Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results 00000000	Conclusions 00

Head pose recovery and shape estimation in still images

Marc Oliu Simón

Advisors: Sergio Escalera and Xavier Pérez-Sala

July 8, 2014

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00

Motivations

Head pose recovery and 3D shape estimation have a wide range of applications for both image and behaviour analysis.

Image quality assessment

- Pose is correct?
- Mouth open/eyes closed?
- Obstructions? (eyeglasses, scarf)

Driver attention evaluation

- Looking at the road?
- Yawning?
- Eyes closing?

Parametric approach	3D models	Datasets	Experimental results	Conclusions
000000	0000	00	0000000	00
	'arametric approach >00000	'arametric approach 3D models	'arametric approach 3D models Datasets 000000 0000 00	'arametric approach 3D models Datasets Experimental results 00000 000 00 0000000

Index

Supervised Descent Method

Parametric approach

3D models

Datasets

Experimental results

Conclusions

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach	3D models	Datasets	Experimental results	Conclusions
0000	000000	0000	00	0000000	00

Outline

Supervised Descent Method

Method overview Augmenting the training data Describing the landmarks Regressing the shape estimates

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Method overview					

Supervised Descent Method: Overview

- Augment training data: multiple initializations
- o Initialize validation estimates to mean shape and location
- While validation error descending
 - Extract descriptors at landmark estimates
 - Concatenate descriptors to single feature vector
 - Perform PCA to reduce features dimensionality
 - Train linear regressor for the shape
 - Update shape estimates using the regressor

Supervised Descent Method ○●○○	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Augmenting the training data					

Supervised Descent Method: Stochastic initializations

Multiple training instances are generated for each training image. These have different initial shape estimates in order to increase the variability of $\Phi_* - \Phi_0$.

- Affected parameters modelled as a normal distribution
- Monte-Carlo sampling for each training instance
- Affected parameters: Scale, rotation angle and offsets

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - $\circ~$ Gaussian weight to magnitudes ($\sigma=\textit{scale}/2)$

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - $\,\circ\,$ Gaussian weight to magnitudes ($\sigma=\mathit{scale}/2)$
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - $\circ~$ Gaussian weight to magnitudes ($\sigma=\textit{scale}/2)$

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - $\circ~$ Gaussian weight to magnitudes ($\sigma=\textit{scale}/2)$

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - $\circ~$ Gaussian weight to magnitudes ($\sigma=\textit{scale}/2)$

Supervised Descent Method $\circ \circ \bullet \circ$	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
Describing the landmarks					

The Scale Invariant Feature Transform descriptor describes a sugared region around a point as a grid of normalized gradient histograms.

- Find preferent gradient orientation
 - 36-bin orientations histogram
 - Gaussian weight to magnitudes ($\sigma = scale/2$)
- Rotate window to preferent orientation
- $\circ~$ Extract histogram at each grid cell
 - Normalized 8-bin orientations histogram
 - $\,\circ\,$ Gaussian weight to magnitudes ($\sigma=\mathit{scale}/2)$

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
Regressing the shape estimates					

Supervised Descent Method: Linear regressors

Linear regressors are used as a data-driven approach to gradient descent, minimizing the difference between the target feature vector Φ_* and the current one, Φ_i

Newton method

Prone to local minima Descent depends on slope

- Start with Newton's descent method $f(L_i + \Delta L_{i+1}) = ||h(d(L_i + \Delta L_{i+1})) \Phi_*||_2^2$
- Second order taylor expansion $f(L_i + \Delta L_{i+1}) \approx$ $f(L_i) + J_f(L_i)^T \Delta L_i + \frac{1}{2} \Delta L^T H_f(L_i) \Delta L$
- Simplification $\Delta L_1 = R_i \cdot \Phi_i - R_i \cdot \Phi_* = R_i \cdot \Phi_i - b_i$ where $R_i = -2H_f^{-1}J_f^T$

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
Regressing the shape estimates					

Supervised Descent Method: Linear regressors

Linear regressors are used as a data-driven approach to gradient descent, minimizing the difference between the target feature vector Φ_* and the current one, Φ_i

