penalizes by one side the differences Se for each edge 〈i, j〉 ∈ E between the
distances

−→
∆M
ij in the model graph and the distances

−→
∆I
ij in the image graph. By the other, it

penalizes the differences Sv for each vertex i ∈ V between the jet descriptor DM
i of the model

and the one obtained at the corresponding image location, DI(xIi ). The λ parameter is the
weight of the deformation penalty. In a first step only the position of the image graph is adjusted
through annealing. Once the position is determined, the different landmark positions are updated
individually, also following an annealing stochastic descent approach.

Wiskott et al. [37] improved on EGM with the development of their Elastic Bunch Graph
Matching (EBGM) algorithm, which uses the same graph representation of EGM. The main
contribution of the new approach is its image fitting algorithm, which is faster while obtaining
more accurate results thanks to a coarse to fine grain location of the graph vertices, allowing
for a better initial location of the graph in the image before individually optimizing the vertices
independently. The algorithm is a four-step heuristic approach minimizing the error seen in
Equation 1. In the first step only the face position is adjusted from an initial position estimate,
afterwards adjusting both position and size. As a third step, the size is further refined, but allowing
for an aspect ratio distortion, that is, allowing different scales for width and height. Finally, the
graph nodes are allowed to vary their position independently.

Active Shape Models

Another type of model is the Active Shape Model (ASM) [13], which is based on fitting a
deformable model to a given face image. In order to do so, first a group of landmark points are
labelled over the training set, afterwards iteratively aligning them by minimizing the distance
between each training instance and the mean of the aligned instances with Procrustes Analysis
(PA), with the mean shape being re-calculated at each iteration. By performing a Principal
Component Analysis (PCA) over the variations between the aligned data and the mean shape,
the variation of the face geometry is captured in a space of lower dimensionality. This new lower
dimensionality space captures most of the data variance through a set of orthonormal dimensions
or bases known as eigenvectors. Each one describes a mode of variation of the geometry, with its
eigenvalue specifying the proportion of the geometry variance it explains. By assigning a weight
to each one of these new bases, a face geometry is defined.

In the original ASM work by Cootes et al. [13] an algorithm is provided for fitting the model
to an image, in which weights are updated using an iterative adjustment method. This method
uses either the direction and intensity of the edges near each landmark (for edges lying at the
contour of the fitted figure), or a simple vector representation of the visual appearance at the
current landmark location. After each adjustment, the weights are rescaled as necessary in order
to lie inside the PCA ellipsoid defined by the maximum variation allowed for each weight, which
is proportional to its corresponding eigenvalue.
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Milborrow and Nicolls [28] developed an extension of the typical ASM fitting approach which
uses the gradients of fixed-size squared regions around each face landmark, as well as an adaptive
maximum threshold which is decreased over time for each weight based on the corresponding
eigenvalue, in order to improve the model fitting accuracy. This allows for more fitting flexibility
in the first iteration, restricting the model to fall inside the accepted shape variation as the model
converges.

While ASM image fitting methods tend to provide accurate results given a good model of the
shape variability, a good initialization of the shape is required, since the algorithm is sensible to
local minima. This problem also extends to other Active Appearance Model (ASM) approaches to
a lesser degree, which are explained below.

Active Appearance Models

Active Appearance Models (AAM) [12, 16, 27] are an extension of ASM, where not only the
geometric deformation of the data is captured, but also the appearance variation. In order to
do so, first the geometric variation model is generated, afterwards wrapping the image texture of
each individual image with a transform bringing the landmark locations to the mean geometric
shape. With the image textures aligned, it is now possible to capture their variation by using a
PCA. The final model captures the shape and texture variations in an uncorrelated manner.

When fitting an AAM to an image, the goal is to select the shape and appearance weights
in order to minimize the difference between the target image and the parametrized model. This
is represented by the minimization function seen in Equation 2, where each model pixel x ∈ s0,
defined by its mean appearance A0(x) plus a linear combination of q appearance bases Ai(x)
given by the weights a should match the appearance at the corresponding image pixels, which are
aligned with the model through a wrapping function W (x; b). The wrapping function determines
the location of a given model pixel on the image by performing a translation according to the
model shape, given by the shape weights b. The parameters to optimize are the shape weights b
and the appearance weights a.

∑
x∈s0

[
A0(x) +

q∑
i=1

aiAi(x)− I(W (x; b))

]2
(2)

Edwards et al. [16] developed a method using AAM which learns linear regressors that deter-
mine the variation on the shape and appearance weights, as well as the position, rotation and scale
of the model, through linear regression. The model uses a cascade of regressors that use the dif-
ferences between the image pixel intensities and those of the current model appearance to update
the parameters. The problem with this type of method is that by trying to optimize appearance
and shape simultaneously, non-linear relations with the pixel differences appear, requiring many
iterations to converge and not giving highly accurate results.

In order to solve these problems, Mathews and Baker showed in [27] an efficient way to use
Inverse Compositional Image Alignment (ICIA) algorithm to align a 2D AAM to a given image.
Their approach keeps the advantages of ICIA, which allows for the pre-computation of the Jacobian
J and inverse Hessian H−1 matrices only once before beginning the optimization. Furthermore,
they show a way to decouple the optimization of the shape weights b from the appearance weights
a, iteratively optimizing the first and giving a closed form solution for the later once computed
the shape weights.

2.2 Pose estimation

Head pose estimation consists on determining the orientation of the head, usually in terms of the
roll, pitch and yaw rotations relative to the frontal face view, and can be divided into two main
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groups, as shown in Figure 2. The first group includes methods that directly estimate the head
pose based on the appearance of the head image [8, 23, 29, 20]. The second one uses previous
information on the face geometry in order to estimate the pose from the landmark locations
[36, 19, 18].

Pose estimation

Structural
methods

Appearance
based methods

Manifold
embedding methods

Nonlinear
regression methods

Detector arraysAppearance
template methods

Figure 2: Classification of head pose estimation methods according to the type of information these make
use of.

2.2.1 Appearance based methods

Appearance based methods define a series of features directly describing the visual appearance
of the image, afterwards using them to perform a classification or regression determining the
head pose. Appearance based methods can be classified into different subtypes depending on the
method used to determine the pose.

Appearance template methods

Consists on comparing a new head image to a set of examples labelled with their pose and
assigning the pose of the most similar example. This approach can consist on a direct image
comparison between the target and any template, which can be performed by calculating the
Mean Squared Error (MSE) or the normalized cross-correlation between images. This direct
approach suffers from many drawbacks, the main one being that the similarity between different
poses for the same person could be greater than the similarity between two face images of different
persons in the same pose, thus generating a poor head pose estimator.

Another approach is to perform a filtered image comparison, where two feature vectors gen-
erated from the evaluated and template images are compared. The feature vectors are obtained
either by applying a dimensionality reduction to the pixel intensities by means of PCA, or by
using other direct filtering techniques like Gabor wavelets. This approach is more resilient to the
problems specific to direct image comparison. An example of this approach is the method devel-
oped by Brown and Tian [8], which uses Gabor templates generated from averaging the output of
Gabor wavelets at each image pixel at four different orientations, for all images of a given pose.
In order to match a new face, its Gabor templates are generated and compared to those of the
different considered poses.

Two problems common to both image comparison and filtered image comparison are the great
number of comparisons to be performed, which means the approach is computationally complex,
and to a lesser degree the fact that only a discrete set of poses are considered. The later problem
is in some cases overcome by performing interpolation between similarly-scored head poses and
comparing the target to the interpolated images. Another handicap for this type of approach is
that the face is assumed to have been previously located in the image.
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Detector arrays

Consists on training a detector for each discrete pose and assigning the pose of the detector
with the highest support. This approach is based on the general object detection methods, where
a detector is trained for each of a set of discrete poses, and solves many of the problems of the
appearance template models.

There are two main approaches for detector arrays. The most common one is the application
of individual detectors, each one casting a vote for a given position. This type of approach
includes machine learning techniques like Support Vector Machines (SVM) and AdaBoost cascade
classifiers. A good example of this approach is the method developed by Jones and Viola [23]
as an extension of their face detection algorithm. In this new algorithm, a decision tree made of
AdaBoost classifiers is built in order to determine an estimated head pose before applying the face
detector itself.

On the other hand, a router network can be used to first identify the most likely pose, and
afterwards a conventional classifier used in order to determine if that pose is indeed present in the
analysed image. This approach is followed by Rowley et al. [33], where a router network determines
the roll angle of the interest region by directly using the intensity values of the histogram-equalized
region, prior to performing face detection.

Since each detector is also capable of determining the presence of the face for that given pose,
it is not necessary to perform face detection as a previous step. Also, the trained detectors are
capable of ignoring face variations not corresponding to pose changes.

The problem of having to apply multiple detectors found for appearance template models still
persists when using individual detectors, although it is solved in the case of using a routing network
as a previous step. In addition, this type of approach poses the problem of having to train each
classifier with negative examples of the other classes. This makes the training difficult when a
high number of discrete poses are taken into account, having negative examples very similar to
the positive ones.

Nonlinear regression methods

Consists on generating a non-linear regression model which estimates the head pose from a
feature vector representing the image data, with the data being either the raw image data or some
form of dimensionally-reduced set of features, normally obtained through PCA. The most common
regression methods used are Support Vector Regression (SVR) methods and Neural Networks
methods.

There are two main approaches to using these methods. One possibility is to generate multiple
outputs, each one of them indicating the likelihood for a specific discrete pose, which is usually
done with Multilayer Perceptron (MLP) networks. Brown and Tian [8] developed an approach
which uses Gabor wavelets at four different orientation for each pixel of the histogram-equalized
face region as features for a 3-layer MLP network. The network has as output 9 continuous values
giving the probability for each one of the 9 considered yaw values.

Another type of approach consists on generating a continuous output value itself representing
the head pose. In that case normally a regression model is trained for each individual degree of
freedom. This is the case of the algorithm developed by [29], which estimates the pitch an yaw
of the head by using two SVR regressors. These use an Histogram of Oriented Gradients (HOG)
descriptor of the head region as the feature vector. On the other hand, Stiefelhagen et al. [35]
use a neural network simultaneously estimate the head roll and yaw, using a single MLP with two
continuous outputs.

This type of approach is very fast, and yields good results specially in the continuous approach.
The main problem for these methods is the introduction of errors due to a bad face localization,
which is not directly performed by the method itself.
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Manifold embedding methods

These methods consist on obtaining a low-dimensional representation of the image capturing
the variation of the head pose. The image representation is then used to perform a classification
or regression to determine the head pose parameters.

Srinivasan and Boyer [34] follow the eigenfaces approach in order to determine the best pose
estimation for a face image. In order to do so, a PCA is performed for each view of a given range
of orientations, creating a face model for each orientation. When estimating the pose of a new
face, the weights for each view model best describing the given face image are found, and the view
that more accurately fits the face is kept as the correct one.

Jain and Crowley [20] use a set of Gaussian derivative filters at the face region pixels at two
different scales in order to describe the face, afterwards applying PCA to reduce the feature vector
dimensionality. The dimensionally reduced data is then used by two SVM classifiers using a Radial
Basis kernel in order to determine the roll and yaw parameters of the face orientation.

2.2.2 Structural methods

This second group of methods detect the face pose based on the face geometry in addition to
possible information on the image appearance. These approaches normally use of a set of landmark
locations to be found in the face in order to geometrically analyse the image when determining
the pose. To do so, the relative positions of the features are evaluated following a pre-defined
geometric model. This type of methods are based on psychological studies on human perception
of the head and gaze orientation [36]. These studies show that basic criteria such as bilateral
symmetry of the head and deviation of the nose tip from the symmetry plane are some of the cues
humans use to determine the orientation.

