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formàtica.

Bellaterra, July 2008



Director: Dr. Petia Radeva and Dr. Oriol Pujol
Universitat de Barcelona
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Abstract

Many real problems require multi-class decisions. In the Pattern Recognition field,
many techniques have been proposed to deal with the binary problem. However,
the extension of many 2-class classifiers to the multi-class case is a hard task. In
this sense, Error-Correcting Output Codes (ECOC) demonstrated to be a powerful
tool to combine any number of binary classifiers to model multi-class problems. But
there are still many open issues about the capabilities of the ECOC framework. In
this thesis, the two main stages of an ECOC design are analyzed: the coding and
the decoding steps. We present different problem-dependent designs. These designs
take advantage of the knowledge of the problem domain to minimize the number
of classifiers, obtaining a high classification performance. On the other hand, we
analyze the ECOC codification in order to define new decoding rules that take full
benefit from the information provided at the coding step. Moreover, as a successful
classification requires a rich feature set, new feature detection/extraction techniques
are presented and evaluated on the new ECOC designs. The evaluation of the new
methodology is performed on different real and synthetic data sets: UCI Machine
Learning Repository, handwriting symbols, traffic signs from a Mobile Mapping Sys-
tem, Intravascular Ultrasound images, Caltech Repository data set or Chaga’s disease
data set. The results of this thesis show that significant performance improvements
are obtained on both traditional coding and decoding ECOC designs when the new
coding and decoding rules are taken into account.
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Resum

Molts problemes de la vida quotidiana estan plens de decisions multi-classe. En
l’àmbit del Reconeixement de Patrons, s’han proposat moltes tècniques d’aprenentatge
que treballen sobre problemes de dos classes. No obstant, la extensió de classificadors
binaris al cas multi-classe és una tasca complexa. En aquest sentit, Error-Correcting
Output Codes (ECOC) han demostrat ser una eina potent per combinar qualsevol
nombre de classificadors binaris i aix́ı modelar problemes multi-classe. No obstant,
encara hi ha molts punts oberts sobre les capacitats del framework d’ECOC. En aque-
sta tesis, els dos estats principals d’un disseny ECOC són analitzats: la codificació i la
decodificació. Es presenten diferents alternatives de dissenys dependents del domini
del problema. Aquests dissenys fan ús del coneixement del domini del problema per
minimitzar el nombre de classificadors que permeten obtenir un alt rendiment de clas-
sificació. Per altra banda, l’anàlisi de la codificació de dissenys d’ECOC es emprada
per definir noves regles de decodificació que prenen total avantatja de la informació
provinent del pas de la codificació. A més a més, com que classificacions exitoses
requereixen rics conjunts de caracteŕıstiques, noves tècniques de detecció/extracció
de caracteŕıstiques es presenten i s’avaluen en els nous dissenys d’ECOC. L’avaluació
de la nova metodologia es fa sobre diferents bases de dades reals i sintètiques: UCI
Machine Learning Repositori, śımbols manuscrits, senyals de trànsit provinents de
sistemes Mobile Mapping, imatges coronàries d’ultrasò, imatges de la Caltech Repos-
itori i bases de dades de malats de Chagas. Els resultats que es mostren en aquesta
tesis mostren que s’obtenen millores de rendiment rellevants tant a la codificació com
a la decodificació dels dissenys d’ECOC quan les noves regles són aplicades.
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Chapter 1

Introduction

In real world problems, humans continuously base our behavior on making predictions
based on previous knowledge. Obviously, not all of our predictions obtain the desired
results, but our source of information, obtained from real life situations, makes us
to make decisions with high confidence in many situations. Moreover, the more
information available, the more confidence is achieved in our predictions. This process
of recompiling information is clearly observable on babies. They are continuously
looking, listening, touching their environment in order to make it familiar (fig. 1.1). In
fact, what they are doing is to increase their source of information to be able to make
good decisions in future situations. These decisions can be seen as a categorization
among different hypotheses based on previous knowledge. This thesis deals with
the problem of modelling multiple hypothesis to solve multi-class pattern and object
categorization problems.

1.1 Short motivation of the thesis

Humans spend most of the time of our life learning from our environment, and re-
inforcing our knowledge in dreams. In this sense, learning is directly related with
the human behavior. Nowadays, learning is used to help robotics to interact with
their environment and to automatically solve problems without the need of human
supervision. In this thesis, we focus on three research lines:

a) Multi-class categorization: Since the initials of Artificial Intelligence about
50 years ago, many learning techniques have been proposed to deal with many artificial
systems. The initial learning designs were proposed to deal with just two classes.
Which option is the best one given two previous possibilities? To solve this problem
using several examples from two hypotheses, many learning techniques have been
developed with successful results. However, in many real problems, it is common to
face with problems where N possible solutions (where N > 3) exist.

Still, thought several powerful binary classifiers exist, each one of them focuses on
different rules to model some types of problems, and one can not guarantee the use
of only one of them to solve any type of classification tasks. In this sense, the study
of new learning techniques is still an open issue. Moreover, though some state-of-
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Figure 1.1: Visual perception.

the-art binary classifiers, such as Support Vector Machines or Adaboost, have been
extended to deal with multi-class problems, the results in the multi-class case were
so pessimistic. Because of this reason, it is common to conceive the classifiers to
distinguish between just two classes and to combine them to solve multi-class tasks.
Few combining strategies for binary classifiers have been proposed in the literature.
In this sense, we claim to study robust multi-class classifiers in order to address the
multi-class categorization task.

b) Object recognition: The object recognition problem in real images is a
difficult task because of the high variability in appearance that objects suffer, such
as illumination changes, partial oclusions, elastic and rigid deformations, etc. By this
reason, we propose alternatives to the feature extraction and object modelling steps
of the visual pattern recognition system, where the new multi-class categorization
strategies could also be applied.

c) Real applications: Finally, an important issue of the thesis is to show the
applicability and usefulness of the previous methods to solve real world multi-class
object and pattern recognition problems. We proposed us to consider data from very
different fields and prove that the developed methods and algorithms compete with
the state-of-the-art methodologies for multi-class pattern and object recognition.

1.2 Statistical Pattern Recognition

Classification is the term in which some decision is made on the basis of a certain
available information [27]. Thus, a classification procedure looks for a method that
makes such judgements in new situations. In the Pattern Recognition community, the
binary classification refers to make a decision for a new object ρ (data sample or
pattern), classifying ρ by one of just two previous categories (or classes) c1 and c2.
In the case of the binary classification, we have two alternatives to classify ρ, and thus,
our decision is c1 or c2. More formally, given a training data {(ρ1, `1), .., (ρm, `m)},
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Figure 1.2: Apple samples.

where ρi ∈ X is an object of label `i, where `i ∈ {c1, c2}, a classifier h is trained
to distinguish the objects of the set c1 from the objects of the set c2. The prediction
is obtained in the form h : X → `, where ` = {`1, `2}. To learn the classifier h, each
element ρ should be described with a set of characteristics (or features) inherent
to the object. For example, we could describe a woman based on her age, height,
weight, eyes color, etc. Then, the learning process uses the set of objects features
from the two different classes to train the classifier h. An open question is which type
of features should be used to describe a particular type of data.

There are many techniques that treats to deal with the problem of object de-
scription [49][10]. Representative features depend on the object and the problem
one wants to solve. Moreover, some features can change their appearance when we
observe the same object under different points of view, illumination changes, oclu-
sions, rigid or elastic deformations, etc. The problem of object description is still a
difficult task. Observe the objects of fig. 1.2. Which are the representative features
to describe an apple? shape? color? Obviously, it depends on the categorization
problem we consider. A binary classification not only consists on distinguishing ap-
ples from oranges. In the apple class, we can also apply categorization. Which apples
have been bited? Which apples are red or green? These questions correspond to
binary problems. In the first case, the variations of the shape of the object can be
useful, but not the color. In the second case, the color has an outstanding decision,
while the shape is not a relevant feature. Now, look at all apple samples. There is
something wrong? An apple is dark! It is surprising for us. The shape corresponds
to an apple, but we do not have previous knowledge about dark apples. Now, we are
including information about black apples into our source of knowledge [75].

Given the features or measurements obtained for each pattern, in the statistical
approach, each of these patterns is viewed as a point in a high-dimensional space.
Then, the goal is to choose those features that allow pattern vectors belonging to dif-
ferent categories to occupy compact and disjoint regions in that feature space [38].
The effectiveness of the representation space (feature set) is determined by how well
patterns from different classes can be separated. Given a set of training patterns
from each class, the objective is to establish decision boundaries in the feature
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Figure 1.3: Statistical Pattern Recognition System.

space which separate patterns belonging to different classes. In the statistical deci-
sion theoretic approach, the decision boundaries are determined by the probability
distributions of the patterns belonging to each class, which must either be specified
or learnt [23][27].

The recognition system is operated in two modes: training (learning) and classi-
fication (testing) (see Fig. 1.3). The role of the preprocessing module is to segment
the pattern of interest from the background, remove noise, normalize the pattern,
and any other operation which will contribute in defining a compact representation of
the pattern. In the training mode, the feature extraction/selection module finds the
appropriate features for representing the input patterns and the classifier is trained
to partition the feature space. The feedback path allows a designer to optimize the
preprocessing and feature extraction/selection strategies. In the classification mode,
the trained classifier assigns the input pattern to one of the pattern classes under
consideration based on the measured features.

Based on the previous scheme, some points to design a robust Statistical Pattern
Recognition model should be considered [28]:

How the data set should be designed?: This set has to be chosen such that
it is representative for the set of objects to be recognized by the trained system.

How objects should be represented?: Real world objects have to be repre-
sented in a formal way in order to be analyzed and compared by mechanical means
such as a computer. Moreover, the observations derived from the sensors or other
formal representations have to be integrated with the existing, explicitly formulated
knowledge either on the objects themselves or on the class they may belong to. The
issue of representation is an essential aspect of pattern recognition and is different
from classification. It largely influences the success of the final classification.

How the representation should be adapted to be learnt?: It is an inter-
mediate stage between preprocessing and learning, in which representations, learning
methodology or problem statement are adapted or extended in order to enhance the
final recognition. This step may be neglected as being transparent, but its role is
essential. It may reduce or simplify the representation, or it may enrich it by empha-
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sizing particular aspects, e.g. by a nonlinear transformation of features that simplifies
the next stage. Background knowledge may appropriately be (re)formulated and in-
corporated into a representation. If needed, additional representations may be consid-
ered to reflect other aspects of the problem. Exploratory data analysis (unsupervised
learning) may be used to guide the choice of suitable learning strategies.

How can we generalize or infer?: At the learning stage, we learn a concept
from a training set, the set of known and appropriately represented examples, in such
a way that predictions can be made on some unknown properties of new examples.
We either generalize towards a concept or infer a set of general rules that describe
the qualities of the training data. The most common property is the class or pattern
it belongs to, which corresponds to the classification task.

How the evaluation should be performed?: In this stage, we estimate how
our system performs on known training and validation data while training the
entire system. If the results are unsatisfactory, then the previous steps have to be
reconsidered using the feedback module of fig. 1.3.

