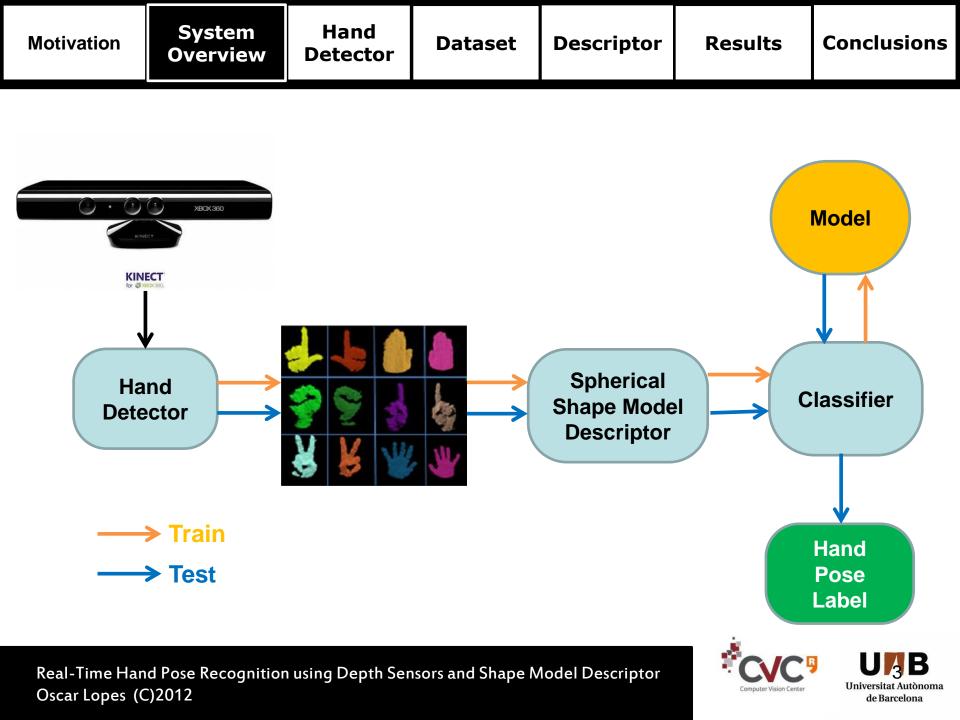
Master Computer Vision & Artificial Intelligence

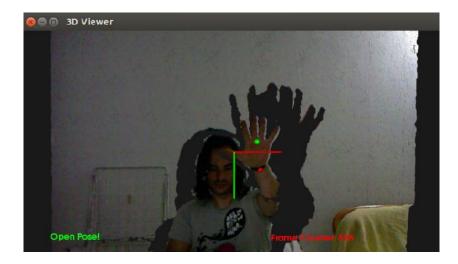
Real-Time Hand Pose Recognition using Depth Sensors combined with Spherical Shape Model Descriptor

> Oscar Lopes Advisors: Sergio Escalera Jordi Gonzàlez



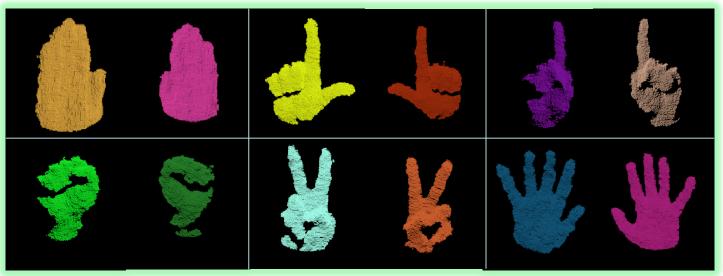
Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
		0	vervie	ew: g	-spea	k
		o b	long	indu	strie	s

Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012



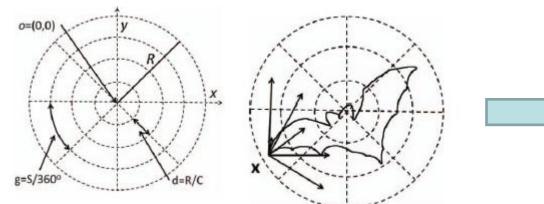
Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

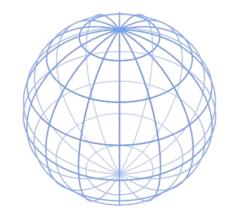
- First the closest point is searched
 - Perform a radius search of 10cm, until the depth starts to rapidly increase.
 - If less than 100 points are obtained, then the sample is discard.
- Repeat the same procedure to find the second hand: the distance to camera must be within 30 cm of the first hand's closest distance and must more than 20 cm from the center of the first hand.



Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

- No hand pose dataset is publicly available.
- New point cloud hand pose dataset must be creatred!
- The dataset was created using and adaptation of the hand detector.
- Includes 6 classes with 2000 samples (1000 per hand):
 - Each class includes both hands.
 - High hand orientation variability.
- Plus a *No-Pose* class.


Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012



Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

- Current state-of-art point cloud descriptors (e.g PFH) have great computation overhead: O(N²).
- The design of a novel descriptor is necessary!
- Circular Blurred Shape Model Descriptor [Escalera et al]
 - Very good discriminative power
 - Low computational requirements

S. Escalera, A. Fornes, O. Pujol, A. Escudero, and P. Radeva, "Circular blurred shape model for symbol spotting in documents," in *Image Processing (ICIP)*, 2009 16th IEEE International Conference on, nov. 2009, pp. 2005–2008.

Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012

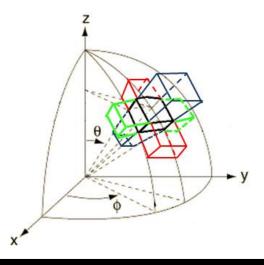
Motivation System Hand Dataset Descriptor Results Conclusion	Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
--	------------	--------------------	------------------	---------	------------	---------	-------------

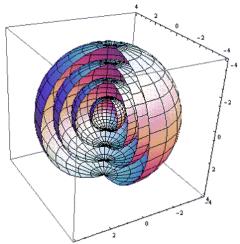
 $S_R = S_{Radius}/N_L$

 $S_{\theta} = 2\pi/N_{\theta}$

 $S_{\phi} = 2\pi/N_{\phi}$

• Novel Spherical Blurred Shape Model Descriptor (SBSM)


 $P = \{p_i \mid p_i \in \mathbb{R}^3\}$


- N_L number radial layers N_{θ} number of θ angular divisions N_{ϕ} number of ϕ angular divisions S_{Radius} sphere radius
- B the ordered set of bins for the spherical description of P^*

$$b^*_{\{i,j,k\}}$$
 the centroid of the section $b_{\{i,j,k\}} \in B_i$

foreach $p_n \in P^*$ do $\begin{vmatrix} b_x : b_x \in B, p_n \subset b_x \\ W(b_x) = 1 \\ \text{foreach } b_{i,j,k} \in N(b_x) \text{ do} \\ | d_{i,j,k} = d(b_{i,j,k}, p_n) = ||p_n - b_x^*|| \\ W(b_{i,j,k}) = W(b_{i,j,k}) + \frac{1}{d_{i,j,k}} \\ \text{end} \\ \text{end} \\ \text{end} \end{aligned}$

 $W_n = 0, n \in \{1, \ldots, N_L N_{\phi} N_{\phi}\}$

Normalize the vector \boldsymbol{W}

 $\frac{W_i}{\#P}, i \in \{1, \dots, N_L N_\phi N_\phi\}$

Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012

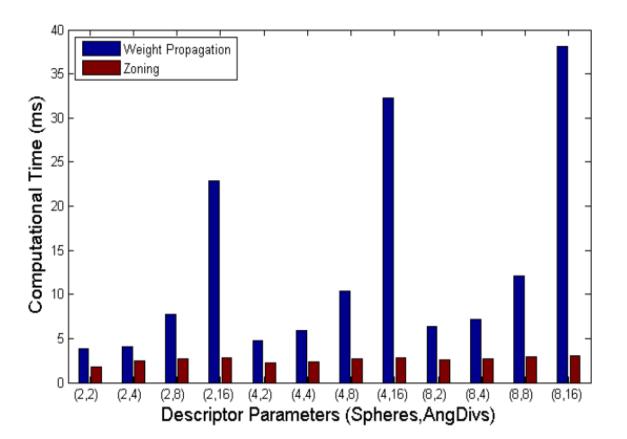
Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

- Test settings:
 - Descriptor testing considered

$$\begin{cases} N_L = \{2, 4, 8\} \\ N_\theta = N\phi = \{2, 4, 8, 16\} \end{cases}$$

- The classification was performed as multiclass one-versus-one, using the libSVM framework.
- Each combination pair was executed 10 times for cross-validation test.
 - Each execution considered 70% train data of each dataset class samples (randomly picked).
 - Every test run comprises a cross-validation of the train data for fine tune C-SVM (RBF Kernel) parameters: C and γ .
- Previous settings were considered in two descriptor modalities:
 - Weight Propagation.
 - Zoning.

de Barcelona


Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

Descriptor Configuration			Average	Accuracy
Layers	Angles	Features	Weight Propagation	Zoning
2	2	9	78.425	89.278
2	4	33	94.027	90.797
2	8	129	98.046	98.709
2	16	513	98.680	99.498
4	2	17	98.599	96.941
4	4	65	98.637	99.539
4	8	257	99.847	99.479
4	16	1025	99.818	99.796
8	2	33	99.657	99.627
8	4	129	99.772	99.713
8	8	513	99.839	99.527
8	16	2049	99.785	99.598

Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

I MOTIVATION I		land tector Dataset	Descriptor	Results	Conclusions
----------------	--	------------------------	------------	---------	-------------

Eigen

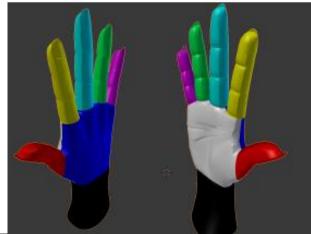
Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz 4.00 GB 64-bit Operating System

Installed memory (RAM):

System type:

Universitat Autònoma de Barcelona

Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012


pointcloudlibrary

KINECT

Open NI ...

Motivation	System Overview	Hand Detector	Dataset	Descriptor	Results	Conclusions
------------	--------------------	------------------	---------	------------	---------	-------------

- The proposed system achieves the proposed design goal of a real-time hand pose recognition, with an end-to-end performance of 14fps.
- The SBSM descriptor is crucial for the results obtained:
 - High discriminative power for hand pose point cloud.
 - Small computational overhead.
 - Slight advantage of blurring aspect versus Zoning, encourage further studies.
- As future work...
 - Creation of a more difficult **multi-user dataset**.
 - Implement the descriptor algorithm using the GPU (Grapics processing unit) for a performance boost.
 - Include a pre-description phase, for a per-pixel classification using Random Forest classifier, in order to perform Label Blurring, to increase the robustness of the overall pipeline.

Master Computer Vision & Artificial Intelligence

Thank You!

Oscar Lopes (oscar.pino.lopes@gmail.com)

Real-Time Hand Pose Recognition using Depth Sensors and Shape Model Descriptor Oscar Lopes (C)2012