In [19], the inner and outer eye corners and nose tip locations are used in order to estimate the
face projection. To do so, an orthographic camera model is used to determine the best rotation of
a 3D model that matches these points in the monocular image. Another approach developed by
Qiang is to approximate the face region to an ellipse [21], adjusting the rotation of the camera in
order to account for its distortion. This second approach, though, supposes most faces have the
same approximate outer shape, not taking into account the population variability in the height to
width ratio of faces.

On the other hand, a scaled orthographic camera model and an iterative process [18] can be
used to find the best match of both, the 3D face geometry and pose, given the 2D geometry of
the same landmarks.

2.3 Simultaneous approaches

There are some methods capable of estimating both the face geometry and pose simultaneously,
without the need of performing both processes independently or in a consecutive manner. The
most popular of these approaches are described in this section [39, 32, 1].

Zhu and Ramanan developed a method based on mixtures of trees [39] which is not only
capable of estimating the face geometry and pose, but also of performing face detection. The
method uses a common pool of parts V , which are then organized into mixtures of threes. Each
mixture describes a set of restrictions to the position a subset Vi ∈ V of parts, effectively defining
a viewpoint for the general 3D structure. Also, each part vi ∈ V has a set of templates vi, which
not only determine the part being detected but are also capable of discriminating the viewpoint,
with a given viewpoint only accepting a subset vij ∈ Vi of the part templates. By detecting the
different templates on the images, the likelihood of each mixture of trees changes in function of the
templates and parts detected and their relative position, performing detection, shape estimation
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and head pose recovery simultaneously.

It is also possible to make use of AAM (or the closely related 3D Morphable Models [5]) to
directly fit 3D models of the face. By doing this, the geometry of the face is recovered in three
dimensions, also recovering the head pose by defining a director vector on the AAM itself. Some
of these approaches have been recently studied [32, 1], leading to the development of efficient
gradient descent methods to fit them into 2D images. Since these methods describe the variability
of faces in three dimensions, the range of movements are more restricted than in the 2D case,
where 2D face poses of different perspectives are combined to create a 2D model that can also
explain other impossible face configurations.

In [32] Romdhani and Vetter use a modified version of the Inverse Compositional Image Align-
ment (ICIA) algorithm in order to fit a 3DMM to the image. By using the ICIA it is possible to
pre-compute the Jacobian J and inverse of the Hessian H−1, which makes the algorithm much
more efficient than directly performing a gradient descent. The problem with this algorithm is
that while the shape optimization can be decoupled from the appearance one in the case of 2D
models, as seen in Section 2.2.1, in the case of 3D this is not possible [1]. This results in a much
more expensive algorithm.

Even though it is not possible to directly perform an efficient ICIA gradient descent imple-
mentation on 3D models, a workaround has been proposed by Baker and Matthews [1]. The
workaround consists on simultaneously fitting a 3D and 2D model, fitting the 3D model through
the 2D one instead of using the image.
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3 Method

In this section, the proposed method for recovering the 3D face shape and head pose is explained.
The algorihm is based on the Supervised Descent Method (SDM), which obtains the 2D geometry
of the face and is explained in detail in Section 3.1. The differences with SDM are then detailed
in Section 3.2, afterwards proposing two different approaches to extending the fitting method
in order to recover the pose and geometry of 3D faces. The first one consists on finding the
optimal projection of a 3D ASM to the already obtained 2D landmarks (Section 3.3). The second
one modifies the proposed method in order to work with a 3D ASM, directly recovering the 3D
geometry and head pose while fitting the image (Section 3.4).

3.1 Supervised Descent Method

The Supervised Descent Method (SDM) [38] is a method developed by Xiong and De la Torre for
detecting a set of facial landmarks on intensity images which runs in real time, being capable of
fitting up to 30 face images per second in current commodity hardware. In order to do so, the
algorithm learns a cascade of linear regressors, each one of which further optimizes the location
of the facial landmarks given an initial estimation. In order to do so, the algorithm uses a series
of simplified Shape-Invariant Feature Transform (SIFT) [26] descriptors at each of the current
landmarks position estimates.

Landmark descriptors

The simplified SIFT descriptor takes into account an area of 32x32 pixels around the landmark
to be described. Because of the fixed window size, the descriptor does not provide scale-invariance,
differing from the standard version of SIFT. In the first step, the pixels inside the region are
evaluated, subtracting their gradient orientations and intensities according to Equations 3 and 4
respectively. In these equations, x and y are the spatial coordinates of the pixels, and the function
G defines the pixel value at these coordinates after applying a Gaussian smoothing with σ = 1.6.

Θ(x, y) = tan−1
(
G(x, y + 1)−G(x, y − 1)

G(x+ 1, y)−G(x− 1, y)

)
(3)

M(x, y) =
√

(G(x+ 1, y)−G(x− 1, y))2 + (G(x, y + 1)−G(x, y − 1))2 (4)

The gradient magnitudes are then accumulated into a 36-bin histogram of gradient orientatons
according to the measured orientation at each location. When accumulating them, the magni-
tude is weighted according to a Gaussian function located at the landmark and with a standard
deviation equal to half the window size, that is, σ = 16. Once calculated, the principal gradient
orientation θ is obtained from the histogram of gradient orientations, and a new 32x32 window is
defined such that it is rotated towards that orientation.

In the second step, the new oriented window gradient orientations and magnitudes are recalcu-
lated by following Equations 3 and 4 previously used to calculate the general window histogram of
gradient orientations, but using the rotated pixel coordinates instead of the neighbouring pixels.
By doing this, the new magnitude and orientation values are measured taking into account the
rotation of the window. That is, the new coordinates x′ and y′, which are obtained according to
Equation 5, are used instead.

x′ = x · cos(θ)− y · sin(θ)
y′ = x · sin(θ) + y · cos(θ) (5)
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Once calculated the rotated window gradient orientations and magnitudes, the window is
divided into a 4x4 grid, and an histogram of gradient orientations with 8 bins is generated for
each grid cell. As in the first step, the magnitude of the gradient is weighed by using a Gaussian
weighting with a standard deviation of σ = 16 centred at the landmark coordinates. Finally,
the values of each histogram H are normalized such that the sum of all bin values equals to 1,
making the descriptor invariant to illumination intensity changes. The 16 histograms are then
concatenated into a single vector of 8 · 16 = 128 real values. Figure 3 is a visual representation of
how a SIFT descriptor is built given the oriented window.

Figure 3: Construction of a SIFT descriptor. The oriented window gradients are divided into bins, in
this example into a 2 · 2 grid, and a histogram of oriented gradients with 8 bins is created for each one.
The magnitude of the gradient is weighted by a gaussian function, here represented by a blue circle, with
σ equal to half the window size.

Linear regressors

At each cascade step, the algorithm’s target is to minimize the error between the landmarks
real location and the current estimation. In order to do so, the error shown in Equation 6 is
minimized. This function defines the fitting error of the current landmark location L0 plus the
landmark location update ∆L as the squared euclidean distance between the SIFT descriptors h(x)
at the updated landmark location d(L0 + ∆L) and the SIFT descriptors at the target location
Φ∗ = h(d(L∗)).

f(L0 + ∆L1) = ||h(d(L0 + ∆L1))− Φ∗||22 (6)

The goal of SDM is to learn a series of descent directions and step sizes in order to iteratively
approximate the landmark estimates to the target position, such that L1 = L0 + ∆L1. In order
to do so, a second order Taylor expansion is performed over Equation 6, as shown in Equation 7.
In this formulation, Jf (L0) and H(L0) are correspondingly the Jacobian and Hessian matrices of
function f evaluated over L0.

f(L0 + ∆L1) ≈ f(L0) + Jf (L0)T∆Li +
1

2
∆LTH(L0)∆L (7)

In [26] it is shown how a first update to the data is derived from Equation 7, which is formulated
as ∆L1 = R0 · (Φ0 − Φ∗), where R0 = −2H−1JTh . This equation is then reformulated in order to
match the form of a linear regressor, as shown in Equation 8.

∆L1 = R0 · Φ0 −R0 · Φ∗
= R0 · Φ0 − b0

(8)

With this formulation it is possible to quickly learn the descent matrix R0 and the offset
b0 = R0 · Φ∗ by solving the least-squares problem. This same approach is used at each step of
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the cascade to learn a linear regressor of the same form, which looks for the descent direction
approximating Φi to the target results Φ∗. The original work in [26] experimentally demonstrates
that this method converges to the solution with just 4 to 5 cascade steps in most cases.

(a) Newton Method (b) Supervised Descent Method

Figure 4: Comparison between (a) Newton’s descent method and (b) Supervised Descent Method. SDM
learns from a set of examples, being able to avoid local minima and converge faster to the solution. Also,
it doesn’t need to compute the Jacobian nor the Hessian matrices.

Compared to Newton’s descent method, as seen in Figure 4, SDM does not need to compute
the Hessian and Jacobian matrices at each step in order to obtain the descent direction and
magnitude. Instead, it learns the expected descent direction and magnitude given the feature
vector Φi from a set of examples. This has the advantage of being able to obtain a correct update
to L even when the current region is a local minima. Also, since the SDM does not depend on the
descent inclination to determine the magnitude, a better estimate is obtained, converging faster
to the solution.

Algorithm training

In order to train the linear regressor at each cascade step, first the available training data
is augmented. In order to do so, the same images are re-used 10 times, using a different shape
initialization at each re-use. Since the target of the regressor is to predict the difference Φ0−Φ∗, it is
equivalent for the training process to modify the initial geometry or to perform this changes on the
image itself. The original SDM algorithm first calculates the mean and variance for the geometry
translation and scaling by taking into account the whole dataset ground truth. Afterwards, it uses
these values to draw 10 Monte Carlo samples from the distribution.

With the dataset augmented, the cascade of regressors is learned by using the current descriptor
values Φi, drawn from the estimated face geometry at the given cascade step, and the target shape
error Ldif = L∗−Li. Each regressor learns a shape variation which is then applied at the current
shape estimate Li in order to get the shape estimate at the next cascade step, Li+1. The whole
training process is illustrated with the pseudo-code in Figure 5.

Fitting a test image

With the algorithm already trained, in order to fit an image to the algorithm first the mean
shape is placed at the image as the initial estimate for the fitting process. Afterwards, the features
Φi at the current estimate landmarks are drawn and fit to the cascade step regressor with weights
M i
R and biases M i

b , obtaining the updated landmark estimates Li+1. The final landmark location
estimates are obtained after applying all the cascade regressors.

3.2 Proposed method for fitting the 2D geometry

The proposed method is based on the SDM approach explained in Section 3.1, but with a series of
changes to make it more robust and adaptable to 3D shapes. The proposed changes, by one side,
prepare the method to be easily extensible to 3D fitting by working on a parametric way instead
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L0 ← SampleShapes(L∗, ||I|| · 10)
M ← {}
for all i ∈ [0 : 4] do

//Get SIFT feature vectors
feat← {}
for all j ∈ [1 : ||I||] do

for all k ∈ [j · 10− 9 : j · 10] do
featk ← GetSiftDescriptors(Lki , Ij)

end for
end for

//Reduce SIFT vectors dimensionality
M i
mft ← mean(feat)

M i
pca ← PCA(feat−M i

mft)
Φi ←M i

pca · (feat−M i
mft)

//Get linear regressor
Ldif ← L∗ − Li
M i
R ← Φ†i · Ldif

M i
b ←M i

R · Φi −mean(Φi)

//Update shape estimates
Li+1 ← Li + (M i

R · Φi +M i
b)

end for

Figure 5: Pseudo-code for the Supervised Descent Method training process.

of direclty regressing the shape. Also, the use of adaptive SIFT window sizes and the addition of
a centroid fit selection approach further increases the robustness of the method.

