Efficient pairwise classification using Local Cross Off strategy

Mohammad ali Bagheri

Binary vs. Multiclass Classification

- Real word applications
- Class binarization
 - One-versus-all (OVA)
 - One-versus-one (OVO)

• Error Correcting Output Codes (ECUC)

Error Correcting Output Codes

Idea: designing a codeword for each of the classes
matrix *M* of size *L*×*Nc* : each cell is {-1,+1}

- Column ---> dichotomy classifier
- Row: is a unique codeword that is associated with an individual target class

• Sparse ECOC

• Adding 0 to the matrix

Class	h_1	h_2	h_3	h_4	h_5	h_6
ω_1	1	-1	1	-1	-1	1
ω_2	1	1	-1	-1	1	-1
ω_3	-1	1	-1	1	-1	1
ω_4	-1	-1	1	-1	1	1

ಲು

Drawbacks of OVO

- incompetent classifiers
- Suppose a problem with 4 classes
 - new test instance belongs to C3
 - Training phase: 1vs2.1vs3.1vs4.2vs3.2vs4.3vs4
 - Testing phase:

•
$$h_{12} \rightarrow 1$$

 $h_{13} \rightarrow 3$
 $h_{14} \rightarrow 1$
 $h_{23} \rightarrow 2$
 $h_{24} \rightarrow 4$
 $h_{34} \rightarrow 3$

• Several methods has been proposed: A&O, CC, ...

Proposed Method

• Training phase: build pair classifiers

Main idea: remove the irrelevant classifiers Local Cross Off

• LCO-Version 1:

- The two most frequent classes of the nearest *K* neighbors in the training set of each test pattern are found
- one binary classifier is selected to classify test pattern

• LCO-Version 2:

- All target classes of the nearest *K* neighbors in the training set of each test pattern are found.
- Classifiers that correspond to all pairwise combinations of these classes are then nominated
- Majority voting

Validation over benchmark datasets

• Methods:

- OVO, OVA, A&O, and ECOC
- In modified -nearest neighbor algorithm: *K*=5
- Base learners:
 - Linear Support Vector Machine
 - Multilayer Perceptron (MLP).
- Evaluation
 - Accuracy based on 10-fold cross-validation
 - fair comparison !

Validation over benchmark datasets : Statistical analysis

• Recommendations of Demsar: non-parametric tests

• General procedure:

• Iman–Davenport test ---> Nemenyi test

• Iman–Davenport test:

- rank competing methods for each dataset
- The method's mean rank by averaging its ranks across all experiments
- Applying the Iman–Davenport formula

Validation over benchmark datasets

• Nemenyi test - SVM

Validation over benchmark datasets

• Nemenyi test - MLP

Conclusions

- We presented a novel strategy for pairwise classification approach to deal with multiclass problems
- The proposed technique is based on omitting the votes of irrelevant binary classifiers, in order to improve final classification accuracy.
- The proposed LCO method validated over a set of benchmark dataset

Conclusions

- The experimental evaluation shows some strong and consistent evidence of performance improvements compared to the one-versus-one, oneversus-all, A&O, and ECOC methods.
- The main reason behind this improvement is that the LCO approach is benefited from efficient nearest neighbor rule as a preprocessing step in pairwise structure and the strength of the other adapted powerful binary classifiers.

Thanks

Questions

