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ABSTRACT

In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach
in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major
importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide
an automatic and interactive method to label or to tag different structures contained into input data becomes
imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate
different anatomical structures in an output tagged dataset. Among existing methods, supervised learning
methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However,
they still have some problems concerning practical application, such as slow learning and testing speeds. In
addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs,
as well as new software languages, such as NVIDIA’s CUDA and OpenCL, allowing to apply parallel programming
paradigms in conventional personal computers.

Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community.
In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of
features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a
simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is
independently applied on the features of a set of unlabeled samples.

In this work, we propose an alternative representation of the Adaboost binary classifier. We use this pro-
posed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide
numerical experiments based on large available data sets and we compare our results to CPU-based strategies
in terms of time and labeling speeds.
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1. INTRODUCTION

There are several biomedical applications that need to extract different objects of interest, such as tissues and
organs contained into a volume dataset from MRI, CT, fMRI, and PET input captions. Diagnostic methods,
structures volume measurements, and visualization systems require to specify to which anatomical structure
each sample/voxel belongs. In the bibliography, Transfer Functions has been used in order to directly associate
optical properties or labels to the different data samples according their belonging to a particular structure in
the underlying data. However, in general, the anatomical structures are complex, and relationships between
them do not allow to separate sufficiently the different structures. In these cases, Transfer Functions alone
do not suffice in order to separate different objects and it becomes necessary to use labeling or segmentation
methods. In this sense, several approaches to label biomedical datasets have been proposed to discriminate
different anatomical structures in an output tagged dataset depending on the used imaging modality. Among
existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical
datasets by a non-expert user. In a preprocess, an expert user, such a radiologist, should identify a subset of
samples of each anatomical structure. Then, during the learning step, the supervised method defines a classifier
to be automatically used in the testing or classification stage. Since the learning phase is carried on a pre-process
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(before labeling) the same classifier can be used by inexpert users in different classifications several times. Thus,
to optimize the classification stage becomes imperative.

Thanks to the recent emerging technologies of multi-core CPUs and GPUs, as well as new software languages,
such as NVIDIA’s CUDA, and OpenCL, we propose to parallelize the classification step of a well-know supervised
method, the Adaboost classifier, in the GPU.

2. PREVIOUS WORK

Many papers in volume rendering literature address classification.1 Most of them are based on the edition of
transfer functions (TF),23,4.5 One-dimensional TFs only take into account scalar voxel values. Multi-dimensional
TFs take into account vectorial values or combinations of local measure of scalar values (derivatives,5 position,6

or statistical signatures7). However, the design complexity and the memory requirements increase with the TFs
dimensionality.

Recently, some preliminary works based on learning methods have been published based on data-driven and on
image-driven classification, that provide users with higher-level information about data distribution and about the
final visualization, respectively. Supervised methods such as bayesian networks,8,9 neuronal networks,10 decision
trees11 and non-supervised methods,612 have been applied in different user interfaces of volume applications.
In,13 clustering-based supervised and non-supervised learning methods are compared for classifying magnetic
resonance data.

Additionally, different Machine Learning approaches have been recently implemented using GPGPU, such
as clustering strategies and fast computation of k-nearest neighbor similarity classifier in.14 In,15–17 different
versions of SVM classifier are implemented for GPU. Neural Networks have also been intensively applied for
machine learning applications in GPU.18 Finally, Adaboost classifier has become very popular in last years.
Based on a weak classifier, Adaboost defines an additive model combining simple decisions in order to define a
strong classifier with high generalization capability. In,19 authors use Adaboost to ensemble weak segmentation
hypotheses and majority voting to liver lesion extraction from CT volume. It shows the suitability of Adaboost for
segmenting and classifying CT volumes, though the implementation out of GPU and a mathematical morphology
post-filtering increase the computational complexity of the method. Thus, the inherent parallel structure of
Adaboost, its high performance, and its simplicity in order to train (Adaboost does not require tuning classifier
parameters) open a research line to exploit its high potential for GPU applications.