3.2.1 Parametric approach

Instead of directly fitting the geometry to the image, an Active Shape Model (ASM) [13] is cre-
ated, optimizing the parameters of the model along with the displacement, rotation and scaling
parameters. Because of how ASM works, this reduces the total amount of parameters to optimize,
while still explaining most of the shape variability.

Active Shape Model

An Active Shape Model (ASM) is a method based on Principal Component Analysis (PCA)
in order to find a new coordinate system where the faces space can be explained with a lower
dimensionality. Each dimension of this new space is uncorrelated with the rest, and follows the
directions of maximum variance of the data.

In order to compute the PCA of a dataset with n variables and m instances, first the empirical
mean for each variable, the mean vector B0, is extracted at each instance, resulting on a matrix
A〈n×m〉 containing the variations relative to the empirical mean of each variable. Afterwards, the
covariance matrix V 〈n×n〉 for the data is calculated, where each position represents the covariance
between any two variables.

It is now possible to perform a matrix diagonalization in order to decompose the covariance
matrix V into three components, as seen in Equation 9. This decomposition yields as a result
a matrix B〈n×n〉 of eigenvectors, being each column an eigenvector specifying the weights for
the original dimensions linear combination defining a new dimension in the PCA space. Matrix
D〈n×n〉 is a diagonal matrix where each value corresponds to the eigenvalues of the eigenvectors
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in B.

V = B ·D ·BT (9)

By reordering the eigenvectors and eigenvalues in descending order according to the eivenvalues,
the new dimensions are sorted from those explaining more variance of the data to those explaining
less of it. The proportion of variance explained by each eigenvector is obtained by dividing each
eigenvalue by their sum. After applying PCA to the geometry, it is now possible to reduce the
data dimensionality by keeping only those eigenvectors whose eigenvalues sum ammount to the
desired proportion of variance to be kept.

In order to apply PCA to explaining the variance of a shape, first the different shapes of the
dataset must be aligned, making the landmarks coincide as much as possible without distorting
the data. This implies applying a rotation, scaling and translation to each shape in the dataset,
which is accomplished through a technique known as Generalized Procrustes Analysis (GPA) [2].
This is an iterative technique which at each iteration first computes the mean shape by averaging
the current shape values. Afterwards, each shape is individually aligned to the canonical form of
the mean by finding the best transform to match the shape to the mean. This process is repeated
until a convergence criterion is met, moment in which the shapes are aligned. The final alignment
mean shape obtained at the last alignment step is then subtracted from the aligned data in order
to perform the PCA.

By keeping only a subset of the dimensions on the new shape space (those explaining more
variance), it is possible to explain most of the data variation with a much smaller set of variables.
For instance, in the case of the LFPW dataset, which consists on face images obtained from the
internet and labeled with 21 2D facial landmarks, the shape variations are completely explained
with 2 · 21 = 42 parameters. The corresponding ASM that explains 95% of the variance, though,
consists of only 21 parameters. A shape L following the model restrictions can now be generated
by assigning values to the m values of the weight vector b and adding a linear combination of the
weighted eigenvectors Bi to the mean B0, as shown in Equation 10.

L = B0 +

m∑
i=1

bi ·Bi (10)

The most relevant eigenvectors or bases of an ASM, which explain the main modes of variation
of the shape, can explain either a change in the perspective from which the shape is observed, or
by an intrinsic variation of the shape. This is illustrated in Figure 6, where the deformation of
the mean 2D face shape is shown when the weight assigned to a specific eigenvector is modified.

When fitting an ASM, it is also possible to restrict the fitted shape to a valid model shape. This
is done by defining an hyper-dimensional oval, where the value for each dimension is restricted to
lie within a given number of standard deviations from the zero mean. The standard deviation for
each eigenvector is defined by the squared root of its eigenvalue. When a vector of weights b lies
outside of that oval, the vector is rescaled to that maximum length. In the proposed approach,
this technique is used to rescale the vector to a maximum length of 3 · σ from the model mean
after each cascade step.

Fitting parameters

Along with the ASM weights b required to define the shape, there are five more parameters
required to position it into the image, giving a final parameter vector p = 〈b, sx, sy, dx, dy, θ〉. These
are the vertical and horizontal scaling parameters sx and sy, the shape translation parameters dx
and dy, and a rotation angle θ. Taking these into account, the number of fitting parameters for a
2D shape amounts to ||p|| = m+ 5.
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Figure 6: Three main modes of variation of the 2D ASM generated from a subset of 1572 images from the
AFLW dataset. The rows correspond to the first, second and third modes of variation, while each column
corresponds to a variation of -2, -1, 1 and 2 σ respectively. The first mode corresponds to a change in
pitch, the second to a change in yaw, and the third to the degree to which the face is smiling.

Because of how the ASM works, adding more landmarks to the model does not imply a linear
increase on the number of weights b required to define that shape in the ASM model. This means
that while the cost of calculating the SIFT descriptors remains the same for both SDM and the
proposed approach, the cost of performing the linear regression is much lower. Even though, in the
new approach it is necessary to calculate the precise landmarks position from the fitting parameters
before extracting the SIFT descriptors. The computational cost of the proposed approach is later
compared with that of SDM.

Recovering the geometry

In order to obtain the SIFT descriptors at the corresponding landmark locations, it is necessary
to transform the parameters vector into the corresponding geometry at each cascade step. This is
done by first obtaining the unaligned shape L′from the ASM weights b, as shown in Equation 10,
where m is the number of basis. Once the reconstructed shape is obtained, it is rotated, scaled
and translated according to the rest of parameters of p. This is done through the Equation 11,
where R is a rotation and scaling transform matrix, and T is a translation matrix.

L = R · L′ + T =

(
sx · cos(θ) −sx · sin(θ)
sy · sin(θ) sy · cos(θ)

)
· L′ +

(
dx
dy

)〈1×n〉
(11)

Computational complexity

In the case of SDM, the cost of performing the linear regression for n landmarks amounts to
a matrix product of the linear regression matrix Ri of size 2n× 128n and a descriptors matrix Φi
of size 128n× 1, representing the descriptors subtracted from the image at the current landmark
estimates. The complexity of this product operation equals Θ(2n · 128n) = Θ(256 · n2).

When using the new proposed technique, the problem is divided in two steps, first having
to calculate the landmark locations from the fitting parameters, and afterwards using the SIFT
descriptors to update the fitting parameters. The first step is performed by multiplying the matrix
with the relevant eigenvectors, of size 2n ×m, by the vector of bases, of size m, and afterwards
applying a spatial transform to the landmarks in order to include the translation, rotation and
scaling to the landmarks. The transform is done by multiplying a 3×3 matrix by the 3×n matrix
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representing the geometry. The second step is similar to that used by SDM, but updating the
parameters vector p instead of the bases. This means the computational cost of the second step
is of Θ(||p|| · (n · 128)) = Θ(128 · n · ||p||), with the total cost of the proposed algorithm being
Θ(3 · 3 · n+ 2 · n ·m+ 128 · n · ||p||) ≈ Θ(9 · n+ 130 · n ·m).

The computational complexity of SDM, thus, is of Θ(n2), while that of the proposed algorithm
is of Θ(n ·m). It is important to note that the complexity is only for the algorithm itself, without
taking into account the computational complexity of calculating the SIFT descriptors, which is the
same in both cases. Because of m << n, specially as n increases, it is shown that the proposed
approach does not proportionally increase the computational cost of the algorithm, but rather
makes it more efficient.

Advantages and inconvenients

The proposed change has some advantages, as well as some inconvenients compared to SDM.
By one side, using a parametric approach helps other steps of the algorithm, since as it is shown
in Section 3.2.2, by having the scaling parameters directly available it is possible to make the
SIFT descriptors adaptive to the model scaling without increasing the cost of the algorithm. It
also helps determining the head pose when the algorithm is adapted to work in a 3D space, as it
is shown in Section 3.4.

A second advantage of the method is its ability to restrict the face geometry to the modes of
variation observed in the training data. Since the weights b are scaled to fit within a radius of 3σ
from the ASM mean shape, the ability of SDM to simultaneously fit all the landmarks by sharing
information of their descriptors is further increased by using their current locations to force all
points to take a valid shape.

The downside to the ability of the model to restrict the possible shapes is the inability to
represent shape variations that are not observed in the training data and cannot be extrapolated
as a linear combination of the available observations, but this usually is not a problem for big
datasets with a wide range of shape variations, as is common in the on-the-wild datasets used in
this work. Another problem with this approach is the appearance of rotation singularities. In the
2D case, for instance, it is the same to define a rotation angle of 0 or 2 · π. This can introduce
problems for faces which are seen upside-down, but these are easily solved by the centroid fit
selection approach explained in Section 3.2.3.

3.2.2 Adaptive SIFT window sizes

The SIFT descriptor used in SDM, as explained in Section 3.1, uses a fixed window size in order to
extract the descriptor at each landmark. While this greatly increases the speed of subtracting the
descriptors, not having to find the invariant scale of the location, it also restricts the algorithm to
work at a given image size. Since the algorithm works by approximating the current descriptors
vector Φi to the target Φ∗, the extracted descriptors must be of a similar size in all cases.

This implies that, by one side, an interpolation must be made before processing an image,
scaling it to the desired size. Also, the face size must be previously known. These problems mean
an increase in the required pre-processing, and could be easily avoided given a fast way to adapt
the window size.

The proposed change is to use the mean sm = (sx+sy)/2 of the scaling parameters introduced
in Section 3.2.1 in order to adjust the SIFT window size. A given default window size of 32× 32
is assigned to the model when the scaling parameter equals one, and it is updated such that
wsize = 32 · sm at each cascade step as the parameters adjust to ft the window. This approach
also has the advantage of having equivalent descriptors for the same scale normalized error values,
making it easier for the linear regressor to estimate the correct scale.
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3.2.3 Centroid fit selection

While in the case of having a previous approximate estimate of the face rotation, a single initial
shape estimate can in most cases converge to the correct face geometry, in cases where the face
orientation is unknown it is useful to start with multiple shape initializations with different values
of the rotation angle θ. This is useful, for instance, when performing face tracking on video
sequences, where at the first frame multiple initializations are used, selecting the best after fitting
them.

d(Li, Lj) =
n∑
p=1

√
(xjp − xip)2 + (yjp − yip)2

where Lip = 〈xip, yip〉
(12)

In order to select the best fit between k initializations, a matrix S〈k×k〉 of matching distances s
calculated. A cell Si,j contains the distance between the fitted initializations Li and Lj , defined as
the sum of the euclidean distances d(Li, Lj) between matching landmarks, as shown in Equation
12, where n is the number of landmarks of the shape. Given the distances matrix, it is now
possible to select the fit Lmin by selecting the row/column with the minimum sum of distances.

3.3 Recovery of the 3D geometry from a 2D fit

The first approach to extending the proposed method to fitting the 3D geometry of a face is the
use of an additional step after fitting the 2D geometry, which optimizes the parameters of a 3D
ASM along with those of a restricted camera model in order to find the best 3D shape parameters
and pose simultaneously.

3D Active Shape Model

A 3D ASM of the face geometry is generated by using the Facewarehouse [10] dataset. This
dataset consists on a total of 3000 high resolution 3D facial range scans of 150 individuals aged
7-80 from different ethnicities displaying 20 different facial expressions.

In order to generate the 3D ASM, first the interest points for the fitting process are selected
in order to match those available at the corresponding 2D dataset. Afterwards, the geometries
are aligned by using an orthogonal Generalized Procrustes Analysis, only allowing for rotation,
translation and an equal scaling in all three dimensions. Since the data is directly captured in 3D,
there are no distortions caused by the head pose, and the shapes can be directly aligned to the
canonical form.