This thesis claims to focus on the previous questions to present powerful multi-
class pattern and object recognition systems. We take into account the influence of
the different types of feature sets that should be used to represent the objects from
different types of problems. The embedding multi-class strategies that we present
adapt the previous representation of the data, in a problem-dependent way, so that
the learning process obtains high generalization performances.

1.3 Visual Pattern Recognition

One of the most challenging applications of statistical pattern recognition theory
is the field of object recognition in images. Many of the visual Pattern Recognition
techniques presented in the literature are biological inspired [79]. The idea in selective
attention is that not all parts of an image give us information and analyzing only the
relevant parts of the image in detail is sufficient for recognition and classification. The
biological structure of the eye is such that a high resolution fovea and its low-resolution
periphery provide data for recognition purposes. The fovea is not static, but is moved
around the visual field in sacades. These sharp, directed movements of the fovea are
not random. The periphery provides low-resolution information, which is processed
to reveal salient points as targets for the fovea, and those are inspected with the
fovea. The eye movements are a part of overt attention, as opposed to covert attention
which is the process of moving an attentional ’spotlight’ around the perceived image
without moving the eye. In the case of Neural Networks, the objective is to simulate
the behavior of some neuronal circuits of our brain.

To model a Visual Pattern Recognition problem, a common approach consists
of detecting the objects in an image, and then, classifying them to their respective
category. Many recognition systems also treat the problem of object detection as
a binary classification problem, where the information of each part of the image is
classified as object or background. Look to the situation presented in fig. 1.4. The
robot Aibo of Sony captures images from a scene, discarding background regions.
At the first step, Aibo treats to find the regions of the image that contain a fruit.
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Figure 1.4: Aibo detects and classifies a fruit in an scene.

Once the region containing a fruit is found, given five previous fruit categories, Aibo
classifies the inner object as an apple. Hence, the problem of object recognition can
be seen as an object detection problem followed by a classification procedure.

The previous steps of Visual Pattern Recognition are shown in the scheme of
fig. 1.5. An example of each step for a face detection application is shown. First,
at the keypoint detection step some regions of the images that could belong to face
features are detected. Then, all these regions are processed at the description module
in order to analyze their content. Based on the interpretation of the features of each
previous detected keypoint or landmark, a selection or clustering is applied in order
to discard false positive regions that do not belong to face features. Finally, the
selected and described regions are included in a model, such a correlogram in the
example, in order to learn the parts and structure of the face instance. Note that
these modules correspond to the preprocessing and feature extraction/selection stages
of the Statistical Pattern Recognition module of fig. 1.3.

1.4 The Multi-class Categorization Problem

When we talk about binary classification, the labels from classes c1 and c2 use to take
the values +1 or -1, respectively. At the learning process explained above, the labels
for the training objects are known. This is called Supervised Learning [27]. There
are situations where we have a set of observations and our aim is to establish the
existence of classes or clusters in the data. It is called Unsupervised Learning or
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Figure 1.5: Pre-processing biological-inspired techniques for Visual Pattern Recog-
nition.

clustering [27].
At the previous examples, the problem corresponds to Supervised Learning for

Binary Classification. But in real-world problems, we do not only have binary classifi-
cation. We can classify between red apples and green apples or we can also distinguish
among apples, oranges, bananas, pears, etc. Multi-class classification is the term
applied to those machine learning problems that require assigning labels to instances
where the labels are drawn from a set of at least three classes. Real-world situations
are full of multi-class classification problems, where we want to distinguish among N
possible classes or hypotheses (obviously, the number of objects that we have learnt
during our life tends to be uncountable). If we can design a multi-classifier h, then the
prediction can be understood as in the binary classification problem, being h : X → `,
where now ` = {`1, .., `N}, for a N -class problem. Several multi-class classification
strategies have been proposed in the literature. However, though there are very pow-
erful binary classifiers, many strategies fail to manage multi-class information. As we
show later, a possible multi-class solution consists of designing and combining of a set
of binary classification problems.

1.5 Classifiers

In the Statistical Pattern Recognition field, classifiers are frequently grouped into
those based on similarities, probabilities, or geometric information about class distri-
bution [38].

a) Similarity Maximization Methods: The Similarity Maximization Methods use
the similarity between patterns to decide a classification. The main issue in this type
of classifiers is the definition of the similarity measure.

b) Probabilistic Methods: The most well known probabilistic methods make use
of Bayesian Decision Theory. The decision rule assigns class labels to that having
the maximum posterior probability. The posterior can be calculated by the
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well-known Bayes rule:

posterior =
likelihood× prior

evidence
(1.1)

If P (ci) is the prior probability that a given instance ρ belongs to class ci,
p(ρ|ci) is the class-conditional probability density function: the density for ρ
given that the instance is of class ci, and p(ρ) is defined as

∑
p(ρ|cj)×P (cj) over all

classes. Then, eq. 1.1 is equivalent to:

P (cj |ρ) =
p(ρ|cj)× P (cj)

p(ρ)
(1.2)

The classification is done in favor of the jth class is P (cj |ρ) > P (ci|ρ), ∀ci ∈ C
and ci 6= cj , where C is the set of classes (cj ∈ C).

c) Geometric Classifiers: Geometric classifiers build decision boundaries by di-
rectly minimizing the error criterion.

Table 1.1 summarizes the main classification strategies studied in literature. For
each strategy, we show its properties, comments, and type based on the previous
grouping.
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Table 1.1: Classification methods.
Method Property Comments Type

Template
matching

Assigns patterns to the
most similar template

The templates and the met-
ric have to be supplied by
the user; the procedure may
include nonlinear normaliza-
tions; scale (metric) depen-
dent

Similarity
Maximiza-
tion

Nearest Mean
Classifier

Assigns patterns to the
nearest class mean

No training needed; fast
testing; scale (metric) de-
pendent

Similarity
Maximiza-
tion

Subspace
Method

Assigns patterns to the
nearest class subspace

Instead of normalizing on in-
variants, the subspace of the
invariant is used; scale (met-
ric) dependent

Similarity
Maximiza-
tion

1-Nearest
Neighbor Rule

Assigns patterns to the
class of the nearest train-
ing pattern

No training needed; robust
performance; slow testing;
scale (metric) dependent

Similarity
Maximiza-
tion

k-Nearest
Neighbor Rule

Assigns Patterns to the
majority class among k
nearest neighbor using a
performance optimized
value for k

Asymptotically optimal;
scale (metric) dependent,
slow testing

Similarity
Maximiza-
tion

Bayes plug-in Assigns pattern to the class
which has the maximum
estimated posterior proba-
bility

Yields simple classifiers
(linear or quadratic) for
Gaussian distributions; sen-
sitive to density estimation
errors

Probabilistic

Logistic Classi-
fier

Maximum likelihood rule
for logistic (sigmoidal) pos-
terior probabilities

Linear classifier; iterative
procedure; optimal for a
family of different distrib-
utions (Gaussian); suitable
for mixed data types

Probabilistic

Parzen Classi-
fier

Bayes plug-in rule for
Parzen density estimates
with performance opti-
mized kernel

Asymptotically optimal;
scale (metric) dependent;
slow testing

Probabilistic

Fisher Linear
Discriminant

Linear classifier using MSE
optimization

Simple and fast; similar to
Bayes plug-in for Gaussian
distributions with identical
covariance matrices

Geometric

Binary Decision
Tree

Finds a set of thresholds
for a pattern-dependent se-
quence of features

Iterative training procedure;
overtraining sensitive; needs
pruning; fast testing

Geometric

Adaboost Logistic regression for a
combination of weak clas-
sifiers

Iterative training procedure;
overtraining sensitive; fast
training; good generalization
performance

Geometric

Perceptron Iterative optimization of a
linear classifier

Sensitive to training parame-
ters; may produce confidence
values

Geometric

Multi-layer
Perceptron
(Feed-Forward
Neural Net-
work)

Iterative MSE optimiza-
tion of two or more lay-
ers of perceptrons (neu-
rons) using sigmoid trans-
fer functions

Sensitive to training para-
meters; slow training; non-
linear classification function;
may produce confidence val-
ues; overtraining sensitive;
needs regularization

Geometric

Radial Basis
Network

Iterative MSE optimiza-
tion of a feed-forward
neural network with at
least one layer of neu-
rons using Gaussian-like
transfer functions

Sensitive to training parame-
ters; nonlinear classification
function; may produce con-
fidence values; overtraining
sensitive; needs regulariza-
tion; may be robust to out-
liers

Geometric

Support Vector
Classifier

Maximizes the margin be-
tween the classes by select-
ing a minimum number of
support vectors

Scale (metric) dependent; it-
erative; slow training; non-
linear; overtraining insen-
sitive; good generalization
performance

Geometric
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1.5.1 Multi-class classifiers

There are plenty of classification techniques reported in literature for the multi-class
problem: Support Vector Machines, decision trees, nearest neighbors rules, etc. Most
of the state-of-the-art classification strategies (see table 1.1) are defined to deal with
2-class problems. Strategies that obtain good generalization performance in the 2-
class case, such as Adaboost or Support Vector Machines, have been extended to the
multi-class case, but this extension is not always trivial. In such cases, the usual way
to proceed is to reduce the complexity of the problem into a set of simpler binary
classifiers and combine them. An usual way to combine these simple classifiers is the
voting scheme.

Voting (or averaging) is a technique that, instead of using the best hypothesis
learnt so far, uses a weighted average of all hypotheses learnt during a training pro-
cedure. The averaging procedure is expected to produce more stable models, which
leads to less overfitting. Some multi-class combining techniques use different classi-
fication strategies to split sub-sets of classes and model the classification problem as
a combination of different types of decision boundaries in a voting scheme. In this
thesis, we focus on the combination of classifiers where the base classifier for each
individual classification problem of the ensemble is based on the same type of decision
boundary. Next, we briefly review the standard voting schemes used in the literature.

One Versus the Rest

To get a N -class classifier, it is common to construct a set of binary classifiers
{h1, .., hN}, each one trained to split one class from the rest of classes, and use the
outputs of each binary classifier to predict one of the N classes [68].

Pairwise Classification or One Versus One

In pairwise classification, we train a classifier for each possible pair of classes [88]. For
N classes, this results in N(N − 1)/2 binary classifiers. This number is usually larger
than the number of one-versus-the-rest classifiers; for instance, if N = 10, one needs
to train 45 binary classifiers rather than 10 as in the one-versus-the-rest strategy.
Although this suggests larger training times, the individual problems that we need
to train on are significantly smaller, and if the training algorithm scales superlinearly
with the training set size, it is actually possible to save time.

Similar considerations apply to the runtime execution speed. When one try to
classify a test pattern, we evaluate all 45 binary classifiers, and classify according to
which of the classes gets the highest number of votes. A vote for a given class is
defined as the classifier putting the pattern into that class. The individual classifiers,
however, are usually smaller in size than they would be in the one-versus-the-rest
approach. This is for two reasons: First, the training sets are smaller, and second,
the problems to be learnt are usually easier, since the classes have less overlap.
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Error-Correcting Output Codes

It is known that for some classification problems, the lowest error rate is not always
reliably achieved by trying to design a single classifier. An alternative approach is
to use a set of relatively simple sub-optimal classifiers and to determine a combina-
tion strategy that pools together the results. Different types of systems of multiple
classifiers have been proposed in the literature, most of them use similar constituent
classifiers, which are often called base classifiers.