SDM method

Avoids local minima Direct descent to target

- Start with Newton's descent method $f(L_i + \Delta L_{i+1}) = ||h(d(L_i + \Delta L_{i+1})) \Phi_*||_2^2$
- Second order taylor expansion $f(L_i + \Delta L_{i+1}) \approx$ $f(L_i) + J_f(L_i)^T \Delta L_i + \frac{1}{2} \Delta L^T H_f(L_i) \Delta L$
- Simplification $\Delta L_1 = R_i \cdot \Phi_i - R_i \cdot \Phi_* = R_i \cdot \Phi_i - b_i$ where $R_i = -2H_f^{-1}J_f^T$

Supervised Descent Method	Parametric approach	3D models 0000	Datasets 00	Experimental results 00000000	Conclusions

Outline

Parametric approach

Active Shape Models Parametric representation Method improvements

Supervised Descent Method	Parametric approach ●00000	3D models 0000	Datasets 00	Experimental results	Conclusions
Active Shape Models					

ASM: Shapes alignment

Shapes are aligned through generalized procrustes analysis, an iterative process aligning all the shapes to their mean in the canonical form.

- Initialize each shape L_i^{2D} transform tfm_i to the identity matrix
- While not converged
 - Calculate mean shape $M = \left[(L_1^{2D} \dots L_n^{2D}) \cdot (tfm_1^T \dots tfm_n^T)^T \right] / n$ • Bring mean shape to the canonical form $M = M \cdot (M_{i_c}^{\dagger} \cdot C)$ • Find transforms aligning shapes to the mean $tfm_i = (L_i^{2D})^{\dagger} \cdot M$

Supervised Descent Method	Parametric approach ○●○○○○	3D models 0000	Datasets 00	Experimental results	Conclusions 00
Active Shape Models					

ASM: Principal Component Analysis

Find a transform for the feature space giving a set of uncorrelated dimensions following the directions of maximum variance of the data.

- Subtract mean from aligned shapes
- Obtain correlation matrix
- Diagonalize matrix
 - Matrix of eigenvectors
 - Eigenvalues diagonal matrix
- Keep 95% of the variance

modes of shape deformation.

- 1st eigenvector: Face yaw
- 2nd eigenvector: Face pitch

Supervised Descent Method	Parametric approach 0●0000	3D models 0000	Datasets 00	Experimental results	Conclusions
Active Shape Models					

ASM: Principal Component Analysis

Find a transform for the feature space giving a set of uncorrelated dimensions following the directions of maximum variance of the data.

- Subtract mean from aligned shapes
- Obtain correlation matrix
- Diagonalize matrix
 - Matrix of eigenvectors
 - Eigenvalues diagonal matrix
- Keep 95% of the variance

PCA components describe main modes of shape deformation.

1st eigenvector: Face yaw 2nd eigenvector: Face pitch

Supervised Descent Method	Parametric approach 0●0000	3D models 0000	Datasets 00	Experimental results	Conclusions
Active Shape Models					

ASM: Principal Component Analysis

Find a transform for the feature space giving a set of uncorrelated dimensions following the directions of maximum variance of the data.

- Subtract mean from aligned shapes
- Obtain correlation matrix
- Diagonalize matrix
 - Matrix of eigenvectors
 - Eigenvalues diagonal matrix
- Keep 95% of the variance

PCA components describe main modes of shape deformation.

- 1st eigenvector: Face yaw
- 2nd eigenvector: Face pitch

Supervised Descent Method	Parametric approach ○○●○○○	3D models 0000	Datasets 00	Experimental results	Conclusions
Parametric representation					

Parametric representation: Model location parameters

 $p = \langle b, \mathbf{s_x}, \mathbf{s_y}, d_x, d_y, \theta \rangle$

The ASM weights only describe the aligned shape deformation. Extra parameters are required to align the shape to the image.

- ASM weights
- Scaling factors
- Translation parameters
- Rotation

Supervised Descent Method	Parametric approach	3D models 0000	Datasets 00	Experimental results 00000000	Conclusions
Parametric representation					

Parametric representation: Reduced feature vectors

- Fixed number of location parameters
- Less ASM weights than landmark coordinates
 - AFLW: 42 landmarks, 21+5 parameters
 - LFPW: 58 landmarks, 23+5 parameters

The number of weights at each linear regressor is proportional to the number of regressed parameters. With a smaller weights matrix the algorithm can generalize better.