Iterative alignment and 3D ASM weights selection

The process followed to adjust the 3D ASM to the 2D face landmarks is an iterative two-step
process, where first the 3D rotation, translation and scaling are obtained, afterwards optimizing
the 3D ASM weights to adjust the 3D shape orthographic projection to the 2D landmarks. These
steps are repeated until the alignment error stops decreasing, as shown in the pseudo-code of
Figure 7. Here, B3Di represents the matrix form of base B3D

i , and is of size 〈3 × n〉. B2Di is the
equivalent representation for the 2D bases B3D

i .

Initially, the algorithm sets the 3D ASM deformation weights b to zeros, generating the mean
face shape. This geometry L3D is then used to find the best rotation and scaling matrix R and
translation T matching the 2D rigid geometry L2D. Then the iterative process starts, which
consists on first updating the 3D shape weights b and afterwards re-aligning the 3D shape to the
2D geometry.
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m← ||B3D||
b← 0m×1

P ← [1, 0, 0; 0, 1, 0]

L3D ← B3D
0 +

m∑
i=1

bi · B3D
i

〈R, T 〉 ← AlignShapes(L3D, L2D)

L3D ← R · L3D + T

err ←
n∑
i=1

√
(P · L3D

1,i − L2D
1,i )

2 + (P · L3D
2,i − L2D

2,i )
2

∆err ← −∞
while ∆err < 0 do

// Project and align 3D ASM mean and bases
B2D

0 ← P · (R · B3D + T )
for all B3D

i ∈ B3D do
B2D
i ← P ·R · B3D

i

end for

// Update 3D ASM weights
b← (B2D

1:m)† · (L2D −B2D
0 )

L3D ← B3D
0 + B3D

1:m · b1:m

// Re-align 3D shape and get error
〈R, T 〉 ← AlignShapes(L3D, L2D)
L3D ← R · L3D + T

∆err ←
n∑
i=1

√
(P · L3D

1,i − L2D
1,i )

2 + (P · L3D
2,i − L2D

2,i )
2 − err

err = err + ∆err

end while

Figure 7: Pseudo-code for the 3D ASM alignment to a 2D shape.

In order to update the 3D shapes, first the 3D ASM mean B3D0 is aligned to the shape by
applying the transform R, translation T and finally performing an ortographical projection, which
generates a 2D mean shape B2D0 . Each base B3Di is also transformed by using the rotation and
scaling transform R and ortographically projected, but the translation is not applied. This is due
to the ASM bases describing the modes of variation of the data after subtracting the mean, which
implies the bases always remain centred at zero. This is shown in Equation 13.

L3D = R · (B3D0 +
m∑
i=1

(bi · Bi)) + T = R · B3D0 +R ·
m∑
i=1

(bi · Bi) + T

= (R · B3D0 + T ) +
m∑
i=1

(R · bi · Bi)
(13)

The weights for the 3D ASM model can now be found by finding the optimal weights of the
projected 2D ASM model. In order to do so, the problem is formulated as a minimization problem
and solved through least-squares. This is done by solving the equation b = (B2D

1:m)† · (L2D−B2D
0 ),

where m is the number of bases of the ASM. After computing the weights, the resulting unaligned
3D shape is re-calculated and re-aligned to the 2D data. Now the error of matching the aligned 3D
shape to the 2D geometry is calculated as the sum of euclidean distances between the landmarks
and compared to the previous error. The weight re-calculation and shape alignment steps are
repeated until the error stops decreasing.
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Rigid 3D and 2D shapes alignment

In the previous alignment method between a 3D ASM model and a 2D shape, it is required
to find the best rotation, scaling and translation aligning a rigid 3D shape to the target 2D one,
which is done through the method AlignShapes(L3D, L2D). What this method does is to find the
best parameters for a scaled orthographic camera model known as the restricted camera model
[18]. The particularity of this method is its use of a single scaling factor instead of scaling each
dimension independently. This camera model is selected in order to prevent distortions of the 3D
model, since when distortions are allowed, as in the case of the general orthogonal camera model,
the scaling tends to absorb shape variations that should be explained by perspective changes and
variations of the ASM weights.

In order to calculate the best translation, rotation and scaling to match the 3D shape to the
2D one, first the mean of each dimension is subtracted from both the 2D and 3D shapes, moving
them to the coordinate origin. This results in the displacements d2D and d3D. Since in the case
of aligning a 3D ASM it is already centred at the coordinate origin, the optimal translations for
alignment corresponds to d2D. The value assigned to the third dimension of the translation is
irrelevant, since in an orthogonal camera model the projection is unaffected by the distance to the
projection plane and the camera. Afterwards, least-squares is used on the centred data in order to
find the best transform X〈2×3〉 such that L2D = X〈2×3〉 ·L3D. This gives a transform that is likely
to distort the landmarks, and projects them into the 2D plane. In order to solve these issues, the
next step is to add an additional row defining the location of the points in the third dimension.
This is done by calculating the cross product of the first two vectors, such that X3,: = X1,:×X2,:.
This defines a third dimension is orthogonal to the first two ones.

Afterwards, RQ decomposition is applied to the X transform matrix. This transform decom-
poses the matrix such that X = U · V , where V is a matrix where each row is orthogonal to the
rest, and U is an upper triangular matrix. If the original X matrix had been a rotation matrix
of orthogonal bases, U would now contain the positive scaling factor of each dimension in the
diagonal, and zeros at the rest of positions. Now it is possible to enforce these constraints to the
transform by forming a diagonal matrix W from the sings of the U diagonal and multiplying it
with both the U and V matrices. This results in a non-scaled rotation matrix R′ = W · V and a
diagonal matrix S = U ·W containing the scaling at each dimension. The final scaling for the re-
stricted camera model is obtained by averaging the scaling factors of the two first dimensions, such
that s = (sx · sy)/2. Finally, the rotation with the factor scaling is created such that R = s ·R′.

3.4 Extension to direct 3D fitting

Another approach to obtain the 3D geometry of faces from grayscale images is the extension of
the proposed 2D fitting approach to directly fitting 3D geometries. This approach is more direct
than the previously proposed one, since it only requires a reformulation of the adjusted parameters
and the extension of the technique used to transform the parameters vector into an aligned face
geometry before extracting the SIFT descriptors. The same 3D ASM model seen for recovering
the 3D geometry in Section 3.3 is now used during the image fitting stage.

Reformulating the parameters vector

During the explanation of the parametric approach for fitting 2D shapes in Section 3.2.1, a
parameters vector p = 〈b, sx, sy, dx, dy, θ〉 has been defined, which takes into account the ASM
weights b, as well as two scaling parameters sx and sy, and two translation parameters dx, dy.
In order to adapt this representation to the 3D case, some changes are made to the formulation.
By one side, the two scaling parameters are merged into a single s parameter, in order to prevent
different varying scaling factors to absorb pose and shape variations. Also, two additional angles
γ and η are added in order to represent the three rotation angles corresponding to roll, pitch and
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yaw.

p = 〈b, s, dx, dy, θ, γ, η〉 (14)

The resulting feature vector is the one seen in Equation 14. Note that since an orthographic
projection is used, there is no need to add a parameter dz for the displacement in the third
dimension. Also, the weights vector b now corresponds to the weights of the 3D ASM.

Recovering the geometry

It is also necessary to reformulate Equation 11 which aligns the recovered shape L3D′
to the

image by using the rotation, scaling and translation parameters. Since the points to be recovered
must be in a 2D space in order to extract the SIFT descriptors from the image, an orthogonal
projection is performed along with the 3D transform. The used method is shown in Equation 15.

L2D = [P · (s ·Rη ·Rγ ·Rθ)] · L3D′
+ T =

[(
1 0 0
0 1 0

)
·R′
]
· L3D′

+ T = R · L3D′
+ T

where R = s ·
(
c(η)c(θ) + s(η)s(γ)s(θ) c(η)s(θ)− s(η)s(γ)c(θ) s(η)c(γ)

−c(γ)s(θ) c(γ)c(θ) s(γ)

) (15)

Here R′ is the composite rotation matrix along roll (θ), pitch (γ) and yaw (η) scaled by a
factor of s. This rotation matrix is projected in order to obtain a compact transform matrix R
before applying it to the L3D′

landmarks. By directly computing R, the calculation of the third
dimension of the rotation is avoided. After projecting the geometry, the 2D translation is added
to the transformed landmarks by summing T =

[
(dx, dy)〈n×1〉

]T
.
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4 Experimental methodology

In this section the experiments performed to assess the accuracy of the different algorithms, their
execution time and the used datasets are explained. The results of these experiments are shown
in Section 5. First the three datasets used for the experiments are explained in Section 4.1, two
of which are used to check the algorithm geometry fitting accuracy and the other for the head
pose recovery. Afterwards, the specific experiments for measuring the geometry fitting and pose
recovery accuracies are explained in Sections 4.2-4.3. A qualitative evaluation of the methods
results is also pefromed.

4.1 Used data

Three datasets are used to perform the experiments. The Annotated Facial Landmarks in the
Wild (AFLW) [24] and Labeled Face Parts in the Wild (LFPW) [3] are two in the wild datasets
containing face images obtained from the internet. These are labelled with a set of landmarks at
specific locations of the face. The third is the Pointing ’04 dataset [17], which is labelled only
with the pose of the head, and is used to evaluate the head pose recovery performance for the two
head pose recovery proposals. These datasets are now explained in detail.

Annotated Facial Landmarks in the Wild

Figure 8: Image examples from the AFLW dataset. The
dataset contains both colour and grayscale images of peo-
ple from different ethnicities and ages, labelled with the 21
facial landmarks shown im the image.

Annotated Facial Landmarks in the
Wild (AFLW) [24] is a dataset contain-
ing 25993 images obtained from the inter-
net. The images display a wide variety
of face poses for people of different eth-
nicities under different illumination and
image quality conditions. While 21 land-
marks are defined, these are only defined
when visible, which makes many of the
images not usable to train the algorithm.
Only 2359 images are kept after discard-
ing those with missing values for the land-
mark locations.

In Figure 8 some examples of face im-
ages drawn from the AFLW dataset are
shown. The dataset includes images at
various resolutions, qualities and sizes. Furthermore, the pictures are from people of different
ethnicities and ages, with various poses diverging from the frontal view in roll, pitch and yaw.

Labeled Face Parts in the Wild

Figure 9: Image examples from the LFPW dataset. The
dataset contains both colour and grayscale images of peo-
ple from different ethnicities and ages, labelled with the 29
facial landmarks shown in the image.

Labeled Face Parts in the Wild
(LFPW) [3] is a dataset of face images la-
belled with 35 landmarks around the face.
Because of the dataset being downloaded
as a list of URL addresses to images in-
stead of it directly containing the images,
these are slowly disappearing from the In-
ternet, with the size of the dataset de-
creasing over time. While the original
dataset consisted on a total of 1430 im-
ages, only 836 were still available when
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downloaded for this work. In this dataset,
the hidden landmarks are also labelled at
their estimated location, with an extra
parameter specifying whether each land-
mark is occluded or not. Because of the 6
landmarks corresponding to the ears being imprecisely annotated in most of the images, these are
discarded, using the remaining 29 landmarks.

In Figure 9 some examples of face images drawn from LFPW dataset are shown. The dataset
contains images at various resolutions, qualities and sizes, as in the case of AFLW, but the range
of pose variations is wider. In LFPW, the pitch and yaw pose rotation angles of the faces range
from −90 to +90 degrees wrt. the frontal view, although extreme rotations have a very low
occurrence.

Pointing ’04

Figure 10: Image examples from the Pointing ’04 dataset.
The yaw varies from the left to the right, while the change
in pitch varies from the top to the bottom.