Error-Correcting Output Codes (ECOC) were born as a general framework to
combine binary problems to address the multi-class problem. The strategy was intro-
duced by Dietterich and Bakiri [24] in 1995. Based on the error correcting principles
[24], ECOC has been successfully applied to a wide range of applications, such as
face recognition [94], face verification [44], text recognition [33] or manuscript digit
classification [100].

The ECOC technique can be broken down into two distinct stages: encoding and
decoding. Given a set of classes, the coding stage designs a codeword1 for each class
based on different binary problems. The decoding stage makes a classification decision
for a given test sample based on the value of the output code.

At the coding step, given a set of N classes to be learnt, n different bi-partitions
(groups of classes) are formed, and n binary problems (dichotomizers) are trained.
As a result, a codeword of length n is obtained for each class, where each bit of the
code corresponds to the response of a given dichotomizer (coded by +1, -1, according
to their class set membership). Arranging the codewords as rows of a matrix, we define
a coding matrix M , where M ∈ {−1, 1}N×n in the binary ECOC framework. This
binary strategy has been extended in several research directions showing promising
results. Allwein et al. [5] improved the representability of the ECOC technique by
adding a third symbol to the coding matrix. With this new symbol each element of
the coding matrix is chosen from {−1, 0, +1}, where classes with zero value are not
considered for that particular dichotomizer. Figure 1.6 shows an example of a ternary
ECOC configuration. The white regions correspond to +1, the black regions to -1,
and the grey regions to the zero symbol. Four classes are codified in this example,
obtaining a codeword for each class (rows of the coding matrix). Then, each of the
columns corresponds to a binary problem, where the +1 positions are the classes for
the first group of a classifier, and the -1 positions of the column correspond to the
classes of the second group of a classifier, with a total of six binary problems in this
example.

The ternary ECOC allows to express the classic pairwise and one-versus-all schemes
in a common framework as well as to define new coding strategies such as random
dense or random sparse output codes. Most of these coding ECOC strategies are
defined independently of the problem domain or the classification performance. The
first approach to ECOC coding design was proposed by Utschick et al. [91]. In their
work, they optimize a maximum-likelihood objective function by means of the expec-
tation maximization algorithm in order to improve the process of binary coding. As
mentioned by the authors ”the results of some experiments make us believe that for

1The codeword is a sequence of bits of a code representing each class, where each bit identifies
the membership of the class for a given binary classifier.
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Figure 1.6: Example of an ECOC configuration.

many polychotomous classification problems, the OPC [one-versus-all] method is still
the optimal choice for the output coding. Crammer et al. [17] also reported improve-
ment in the design of the ECOC codes. However, their results were rather pessimistic
since they proved that the problem of finding the optimal discrete codes is computa-
tionally unfeasible. As an alternative, they proposed a method for heuristically search
of the optimal coding matrix by relaxing the representation of the code matrix from
discrete to continuous values. Recently, new improvements in the problem dependent
coding techniques have been presented by Pujol et al. [73]. In their work, the authors
proposed the embedding of discriminant tree structures derived from the problem do-
main in the ECOC framework. As a result, they obtained a compact discrete coding
matrix with a small number of dichotomizers and very high accuracy. In this point,
an open question is how to design a problem-dependent ECOC matrix so that it
simultaneously minimizes the code length meanwhile maximizing the generalization
capability of the ensemble.

The decoding step was originally based on error-correcting principles under the
assumption that the learning task can be modelled as a communication problem,
in which class information is transmitted over a channel [24]. During the decoding
process, applying the n binary classifiers, a code is obtained for each data point in
the test set. This code is compared to the base codewords of each class defined in
the matrix M , and the data point is assigned to the class with the closest codeword.
Concerning the decoding strategies, two of the most standard techniques are the
Euclidean distance and the Hamming decoding distance. If the minimum Hamming
distance between any pair of class codewords is d, then any [(d − 1)/2] errors in the
individual dichotomies result can be corrected in the binary ECOC framework, since
the nearest codeword will be the correct one. In the previous example of fig. 1.6, the
six binary problems {h1, .., h6} test a new data sample. Each classifier introduce a
+1 or -1 value at each corresponding codeword position, and a decoding strategy is
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applied. Finally, the input test sample is classified by the class ci with the closest
decoding value. In the case that we decode a ternary symbol-based coding matrix,
three possible symbols are considered, and an open question is if the traditional 2-
symbol-based decoding strategies can still be used in the ternary case.

Multi-class built-in classifiers

Two of the most frequently multi-class classifiers used in the literature are exten-
sions of the binary Adaboost and SV M . The multi-class variant of Adaboost that
has demonstrated to be dominant to the other proposals in empirical studies is the
Adaboost.MH [82]. The Adaboost.MH algorithm converts the N -class problem into
that of estimating a two-class classifier on a training set N times as large, with an
additional feature defined by the set of class labels [101]. It can be seen as an one-
versus-all scheme, representing a ”Multi-label Hamming” to measure the classification
prediction, being essentially the one-versus-all ECOC design with Hamming decoding.
Moreover, in [42], the authors showed that the behavior of the multi-class support
vector machines and fuzzy support vector machines also tend to the performance of
the one-versus-all ECOC strategy. Recently, Torralba et.al. [90] proposed a novel
multiclass approach where instead of training independent classifiers for each object
class, they are jointly trained leading to a more robust feature extraction and better
recognition generalization. As we will show, the previous schemes correspond to the
simple ECOC designs. Thus, a more exhaustive analysis of the ECOC capabilities
can be very suitable to deal with multi-class categorization problems, such as visual
pattern recognition tasks.

1.6 State-of-the-art on Visual Pattern Recognition

Concerning to the model of fig. 1.5 for visual pattern recognition, several approaches
have been proposed in the literature. We showed that this scheme is an instance of
the statistical pattern recognition system shown in fig. 1.3. There are many examples
of visual pattern recognition applications that can be found in real life: in the case of
optical character recognition, the goal is to find the digit value or the character letter.
In object recognition, a new instance is categorized according to the pool of trained
objects (cars, motorbikes, horses, flowers, etc.). In medical imaging, for instance, a
potential application would be the automatic classification of different kind of plaque
tissues (lipidic, fibrous, calcified, necrotic, etc.).

Usually, the problem of object recognition of visual pattern recognition systems
(e.g. person identification) needs a previous detection of the object class category (e.g.
face location). Object detection is concerned with the reliable and accurate location
of target objects in an image. In general, according to the way objects are described,
three main families of approaches can be considered [59]: Part-based, Patch-based,
and Region-based methods.

a) Part-based approaches consider that an object is defined as a specific spa-
tial arrangement of its parts fragments. Following this idea, an efficient Bayessian
network for learning the spatial arrangement of parts is proposed in [84]. An un-
supervised statistical learning of constellation of parts and spatial relations is used
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in [30]. Other authors [36] propose to use Attribute Relational Graphs for describing
spatial relations. In [6] a representation integrating Boosting with constellations of
contextual descriptors is defined. In this work, the feature vector includes the bins
that correspond to the different positions of the correlograms determining the object
properties.

b) Another family of recognition techniques is the Patch-based methods, which
classify each rectangular image region of a fixed aspect ratio (shape) at multiple sizes,
as object (or parts of the target object) or background. In this topic, the authors
of [4] use a dictionary of parts and a window algorithm for learning active features
of the object are proposed. A similar technique is found in [90], where objects are
described by the best features obtained using masks and normalized cross-correlation.

c) Finally, Region-based algorithms segment regions of the image from the back-
ground and describe them by a set of features that provide texture and shape infor-
mation.

The selection of feature points can be based on image contour points [6] or other
image features, as for example provided by interest point detectors. The point de-
tectors have been used in multiple applications: matching for stereo pairs [61], image
retrieval from large databases [83], object retrieval in video [87], shot location [81],
and object categorization [29], to mention just a few. One of the most well-known
keypoint detector is the Harris detector [54]. The method is based on searching for
edges that are maintained at different scales to detect interest image points. Several
variants and applications based on the Harris point detector have been used in the
literature, such as Harris-Laplacian [35], Affine variants [54], DoG [49], etc. Finally,
the models obtained by the visual pattern recognition system should be recognized
using some kind of classification technique, as the ones mentioned before.

1.7 Contribution

Error-Correcting Output Codes were proposed to deal with multi-class problems by
embedding several binary problems in a coding matrix. This approach showed to be
very robust applied to many real-world problems. However, several aspects of this
framework that can help us to improve the classification performance have not been
previously analyzed. In this thesis, we theoretically and empirically analyze either
the binary as the ternary ECOC frameworks.

1) ECOC Coding: Concerning the coding step of the ECOC framework, we
propose different alternatives to deal with problem-dependent coding designs of Error-
Correcting Output Codes. As we show, problem-dependent designs are capable to
model difficult problems with a reduced number of classifiers using the knowledge of
the problem domain:

1.1) Forest-ECOC: One important point of the ECOC technique is that the infor-
mation provided by the classifiers of the ensemble is combined to obtain a classification
prediction. We take advantage of this property to propose the embedding of multiple
tree structures in an ECOC matrix. In this way, the internal nodes of the trees share
their information to robustly classify new data samples.

1.2) ECOC-ONE: The optimizing node embedding ECOC technique is proposed
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to extend any initial coding matrix. The training data is split into training and
validation sub-sets in order to search the optimal bi-partitions of classes which trained
classifier minimizes the training error meanwhile avoids overtraining. A greedy search
and a modified sequential forward floating search are proposed to look for the best
dichotomizers at each step of the procedure.

1.3) Sub-class ECOC: Moreover, we present a coding strategy to split an orig-
inal N -class problem into a N ′-class problem (so that N ′ > N) in order to define
multi-class data easier to be learnt, avoiding overtraining and being able to model
overlapping data. Classifiers that can not model multi-class problems based on the
initial distributions of the data are able to fit decision boundaries over the new split
partitions of classes.

2) ECOC Decoding: Concerning the decoding step of the ECOC framework,
we present a new taxonomy common to all decoding strategies. The state-of-the-art
decoding strategies are evaluated on the new representation, and different alternatives
to decode are proposed to deal with a successful classification either in the binary or
ternary ECOC frameworks.

2.1) Attenuated Euclidean distance: This technique is proposed to avoid the influ-
ence of the ECOC coding matrix positions that do not provide relevant information
of the data.

2.2) Laplacian decoding: The Laplacian decoding introduces a measure that counts
the number of coincidences between the input codeword and the class codeword,
normalizing by the total number of codeword positions. The procedure introduces
a previous bias to make the technique robust in cases of having a small number of
coded positions in one word.

2.3) Pessimistic β-Density Distribution decoding: This technique estimates the
probability density functions between two codewords. The main goal of this strategy
is to model at the same time the accuracy and uncertainty based on a pessimistic score
on the continuous binomial distribution in order to obtain more reliable predictions.