3. ADABOOST BINARY CLASSIFIER

Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community.
In this paper, we focus on the Discrete version of Adaboost, which has shown robust results in real applications.
Given a set of N training samples (x1, y1), .., (xN , yN ), with xi a vector valued feature and yi = −1 or 1. We

define F (x) =
∑M

1 cffm(x) where each fm(x) is a classifier producing values ±1 and cm are constants; the
corresponding prediction is sign(F (x)). The Adaboost procedure trains the classifiers fm(x) on weighed versions
of the training sample, giving higher weights to cases that are currently misclassified. This is done for a sequence
of weighted samples, and then the final classifier is defined to be a linear combination of the classifiers from each
stage.

1: Start with weights wi = 1/N, i = 1, .., N .
2: Repeat for m = 1, 2, ..,M :

(a) Fit the classifier fm(x) ∈ −1, 1 using weights wi on the training data.
(b) Compute errm = Ew[1(y 6=fm(x))], cm = log((1− errm)/errm).
(c) Set wi ← wiexp[cm · 1(yi 6=fm(xi))], i = 1, 2, .., N , and normalize so that

∑
i wi = 1.

3: Output the classifier sign[
∑M

m=1 cmfm(x)].

Algorithm 1: Discrete Adaboost training algorithm.



The binary Discrete training Adaboost algorithm is shown in Algorithm 1. Ew represents expectation over the
training data with weights w = (w1, w2, .., wN ), and 1(S) is the indicator of the set S. For a good generalization
of F (x), each fm(x) is required to obtain a classification prediction just better than random. Thus, the most
common ”weak classifier” fm is the ”decision stump”. For each fm(x) we just need to compute a threshold
value and a polarity to take a binary decision, selecting that one that minimizes the error based on the assigned
weights. This simple combination of classifiers has demonstrated to reduce the variance error term of the final
classifier F (x).

In Algorithm 2, we show the testing of the final decision function F (x) =
∑M

1 cffm(x) using the Discrete
Adaboost algorithm with Decision Stump ”weak classifier”. Each Decision Stump fm fits a threshold Tm and a
polarity Pm over the selected m-th feature. In testing time, xm corresponds to the value of the feature selected
by fm(x) on a test sample x. Note that cm value is subtracted from F (x) if the hypothesis fm(x) is not satisfied
on the test sample. Otherwise, positive values of cm are accumulated. Finally decision on x is obtained by
sign(F (x)).

1: Given a test sample x
2: F (x) = 0
3: Repeat for m = 1, 2, ..,M :

(a) F (x) = F (x) + cm(Pm · xm < Pm · Tm);
4: Output sign(F (x))

Algorithm 2: Discrete Adaboost testing algorithm.

We propose to define a new and equivalent representation of cm and |x| that facilitate the paralellization of
the testing. We define the matrix Vfm(x) of size 3× (|x| ·M), where |x| corresponds to the dimensionality of the
feature space. First row of Vfm(x) codifies the values cm for the corresponding features that have been considered
during training. In this sense, each position i of the first row of Vfm(x) contains the value cm for the feature
mod(i, |x|) if mod(i, |x|) 6= 0 or |x|, otherwise. The next value of cm for that feature is found in position i + |x|.
The positions corresponding to features not considered during training are set to zero. The second and third
rows of Vfm(x) for column i contains the values of Pm and Tm for the corresponding Decision Stump.

Note that in the representation of Vfm(x) we loss the information of the order in which the Decision Stumps
were fitted during the training step. However, though in different order, all trained ”weak classifiers” are codified,
and thus, the final additive decision model F (x) is equivalent.

4. OPENCL IMPLEMENTATION

Our proposed OpenCL’s implementation is based primarily on the GPU-PCIe accelerator concept, taking into
account the PCIe bottleneck and the GPU’s main memory or Global Memory. As we deal with large datasets of
voxels, we use out-of-core techniques to subdivide the initial dataset into a subset which can fit into GPU main
memory. Thus, PCIe bandwidth becomes an essential factor in the overall execution time.

We overview our proposed GPU-OpenCL algorithm in Figure 1. The eight features considered at each sample
by our binary classifier are: the spatial location (x, y, z), the sampled value (v), and its associated gradient value
(gx, gy, gz, |g|). Our binary classifier, for each feature, we have a total of N possible Cm values, with N = 3 ·M .