Pointing ’04 [17] is a dataset of
grayscale face images taken in a controlled
environment where each face image is la-
belled with the pitch and yaw pose angles.
This dataset does not contain a ground
truth for the face landmarks, and thus
cannot be used to train any of the pro-
posed algorithms. Instead, it is used to
evaluate the accuracy of the pose recov-
ery part of the algorithm.

The pose variations range from −90
to +90 degrees wrt. the frontal view for
both pitch and yaw, with variations of
15 degrees between images. The dataset
contains 15 individuals, with two series
recorded for each one and each series con-
taining 94 different poses. This amounts
to a total of 15·2·94 = 2820 images. Some
example poses are shown for one of the individuals in Figure 10.

4.2 Geometry fitting experiments

In order to measure the accuracy of the geometry fitting, as well as to compare the accuracies
between the original SDM algorithm, the proposed parametric approach and both proposed algo-
rithms for 3D fitting, a series of experiments are performed. The SDM algorithm is implemented
from the paper, since the authors made availabe only a testing implementation, from which it is
not possible to perform training.

First the parameters of the algorithms are set through a grid search, afterwards using the best
parameter combination found in order to compare the algorithms mean errors and Confidence
Intervals (CI), determining the most accurate approach. In order to do so, for each parameter
combination a ten-fold cross-validation is performed over the AFLW and LFPW datasets sepa-
rately, selecting the parameters minimizing the average error for each model and dataset. The
considered parameters are:

• Number of data augmentations

• Number of cascade steps
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• Number of initializations

The number of data augmentations corresponds to the number of initial fits with random
scaling, rotation and displacement parameters generated for each training image. The number of
training instances equals ||Laug|| = ||Ltrain|| · Naug. On the other hand, the number of cascade
steps corresponds to the number of linear regressors applied in series to find the final image face
alignment.

Finally, the number of validation initializations is selected, which is a validation parameter
that does not affect the training process. For this reason, it is not considered when optimizing
the model parameters through the search grid, and is independently optimized over the validation
partitions once the final model is selected. This parameter determines the number of initial samples
at different rotation angles evenly distributed between −90 and +90 that are used to fit the model
to an image. When performing the grid search on the original algorithm, 10 testing initializations
are considered.

With the final models selected, the validation results of the best parameter combinations at
each model are used to evaluate the error distribution through the Cumulative Error Distribution
(CED) curve, also checking the qualitative characteristics of the wrongly fitted images. Finally,
the runtime of the different approaches are compared between them with the selected optimal
parameters. In order to do so, all images are processed 32 times and their average runtime is
obtained in order to account for runtime variations between executions, afterwards calculating the
average image processing time of a single image.

Ten-fold cross-validation

The ten-fold cross-validation is a common approach to evaluate the performance of machine
learning algorithms. This methodology uses most of the data for training at each iteration, while
still being able to use all of the data to evaluate the performance at the end.

Figure 11: Example of a 10-fold cross-validation data partition. At each fold, one of the partitions is
selected for validation and the rest are used to train the algorithm. Finally the results of each fold validation
are merged, obtaining the validation results over the whole dataset.

The methodology consists on dividing the data into n equal-sized partitions, in the case of 10-
fold cross-validation into 10 partitions, and then performing the algorithm training and validation
n times. At each iteration, a different partition is selected for validation, using the rest for training.
After validating the algorithm over all of the partitions, the validation results can be merged. This
process is illustrated in Figure 11.

While this method is more expensive computationally, since the algorithm must be trained n
times, it allows for the use of all the data for validation and most of it for training at each iteration.
When evaluating the methods proposed in this work, this gives as a result an error measure with
a lower bias and a narrower variance.
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Error measure

The error measure used for the geometry fitting is the Normalized Mean Euclidean Distance
(NMED) seen in Equation 16. In this equation l is the number of landmarks and Li are the
coordinates of a specific landmark. This measure uses the mean euclidean distance d2(x, y) between
the fitted geometry L and their corresponding ground truth locations in L∗, normalized by the
intra-ocular distance of the fitted face in the ground truth.

Enorm =

l∑
i=1

d2(Li, L
∗
i )

l · d2(L∗eyer, L
∗
eyel)

(16)

3D ground truth

In order to measure the geometry fitting accuracies of the two proposed extensions for the
3D geometry fitting, first the 3D ground truth of the landmarks in both the AFLW and LFPW
datasets are required. Since both datasets are labelled with only the 2D landmarks, the third
dimension is extrapolated by using the iterative alignment algorithm between a 3D ASM and a
2D rigid geometry described in Section 3.3. In this case, the 3D ASM corresponding to the set of
landmarks of the specific dataset is aligned against the ground truth 2D landmarks.

This gives as a result a best-fit between the 3D ASM model and the 2D ground truth, but with
the new 3D landmarks not matching exactly tose of the 2D shape. In order to solve this problem,
the original xi and yi coordinates are kept, only adding the new estimated zi coordinates to each
landmark Li.

4.3 Pose recovery experiments

The pose recovery is evaluated by using the best models obtained for the two 3D fitting algorithms,
namely the 3D alignment and the 3D regression methods, over the Pointing ’04 dataset. In order
to evaluate and compare the pose recovery accuracies, first the mean fitting error over all the
poses and its CI is obtained for the pitch and yaw for each method, performing a Wilkoxon rank
sum statistical test to check whether one method can be considered better than the other in
determining a specific pose angle. Afterwards, two surface plots are generated for each method,
one for the pitch mean error and the other for the yaw mean error relative to the image ground
truth pitch and yaw. This representation is useful for visualizing how the error is distributed along
the different poses.

The error measure used for these tests is the error rate Eθ = (θ − θ∗)/π, measured as the
angular difference between the measured angle θ and the ground truth angle θ∗ divided by the
maximum possible error, which is of π radians.
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5 Results

In this section the results of the experiments previously explained in Section 4 are given, first
analysing the results for the parameter selection in both AFLW and LFPW datasets for the 2D
and 3D methods in Section 5.1. Once the best parameters are found for each method, a comparison
between the two 2D geometry fitting methods is made in Section 5.2, with the 3D methods being
compared in Section 5.3. In both cases the comparison is made for the geometry fitting accuracies
and the execution times. The 2D and 3D approaches are analysed separately because of the error
measure being defined as the euclidean distance in a 2D space in the first case, and in a 3D space
in the second, which makes it not possible to directly compare the results between 2D and 3D
approaches.

Afterwards, the head pose recovery accuracy of the 3D fitting methods is evaluated in Section
5.4. Finally, a qualitative evaluation of the results for both 2D and 3D approaches is performed
in Section 5.5.

5.1 Parameter selection

The parameter selection for both 2D approaches (Supervised Descent Method and Parametric) and
3D approaches (3D alignment and 3D regression) is performed in two steps. First the number of
data augmentations and cascade steps are selected through a grid search, since these are correlated,
afterwards selecting the number of test initializations given the trained model. In order to perform
both tasks, 10-fold cross-validation is used for each parameter combination, obtaining a validation
error.

2D geometry fitting methods

When selecting the data augmentations and cascade steps parameters over the AFLW dataset,
it is shown in Figure 12 that the error decreases for any given number of time steps as the number
of data boosts increases, but the reduction of the error is very small when the data augmentation
is bigger than 10-fold. In the same fashion, as the number of cascade steps increases, the error
diminishes regardless of the number of data augmentations, but it tends to converge after about
5 cascade steps. As the number of augmentations increases, it takes the algorithm more cascade
steps to reach convergence, allowing for the error to be further reduced.

(a) Supervised Descent Method (b) Parametric approach

Figure 12: Grid search results for the selection of the data augmentations and cascade steps parame-
ters for both the Supervised Descent Method (a) and Parametric (b) algorithms when analysing the
AFLW dataset. The parameter errors are given by the average error and its 95% CI.

In order to select the optimal parameters for the algorithm, it is useful to look at the precise
error values for the grid search, which can be found in Appendix A in the case of the AFLW
dataset. From these tables, it can be seen that in the case of SDM the best parameter values are 6
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cascade steps and 25 data augmentations. For the Parametric approach, the best values are
found for 6 cascade steps and 15 data augmentations. It is important to note that while the
error stabilizes past this point as the number of data augmentations increases, in the case of the
Parametric approach the error keeps decreasing as more cascade steps are added, but the decrease
is very slow and it is not worth the extra computational time. The reason why the error keeps
decreasing in the Parametric approach while it doesn’t in the original SDM method is explained
later in this section.

In the case of the LFPW dataset, as it can be seen in Figure 13, the data augmentations
parameter has a greater impact on the overall accuracy of the algorithm. This is due to the
LFPW dataset being smaller (it contains 836 images compared to the 2359 images of AFLW),
which makes the use of boosting more critical in order to consider a wider range of variations
between the initial and target poses.

(a) Supervised Descent Method (b) Parametric approach

Figure 13: Grid search results for the selection of the data augmentations and cascade steps parame-
ters for both the Supervised Descent Method (a) and Parametric (b) algorithms when analysing the
LFPW dataset. The parameter errors are given by the average error and its 95% CI.

By looking at the precise error values of the grid search in Appendix B, it can be seen that
for the LFPW dataset the best training parameters are 6 cascade steps and 15 data augmen-
tations for both SDM and the Parametric approach. In both cases the error is still reduced as
the number of cascade steps increases, but the reduction is very small and is not worth the extra
computational time.

For both datasets, the proposed Parametric approach tends to reduce the error both faster
and for a bigger number of cascade steps compared to SDM. This is due to the optimization of the
pose parameters along with the weights of an ASM instead of directly optimizing the shape. This
parametric representation compacts the shape representation to a smaller number of parameters,
which in turn means the number of weights at each linear regressor is smaller. Since a smaller
number of weights has to be optimized with the same available training data, the algorithm has
a greater tendency to generalization, preventing the algorithm from over-fitting.

With the optimal parameters for the model training selected, it is now possible to select the
optimal value for the number of initializations. The average errors of each final model relative to
the number of validation initializations are shown in Figure 14 for both the AFLW and LFPW
datasets.

It can be seen from these plots that in both datasets the proposed Parametric approach is less
sensible to using a small number of initializations, with the original SDM algorithm giving high
error values when using a small number of them. This implies that the extreme rotations of -90
and +90 degrees found when only 3 initializations are used, the SDM approach tends to converge
to local minima far away from the real face pose, with the parametric approach partially solving
this problem.

The precise mean error values and CI for the initializations parameter selection are found in
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(a) AFLW dataset (b) LFPW dataset

Figure 14: Average errors with their CI relative to the number of data initializations for the SDM and
Parametric approaches over both the AFLW (a) and LFPW (b) datasets.

Appendix C. From these values, it can be seen that at about 5 initializations the mean error of
all the algorithms starts to fall below the mean error of using a single initialization, but decrease
is slow, with a small improvement with respect to using a single initialization. The extra compu-
tational time is not worth the use of many initializations, since the time required for processing
an image is multiplied by a factor i, the number of initializations.

The selected parameters for each 2D geometry fitting algorithm are the following ones:

AFLW LFPW
SDM Parametric SDM Parametric

Data augmentations 6 6 6 6
Cascade steps 25 15 15 15
Initializations 1 1 1 1

3D geometry fitting methods

In the case of parameter selection for the 3D geometry fitting methods, the same trend seen
for the 2D geometry fitting algorithms is observed for the cascade steps and data augmentations
parameters. As the number of data boosts increases, the mean error decreases regardless of
the number of cascade steps, with the decrease being very small when the data augmentation is
greater than 10-fold. The error also takes longer to converge as the number of data augmentations
increases.