2.4) Loss-weighted decoding: The Loss-Weighted decoding strategy codifies a ma-
trix of weights that ponders the decoding process. This matrix avoids the influence
of the positions that do not provided information at the coding step. At same time,
the technique makes the decoding measures between codewords comparable either in
the binary as in the ternary ECOC framework.

3) Sparse ECOC designs: The influence of the decoding analysis presented
in the thesis also suggests the re-definition of some coding strategies. In particular,
we show that the definition of the state-of-the-art Sparse random ECOC matrix is
inconsistent, and we propose a new measure of ternary error-correction capability and
ternary codeword separability.

4) Object detection and description: Concerning the visual pattern recog-
nition system, we propose new techniques for the preprocessing and feature extrac-
tion/selection modules.

4.1) Boosted Landmarks of contextual descriptors: We propose a technique for
generic object detection problems. Objects are described by constellations of features,
where Adaboost learns at the same time the relevant object features and their spatial
arrangement.

4.2) Blurred Shape Models: We propose a technique for object description. The
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technique focuses on relevant object shape points to codify its spatial arrangement.
These object detection and description techniques are also applied with the pre-

vious multi-class ECOC classification techniques to solve real pattern recognition
problems.

5) Real applications: All the previous methods are evaluated on several real
applications with real and synthetic data, such as UCI Machine Learning Repository
data sets, real traffic signs, intravascular tissue images, handwriting data sets, Caltech
repository, and Chaga’s disease data set.

The experimental results of this thesis show that the presented strategies outper-
form the results of the state-of-the-art ECOC coding and decoding designs as well
as the state-of-the-art multi-classifiers, being specially suitable to model several real
multi-class categorization problems.

1.8 Thesis Outline

The thesis is organized as follows: Section 2 gives the fundamentals of the coding
and decoding steps of the ECOC framework either in the binary and the ternary
framework. Section 3 presents the new designs for problem-dependent ECOC cod-
ing. Three problem-dependent designs are presented: The Forest-ECOC, the ECOC
Optimum Node Embedding, and the Sub-class ECOC approach. Section 4 presents
a new taxonomy of decoding strategies and four alternatives to decode are proposed.
Section 5 presents a new analysis for the separability of ternary codes for sparse de-
signs. Section 6 describe the novel techniques for object detection and description. A
list of applications based on the new methodology are presented in section 7. Finally,
section 8 concludes the thesis.

In the appendices, we summarize the notation used for the ECOC analysis and
describe some techniques used by the present methodology. Last appendix contains
the publications regarding the content of the thesis.



Chapter 2

Error-Correcting Output Codes

Given a set of N classes to be learnt in an ECOC framework, n different bi-partitions
(groups of classes) are formed, and n binary problems (dichotomizers) over the par-
titions are trained. As a result, a codeword of length n is obtained for each class,
where each position (bit) of the code corresponds to a response of a given dichotomizer
(coded by +1 or -1 according to their class set membership). Arranging the codewords
as rows of a matrix, we define a coding matrix M , where M ∈ {−1, +1}N×n in the
binary case. In fig. 2.1(a) we show an example of a binary coding matrix M . The
matrix is coded using 5 dichotomizers {h1, ..., h5} for a 4-class problem {c1, ..., c4}
of respective codewords {y1, ..., y4}. The hypotheses are trained by considering the
labeled training data samples {(ρ1, l(ρ1)), ..., (ρm, l(ρm))} for a set of m data samples.
The white regions of the coding matrix M are coded by +1 (considered as one class
for its respective dichotomizer hj), and the dark regions are coded by -1 (considered
as the other one). For example, the first classifier is trained to discriminate c3 against
c1, c2, and c4; the second one classifies c2 and c3 against c1 and c4, etc., as follows:

h1(x) =
{

1 if x ∈ {c3}
−1 if x ∈ {c1, c2, c4} , . . . , h5(x) =

{
1 if x ∈ {c2, c4}
−1 if x ∈ {c1, c3} (2.1)

(a) (b)

Figure 2.1: (a) Binary ECOC design for a 4-class problem. An input test codeword
x is classified by class c2 using the Hamming or the Euclidean Decoding. (b) Example
of a ternary matrix M for a 4-class problem. A new test codeword x is classified by
class c1 using the Hamming and the Euclidean Decoding.

17
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During the decoding process, applying the n binary classifiers, a code x is obtained
for each data sample ρ in the test set. This code is compared to the base codewords
(yi, i ∈ [1, .., N ]) of each class defined in the matrix M . And the data sample is
assigned to the class with the closest codeword. In fig. 2.1(a), the new code x is com-
pared to the class codewords {y1, ..., y4} using the Hamming [68] and the Euclidean
Decoding [5]. The test sample is classified by class c2 in both cases, correcting one
bit error.

In the ternary symbol-based ECOC, the coding matrix becomes M ∈ {−1, 0, +1}N×n.
In this case, the symbol zero means that a particular class is not considered for a given
classifier. A ternary coding design is shown in fig. 2.1(b). The matrix is coded using
7 dichotomizers {h1, ..., h7} for a 4-class problem {c1, ..., c4} of respective codewords
{y1, ..., y4}. The white regions are coded by 1 (considered as one class by the respec-
tive dichotomizer hj), the dark regions by -1 (considered as the other class), and the
grey regions correspond to the zero symbol (classes that are not considered by the
respective dichotomizer hj). For example, the first classifier is trained to discriminate
c3 against c1 and c2 without taking into account class c4, the second one classifies
c2 against c1, c3, and c4, etc. In this case, the Hamming and Euclidean Decoding
classify the test data sample by class c1. Note that a test codeword can not contain
the zero value since the output of each dichotomizer is hj ∈ {−1, +1}.

The analysis of the ECOC error evolution has demonstrated that ECOC corrects
errors caused by the bias and the variance of the learning algorithm [25]1. The variance
reduction is to be expected, since ensemble techniques address this problem success-
fully and ECOC is a form of voting procedure. On the other hand, the bias reduction
must be interpreted as a property of the decoding step. It follows that if a point ρ
is misclassified by some of the learnt dichotomies, it can still be classified correctly
after being decoded due to the correction ability of the ECOC algorithm. Non-local
interaction between training examples leads to different bias errors. Initially, the ex-
periments in [25] show the bias and variance error reduction for algorithms with global
behavior (when the errors made at the output bits are not correlated). After that,
new analysis also shows that ECOC can improve performance of local classifiers (e.g.,
the k-nearest neighbor, which yields correlated predictions across the output bits) by
extending the original algorithm or selecting different features for each bit [78].

2.1 Coding designs

In this section, we review the state-of-the-art on coding designs. We divide the designs
based on their membership to the binary or the ternary ECOC frameworks.

2.1.1 Binary coding

The standard binary coding designs are the one-versus-all [68] strategy and the dense
random strategy [5]. In one-versus-all, each dichotomizer is trained to distinguish one

1The bias term describes the component of the error that results from systematic errors of the
learning algorithm. The variance term describes the component of the error that results from random
variation and noise in the training samples and random behavior of the learning algorithm. For more
details, see [25].
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class from the rest of classes. Given N classes, this technique has a codeword length
of N bits. An example of an one-versus-all ECOC design for a 4-class problem is
shown in fig. 2.2(a). The dense random strategy generates a high number of random
coding matrices M of length n, where the values {+1,−1} have a certain probability
to appear (usually P (1) = P (−1) = 0.5). Studies on the performance of the dense
random strategy suggested a length of n = 10 log N [5]. For the set of generated dense
random matrices, the optimal one should maximize the Hamming Decoding measure
between rows and columns (also considering the opposites), taking into account that
each column of the matrix M must contain the two different symbols {−1, +1}. An
example of a dense random ECOC design for a 4-class problem and five dichotomizers
is shown in fig. 2.2(b). The complete coding approach was also proposed in [5].
Nevertheless, it requires the complete set of classifiers to be measured (2N−1 − 1),
which usually is computationally unfeasible in practice.

(a) (b) (c)

(d) (e)

Figure 2.2: Coding designs for a 4-class problem: (a) one-versus-all, (b) dense
random, (c) one-versus-one, (d) sparse random, and (e) DECOC.

2.1.2 Ternary Coding

The standard ternary coding designs are the one-versus-one strategy [88] and the
sparse random strategy [5]. The one-versus-one strategy considers all possible pairs
of classes, thus, its codeword length is of N(N−1)

2 . An example of an one-versus-
one ECOC design for a 4-class problem is shown in fig. 2.2(c). The sparse random
strategy is similar to the dense random design, but it includes the third symbol zero
with another probability to appear, given by P (0) = 1 − P (−1) − P (1). Studies
suggested a sparse code length of 15 log N [5]. An example of a sparse ECOC design
for a 4-class problem and five dichotomizers is shown in fig. 2.2(d). In the ternary
case, the complete coding approach can also be defined.

Due to the huge number of bits involved in the traditional coding strategies,
new problem-dependent designs have been proposed [91][17][73]. The new techniques
are based on exploiting the problem domain by selecting the representative binary



20 ERROR-CORRECTING OUTPUT CODES

problems that increase the generalization performance while keeping the code length
small. The Discriminant ECOC (DECOC) of [73] is based on the embedding of
discriminant tree structures derived from the problem domain. The binary trees are
built by looking for the sub-sets of classes that maximizes the mutual information
between the data and their respective class labels. As a result, the length of the
codeword is only (n − 1). The algorithm is summarized in table 2.1. In fig. 2.3, a
binary tree structure for an 8-class problem is shown. Each node of the tree splits a
sub-set of classes. Each internal node is embedded in the ECOC matrix as a column,
where the white regions correspond to the classes on the left sub-sets of the tree, the
black regions to the classes on the right sub-sets of the tree, and the grey regions
correspond to the non-considered classes (set to zero). Another example of a DECOC
design for a 4-class problem obtained by embedding a balanced tree is shown in
fig. 2.2(e).

Table 2.1: DECOC algorithm.

DECOC: Create the Column Code Binary Tree as follows:

Initialize L to L0 = {{c1, .., cN}}
while |Lk| > 0

1) Get Sk : Sk ∈ Lk, k ∈ [0, N − 2]

2) Find the optimal binary partition BP (Sk) that maximizes the fast
quadratic mutual information [73].

3) Assign to the column t of matrix M the code obtained by the new
partition BP (Sk) = {C1, C2}.

4) Update the sub-sets of classes Lk to be trained as follows:

L
′
k = Lk\Sk

Lk+1 = L
′
k ∪ Ci iff |Ci| > 1, i ∈ [1, 2]

It can be seen that increasing the number of classes leads to increasing the number
of classifiers. Table 2.2 and fig. 2.4 summarize the cost in terms of the number of
binary classifiers required for the binary and ternary coding strategies.

2.2 Decoding designs

In this section, we review the state-of-the-art on decoding designs. The decoding
strategies (independently of the rules they are based on) are divided depending if
they were designed to deal with the binary or the ternary ECOC frameworks.
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Figure 2.3: Example of a binary tree structure and its DECOC codification.

Table 2.2: Number of dichotomizers required for each coding design.

Coding design Number of classifiers
DECOC N − 1

one-versus-all N
dense random 10 log N
sparse random 15 log N

one-versus-one N(N−1)
2

complete binary 2N−1 − 1

complete ternary
∑N

i=2

(
N
i

)
(2i−1 − 1)

2.2.1 Binary decoding

The binary decoding designs most frequently applied are: Hamming Decoding [68],
Inverse Hamming Decoding [95], and Euclidean Decoding [5].