0000	0000	00	00000000	00
Method improvements				

Adaptive SIFT window sizes

$$SIFT_d = SIFT_{d'} \cdot rac{s_x + s_y}{2}$$

The parametric approach directly provides a scaling factor for the face at each cascade step. This can be used to adapt the SIFT window size, keeping it proportional to the face scale.

- Provides invariance to scale
- SIFT descriptors consistent across instances

Supervised Descent Method	Parametric approach ○○○○○●	3D models 0000	Datasets 00	Experimental results	Conclusions
Method improvements					

Selects the fitting where most initializations converge, ignoring those stuck in a local minima.

- Multiple initializations at different rotation angles
- Fit all initializations to the image
- Calculate euclidean distance between each pair of fits

$$d(L^{i}, L^{j}) = \sum_{p=1}^{n} \sqrt{(x_{p}^{j} - x_{p}^{i})^{2} + (y_{p}^{j} - y_{p}^{i})^{2}}$$

Supervised Descent Method	Parametric approach ○○○○○●	3D models 0000	Datasets 00	Experimental results	Conclusions
Method improvements					

Selects the fitting where most initializations converge, ignoring those stuck in a local minima.

- Multiple initializations at different rotation angles
- Fit all initializations to the image
- Calculate euclidean distance between each pair of fits

$$d(L^{i}, L^{j}) = \sum_{p=1}^{n} \sqrt{(x_{p}^{j} - x_{p}^{i})^{2} + (y_{p}^{j} - y_{p}^{i})^{2}}$$

Supervised Descent Method	Parametric approach ○○○○○●	3D models 0000	Datasets 00	Experimental results	Conclusions
Method improvements					

Selects the fitting where most initializations converge, ignoring those stuck in a local minima.

- Multiple initializations at different rotation angles
- Fit all initializations to the image
- Calculate euclidean distance between each pair of fits

$$d(L^{i}, L^{j}) = \sum_{p=1}^{n} \sqrt{(x_{p}^{j} - x_{p}^{i})^{2} + (y_{p}^{j} - y_{p}^{i})^{2}}$$

Supervised Descent Method	Parametric approach ○○○○○●	3D models 0000	Datasets 00	Experimental results	Conclusions
Method improvements					

Selects the fitting where most initializations converge, ignoring those stuck in a local minima.

- Multiple initializations at different rotation angles
- Fit all initializations to the image
- Calculate euclidean distance between each pair of fits

$$d(L^{i}, L^{j}) = \sum_{p=1}^{n} \sqrt{(x_{p}^{j} - x_{p}^{i})^{2} + (y_{p}^{j} - y_{p}^{i})^{2}}$$

Supervised Descent Method	Parametric approach ○○○○○●	3D models 0000	Datasets 00	Experimental results	Conclusions
Method improvements					

Selects the fitting where most initializations converge, ignoring those stuck in a local minima.

- Multiple initializations at different rotation angles
- Fit all initializations to the image
- Calculate euclidean distance between each pair of fits

$$d(L^{i}, L^{j}) = \sum_{p=1}^{n} \sqrt{(x_{p}^{j} - x_{p}^{i})^{2} + (y_{p}^{j} - y_{p}^{i})^{2}}$$

Supervised Descent Method	Parametric approach	3D models	Datasets	Experimental results	Conclusions
0000	000000	0000	00	0000000	00

Outline

3D models 3D alignment 3D regression

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models ●○○○	Datasets 00	Experimental results 00000000	Conclusions
3D alignment					

3D Active Shape Model

Facewarehouse dataset:

- 3D face range scans
- o 150 individuals, 20 facial expressions
- Semi-automated landmark selection

ASM features:

- 3 coordinates per landmark
- Small increase of PCA bases
 - $\circ~$ AFLW: from 21 to 23 $\,$
 - LFPW: from 23 to 26

Supervised Descent Method	Parametric approach 000000	3D models ○●○○	Datasets 00	Experimental results	Conclusions
3D alignment					

Restricted camera model

Find the best 3D rotation, scaling and translation adjusting a a 3D shape to a 2D one through an ortographic projection.