(a) 3D alignment (b) 3D regression

Figure 15: Grid search results for the selection of the data augmentations and cascade steps pa-
rameters for both the 3D alignment (a) and 3D regression (b) algorithms when analysing the AFLW
dataset. The parameter errors are given by the average error and its 95% CI.
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When observing the trend of the fitting error for both the AFLW and LFPW dataset in
Figures 15-16 some differences are observed between the two considered approaches. Firstly, the
3D alignment approach follows a similar trend to the 2D approaches for the convergence of 2D
values, converging at lower error values as the number of data boosts increases. In the case of 3D
regression, though, past a certain number of data boosts the average errors converge at about the
same value as the number of cascade steps increases.

Another difference is the rate of the error descent. The 3D alignment approach has a smoother
descent curve relative to the number of cascade steps. 3D regression, on the other hand, shows
a stepper descent curve, converging faster initially. This means a more accurate result can be
obtained with 3D regression with a fast approach using only the first cascade steps.

(a) 3D alignment (b) 3D regression

Figure 16: Grid search results for the selection of the data augmentations and cascade steps pa-
rameters for both the 3D alignment (a) and 3D regression (b) algorithms when analysing the LFPW
dataset. The parameter errors are given by the average error and its 95% CI.

In order to select the best parameter values for both algorithms over the AFLW dataset, the
precise values for the mean error are found in Appendix A. In the case of 3D alignment, the lowest
average error is found for 6 cascade steps and 20 data augmentations. For 3D regression,
the lowest average error is found for 5 cascade steps and 15 data augmentations, converging
faster than 3D alignment.

In the case of the LFPW dataset, the mean errors of the grid search are found in Appendix B.
In this dataset, the selected parameters for both approaches are 6 cascade steps and 20 data
augmentations. The error keeps decreasing in both cases if more cascade steps are used, but at
a small rate.

When comparing the error relative to the initializations parameter for both the 3D alignment
and 3D regression methods, as shown in Figure 17, a trend similar to the one found between the
2D methods is observed. For a small number of initializations, the error first increases, reducing
again at about 5 initializations, point at whitch the error decreases below the one found for a
single initialization. This trend is less marked in the case of the 3D regression approach.

The precise mean error values and their CI for the initializations parameter selection are
found in Appendix C. From these values it can be seen that the error decreases as the number of
initializations increases past 5, but it does not get significantly lower than the mean error obtained
for a single initialization. The only exception is for the 3D regression algorithm over the LFPW
dataset when 11 or more initializations are used, point at which the error is better than for a
single initialization with a 95% Confidence Interval. Even though, because the error difference
is small and the computational cost in order to achieve this small reduction of the average error
would be 11-fold that of using a single initialization, the initializations parameter is set to 1 for
all of the algorithms and datasets.
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(a) AFLW dataset (b) LFPW dataset

Figure 17: Average errors with their CI relative to the number of data initializations for the 3D alignment
and 3D regression approaches over both the AFLW (a) and LFPW (b) datasets.

The selected parameters for each 3D geometry fitting algorithm are the following ones:

AFLW LFPW
3D alignment 3D regression 3D alignment 3D regression

Data augmentations 6 5 6 6
Cascade steps 20 15 20 20
Initializations 1 1 1 1

5.2 Accuracies comparison between 2D methods

When comparing the mean fitting error of the 2D shape alignment methods over the AFLW
dataset, as it is shown in Table 3, the Parametric approach obtains better results than those
of SDM, with an error of 0.0928 ± 0.0031 compared to an error of 0.0973 ± 0.0032 for SDM.
The Wilkoxon rank sum test shows that this difference is significant, with a probability of only
1.7 · 10−10 of the obtained sample distributions belonging to the same population distribution.

On the other hand, in the case of the LFPW dataset, SDM has slightly better results, with
a mean error of 0.0753± 0.0090 compared to a mean error of 0.0784± 0.0085 for the parametric
approach. In this case, though, the difference is not significant, with a probability of 0.2671 of
both sample distributions belonging to the same population distribution.

SDM Parametric p-value Independence
AFLW 0.0973± 0.0032 0.0928± 0.0031 1.7 · 10−10 yes
LFPW 0.0763± 0.0090 0.0774± 0.0085 0.2671 no

Table 3: Comparison between the average errors of the Supervised Descent Method and the Parametric
approaches over the AFLW and LFPW datasets. The given p-values correspond to the probability of
the error samples of both methods belonging to the same error distribution, with the independence field
specifying if both samples belong to different distributions with a 95% confidence.

The Cumulative Error Distribution (CED) curves for the SDM and Parametric approaches
over both datasets are shown in Figure 18. These plots show that both SDM and the Parametric
approach obtain the same accuracies in the best and worst-case scenarios, with a NMED error of
about 0.045 in the best case in the AFLW dataset, and of about 0.03 in the LFPW dataset. 95%
of the images are detected with an error lower than 0.15 for both datasets and algorithms.

In the case of the AFLW dataset, where the Parametric approach has been shown to have
a lower average error which is statistically significant, the CED curve shows that this improve-
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(a) AFLW dataset (b) LFPW dataset

Figure 18: CED curves for the Supervised Descent Method and Parametric approaches over the AFLW
(a) and LFPW (b) datasets.

ment comes from a more accurate fitting of the correctly fitted faces, with the new approach not
increasing the ratio of correct fits.

When evaluating the runtime of each algorithm, the following average run-times are obtained
for each image at each dataset:

AFLW LFPW
SDM Parametric SDM Parametric

Average error 0.0973± 0.0032 0.0928± 0.0031 0.0763± 0.0090 0.0774± 0.0085
Temporal cost 0.0133 0.0135 0.0200 0.0200

Table 4: Average runtime in seconds of the Supervised Descent Method and Parametric approaches over
the AFLW and LFPW datasets.

From these results can be seen that the proposed Parametric approach obtains approximately
the same accuracies, or slightly better in the case of the AFLW dataset, while maintaining the same
average runtime. While this new approach does not obtain great improvements on the algorithm
accuracy, it does provide a reformulation of the original SDM approach which allows for the
implementation of a 3D geometry recovery algorithm which is much faster than the conventional
two-step approach, as seen in Section 5.3.

5.3 Accuracies comparison between 3D methods

The obtained average errors for the 3D alignment and 3D regression methods are shown in Figure
5, where a Wilkoxon rank sum test is used to compare the sample error distributions of both
methods at each dataset. In the case of the AFLW dataset, a statistically significant difference
has been found for the error distributions with a p-value of 0.0134. The 3D alignment method
obtains a slightly lower average NMED error of 0.1340 ± 0.0036 compared to an average NMED
error of 0.1387± 0.0045.

In the case of the LFPW dataset, there is no statistically significant difference between both
algorithms average errors, with a probability of 0.3412 of both error sample distributions belonging
to the same population distribution. Over this dataset, the 3D alignment method obtains an
average NMED error of 0.1235± 0.0081 compared to an average NMED error of 0.1229± 0.0094
for the 3D regression method.

The CED curves of both approaches over each of the datasets are shown in Figure 19. Both
algorithms align 95% of the samples with a NMED lower than 0.23, and have a minimum error
of about 0.065 for the best fit images in the case of the AFLW dataset. For the LFPW dataset,
both algorithms obtain a minimum error of 0.05. In the case of the AFLW dataset, where the 3D
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3D alignment 3D regression p-value Independence
AFLW 0.1340± 0.0036 0.1387± 0.0045 0.0134 yes
LFPW 0.1235± 0.0081 0.1229± 0.0094 0.3412 no

Table 5: Comparison between the average errors of the 3D alignment and the 3D regression approaches
over the AFLW and LFPW datasets. The given p-values correspond to the probability of the error samples
of both methods belonging to the same error distribution, with the independence field specifying if both
samples belong to different distributions with a 95% confidence.

alignment approach obtains a statistically significant smaller error, the curve shows that it is due
to a small increase in the accuracy of the correctly fit faces, but no new faces are detected.

(a) AFLW dataset (b) LFPW dataset

Figure 19: CED curves for the 3D alignment and 3D regression approaches over the AFLW (a) and
LFPW (b) datasets.

The temporal cost of the algorithms, on the other hand, are shown in Table 6. In the case
of the AFLW dataset, the 3D regression approach has an average runtime of 0.0113 s, with the
3D alignment approach taking 0.0268 s, 2.37 times more. A similar ratio is found for the LFPW
dataset, with the 3D regression approach running for 0.0163 s seconds on average, while the 3D
alignment approach takes 0.0338 s, 2.07 times more.

AFLW LFPW
3D alignment 3D regression 3D alignment 3D regression

Average error 0.1340± 0.0036 0.1387± 0.0045 0.1235± 0.0081 0.1229± 0.0094
Temporal cost 0.0268 0.0113 0.0338 0.0163

Table 6: Average runtime in seconds of the 3D alignment and 3D regression approaches over the AFLW
and LFPW datasets.

The difference in the runtime rate of the algorithm is due to the increase in the cost of calcu-
lating the SIFT features in both algorithms. In the AFLW dataset 21 facial landmarks are taken
into account, while in the case of the LFPW dataset 29 are used. As the number of landmarks
increases, this common step in both algorithms requires more time, while the step performing
3D ASM alignment to the 2D landmarks in the 3D alignment approach remains approximately
constant. Even though, by directly avoiding the need of performing this additional step in 3D
regression, this second method will always be faster.

5.4 Pose recovery comparison

In this section the pose recovery accuracies are evaluated over the Pointing ’04 dataset. In order
to do so, the parameters previously selected in Section 5.3 for the 3D geometry fitting methods
are used to train the 3D alignment and 3D regression models over the full LFPW dataset.
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Table 7 shows the average errors obtained for the pitch and yaw as the difference in degrees
between the ground truth and predicted angles. As it can be seen, the 3D regression method
obtains lower error values compared to 3D alignment for both pitch and yaw. These differences
are found to be statistically significant in both cases when compared by performing a Wilkozon
rank sum test. Even though, the error is found to be quite high for both algorithms, whith an
average error of 20.20 and 22.69 degrees for pitch for 3D regression and 3D alignment respectively,
and of 30.12 and 37.42 for yaw.

3D alignment 3D regression p-value Independence
Pitch error 22.6883± 0.6071 20.1984± 0.5874 1.70 · 10−9 yes
Yaw error 37.4263± 1.0112 30.1245± 0.9006 3.64 · 10−22 yes

Table 7: Comparison between the average pitch and yaw pose recovery errors for the 3D alignment and
3D regression methods over the Pointing ’04 dataset.

This does not represent a high fitting error in all cases, but rather the error depends on the
pose to be predicted. This is illustrated in Figure 20 for the 3D alignment algorithm, and in Figure
21 for the 3D regression algorithm. From these figures it can be seen that for both methods the
fitting is good for a range between -30 and +30 degrees for the yaw angle, and for a range between
-22.5 and 11.25 for pitch.

(a) Average pitch errors (b) Average yaw errors

Figure 20: Pose recovery errors for the 3D alignment method over pitch (a) and yaw (b) relative to the
ground truth pitch and yaw values.

When comparing the error distribution between algorithms, it is found that the 3D regression
approach is capable of correctly recovering the pose for a wider range of both yaw and pitch. This
is due to the 3D regression approach direclty regressing the pose when fitting the geometry, while
3D alignment obtains the 3D geometry and pose from the 2D geometry.

When fitting the 3D geometry through the regression of a 2D geometry, if the geometry is
not copletely adjusted to the image, the resulting landmarks can conform an invalid projection
of the 3D shape. At the second step of the 3D aligment approach, the 3D ASM is aligned to
this geometry, but since the 2D geometry cannot be completely explained by the 3D ASM, the
restricted camera model is forced to partially explain the discrepances. This results in an invalid 3D
projection which can be drastically different from the one that would be obtained with a correclty
fit 2D geometry. In the case of 3D regression, since the restricted camera model parameters and
3D ASM weights are directly fit to the image through a cascade of linear regressors, the pose is
approximated along with the geometry. This gives a good approximation of the head pose even if
the geometry is not completely adjusted to the image.

