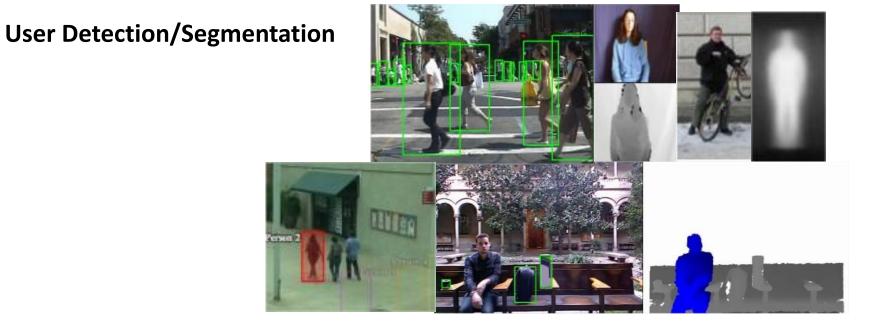
Human Pose Recovery and Behavior Analysis Group

Human Body Segmentation with Multi-limb Error-Correcting Output Codes Detection and Graph Cuts Optimization

Daniel Sánchez, Juan Carlos Ortega, Miguel Ángel Bautista & Sergio Escalera

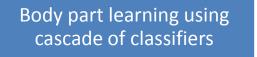

Outline

- 1. Motivation
- 2. Proposal
- 3. Results
- 4. Conclusions

٠

Motivation

• **Applications:** medicine, photography, sign language...



Conclusions

What we use

Proposal

Results

Tree structure body part learning

What we get

GrabCut optimization for foreground extraction

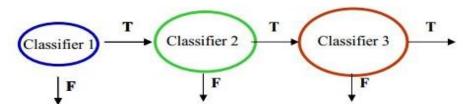
Results

Conclusions

Body part learning using cascade of classifiers

Tree structure body part learning

GrabCut optimization for foreground extraction


Results

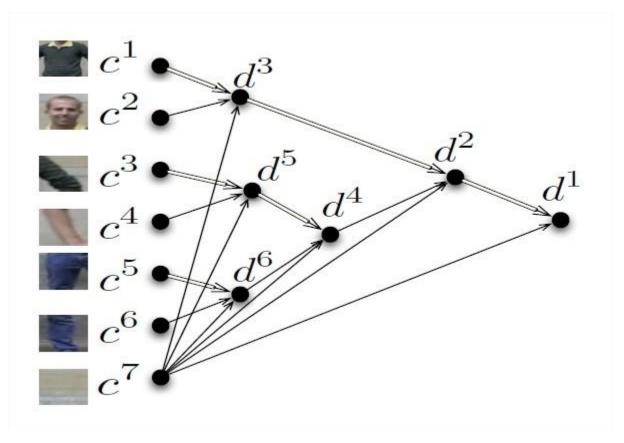
• Body parts rotational invariant by computing dominant orientation.

• Adaboost as the base classifier in the cascade architecture.

P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: CVPR, Vol. 1, 2001.Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in: EuroCOLT, 1995, pp. 23-37.

Results

Conclusions


Body part learning using cascade of classifiers

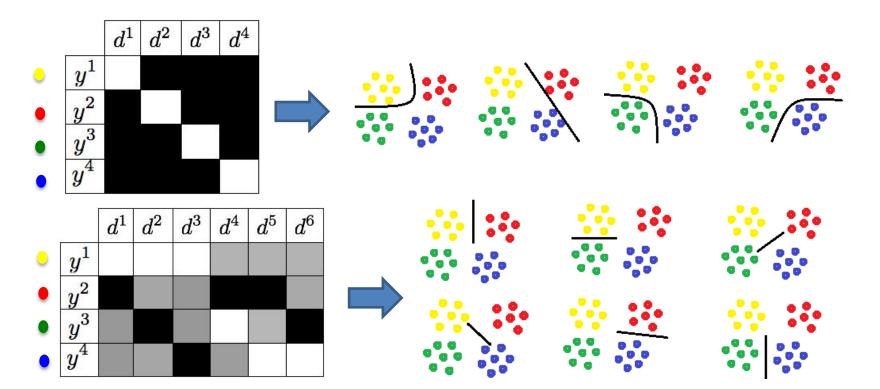
GrabCut optimization for foreground extraction

• Define the groups of limbs to be learnt by each individual cascade.