• Hamming Decoding
The initial proposal to decode is the Hamming Decoding measure. This measure

is defined as follows:

HD(x, yi) =
n∑

j=1

(1− sign(xjyj
i ))/2 (2.2)

This decoding strategy is based on the error correcting principles under the as-
sumption that the learning task can be modeled as a communication problem, in
which class information is transmitted over a channel, and two possible symbols can
be found at each position of the sequence [24].

• Inverse Hamming Decoding
The Inverse Hamming Decoding [95] is defined as follows: let ∆ be the matrix

composed by the Hamming Decoding measures between the codewords of M . Each
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Figure 2.4: Number of classifiers required for the coding strategies when the number
of classes increases.

position of ∆ is defined by ∆(i1, i2) = HD(yi1 , yi2). ∆ can be inverted to find the
vector containing the N individual class likelihood functions by means of:

IHD(x, yi) = max(∆−1DT ) (2.3)

where the values of ∆−1DT can be seen as the proportionality of each class code-
word in the test codeword, and D is the vector of Hamming Decoding values of the
test codeword x for each of the base codewords yi. The practical behavior of the IHD
showed to be very close to the behavior of the HD strategy [68].

• Euclidean Decoding
Another well-known decoding strategy is the Euclidean Decoding. This measure

is defined as follows:

ED(x, yi) =

√√√√
n∑

j=1

(xj − yj
i )2 (2.4)

2.2.2 Ternary decoding

Concerning the ternary decoding, the state-of-the-art strategies are: Loss-based De-
coding [5], and the Probabilistic Decoding [67].

• Loss-based Decoding
The Loss-based Decoding strategy [5] chooses the label `i that is most consistent

with the predictions f (where f is a real-valued function f : ρ → R), in the sense
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that, if the data sample ρ was labeled `i, the total loss on example (ρ, `i) would be
minimized over choices of `i ∈ `, where ` is the complete set of labels. Formally,
given a Loss-function model, the decoding measure is the total loss on a proposed
data sample (ρ, `i):

LB(ρ, yi) =
n∑

j=1

L(yj
i f

j(ρ)) (2.5)

where yj
i f

j(ρ) corresponds to the margin and L is a Loss-function that depends
on the nature of the binary classifier. The two most common Loss-functions are
L(θ) = −θ (Linear Loss-based Decoding (LLB)) and L(θ) = e−θ (Exponential Loss-
based Decoding (ELB)). The final decision is achieved by assigning a label to example
ρ according to the class ci which obtains the minimum score.

• Probabilistic Decoding
Recently, the authors of [67] proposed a probabilistic decoding strategy based

on the continuous output of the classifier to deal with the ternary decoding. The
decoding measure is given by:

PD(yi, F ) = −log


 ∏

j∈[1,...,n]:M(i,j) 6=0

P (xj = M(i, j)|f j) + K


 (2.6)

where K is a constant factor that collects the probability mass dispersed on the
invalid codes, and the probability P (xj = M(i, j)|f j) is estimated by means of:

P (xj = yj
i |f j) =

1

1 + eyj
i
(υjfj+ωj)

(2.7)

where vectors υ and ω are obtained by solving an optimization problem [67].
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2.3 ECOC discussion

In this chapter, we reviewed the state-of-the-art on coding and decoding Error-
Correcting Output Codes strategies. Most of the coding strategies described above
are problem-independent, either in the binary as well as in the ternary ECOC frame-
work, and can be used over any kind of multi-class problem without redefine the
coding matrix. In those cases, to take full benefit from the ECOC capabilities, we
should generate large codewords, such as in the case of the random designs, so that
we can fit a proper decision boundaries for a multi-class problem even in case of not
using previous information of the problem-domain.

We also reviewed recent approaches that model an ECOC matrix based on the
information of each particular problem-domain. In this case, the training step spends
more time, but the codeword length is smaller than previous approaches meanwhile
the generalization capability of the system tends to be increased.

On the other hand, we reviewed the state-of-the-art ECOC decoding strategies
proposed in the literature to deal either with the binary as well as the ternary ECOC
decoding. We showed that, though there exist several binary decoding strategies, a
widely used approach to decode binary coding matrices is the Hamming decoding.
We showed that the use of a third symbol in the ECOC matrix made to define new
decoding strategies able to work with the information provided by the new symbol.

However, as we show on the next chapters, the ECOC coding step can still benefit
from the use of the knowledge of the problem-domain. Moreover, the extension from
binary to ternary decoding is not a trivial problem, and a deep analysis is provided
to deal with a successful decoding.



Chapter 3

ECOC Coding: Problem-Dependent
ECOC designs

Most of the ECOC coding strategies presented in the literature are defined indepen-
dently of the problem domain or the classification performance. In fact, very little
attention has been paid in literatures to the coding process of the ECOC matrix.

In this chapter, we present three problem-dependent coding designs. First, we
take advantage of the Discriminant ECOC approach [73] to design a Forest-ECOC,
where a set of tree structures defined in a problem-dependent way are embed in an
ECOC design. Second, we present a guided procedure of ECOC where the binary
problems are selected so that the learning error decreases in a training and validation
sets. Finally, we propose a sub-class approach of ECOC. The Sub-class design splits
the original data into sub-classes, being able to model difficult problems that can not
be solved for a given base classifier using the original set of classes.

25
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3.1 Forest-ECOC

In the work of Pujol et al. [73], a method for embedding tree structures in the ECOC
framework is proposed. The mutual information is used to estimate the sub-partitions
of classes of each node of the tree. Beginning on the root containing all classes, the
nodes associated to the best partition in terms of the mutual information are found,
and the process is repeated until the sets with a single class are obtained. The main
advantage of this method is that it achieves a successful classification performance at
the same time that it maintains the code length small.

Taking the previous work as a baseline, we propose to use multiple trees embed-
ding, forming a Forest-ECOC. We build an optimal tree - the one with the highest
classification score at each node - and several suboptimal trees - the ones closer to
the optimal one under certain conditions. Let us keep at each iteration the best k
partitions of the set of classes. If the best partition is used to construct the current
ECOC tree, the rest of partitions form the roots of k− 1 trees. We repeat iteratively
this process until all nodes from the trees are decomposed into one class. Given a
base classifier, the sub-optimal tree candidates are designed to have the maximum
classification score at each node without repeating previous sub-partitions of classes.
In the case of generating T first optimal trees, we can create an ensemble of trees by
embedding them in the ECOC matrix, as shown in Algorithm 3.1.

The proposed technique provides a sub-optimal solution because of the combina-
tion of robust classifiers obtained from a greedy search using the classification score.
One of the main advantages of the proposed technique is that the trees share their
information among classes in the ECOC matrix M . It is done at the decoding step
by considering all the coded positions of a class jointly instead of separately. It is
easy to see that each tree structure of N classes introduces N − 1 classifiers, that is
far from the N(N−1)

2 dichotomizers required for the one-versus-one coding strategy.
An example of two optimal-trees and the Forest-ECOC matrix for a toy problem is
shown in Figure 3.1. The Figure 3.1(a) and (b) show two examples of optimal trees.
The second optimal tree is constructed based on the following optimal sub-partitions
of classes. In this way, for the first initial set of classes {c1, c2, c3, c4}, the two optimal
trees include the best sub-partitions of classes in terms of the classification score, that
in the example corresponds to c1, c3 vs c2, c4 for the first tree, and c1, c2, c3 vs c4 for
the second tree, respectively. Figure 3.1(c) shows the embedding of trees into the
Forest-ECOC matrix M . Note that the column h3 corresponds to the node N3, and
the following dichotomizers correspond to the nodes of the second tree. The classes
that do not belong to the sub-partitions of classes are set to zero. On the other hand,
the classes belonging to each partition are set to +1 and −1 values, defining the subset
of classes involved on each classifier.

Given an input sample to test with the Forest-ECOC matrix, we obtain the Forest-
ECOC vector where each vector component is the result of solving each binary clas-
sifier trained on each of the columns of the matrix. Note that this procedure can be
cast in the multi-task framework since it combines knowledge from different binary
problems and shares their knowledge among the tasks.

The second step of the ECOC process is the decoding. Here we can apply any
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First optimal tree for a four-class problem Second optimal tree for the same problem

Forest-ECOC matrix M for the problem, where h1, h2 and h3 correspond
to classifiers of N1, N2 and N3 from the first tree, and h4, h5 and h6 to N ′

1, N ′
2

and N ′
5 from the second tree

Figure 3.1: Four-class optimal trees and the Forest-ECOC matrix.
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Table 3.1: Training algorithm for the Forest-ECOC.

Given N classes: c1, ..., cN and T trees to be embedded

for t = 1, .., T do

Initialize the tree root with the set N0 = {c1, ..., cN}
i ⇐ 0

Generate the best tree at iteration t:

for each node Ni do

Train the best partition of its set of classes {C1C2}|Ni = C1 ∪ C2 using
a classifier hi (if the sub-partition has not been previously considered) so
that the training error is minimal

end for

According to the partition obtained at each node, codify each column of
the matrix M as:

M(r, i) =





0 if cr /∈ Ni

+1 if cr ∈ C1

−1 if cr ∈ C2

where r is the index of the corresponding class cr

i ⇐ i + 1

end for

decoding strategy presented on next chapters to decode a Forest-ECOC design.

3.1.1 Forest-ECOC Evaluation

In order to validate the accuracy of the Forest-ECOC we tested it on the UCI Machine
Learning repository repository [8].1

UCI Evaluation

The compared methods are: 40 runs of multiclass joint boosting with decision stumps
[90]2, all pairs Fisher Linear Discriminant Analysis (FLDA) with a previous 99.9%
of the Principal Components Analysis, and Dense Random ECOC. Our method and

1More experimental results and analysis of the Forest-ECOC methodology are shown in chapter 7.
2Multi-class joint boosting is a relatively new multi-class approach where instead of training

independent classifiers for each object class, they are jointly trained. This training is performed by
finding common features that can be shared across classes, leading to a robust feature extraction
and a good generalization of the recognition problem.
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Table 3.2: Classification results for UCI data sets.
UCI JB all pairs FLDA Forest ECOC Dense ramdom ECOC
Yeast 56.54±1.42 52.32±1.65 53.85±1.64 47.32±0.93

Dermathology 96.14±0.92 96.40±1.33 95.32±1.31 96.57±0.74
Ecoli 85.50±1.06 84.62±1.92 83.98±1.13 81.15±1.55

Segmentation 92.83±1.01 86.81±0.91 94.98±0.66 73.89±0.56
Satimage 80.02±1.18 81.92±1.92 73.91±1.11 72.85±0.83

Vowel 64.86±1.74 74.28±1.37 77.67±1.81 41.32±1.38
Pendigits 90.22±0.69 93.94±2.35 81.42±1.93 78.41±1.44

Rank 1.57 1.57 1.42 3.0

Dense Random ECOC use Gentle Adaboost with decision stumps as a classification
technique to estimate the Forest-ECOC dichotomizers, with T = 2 to generate and
embed multiple trees and the Attenuated Euclidean Decoding method of section to
decode. The state-of-the-art in random strategies are the dense random and the
sparse random coding techniques. As the dense random strategy tends to improve
the classification rate of the sparse case for the same number of binary problems [73],
we tested this strategy with the same number of dichotomizers as our Forest-ECOC
approach. The probability of appearance of the {1,−1} is 0.5 in both cases, so we
tested 10000 matrices to obtain the one that maximizes the row and column Hamming
distance [5].