We create a matrix of Work-Groups that covers the x and y size of the dataset fitted into GPU global memory,
whereas the component z is computed in a inner loop at each kernel. Each WorkGroup classifies one voxel. Inside
each Workgroup, we define N · 8 threads (or WorkItems). Each thread computes a single operation with the 3
channels or weights of the weak classifier. These N · 8 values will be reduced at the end of the execution and
compared to a reduced addition. The final label at each voxel is directly computed by this comparison.

5. RESULTS

In order to present the results, we considerate different three-dimensional data from CT and MRI image modal-
ities with different sizes. For each data set we trained a Discrete Adaboost classifier with 32 Decision Stumps.



Figure 1. The proposed OpenCL implementation.

For each voxel we considered eight features: three spatial coordinates, voxel value, three spatial derivatives, and
gradient magnitude. Finally, we codified the Discrete Adaboost testing classifier as described in previous sec-
tions in Matlab, C++, OpenMP, GSGL, and OpenCL codes. We measure the performance in terms of the mean
execution time from 500 code runs on the same hardware. Our preliminary results confirm our expectations of
time consuming and interactivity of the classification stage. In Table 1, we show the averaged times of the five
implementations with the different sized datasets. Our proposed OpenCL-based optimization has a speed up of
89.91x over a C++ CPU-based algorithm and a speed up of 8.01x over the GLSL GPU-based algorithm.

Dataset Size Mathlab CPU-based OpenMP GLSL OpenCL

Foot 128x128x128 18.32s 9.63s 8s 1.32s 0.1256s
Hand 244x124x257 67.29s 26s 20s. 2.86s 0.1653s

Thorax 400x400x400 114.28s 33.76s 25s 4.41s 1.9253s
Table 1. Testing step times in seconds of the different datasets with the five implementations. GLSL and OpenCL times
has been obtained using the GTX470 graphic card.

We also achieved PCIe transfers 16 times faster than the previous GLSL version. The introduction of gradient
calculation into the GPU also added a speedup having 0,0005 seconds of execution time for 1283 voxel models
in a NVIDIA Geforce GTX 470. The execution times for the classification kernel are less than half that of the
GLSL version.



Figure 2. Performance of GLSL and OpenCL implementations with different GPUs.

5.1 GPU-Hardware comparison

As seen in Figure 2 there is a difference in performance evolution when increasing the number of voxels to be
classified between the Geforce 8800GTX and the Geforce GTX470 of our GLSL and OpenCL implementations.
Basically besides the better performance, the GTX470 appears to have a more linear behavior.

At hardware level there are tree main differences between the 8800GTX and GTX470 cards. The number of
Compute Units (CU), 16 for the 8800GTX in contrast to 14 for the GTX470, the number of Processing Elements
(PE) 8 for the 8800GTX and 32 for the GTX470, and the L1 and L2 caches only present in the Fermi architecture
(GTX470).

Having less and faster CU’s with 8 maximum instantiated WG per CU in both cards, should result in a faster
execution. The difference between execution times could decrease with more voxels due to the greater coarse
grain parallelism of the 8800GTX, but the results show the opposite behavior. The reason can be the caches
avoiding repeated GM reads that happen with our design. When reading 1 unsigned char, 64 of them are loaded
into the L2 cache and the L1 cache and the next 63 reads will provably be from L2 or L1 caches. That alleviates
the GM bottleneck, and allows to exploit the increased throughput of having dual issue 32 PE Compute Units.
That is coherent with the results observed.

6. CONCLUSIONS

Our representation of the weak-classifiers guarantees the equivalence to the classical approach. In addition,
our breakthrough is a proved optimization of the labeling process involved in several biomedical applications.
This optimization increases the interactively of these processes, and also can be easily integrated in the clinical
routine.

In this paper, we have presented an optimization of the Adaboost binary classifier based on GPU-OpenCL.
We have defined an alternative representation of the Adaboost binary classifier and we have used this proposed
representation to write a new GPU-OpenCL parallelized Adaboost testing stage. The numerical experiments
based on large available data sets and the performed comparisons with CPU-implementations confirm our ex-
pectations. As a future work, we plan to extend this optimization to a multi-classification strategy.
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