S. Escalera, O. Pujol, P. Radeva, On the decoding process in ternary error-correcting output codes, PAMI 32 (2010) 120-134.

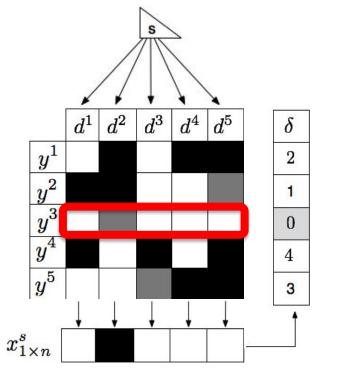
Results

Conclusions


Body part learning using cascade of classifiers

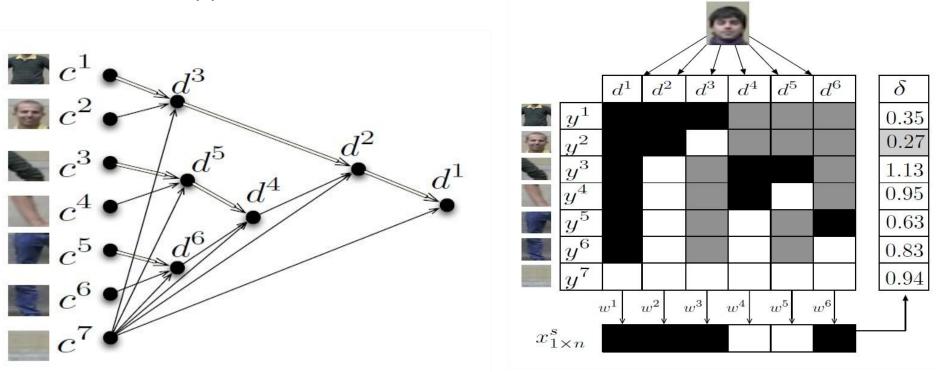
Tree structure body part learning

GrabCut optimization for foreground extraction


- In classification tasks, the goal is to classify an object among a certain number of possible categories.
- This framework is composed of two different steps :
 - **Coding** : Decompose a given *N*-class problem into a set of *n* binary problems.
 - **Decoding** : Given a test sample *s*, determine its category.

- $\circ~$ At the decoding step a new sample s is classified by comparing the binary responses to the rows of M by means of a decoding measure δ .
- Different types of decoding based on the distance used (i.e. Hamming, Euclidean, etc.)

 $\arg\min_{i} \delta(x^s, y^i)$

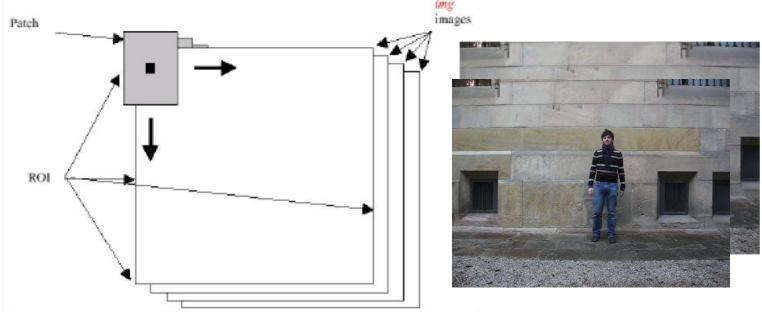


Results

Conclusions

• We propose to use a predefined coding matrix in which each dichotomy is obtained from the body part tree structure.

S. Escalera, D. Tax, O. Pujol, P. Radeva, R. Duin, Subclass problem-dependent design of error-correcting output codes, PAMI 30 (6) (2008) 1-14.