Looking at the results in table 3.2 we can observe that our method is competitive
with the three commented approaches, and it attains the first position in the classi-
fication ranking for 8 UCI data sets (the details of the UCI data sets can be found
in chapter F). The table shows the mean accuracy using stratified ten-fold cross-
validation, and the confidence interval at 95% using a two tailed t-test. The ranking
has been obtained considering that all techniques with results overlapping with the
confidence interval of the top performance technique are considered also as first choice.
Observe that the Forest-ECOC compares favorably to the other approaches; in this
sense, it turns out a promising technique for the purposes of multi-class recognition.
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3.2 ECOC Optimum Node Embedding

The ECOC-ONE technique is motivated by the necessity of having fast algorithms
with high discriminative power able to generate as much as necessary number of
dichotomizers in order to obtain the desired performance. The work of [73] has mo-
tivated the look for techniques with small codeword length that provide high per-
formance in general conditions. In this section, we propose a general procedure to
increase the accuracy of any ECOC coding by adding very few optimal dichotomiz-
ers. In this sense, if the original coding has small length, the extension after the
ECOC-ONE results in a still compact codewords but with increased performance. In
particular, we apply this technique to optimize the initial embedded tree proposed in
[73].

3.2.1 ECOC-ONE definition

ECOC-Optimal Node Embedding defines a general procedure capable of extending
any coding matrix by adding dichotomizers based on a discriminability criterion.
In the case of a multiclass recognition problem, our procedure starts with a given
ECOC coding matrix. We increase this ECOC matrix in an iterative way, adding
dichotomizers that correspond to different sub-partitions of classes. These partitions
are found using greedy optimization based on the confusion matrices so that the
ECOC accuracy improves on both training and validation sets. The training set
guides the convergence process, and the validation set is used to avoid overfitting and
to select a configuration of the learning procedure that maximizes the generalization
performance. Since not all problems require the same dichotomizers structure -in
form of sub-partitions-, our optimal node embedding approach generates an optimal
ECOC-ONE matrix dependent on the hypothesis performance in a specific problem
domain.

3.2.2 Optimizing node embedding

In order to explain our procedure, we divide the ECOC-ONE algorithm in 6 steps:
optimal tree generation, weights estimation, accuracy estimate based on confusion
matrix, defining the new optimal dichotomizer, and ECOC matrix M construction.

Let us define the notation used in the following paragraphs: given a data pair
(ρ, l), where s is a multidimensional data point and l is the label associated to that
sample, we define S = {(ρ, l)} = {(ρt, lt)}

⋃ {(ρv, lv)}, where St = {(ρt, lt)} and
Sv = {(ρv, lv)} are the sets of data pairs associated to training and validation sets,
respectively. In the same way, e(h(ρ), l) represents the empirical error over the data
set ρ given an hypothesis h(·).

a) Optimal tree generation
We propose the use of a binary tree structure using accuracy as a sub-partition

splitting criterion. This proposal differs from the one in [73] that uses the mutual
information to form the nodes, without taking into account the particularities of the
current classification scheme. We initialize the root of the tree with the set containing
all the classes. Afterwards, for the tree building, each node of the tree is generated by
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an exhaustive search3 of the sub-partition of classes associated to the parent node, so
that the classifier using that sub-partition of classes attains maximal accuracy on the
training and validation subsets. In fig. 3.2, the sub-partition of classes required at each
node of the optimal tree is shown. For example, given the root node containing all
classes, the optimal partition achieving the least error is given by {{c1∪c3}, {c2∪c4}}.
Once we have generated the optimal tree, we embed each internal node of the tree
into the coding matrix M in the following way: consider the partition of the set of
classes associated to a node C = {C1 ∪ C2|C1 ∩ C2 = ®}. The element (i, r) of the
ECOC-ONE matrix corresponding to class i and dichotomizer r is given by:

M(i, r) =





0 if ci /∈ C
+1 if ci ∈ C1

−1 if ci ∈ C2

(3.1)

Although, this strategy is the one chosen in this article for our initial coding, note
that any coding could be used instead4.

b) Weights estimates
It is known that when a multiclass classification problem is decomposed into binary

problems, not all of these base classifiers have the same importance. In this way, our
approach introduces a weight to adjust the importance of each dichotomizer in the
ensemble ECOC matrix. In particular, the weight associated to each column depends
on the error when applying the ECOC to both training sets (training and validation)
in the following way,

wi = 0.5 log
(

1− e(hi(ρ), l)
e(hi(ρ), l)

)
(3.2)

where wi is the weight for the ith dichotomizer, and e(hi(ρ), l) is the error produced by
this dichotomizer at the affected classes on both sets of the partition. This equation is
based on the weighted scheme of the additive logistic regression [32]. In the following
section, we explain how we select the dichotomizers and how their weights affect the
convergence of the algorithm.

c) Test accuracy of the training and validation sets
Once constructed the binary tree and its corresponding coding matrix, we look

for additional dichotomizers in order to focus on the examples that are difficult to
classify. To select the next optimal node, we test the current M accuracy on St and
Sv resulting in at and av, respectively. We combine both accuracies in the following
way5:

atotal =
1
2
(at + av)

3In the case that the number of classes makes the exhaustive computation unfeasible we can use
SFFS as explained in [73].

4In the discussion section, the reader can find the results of the application of our extension
technique using the one-versus-all strategy as initial coding.

5Other combinations are possible, but we consider that the importance of the validation set must
be very significant when compared to the training accuracy. Otherwise, the total accuracy will have a
major influence of the training set and the benefit from the validation set will be minimal. Moreover,
we have experimentally observed that this combination leads in general to slightly better results than
other split criteria.
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In order to find each accuracy value, we obtain the resulting codeword x ∈ {−1, 1}n

using the strong hypothesis H = {h1, ..., hj} for each sample of these sets, and we
label it as follows:

l̃ = argminj

(
d(x, yj)

)
(3.3)

where d(·) is a distance estimation between codeword x and the codeword yj .
H(M, h, ρ) is the strong hypothesis resulted from the application of the set of learning
algorithms h(·) on the problems defined by each column of the ECOC matrix M on
a data point ρ. The result of H(M, h, ρ) is an estimated codeword x. We propose to
use the Attenuated Euclidean Decoding presented in section 4.3.

d) The training and validation confusion matrices
Once we test the accuracy of the strong hypothesis H on St and Sv, we estimate

their respective confusion matrices νt(St) and νv(Sv). Both confusion matrices are
of size N ×N , and have at position (i, j) the number of instances of class ci classified
as class cj .

νk(i, j) =| {(ρ, l)k : l = ci, h(ρ) = cj} |, k = {t, v} (3.4)

where l is the label estimation. Once the matrices have been obtained, we select
the pair {ci, cj} with maximal value according to the following expression:

{ci, cj} = argmanci,cj ;i6=j

(
νt(i, j) + νT

t (i, j) + νv(i, j) + νT
v (i, j)

)
(3.5)

∀(i, j) ∈ [1, ..., N ], where νT is the transposed matrix of ν. The resulting pair
is the set of classes that are most easily confounded, and therefore they have the
maximum partial empirical error

e) Find the new dichotomizer
Once the set of classes {ci, cj} with maximal error has been obtained, we create a

new column of the ECOC matrix. Each candidate column considers a possible sub-
partition of classes ℘ = {{{ci}

⋃
C1}, {{cj}

⋃
C2}} ⊆ C so that C1 ∩C2 ∩ ci ∩ cj = ®

and Ci ⊆ C. In particular, we are looking for the subset division of classes ℘ so that
the dichotomizer ht associated to that division minimizes the empirical error defined
by e(H(ρ), l).

℘̃ = argmin℘

(
e(H(ρ), l)

)
(3.6)

Once defined the new sets of classes, the column components associated to the set
{{ci}, C1} are set to +1, the components of the set {{cj}, C2} are set to −1 and the
positions of the rest of classes are set to zero. In the case that multiple candidates
obtain the same performance, the one involving more classes is preferred. Firstly, it
reduces the number of uncertainty in the ECOC matrix by reducing the number of
zeros in the dichotomizer. Secondly, one can see that when more classes are involved,
the generalization achieved is greater. Each dichotomizer finds a more complex rule
on a greater number of classes. This fact has also been observed in the work of
Torralba et al. [90]. In their work, a multi-task scheme is presented that yields to a
classifier with an improved generalization by aids of class grouping algorithms.

f) Update the matrix
The column mi is added to the matrix M and its weight wi is calculated using

equation (3.2).
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Table 3.3: ECOC-ONE general algorithm

Given Nc classes and a coding matrix M :

while error > ε or errort < errort−1, t ∈ [1, T ]:

Compute the optimal node t:

1) Test accuracy on the training and validation sets St and Sv.

2) Select the pair of classes {ci, cj} with the highest error analyzing the
confusion matrices from St and Sv.

3) Find the partition ℘t = {C1, C2} that minimizes the error rate in St

and Sv.

4) Compute the weight for the dichotomizer of partition ℘i based on its
classification score.

Update the matrix M .
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Table 3.3 shows the summarized steps for the ECOC-ONE approach. Note that,
the process described is iterated while the error on the training subsets is greater than
ε or the number of iterations i ≤ T 6.

3.2.3 Sub-optimal embedding

When the number of classes is high enough, exhaustive search optimization is com-
putationally unfeasible. In this case, the problem should be addressed using a modi-
fication of the sequential forward floating search.

Pudil et al. in [70] introduced a family of suboptimal search algorithms called float-
ing search methods effective in high dimensional problems involving non-monotonic
search criteria. This method was proposed as a suboptimal search method for al-
leviating the prohibitive computation cost of exhaustive search strategies in feature
selection. This family of methods is directly related to the plus-l take away-r algo-
rithm. However, the first differs from plus-l take away-r algorithm in the fact that
the number of forward and backtracking steps are not decided beforehand. Floating
search methods can be described as a dynamically changing number of forward and
backward steps as long as the resulting subsets are better than the previously eval-
uated ones at that level. In this sense, this method avoids nesting effects typical of
sequential forward and backward selection while equally being step-optimal since the
best (worst) item is always added (discarded) to (from) the set. Since backtracking
is controlled dynamically, no parameter setting is needed.

The algorithm used in this paper is a modified version of the top-down approach
called Sequential Forward Floating Search (MSFFS, see table 3.4). The most notable
difference from the SFFS is that we work with three sets of elements: a pool of
elements Y and the two searched sets X1, X2. In this case, both sets start empty
X1

0 = X2
0 = ∅ and they are filled from the pool set while the search criterion J applied

to both sets increases. The most beneficial item from the pool of elements is added
to the corresponding set at each inclusion step. In the conditional exclusion step,
the worst item from both sets is removed if the criterion keeps increasing. In our
approach, the criterion used for designing this partition is the empirical error. In the
context of our ECOC problem, the two sets {X1, X2} are the sub-partition sets of
classes ℘t = {C1, C2}.