The precise error values relative to the head pose for 3D alignment and 3D regression are
found in Appendices D-E respectively. From these values it can be seen that both methods
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(a) Average pitch errors (b) Average yaw errors

Figure 21: Pose recovery errors for the 3D regression method over pitch (a) and yaw (b) relative to the
ground truth pitch and yaw values.

perform poorly for pitch angles out of the -22.5 to +11.25 degrees range, and for yaw angles out
of the -45 to +45 degrees range. This is likely not a problem with the algorithms, but rather a
problem with the data used for training them. Neither the AFLW nor the LFPW datasets contain
many examples of images past these ranges, and thus the models could not be trained in order to
take into account these cases. Since the Pointing ’04 dataset is labeled only with the pitch and
yaw values and does not contain geometric information, it could not be used for training neither.

5.5 Qualitative results evaluation

In this section a qualitative evaluation of the 2D and 3D algorithms is performed by looking at
sample processed images. Also, the SDM method is compared against the Parametric parametric
approach, and 3D alignment against 3D regression.

In the case of the 2D algorithms, some geometry fitting examples over both AFLW and LFPW
datasets are shown in Figure 22. From these results, it is shown that an advantage of the Para-
metric approach is its ability to better fit the landmark at the chin. Since this landmark is located
at a face region which in most cases has few differences in appearance to other locations around
it, it is difficult to precisely locate the region. In the case of the Parametric approach, though,
since an ASM is used for fitting, the landmark location is forced inside a certain area given the
locations of the other landmarks. The same happens for the two other contour landmarks in the
case of the AFLW dataset.

It is also seen in the case of the second image for the AFLW dataset that both 2D methods are
capable of fitting low-quality images with small resolutions and intensity problems. The AFLW
dataset also contains many labelling imprecisions, but both algorithms are in many cases capable
of fitting the landmarks more precisely than the ground truth. This is due to the learning process
using many images, that on average have the landmarks centered at the correct location, which
allows the algorithms to learn a correct regression even with this labelling noise. This is one of the
main reasons why both algorithms obtain a higher average NMED error in the AFLW dataset.
Both algorithms are also capable of correctly estimating occluded landmarks, as it is shown in
some examples of the LFPW dataset where sunglasses are used or there is hair partially covering
one of the eyes.

In the case of the 3D fitting algorithms, some fitting examples of which over the AFLW and
LFPW datasets are shown in Figure 23, the main observed difference between both 3D methods
is the ability of 3D regression to better estimate the face orientation even when the detected
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(a) AFLW dataset

(b) LFPW dataset

Figure 22: Sample image fittings over the AFLW (a) and LFPW (b) datasets for both the Supervised
Descent Method (upper row) and Parametric (lower row) methods. The red circles correspond to the
ground truth landmark locations, and the cyan circles to the fitted landmarks.

landmarks are approximately the same. This is specially true in the case of pitch, but also
happens for the yaw angle. The reason for this difference is that the 3D alignment algorithm
looks for a best fit between the 3D ASM model and the detected 2D landmarks. This in many
cases results in a precise fit of most of the landmarks, except for one or few landmarks which are
incorrectly aligned in favour of more precisely locating the rest. In some cases, the incorrectly
aligned landmarks are the ones giving the strongest visual clue for the head pose, as it is the case
of the nose tip. When looking at the sample images, most of the landmarks are placed at about
the same location for both methods, but the nose tip has a higher displacement from the ground
truth in the case of 3D alignment.
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(a) AFLW dataset

(b) LFPW dataset

Figure 23: Sample image fittings over the AFLW (a) and LFPW (b) datasets for both the 3D alignment
(upper row) and 3D regression (lower row) methods. The red circles correspond to the ground truth
landmark locations, and the cyan circles to the fitted landmarks.
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6 Conclusions

While in some works ASMmodels are considered to perform poorly compared to the state of the art
in shape regression [31], this work has shown that similar accuracies are obtained when adapting
one of those techniques (Supervised Descent Method [38]) in order to regress an ASM instead of
directly regressing the geometry. Furthermore, the proposed parametric approach has obtained
an average fitting error which is 5% lower in the case of the AFLW dataset while maintaining
approximately the same accuracy in the case of LFPW.

The main reason why the parametric approach outperforms SDM is because of the number of
principal components required for fitting the face being much lower, passing from 42 values for
the 2D shape representation to 21 + 5 = 26 when using ASM in the case of the AFLW dataset,
and from 58 to 23 + 5 = 28 in the case of LFPW. This means the weights matrix is much smaller
when using this parametric representation, but still the same amount of training data is available
for calculating these weights. As a result, the algorithm can generalize better. Also, since the
parametric approach direclty gives the scale of the current fitting estimate at each cascade step,
it provides an easier formulation for scaling the simplified SIFT descriptor windows accordingly,
providing scale-invariance. It is also possible that the reduction in the number of parameters
required to describe the shape, discarding the lowest ranked eigenvectors, allows the ASM model
to ignore the labeling imprecision errors of the ground truth.

The proposed parametric approach has also been extended in order to directly fit the 3D face
geometry to 2D face images. This approach is usually done in a two-step process, which comprises
the recovery of the 2D geometry and the alignment of a 3D ASM model to the recovered geometry.
When comparing the two-step 3D alignment approach to the direct 3D regresson of the geometry,
3D regression is found to have the same average error over the LFPW dataset, but an error 4%
higher in the case of AFLW. Even though, this small increase of the error is compensated by a
smaller runtime, with direct 3D regression being 2.37 times faster over the AFLW dataset, and
2.07 times faster over LFPW.

Another advantage of the proposed 3D regression approach is its ability to better estimate the
3D head pose compared to 3D alignment in cases where the face geometry could not be precisely
recovered. This is shown in Section 5.4, where extreme head poses are more accurately predicted
by 3D regression. This happens because of the two-step 3D alignment algorithm having to adjust
a 3D ASM to the 2D landmarks. When the landmarks are not precisely located in the image,
these can take an invalid face configuration which cannot be completely described by the 3D ASM.
As a result, the restricted camera model is forced to partially account for the error in predicting
the face shape, obtaining an invalid head pose as a result. In the case of 3D regression, the 3D
pose parameters are regressed together with the 3D ASM weights, giving a good approximation
to the head pose even if the face landmarks cannot be precisely adjusted to the image.
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A Normalized mean euclidean errors for the number of data augmen-
tations and cascade steps grid search over the AFLW dataset

Dataset: AFLW
Algorithm: Supervised Descent Method

1 5 10 15 20 25
1 0.1911± 0.0041 0.1567± 0.0040 0.1477± 0.0040 0.1439± 0.0040 0.1423± 0.0040 0.1417± 0.0041

2 0.1471± 0.0038 0.1188± 0.0034 0.1113± 0.0034 0.1083± 0.0034 0.1061± 0.0034 0.1054± 0.0035

3 0.1382± 0.0039 0.1057± 0.0033 0.1025± 0.0032 0.1005± 0.0031 0.0997± 0.0031 0.0990± 0.0031

4 0.1377± 0.0039 0.1015± 0.0033 0.0980± 0.0032 0.0971± 0.0031 0.0966± 0.0031 0.0959± 0.0031

5 0.1377± 0.0039 0.0999± 0.0033 0.0966± 0.0032 0.0957± 0.0031 0.0958± 0.0031 0.0950± 0.0030

6 0.1381± 0.0039 0.0993± 0.0033 0.0959± 0.0033 0.0957± 0.0031 0.0955± 0.0031 0.0943± 0.0031

7 0.1383± 0.0039 0.0992± 0.0034 0.0957± 0.0033 0.0954± 0.0031 0.0952± 0.0031 0.0944± 0.0031

Dataset: AFLW
Algorithm: Parametric

1 5 10 15 20 25
1 0.1802± 0.0044 0.1512± 0.0041 0.1426± 0.0041 0.1401± 0.0041 0.1388± 0.0041 0.1370± 0.0041

2 0.1257± 0.0041 0.1121± 0.0037 0.1067± 0.0036 0.1052± 0.0036 0.1038± 0.0036 0.1031± 0.0036

3 0.1153± 0.0041 0.1000± 0.0036 0.0991± 0.0034 0.0986± 0.0033 0.0978± 0.0034 0.0978± 0.0034

4 0.1144± 0.0041 0.0947± 0.0036 0.0943± 0.0033 0.0937± 0.0031 0.0936± 0.0032 0.0936± 0.0032

5 0.1143± 0.0041 0.0923± 0.0036 0.0913± 0.0033 0.0907± 0.0031 0.0909± 0.0031 0.0910± 0.0031

6 0.1143± 0.0041 0.0918± 0.0036 0.0900± 0.0032 0.0896± 0.0031 0.0899± 0.0031 0.0900± 0.0031

7 0.1143± 0.0041 0.0915± 0.0036 0.0899± 0.0033 0.0892± 0.0030 0.0894± 0.0031 0.0892± 0.0031

Dataset: AFLW
Algorithm: 3D alignment

1 5 10 15 20 25
1 0.2286± 0.0047 0.2017± 0.0045 0.1899± 0.0044 0.1879± 0.0043 0.1869± 0.0044 0.1870± 0.0043

2 0.1752± 0.0045 0.1556± 0.0041 0.1498± 0.0038 0.1472± 0.0039 0.1465± 0.0038 0.1454± 0.0038

3 0.1646± 0.0045 0.1425± 0.0038 0.1398± 0.0036 0.1377± 0.0036 0.1373± 0.0035 0.1373± 0.0036

4 0.1629± 0.0045 0.1363± 0.0038 0.1356± 0.0036 0.1335± 0.0035 0.1331± 0.0034 0.1336± 0.0034

5 0.1637± 0.0045 0.1346± 0.0038 0.1332± 0.0036 0.1318± 0.0035 0.1314± 0.0034 0.1321± 0.0034

6 0.1640± 0.0045 0.1345± 0.0038 0.1325± 0.0036 0.1311± 0.0035 0.1302± 0.0034 0.1310± 0.0034

7 0.1638± 0.0045 0.1345± 0.0038 0.1323± 0.0036 0.1314± 0.0035 0.1305± 0.0033 0.1312± 0.0034

Dataset: AFLW
Algorithm: 3D regression

1 5 10 15 20 25
1 0.2225± 0.0045 0.1953± 0.0045 0.1870± 0.0045 0.1857± 0.0045 0.1836± 0.0045 0.1822± 0.0045

2 0.1682± 0.0044 0.1480± 0.0043 0.1447± 0.0043 0.1429± 0.0043 0.1427± 0.0043 0.1424± 0.0043

3 0.1582± 0.0044 0.1367± 0.0043 0.1351± 0.0043 0.1348± 0.0043 0.1347± 0.0043 0.1343± 0.0043

4 0.1572± 0.0044 0.1343± 0.0044 0.1338± 0.0043 0.1337± 0.0044 0.1339± 0.0043 0.1335± 0.0043

5 0.1568± 0.0044 0.1339± 0.0043 0.1342± 0.0044 0.1334± 0.0044 0.1346± 0.0044 0.1340± 0.0043

6 0.1575± 0.0045 0.1337± 0.0043 0.1342± 0.0044 0.1339± 0.0044 0.1348± 0.0044 0.1341± 0.0043

7 0.1575± 0.0045 0.1338± 0.0043 0.1342± 0.0044 0.1341± 0.0044 0.1349± 0.0044 0.1340± 0.0043
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B Normalized mean euclidean errors for the number of data augmen-
tations and cascade steps grid search over the LFPW dataset

Dataset: LFPW
Algorithm: Supervised Descent Method

1 5 10 15 20 25
1 0.2621± 0.0109 0.2439± 0.0105 0.2278± 0.0100 0.2164± 0.0106 0.2168± 0.0103 0.2088± 0.0102