- Single scaling factor
- Three rotation angles: roll, pitch, yaw
- Closed-form solution
 - Find projection matrix (least-squares)
 - Extrapolate third dimension (cross-product)
 - Force dimensions orthogonality and equal scaling at each dimension (QR decomposition)

Supervised Descent Method	Parametric approach 000000	3D models ○○●○	Datasets 00	Experimental results	Conclusions 00
3D alignment					

- Initialize to mean 3D shape
- Align to 2D shape
- While not converged
 - Find best ASM weights
 - Re-align shape to 2D landmarks

Supervised Descent Method	Parametric approach 000000	3D models ○○●○	Datasets 00	Experimental results	Conclusions 00
3D alignment					

- Initialize to mean 3D shape
- Align to 2D shape
- While not converged
 - Find best ASM weights
 - Re-align shape to 2D landmarks

Supervised Descent Method	Parametric approach 000000	3D models ○○●○	Datasets 00	Experimental results	Conclusions 00
3D alignment					

- Initialize to mean 3D shape
- Align to 2D shape
- While not converged
 - Find best ASM weights
 - Re-align shape to 2D landmarks

Supervised Descent Method	Parametric approach 000000	3D models ○○●○	Datasets 00	Experimental results	Conclusions 00
3D alignment					

- Initialize to mean 3D shape
- Align to 2D shape
- While not converged
 - Find best ASM weights
 - Re-align shape to 2D landmarks

Supervised Descent Method	Parametric approach 000000	3D models ○○○●	Datasets 00	Experimental results	Conclusions
3D regression					

Extended parametric representation

$$p = \langle b, s, d_x, d_y, \theta, \gamma, \eta \rangle$$

Extend the parametric representation to include the restricted camera model parameters and 3D ASM weights.

$$L^{2D} = [P \cdot (\mathbf{s} \cdot \mathbf{R}_{\eta} \cdot \mathbf{R}_{\gamma} \cdot \mathbf{R}_{\theta})] \cdot L^{3D'} + T = \mathbf{R} \cdot L^{3D'} + T$$
Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00

Outline

Datasets

Face alignment datasets Head pose recovery dataset

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets ●○	Experimental results	Conclusions 00
Face alignment datasets					

AFLW and LFPW datasets

AFLW

2359 images, 21 landmarks Mostly frontal poses

Two in-the-wild datasets with images at different resolutions, qualities, poses and for different ages, genders and ethnicities.

LFPW

836 images, 29 landmarks Wide range of poses

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets ○●	Experimental results	Conclusions 00
Head pose recovery dataset					

Pointing '04 dataset

Dataset created in a controlled environment, labelled with the pitch and yaw pose angles, but not with geometric information.

- 15 individuals
- o 2 series per person
- o 93 poses per serie
- Discrete angles, 15 degrees apart

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00

Outline

Experimental results

2D methods 3D methods Sample processed images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
2D methods					

- Lower tendency to overfit with more data augmentations
- SDM converges faster in both datasets

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions	
2D methods						

		AFLW	LFPW		
	SDM	Parametric	SDM	Parametric	
Data augmentations	6	6	6	6	
Cascade steps	25	15	15	15	
Initializations	1	1	1	1	

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

AFLW

SDM runtime:	13ms
Parametric runtime:	13ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

AFLW

SDM runtime:	13ms
Parametric runtime:	13ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

AFLW

SDM runtime:	13ms
Parametric runtime:	13ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

AFLW

SDM runtime:	13ms
Parametric runtime:	13ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

LFPW

SDM runtime:	20ms
Parametric runtime:	20ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

LFPW

SDM runtime:	20ms
Parametric runtime:	20ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
2D methods					

LFPW

SDM runtime:	20ms
Parametric runtime:	20ms

	SDM	Parametric	p-value	Independence
AFLW	0.0973 ± 0.0032	0.0928 ± 0.0031	$1.7\cdot10^{-10}$	yes
LFPW	0.0763 ± 0.0090	0.0774 ± 0.0085	0.2671	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