3.2.4 ECOC-ONE example

An example of an ECOC-ONE strategy applied to a four-class classification example
can be found in figure 3.2. The initial optimal tree corresponds to the dichotomizers

6The stopping criterion of our method involves two cases: Firstly, the case in which the combined
error is reduced to zero. If both training and validation errors go to zero the method should stop
because we can not obtain meaningful information from now on. Therefore, ε is usually set to zero
unless some a priori knowledge about the acceptable error is considered. Second, since the sub-
optimal node embedding tries to increase the accuracy of the ECOC coding increasing the number
of bits per word, a certain number of bits should be decided to be the maximum allowable for our
application. In our experiments, T is usually set to values in the range [2 . . . N ], where N is the
number of classes. We selected this range of values in order to increase the global performance with
very few additional dichotomizers.
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of optimal sub-partition of the classes. This tree has been generated using accuracy
as a sub-partition splitting criterion. After testing the performance of the ensemble
tree (composed by the columns {h1, h2, h3} of the ECOC matrix M of fig. 3.2(b)), let
assume that classes {c2, c3} get maximal error in the confusion matrices νt and νv.
We search for the sub-partition of classes using the training and validation subsets so
that the error between {c2, c3} and all previous misclassified samples is minimized.
Suppose now that this sub-partition is {c1, c3} versus {c2}. As a result, a new node
N4 corresponding to dichotomizer h4 is created. We can observe in fig. 3.2 that N4

uses a class partition that is present in the tree. In this sense, this new node connects
two different nodes of the tree. Note that using the previously included dichotomizers,
the partition {c1, c3} is solved by N2. In this way, the Hamming distance between c2

and c3 is increased by adding the new dichotomizer to the whole structure. At the
same time, the distance among the rest of the classes is usually maintained or slightly
modified.

(a) (b)

Figure 3.2: (a) Optimal tree and first optimal node embedded, (b) ECOC-ONE
code matrix M for four dichotomizers.

As mentioned before, one of the desirable properties of the ECOC matrix is to
have maximal distance between rows. Our procedure focuses on the relevant difficult
partitions, increasing the distance between ”close” classes. This fact improves the
robustness of the method since difficult classes are likely to have a greater number
of dichotomizers centered on them. In this sense, it creates different geometrical
arrangements of decision boundaries, and leads the dichotomizers to make different
bias errors.

3.2.5 ECOC-ONE in a 4-class toy problem

To analyze the properties of our proposed technique and compare it to the state-of-
art approaches, we have designed the toy classification problem of fig. 3.3(a). This
multiclass problem has 50 samples for each of the four classes. The ideal boundaries
are shown in fig. 3.3(b). In this particular case, two of the classes are difficult to
classify (triangles and dots). The number of dichotomizers used in this toy problem,
for each ECOC technique, are: 6 for one-versus-one, 4 for one-versus-all, and 5 for
Dense Random and ECOC-ONE. We select 5 dichotomizers for the ECOC-ONE and
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the Dense-random technique because we want to show the performance when the
number of hypothesis is smaller than the one-versus-one method. An illustration
of the training evolution process for all the techniques is shown in fig. 3.4(a) where
the error is given as a function of the number of dichotomizers. One can observe
a greater error reduction for ECOC-ONE with few dichotomizers compared to the
rest of methods. The test evolution for the same problem is shown in fig. 3.4(b),
where the number of dichotomizers and the error rate are shown at x-axis and y-axis,
respectively. Figure 5 displays two ECOC matrices used in this evaluation: ECOC-
ONE (Mone) with column weights (Wone) and Dense Random (Mdense).

(a) (b)

Figure 3.3: (a) 4 classes for a toy problem, (b) classes boundaries for the toy problem

(a) (b)

Figure 3.4: (a) Train evolution for the toy problem. (b) Test evolution for the toy
problem.

Table 3.5 shows the ten-fold cross-validation results for all the commented ECOC
techniques. In this table, the accuracy, the confidence interval at 95%, and the num-
ber of dichotomizers used are displayed. The results on this toy classification problem
show that our technique outperforms the others. An example of the trained bound-
aries for all the techniques at one iteration of cross-validation is shown in fig. 3.6.
The dark lines correspond to the real boundaries and the grey regions to the learning
errors. We can observe that the regions of ECOC-ONE (fig. 3.6(a)) are better de-
fined. Note that two different Dense Random matrices with the same distance create
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Wone =
(

2 2 2 0.9229 1.0271
)

Mone =




−1 −1 0 1 −1
−1 1 0 −1 1
1 0 −1 0 1
1 0 1 1 0


 Mdense =




1 −1 1 −1 1
1 1 −1 −1 −1
−1 −1 −1 −1 −1
1 1 −1 1 1




(a) (b)

Figure 3.5: ECOC matrices and weights for ECOC-ONE and dense random strat-
egy.

different decision boundaries that do not approximate well the expected boundaries
(fig. 3.6(d) and (e)).

(a) (b) (c)

(d) (e)

Figure 3.6: Boundaries resulted after one iteration of training. (a) ECOC-ONE,
(b) one-versus-one, (c) one-versus-all and, (d) and (e) two different matrices of Dense
Random with the same minimal distance, respectively. Dark line corresponds to the
real boundary and grey regions correspond to learning errors.

In order to analyze the fitting of the selected dichotomizers of the ECOC-ONE
matrix to the classes boundaries, the volume of the errors for the one-versus-all and
ECOC-ONE technique are shown in fig. 3.7. The height corresponds to the number of
times that one technique misclassifies a data sample for each spatial location. Observe
that the volume of the one-versus-all technique (fig. 3.7(b)) is in this case about 70%
higher than the one generated by the ECOC-ONE strategy (fig. 3.7(a)).
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(a) (b)

Figure 3.7: Error surface comparison between ECOC-ONE and one-versus-all tech-
nique for the toy problem of fig. 3.3 .

3.2.6 ECOC-ONE Evaluation

In order to validate the proposed method, we use the UCI data set [8]. The data
sets used are Dermathology, Ecoli, Glass, Segmentation, Vowel, Satimage, Yeast, and
Pendigits (the descriptions of the UCI data sets can be found in chapter F). We
compare our technique with the following ECOC coding strategies: one-versus-all
ECOC (one-vs-all), one-versus-one ECOC (one-vs-one), and Dense random ECOC.
The decoding process for all mentioned techniques is the standard Euclidean distance
because it shows the same behavior as the Hamming decoding, but it also tends
to reduce the confusion due to the use of the zero values [73]. All these strategies
are compared with our ECOC-ONE method extending a tree for coding and our
Attenuated Euclidean distance for decoding of section . We also include the results
obtained by the ECOC-ONE computed with the MSFFS. We use a maximum of
ten iterations or dichotomizers including the first optimal tree. In order to have a
fair comparison, we used the same number of dichotomizers for the generation of
the Dense Random ECOC matrix columns. The Dense Random matrix is selected
from an exhaustive search of 10000 iterations. We have used Discriminant analysis,
Discrete Adaboost with 50 decision stumps, and linear Support Vector Machines as
base learners for all techniques. However, note that our technique is generic in the
sense that it only uses the classification score - it is independent of the particular base
classifier. All the tests are calculated using stratified ten-fold cross-validation.

Tables 3.6, 3.7 and 3.8 show the number of dichotomizers, accuracy rates and
confidence intervals at 95% - we have tested for statistical significance using a two
tailed t-test - for the FLDA, Adaboost and SVM techniques, respectively. The results
in bold face are related to the first position in ranking of the methods which confidence
interval overlaps with the one with the best accuracy - and therefore not statistically
significant from the maximum mean accuracy. The rank shows the average position
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of each technique. For example, if a technique obtains the best accuracy in 8 of 10
validation sets and it has been chosen as a second option in the other two sets, its rank
value is 1.20. Note that all strategies with results not statistically significant from the
top one are considered also as the first choice. Observing the results, we can see that
our method is very competitive when compared to the other standard ECOC coding
techniques. Furthermore, it attains a comparable accuracy to the one-vs-one ECOC
coding strategy, which is known to usually obtain the best results. In some cases,
one-vs-one improves our results for a certain data set. For example, at Pendigits data
set using FLDA, it obtains a two percent of improvement over our method. However,
one must note that one-vs-one requires 45 dichotomizers in that data set, and we
use only 10. These results are easily explained by the fact that our method chooses
at each step the most discriminable dichotomizer compared to the one-versus-one
strategies where all pairs of classifiers are considered. Thus, our procedure allows to
classify classes depending on their difficulty. For example, two difficult classes will
have a high Hamming distance between rows. But two easy classes, perhaps will not
have a considerable Hamming or Euclidean distance between them, since it is not
necessary to correct so many errors. In this way, we can reduce the number of binary
classifiers to be selected. This effect can be also seen in the results of Dense Random
ECOC and our procedure. Both cases have the same number of dichotomizers (or less
in our case due to the fact that we analyze the training convergence), and although
Random ECOC has a higher distance between rows in most cases, our procedure
usually obtains a higher hit ratio because the dichotomizers are selected in an optimal
way depending on the domain of the problem. Note that the results obtained using
MSFFS are usually very close to the ones obtained with the exhaustive approach. As
expected, its performance is poorer than using exhaustive search. There is a trade-off
between accuracy and computing time. If ECOC-ONE with exhaustive search and
one-versus-one are the first choices, ECOC-ONE with MSFFS is a very close second
choice. Note that there is a further trade-off in the exactitude of the MSFFS method
between the optimality of the solution and the time complexity. This trade-off is
governed by the number of iterations of the floating search procedure. A maximum
of N iterations (where N is the number of items in the search) should suffice to obtain
a good approximation [70].

Experimental discussion

In order to provide more insight on the ECOC-ONE process, we show different exper-
iments that address the following issues: Firstly, we discuss the use of the validation
sub set. Then, we show the optimality of our extension technique when it is com-
pared with a random extension. We show an extension of the one-vs-all technique
using ECOC-ONE. We compare a multi-class built-in SVM with the ECOC-ONE
extension of a tree. The computational complexity of the ECOC-ONE is compared
to the ECOC-ONE (MSFFS). And finally, We discuss the effect of the weights in the
ECOC matrix.

In order to show the effect of the validation set, we focus on the results obtained
on two data sets, the dermatology and the glass sets. Figure 3.8(a) and 3.8(b) display
the error evolution using our procedure. Observe that the training error is zero in both
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Figure 3.8: Error evolution of Dermatology data set using ECOC-ONE with FLDA.
(a) error evolution for the glass data set. (b) error evolution for the dermatology data
set.

cases at iteration 5. At that point further learning using the training subset is futile.
However, using the validation set we still have information for accuracy improvement.
In fact, looking at test evolution we can see how the test error further decreases. In
general, this behavior holds even if the training error does not achieve the zero error,
since the validation subset is used as an external oracle. The oracle tries to capture
the variability not observed in the training set. In this way, it reinforces the learning
process, serving just as an observable test.

