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• Problem:

• Continuous Gesture Recognition in video 
sequences.

• Multimodal data, RGB+D.

• Approaches:
• Probabilistic Graphical Models.

• Dynamic Time Warping.

Multimodal Gesture Recognition on
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Our goal:
• Improve the detection by encoding the variability of a certain 

gesture category using RGB-D data.
Our proposal:

• Use DTW to align gesture samples in order to deal with temporal 
deformations.

• Use Gaussian Mixture Models to deal with pose deformations.
• Include a soft-distance based on posterior probabilities in the DTW 

algorithm.

Human Pose Recovery and Behavior Analysis
Group

5



BoVDW for Gesture Recognition
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Gesture samples alignment
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Gesture samples
alignment

GMM learning
Soft-Distance based

on GMM
DTW

• Different samples are used to model the pattern gesture.
• To deal with temporal deformations all samples are aligned with the 

mean length sample using classic DTW.

DTW

Training set
Mean length sample
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GMM learning
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GMM learningGesture samples
alignment

Soft-Distance based
on GMM

DTW

Training set

• When the gesture samples are aligned we use a Gaussian Mixture Model to learn 
each set of elements overall sequences.

Frame 1 Frame N
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Soft-Distance based on GMM 

posterior probability
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DTW
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Experimental Settings
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• Data:
• ChaLearn Dataset (CVPR2012), in which, each video sequence shows an actor 

performing a set of gestures discriminated by an Idle gesture performed in 
between (more than 940 sequences).

• Our goal is to detect the Idle gesture (more than 1000 samples available).
• We defined a 10×10 grid approach to extract HOG+HOF feature descriptors per 

cell.
• We use 900 samples of the gesture category in a ten-fold validation procedure.

• Methods:
• Classic DTW with Euclidean distance.
• Hidden Markov Model.
• Probability-based DTW.

• Evaluation:
• We obtain the overlapping metric (frame wise) and the accuracy metric of the 

number of gestures detected in each video sequences.
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Qualitative results
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• Idle gesture detection for two video sequences in the ChaLearn
Dataset.
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Quantitative results
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• Results show how the new approach outperforms classic DTW and HMM by 
nearly 10% of overlapping.

• When analyzing the accuracy, it can be seen that the new approach easily detects 
more Idle gestures than the classical approaches.

• Subtle differences found between Euclidean DTW and HMM.
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Conclusions & Future work
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• We proposed a probability-based DTW for gesture recognition.
• The pattern model is learned from several samples of the same gesture 

category using multimodal RGBD data.
• Different sequences were used to build a Gaussian-based probabilistic 

model of the gesture whose possible deformations are implicitly 
encoded. 

• A soft-distance based on the posterior probability of the GMM was 
defined. 

• The proposal is able to deal with multiple deformations in data, showing 
performance improvements compared to the classical DTW and HMM
approaches.
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Probability-based dynamic 

time warping for gesture 

recognition on RGB-D data

Thank you!
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