M. A. Bautista, S. Escalera, X. Baro, P. Radeva, J. Vitria, O. Pujol, Minimal design of error-correcting output codes, Pattern Recogn. Lett. 33 (6) (2012) 693-702.

Results

Conclusions

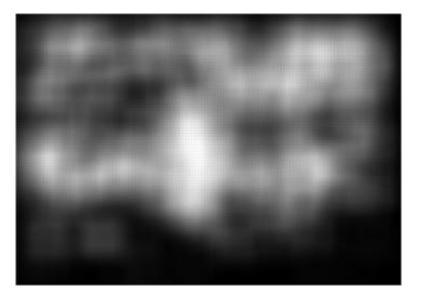
• In order to classify a new sample we apply a sliding window over the image:

- Then, each cascade will give us its prediction and decoding ECOC step will be applied.
 - Loss-weighted decoding using cascade of classifier weights (takes into account classifier performances)

S. Escalera, D. Tax, O. Pujol, P. Radeva, R. Duin, Subclass problem-dependent design of error-correcting output codes, PAMI 30 (6) (2008) 1-14.

M. A. Bautista, S. Escalera, X. Baro, P. Radeva, J. Vitria, O. Pujol, Minimal design of error-correcting output codes, Pattern Recogn. Lett. 33 (6) (2012) 693-702.

ECOC multi-limb detection


Proposal

Results

Conclusions

• A body-like probability map $P^{bl} \in [0, 1]^{l \times w}$ is build

Results

Conclusions

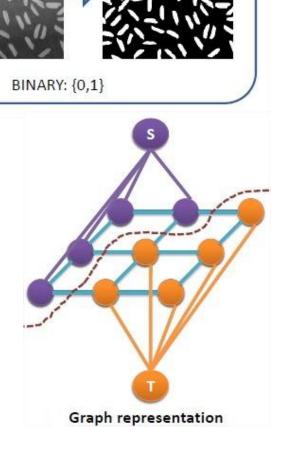
Body part learning using cascade of classifiers

Tree structure body part learning

GrabCut optimization for foreground extraction

GrabCut optimization for foreground extraction

Proposal


Results

Conclusions

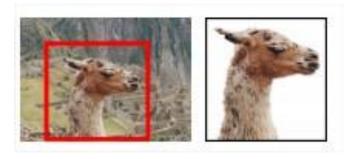
o Image Segmentation == Image labeling!

• Graph Cuts (Energy minimization)

$$\mathbf{E}(\boldsymbol{\alpha}, \mathbf{u}, \boldsymbol{\theta}, \mathbf{z}) = \mathbf{U}(\boldsymbol{\alpha}, \mathbf{u}, \boldsymbol{\theta}, \mathbf{z}) + \mathbf{V}(\boldsymbol{\alpha}, \mathbf{z})$$

Unary Potential Pair-wise Potential

Yuri Y. Boykov and Marie-Pierre Jolly, "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in 16 N-D Images", International Conference on Computer Vision, 2001


GrabCut optimization for foreground extraction

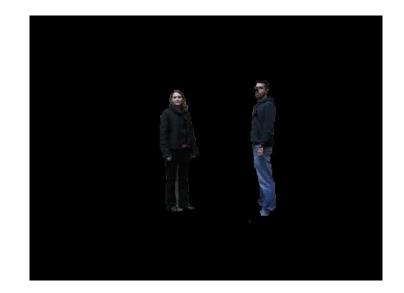
Proposal

Results

Conclusions

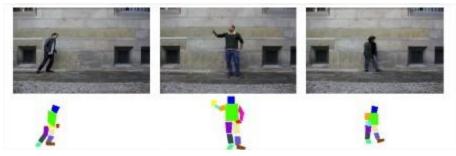
• User interaction by superimposed user input, background brush and so on.

• We propose to omit the classical interaction...