AFLW

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

- 3D regression always converges faster
- No effect of data augmentation after 5 augments

LFPW

Bigger effect of data augmentation Converges slowlier Smaller average NMED error

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

	AF	LW	LFPW		
	3D alig.	3D regr.	3D alig.	3D regr.	
Data augmentations	6	5	6	6	
Cascade steps	20	15	20	20	
Initializations	1	1	1	1	

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
3D methods					

AFLW

Minimum NMED error of 0.06 Error below 0.23 for 95% of cases Better accuracy for 3D alignment

3D	$\operatorname{alignment}$	runtime:	27ms
3D	regression	runtime:	11ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
3D methods					

AFLW

Minimum NMED error of 0.06

Error below 0.23 for 95% of cases Better accuracy for 3D alignment

3D	$\operatorname{alignment}$	runtime:	27ms
3D	regression	runtime:	11ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
3D methods					

AFLW

Minimum NMED error of 0.06 Error below 0.23 for 95% of cases Better accuracy for 3D alignment

3D	$\operatorname{alignment}$	runtime:	27ms
3D	regression	runtime:	11ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
3D methods					

AFLW

Minimum NMED error of 0.06 Error below 0.23 for 95% of cases Better accuracy for 3D alignment

3D	$\operatorname{alignment}$	runtime:	27ms
3D	regression	runtime:	11ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
3D methods					

LFPW

Minimum NMED error of 0.05

Error below 0.23 for 95% of cases Better accuracy for 3D regression

3D	$\operatorname{alignment}$	runtime:	34ms
3D	regression	runtime:	16ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

LFPW

Minimum NMED error of 0.05 Error below 0.23 for 95% of cases Better accuracy for 3D regression

3D	$\operatorname{alignment}$	runtime:	34ms
3D	regression	runtime:	16ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions 00
3D methods					

LFPW

Minimum NMED error of 0.05 Error below 0.23 for 95% of cases Better accuracy for 3D regression

3D	$\operatorname{alignment}$	runtime:	34ms
3D	regression	runtime:	16ms

	3D alignment	3D regression	p-value	Independence
AFLW	0.1340 ± 0.0036	0.1387 ± 0.0045	0.0134	yes
LFPW	0.1235 ± 0.0081	0.1229 ± 0.0094	0.3412	no

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results ○○○○○●○	Conclusions
3D methods					

3D methods: Pose recovery error distribution

Both 3D methods are good only at predicting small variations from the frontal pose, with 3D regression being able to predict a wider range of poses.

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results ○○○○○●○	Conclusions
3D methods					

3D methods: Pose recovery error distribution

Both 3D methods are good only at predicting small variations from the frontal pose, with 3D regression being able to predict a wider range of poses.
Supervised Descent Method	Parametric approach	3D models 0000	Datasets 00	Experimental results	Conclusions 00
Sample processed images					

Qualitative evaluation

2D methods (over AFLW)

Parametric approach has better accuracy for low quality images, as well as better locating the face countour.

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results ○○○○○○●	Conclusions 00
Sample processed images					

Qualitative evaluation

3D methods (over LFPW)

3D regression obtains a better pose estimate. 3D alignment fails to accurately predict the landmarks giving a visual cue for the pose in exchange of increasing the overall shape alignment accuracy.

Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions
	Parametric approach 000000	Parametric approach 3D models	Parametric approach3D modelsDatasets000000000000	Parametric approach 3D models Datasets Experimental results

Outline

Conclusions Conclusions

Head pose recovery and shape estimation in still images

Supervised Descent Method	Parametric approach 000000	3D models 0000	Datasets 00	Experimental results	Conclusions •0
Conclusions					

Conclusions

Parametric approach

- $\circ~$ Generalizes better when enough data is available
- More robust to local minima
- ASM model may restrict valid shape deformations

3D regression

- $\circ~$ Better prediction for both pitch and yaw
- Much faster than 3D alignment
- Slightly worse shape alignment accuracy

Supervised Descent Method	Parametric approach	3D models	Datasets	Experimental results	Conclusions
	000000	0000	00	00000000	○●
Conclusions					

Questions?

Head pose recovery and shape estimation in still images