2 0.1844± 0.0117 0.1424± 0.0103 0.1331± 0.0104 0.1257± 0.0082 0.1239± 0.0088 0.1219± 0.0091

3 0.1758± 0.0121 0.1094± 0.0102 0.1005± 0.0103 0.0932± 0.0075 0.0939± 0.0081 0.0951± 0.0090

4 0.1753± 0.0121 0.0983± 0.0103 0.0863± 0.0103 0.0817± 0.0075 0.0828± 0.0082 0.0844± 0.0091

5 0.1752± 0.0121 0.0961± 0.0103 0.0808± 0.0104 0.0756± 0.0073 0.0775± 0.0083 0.0780± 0.0081

6 0.1752± 0.0121 0.0960± 0.0103 0.0801± 0.0106 0.0731± 0.0077 0.0742± 0.0082 0.0765± 0.0084

7 0.1753± 0.0121 0.0963± 0.0103 0.0801± 0.0106 0.0728± 0.0077 0.0730± 0.0083 0.0745± 0.0085

Dataset: LFPW
Algorithm: Parametric

1 5 10 15 20 25
1 0.2564± 0.0114 0.2371± 0.0096 0.2228± 0.0108 0.2147± 0.0099 0.2103± 0.0107 0.2041± 0.0097

2 0.1695± 0.0117 0.1412± 0.0097 0.1333± 0.0093 0.1294± 0.0084 0.1268± 0.0086 0.1250± 0.0082

3 0.1590± 0.0117 0.1051± 0.0099 0.0979± 0.0087 0.0951± 0.0080 0.0978± 0.0095 0.0983± 0.0081

4 0.1584± 0.0118 0.0957± 0.0101 0.0855± 0.0088 0.0836± 0.0082 0.0861± 0.0097 0.0854± 0.0078

5 0.1586± 0.0118 0.0932± 0.0102 0.0803± 0.0085 0.0781± 0.0082 0.0812± 0.0100 0.0806± 0.0081

6 0.1586± 0.0118 0.0935± 0.0102 0.0788± 0.0085 0.0746± 0.0081 0.0770± 0.0100 0.0774± 0.0082

7 0.1585± 0.0118 0.0935± 0.0102 0.0788± 0.0085 0.0739± 0.0082 0.0759± 0.0102 0.0751± 0.0083

Dataset: LFPW
Algorithm: 3D alignment

1 5 10 15 20 25
1 0.2967± 0.0103 0.2877± 0.0094 0.2603± 0.0094 0.2541± 0.0096 0.2425± 0.0092 0.2413± 0.0098

2 0.2249± 0.0109 0.1988± 0.0102 0.1875± 0.0088 0.1786± 0.0085 0.1759± 0.0089 0.1749± 0.0092

3 0.2156± 0.0111 0.1595± 0.0100 0.1474± 0.0087 0.1442± 0.0084 0.1406± 0.0084 0.1430± 0.0089

4 0.2151± 0.0111 0.1467± 0.0101 0.1306± 0.0083 0.1293± 0.0083 0.1276± 0.0083 0.1276± 0.0077

5 0.2148± 0.0111 0.1443± 0.0102 0.1241± 0.0081 0.1236± 0.0081 0.1233± 0.0086 0.1238± 0.0086

6 0.2145± 0.0111 0.1445± 0.0103 0.1231± 0.0082 0.1204± 0.0082 0.1204± 0.0085 0.1205± 0.0078

7 0.2148± 0.0111 0.1439± 0.0102 0.1228± 0.0082 0.1200± 0.0082 0.1195± 0.0086 0.1192± 0.0079

Dataset: LFPW
Algorithm: 3D regression

1 5 10 15 20 25
1 0.2828± 0.0107 0.2653± 0.0100 0.2470± 0.0091 0.2400± 0.0095 0.2309± 0.0093 0.2315± 0.0093

2 0.2087± 0.0110 0.1749± 0.0094 0.1628± 0.0087 0.1588± 0.0082 0.1576± 0.0085 0.1534± 0.0084

3 0.2030± 0.0111 0.1422± 0.0093 0.1295± 0.0082 0.1310± 0.0083 0.1281± 0.0080 0.1278± 0.0084

4 0.2027± 0.0111 0.1342± 0.0094 0.1206± 0.0082 0.1219± 0.0085 0.1206± 0.0081 0.1216± 0.0087

5 0.2026± 0.0111 0.1336± 0.0097 0.1172± 0.0083 0.1175± 0.0084 0.1172± 0.0090 0.1190± 0.0088

6 0.2027± 0.0111 0.1331± 0.0097 0.1164± 0.0082 0.1157± 0.0085 0.1156± 0.0092 0.1166± 0.0088

7 0.2029± 0.0111 0.1335± 0.0097 0.1164± 0.0082 0.1154± 0.0085 0.1151± 0.0093 0.1154± 0.0089
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C Normalized mean euclidean errors for the number of validation ini-
tializations parameter selection.

AFLW dataset

SDM Parametric 3D alignment 3D regression
1 0.0974± 0.0032 0.0928± 0.0031 0.1340± 0.0036 0.1387± 0.0045
3 0.7277± 0.0159 0.0928± 0.0031 0.3422± 0.0165 0.1409± 0.0046
5 0.0996± 0.0036 0.0925± 0.0033 0.1341± 0.0036 0.1359± 0.0045
7 0.0963± 0.0031 0.0909± 0.0032 0.1319± 0.0034 0.1344± 0.0043
8 0.0948± 0.0030 0.0899± 0.0032 0.1313± 0.0034 0.1340± 0.0044
11 0.0945± 0.0030 0.0896± 0.0031 0.1313± 0.0035 0.1337± 0.0043

LFPW dataset

SDM Parametric 3D alignment 3D regression
1 0.0763± 0.0090 0.0774± 0.0085 0.1235± 0.0081 0.1229± 0.0094
3 0.2718± 0.0177 0.1025± 0.0120 0.1560± 0.0123 0.1443± 0.0122
5 0.0832± 0.0099 0.0807± 0.0088 0.1271± 0.0084 0.1210± 0.0089
7 0.0763± 0.0082 0.0766± 0.0085 0.1221± 0.0085 0.1160± 0.0085
8 0.0749± 0.0091 0.0758± 0.0080 0.1208± 0.0077 0.1159± 0.0085
11 0.0739± 0.0088 0.0747± 0.0078 0.1201± 0.0077 0.1142± 0.0079
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D Average pose fitting errors for each ground truth orientation using
the 3D alignment method.

Pitch average errors

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90

−67.5 - - - - - - 54.66 - - - - - -
−56.25 - - - - - - - - - - - - -
−45 34.23 34.65 33.36 34.07 31.50 29.01 28.99 29.94 33.92 37.09 36.52 37.26 34.26

−33.75 - - - - - - - - - - - - -
−22.5 9.77 11.04 15.52 13.07 8.20 7.25 5.79 8.27 10.61 11.42 13.71 10.64 12.84

−11.25 8.66 8.17 6.50 6.07 6.21 6.24 6.98 5.80 5.82 7.24 6.08 5.84 5.61

0 13.33 12.17 15.15 13.19 9.83 10.19 7.86 10.30 9.38 9.34 11.18 10.92 14.25

11.25 23.63 21.62 19.33 17.99 16.54 14.17 11.16 13.97 16.35 17.89 20.77 20.18 21.74

22.5 28.02 26.40 30.47 25.36 23.08 21.00 18.60 21.22 26.21 26.47 29.46 30.76 32.59

33.75 - - - - - - - - - - - - -
45 51.98 48.83 48.68 44.84 40.66 40.73 40.82 41.91 43.28 46.98 49.16 53.43 52.96

56.25 - - - - - - - - - - - - -
67.5 - - - - - - 64.11 - - - - - -

Yaw average errors

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90

−67.5 - - - - - - 7.02 - - - - - -
−56.25 - - - - - - - - - - - - -
−45 84.65 67.80 54.79 40.83 26.92 13.16 6.88 11.07 21.79 39.23 52.38 64.99 82.35

−33.75 - - - - - - - - - - - - -
−22.5 82.12 65.57 49.65 32.07 17.77 12.15 6.29 5.90 16.38 28.27 47.52 62.83 84.05

−11.25 77.82 59.58 43.59 28.60 16.94 8.32 5.48 5.76 10.40 25.89 42.03 61.84 79.62

0 77.16 59.27 42.34 26.87 15.13 8.51 5.12 5.17 12.33 26.98 46.47 61.06 79.85

11.25 75.10 55.88 40.83 25.98 13.79 6.43 5.54 6.30 12.91 27.47 44.68 63.69 81.72

22.5 73.64 59.96 43.90 27.25 17.72 7.64 5.67 5.68 15.59 30.78 48.81 65.65 80.48

33.75 - - - - - - - - - - - - -
45 75.47 59.16 45.48 28.89 18.26 9.14 5.04 11.37 24.74 41.69 53.65 68.57 87.01

56.25 - - - - - - - - - - - - -
67.5 - - - - - - 6.20 - - - - - -
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E Average pose fitting errors for each ground truth orientation using
the 3D regression method.

Pitch average errors

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90

−67.5 - - - - - - 56.84 - - - - - -
−56.25 - - - - - - - - - - - - -
−45 32.95 39.05 38.39 34.85 33.31 36.48 39.17 34.82 38.72 34.39 37.90 35.82 32.54

−33.75 - - - - - - - - - - - - -
−22.5 13.44 13.86 11.84 13.89 12.32 9.44 10.03 11.00 9.89 11.31 10.98 12.59 12.11

−11.25 12.36 11.19 8.63 8.25 7.27 6.89 6.77 8.04 6.74 6.21 7.28 8.44 8.51

0 12.25 14.43 12.26 10.24 6.62 7.28 5.83 7.00 8.76 9.56 9.26 13.91 14.41

11.25 22.57 17.71 18.88 15.84 12.75 9.03 8.25 8.86 12.44 14.05 17.52 19.02 19.45

22.5 29.32 29.46 25.94 18.58 16.92 14.05 12.58 13.63 15.64 21.82 24.81 25.36 30.27

33.75 - - - - - - - - - - - - -
45 45.77 42.98 37.19 34.69 32.24 28.04 24.81 25.93 27.37 30.06 39.30 40.16 46.66

56.25 - - - - - - - - - - - - -
67.5 - - - - - - 47.27 - - - - - -

Yaw average errors

−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90

−67.5 - - - - - - 9.79 - - - - - -
−56.25 - - - - - - - - - - - - -
−45 74.76 57.27 50.41 34.19 21.56 16.64 16.07 13.29 20.53 25.07 43.09 55.59 69.86

−33.75 - - - - - - - - - - - - -
−22.5 72.05 60.03 40.54 26.04 17.46 7.64 8.84 8.97 11.74 19.07 37.46 51.66 67.36

−11.25 69.66 51.29 35.53 23.97 12.25 6.96 6.62 7.53 12.84 20.48 34.02 51.74 68.83

0 66.59 45.61 30.35 18.12 11.20 6.54 5.06 8.64 12.10 20.23 27.41 46.66 68.35

11.25 61.72 40.68 28.33 17.57 9.94 5.73 4.72 7.27 10.41 16.91 35.95 49.68 67.57

22.5 56.62 41.11 29.53 18.29 9.70 5.94 4.82 4.61 10.56 21.36 37.18 49.89 66.44

33.75 - - - - - - - - - - - - -
45 59.61 41.91 29.04 18.04 10.96 7.31 6.92 9.16 14.89 29.70 43.85 54.47 73.18

56.25 - - - - - - - - - - - - -
67.5 - - - - - - 10.53 - - - - - -
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