Yuri Y. Boykov and Marie-Pierre Jolly, "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images", International Conference on Computer Vision, 2001

Conclusions

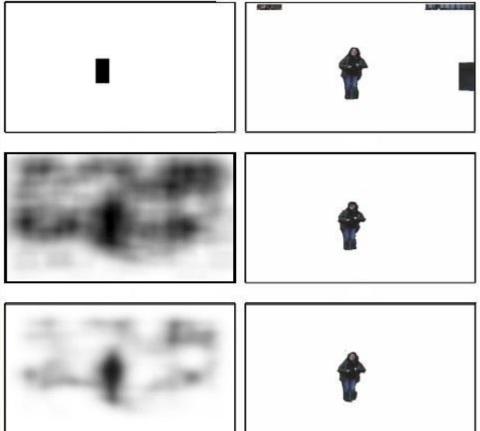
- Binary segmentation by means of background and foreground segmentation.
 - **Background**: Everything not related to body parts.
 - **Foreground**: Everything related to body parts.



A. Hernandez-Vela, N. Zlateva, A. Marinov, M. Reyes, P. Radeva, D. Dimov, S. Escalera, Graph cuts optimization for multilimb human segmentation in depth maps, in: CVPR, 2012, pp. 726-732.

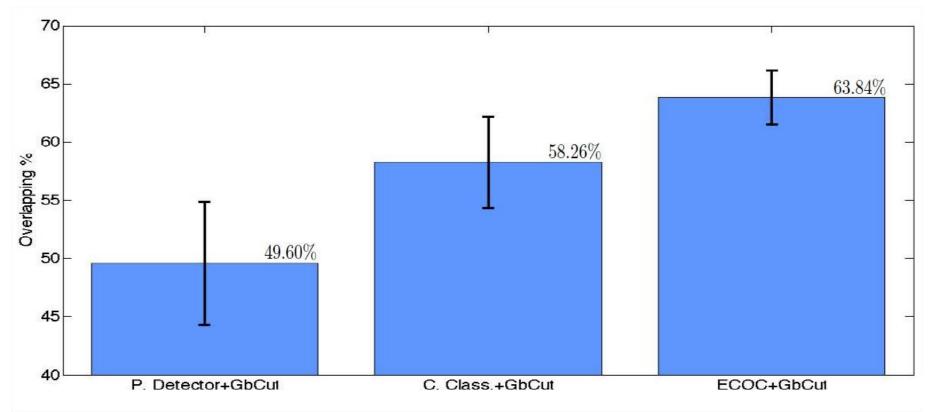
- HuPBA-90(Human Pose Recovery and Behavior Analysis 90 images dataset) present a fully limb-labeled dataset:
 - Actors appear portraying a certain pose.
 - Point of view, lightning and background conditions remain invariant.
 - 14 limbs were manually tagged: Head, Torso, R-L Upper-arm, R-L Lower- arm, R-L
 Hand, R-L Upper-leg, R-L Lower-leg, R-L foot.
 - o 90 images

- 6 cascades of 8 levels each one were trained: 0.99 FP rate, 0.4 false alarm.
- Ten-fold applied to cascades.
- GrabCut: 5-fold for all methods.
- Segmentation is computed using overlapping with the Jaccard Index.



Results

Proposal


- We compare three methods:
 - Person Detector + GrabCut *
 - Cascade + GraphCut **
 - ECOC + GraphCut (Our proposal

* N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR, Vol. 1, 2005, pp. 886-893 vol. 1. ** P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: CVPR, Vol. 1, 2001.

 Mean overlapping and standard deviation measures obtained on the 90 images of the dataset:

- We proposed a novel two-stage method for human segmentation in RGB images.
- First stage
 - Body parts trained in a body part tree structure architecture.
 - Cascade + ECOC.
 - Body-like probability map.
- Second stage
 - GraphCut segmentation procedure.
 - Novel limb-labeled dataset.
- Shows performance improvements in comparison to classical cascade of classifiers and human detector-based GraphCuts segmentation procedures.
- Robust results useful for posterior human pose and behavior analysis application.

Human Pose Recovery and Behavior Analysis Group

Human Body Segmentation with Multi-limb Error-Correcting Output Codes Detection and Graph Cuts Optimization

Thank you!

Daniel Sánchez, Juan Carlos Ortega, Miguel Ángel Bautista & Sergio Escalera