The second experiment is designed to show the optimality of our extension tech-
nique. We increase the initial one-versus-all with the embedding of only two extra
dichotomizers. Discrete Adaboost is used as a base classifier for the comparative. We
compare our extension to the one-versus-all including two dense random dichotomizers
(one-versus-all-dense) that maximally increase the distance between rows and columns
(and its complementaries). We can observe in table 3.9 that with the reduced set of op-
timal extra dichotomizers, our proposed technique increases considerably the accuracy
of the initial coding technique. Besides, the extension of ECOC-ONE dichotomizers
seems to perform better than the extra dense dichotomizers of the comparative.

One-versus-all is considered, in general, one of the poorest choices for learning with
ECOC. However, it is still used because of the small number of dichotomizers involved.
The third experiment showed in this section compares the extension of the one-versus-
all adding just two dichotomizers using our method with the one-versus-one approach
- recall that one-versus-one is the standard technique with highest accuracy. In order
to perform this comparison we have used Discrete Adaboost on the UCI repository.
Table 3.10 shows the results of these experiments. Observe that both methods achieve
the same performance considering the confidence interval at 95%. Note also that the
number of dichotomizers involved in our extension is smaller than the one-versus-one
approach.

In order to further validate our approach, we provide a new experiment comparing
the ECOC-ONE technique using Support Vector Machines with linear kernels with a
built-in multi-class SVM [37] with the same kernel. The results are shown in table
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Figure 3.9: Time consumed by the exhaustive search and MSFFS.

3.11. Observe that our technique slightly improves the accuracy of the multi-class
SVM using the same parametrization for both techniques.

In order to reduce the computational complexity of the exhaustive search when
the number of classes is high, we propose the use of the modified sequential forward
floating search (MSFFS). We have designed an experiment that shows the difference
in complexity between the MSFFS and the exhaustive search. Using the Pendigits
data set, we compute the time of finding a sub-optimal column of the ECOC matrix
as the number of classes increases.

Figure 3.9 illustrates the results of the experiment. Observe the exponential be-
havior of the exhaustive search and the quasi-linear tendency of the MSFFS. As we
have shown in the former section, the results using this sub-optimal search technique
are very similar to those obtained using the exhaustive search.

As commented in former sections, the dichotomizers are selected in an optimal
way in order to ensure generalization of the proposed approach. Each of the selected
dichotomizers corrects a certain partition of the subset of classes and has associated
an error according to the training and validation subset of misclassified samples. We
use the classification score to weight each dichotomizer using the empiric error of
classification for that dichotomizer using eq.(3.2). Figure 3.10 shows the average
and relative improvement of the weighted Euclidean distance referred to the error
obtained using just the Euclidean distance. Besides, we present the figures that reflect
the effect of the weighted distance (table 3.12). The results show that the weighting
scheme increases the accuracy in all cases, showing the absolute and relative improving
percentages. Besides, we can observe that the variance is clearly reduced by the fact
that in all cases - except for the Ecoli data-set - the confidence rate is smaller.
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Figure 3.10: Absolute and relative percentage improvement comparison between
Euclidean distance and weighted Euclidean distance
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Table 3.4: Modified sequential forward floating search algorithm

Input:

Y = {yj |j = 1..D}//Pool of available items//

Output:

X1
k = {xl|l = 1..|Y |(orD), xl ∈ Y }; X2

k = {xm|m = 1..|Y |, xm ∈ (Y/X1
k)}

Initialization:

X1
0 = X2

0 = {∅}; k = 0

Termination:

Stop when |J(X1
k , X2

k)− J(X1
k−1, X

2
k−1)| ≤ ε

Step 1 (Inclusion)

x
′
+ = argmaxx∈Y/{X1

k
∪X2

k
} J(X1

k ∪ x, X2
k);

x
′′
+ = argmaxx∈Y/{X1

k
∪X2

k
} J(X1

k , X2
k ∪ x)

(X1
k+1, X

2
k+1) =

{
(X1

k ∪ x
′
+, X2

k) if J(X1
k ∪ x

′
+, X2

k) > J(X1
k , X2

k ∪ x
′′
+)

(X1
k , X2

k ∪ x
′′
+) if J(X1

k ∪ x
′
+, X2

k) < J(X1
k , X2

k ∪ x
′′
+)

k = k + 1

Step 2 (Conditional exclusion)

x
′
− = argmaxx∈Y/X1

k
J(X1

k/x, X2
k); x

′′
− = argmaxx∈Y/X2

k
J(X1

k , X2
k/x)

(X1
k+1, X

2
k+1) =





(X1
k/x

′
−, X2

k) if J(X1
k/x

′
−, X2

k) > J(X1
k , X2

k) and

J(X1
k/x

′
−, X2

k) > J(X1
k , X2

k/x
′′
−)

(X1
k , X2

k/x
′′
−) ifJ(X1

k , X2
k/x

′′
−) > J(X1

k , X2
k) and

J(X1
k/x

′
−, X2

k) < J(X1
k , X2

k/x
′′
−)

k = k + 1

if J(X1
k , X2

k/x
′′
−) > J(X1

k , X2
k) or J(X1

k/x
′
−, X2

k) > J(X1
k , X2

k)
then go to Step 2
else go to Step 1

Table 3.5: ECOC strategies hits for a toy problem (#D means number of di-
chotomizers).

one-vs-one ECOC one-vs-all ECOC Dense random ECOC ECOC-ONE
Hit #D Hit #D Hit #D Hit #D

70.83±1.17 6 66.67±1.07 4 67.67±1.91 5 72.92±0.82 5
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Table 3.6: ECOC Strategies hits for UCI data sets using FLDA as a base classifier.
# one-vs-one one-vs-all Dense random ECOC-ONE MSFFS

Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.65±0.73 15 94.87±0.74 6 96.57±0.74 10 98.48±0.49 7.8 96.03±0.97 10
(b) 82.40±1.46 28 71.85±1.53 8 81.15±1.55 10 83.90±1.23 10 81.73±2.14 10
(c) 76.76±1.16 21 44.55±2.15 7 44.83±2.00 10 52.10±2.28 10 51.65±1.87 10
(d) 85.24±0.57 21 71.32±0.62 7 73.92±0.56 10 85.44±0.50 9.2 84.65±1.05 10
(e) 71.20±1.27 55 23.87±0.42 11 41.32±1.38 10 53.05±0.80 10 51.04±1.42 10
(f) 81.00±0.67 15 65.35±0.52 6 75.85±0.83 10 82.85±0.54 9.4 80.48±0.85 10
(g) 52.21±0.80 45 30.54±0.90 10 47.32±0.93 10 51.21±0.70 10 50.67±1.35 10
(h) 93.18±0.43 45 33.10±1.23 10 68.41±1.44 10 91.21±0.78 10 91.03±1.23 10

Rank 1.25 3.87 2.75 1.25 2.12

Table 3.7: ECOC Strategies hits for UCI data sets using Discrete Adaboost as a
base classifier.

# one-vs-one one-vs-all Dense random ECOC-ONE MSFFS
Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.30±0.61 15 92.65±1.23 6 95.26±0.82 10 95.17±0.74 8.2 95.11±0.71 10
(b) 78.05±1.46 28 77.10±1.19 8 77.65±1.33 10 78.15±1.84 10 77.14±1.55 10
(c) 67.93±1.66 21 60.83±2.34 7 63.69±2.51 10 67.03±1.63 10 66.55±1.76 10
(d) 97.01±0.72 21 92.89±1.16 7 94.51±1.22 10 96.23±1.52 9.6 94.38±1.84 10
(e) 81.43±1.12 55 73.33±1.40 11 74.50±1.96 10 81.50±1.22 10 80.83±2.53 10
(f) 86.23±0.79 15 81.99±0.86 6 84.39±0.76 10 85.47±1.00 9.8 84.67±2.17 10
(g) 52.35±1.05 45 51.48±1.08 10 51.82±1.47 10 52.87±1.96 10 52.87±1.96 10
(h) 98.01±1.04 45 93.98±2.56 10 95.54±1.71 10 97.84±1.13 10 97.09±1.56 10

Rank 1.00 2.37 1.50 1.00 1.25

Table 3.8: ECOC Strategies hits for UCI data sets using Linear SVM as a base
classifier.

# one-vs-one one-vs-all Dense random ECOC-ONE MSFFS
Hit #D Hit #D Hit #D Hit #D Hit #D

(a) 96.02±0.95 15 94.83±1.84 6 95.94±1.22 10 95.83±0.94 8.7 95.72±1.01 10
(b) 76.11±1.26 28 63.97±1.51 8 72.94±1.37 10 75.68±1.28 10 74.75±1.48 10
(c) 58.52±2.63 21 49.73±2.45 7 54.13±2.73 10 57.83±1.93 10 56.79±1.21 10
(d) 98.36±1.47 21 94.36±1.13 7 93.83±1.43 10 97.84±1.12 9.2 96.84±1.52 10
(e) 73.18±1.15 55 32.07±1.62 11 46.00±1.34 10 69.14±3.01 10 67.65±4.02 10
(f) 87.43±0.80 15 85.85±1.08 6 84.03±1.49 10 89.04±0.63 10 88.01±0.97 10
(g) 55.31±1.47 45 41.41±1.79 10 51.07±2.12 10 52.58±1.73 10 52.49±2.13 10
(h) 98.53±1.03 45 95.04±1.88 10 96.44±1.12 10 98.43±0.99 10 96.05±1.76 10

Rank 1.13 2.62 2.25 1.00 1.13

Table 3.9: UCI one-vs-all extension using Discrete Adaboost.

Problem one-vs-all ECOC one-vs-all-dense ECOC one-vs-all-ONE ECOC
Dermathology 92.65±1.23 93.85±1.02 95.53±0.89

Ecoli 77.10±1.19 77.58±1.54 78.43±1.02
Glass 60.83±2.34 65.59±2.52 64.90±2.39

Segmentation 92.89±1.16 94.80±1.21 95.90±1.03
Vowel 73.33±1.40 74.97±1.40 79.34±1.40

Satimage 81.99±0.86 83.93±1.11 84.83±0.96
Yeast 51.48±1.08 51.48±1.08 53.52±0.89

Pendigits 93.98±2.56 95.64±1.89 96.88±2.01
Rank 2.50 1.38 1.00
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Table 3.10: UCI one-versus-one and one-versus-all-ONE ECOCs comparison.

Problem one-vs-one ECOC one-vs-all ECOC-ONE
Hit #D Hit #D

Dermathology 96.30±0.61 15 95.53±0.89 8
Ecoli 78.05±1.46 28 78.43±1.02 10
Glass 67.93±1.66 21 64.90±2.39 9

Segmentation 97.01±0.72 21 95.90±1.03 9
Vowel 81.43±1.12 55 79.34±1.40 13

Satimage 86.23±0.79 15 84.83±0.96 8
Yeast 52.35±1.05 45 53.52±0.89 12

Pendigits 98.01±1.04 45 96.88±2.01 12

Table 3.11: UCI ECOC-ONE with SVM and built-in multi-class SVM with lineal
kernel comparative.

Problem ECOC-ONE Multiclass SVM
Dermathology 95.83±0.94 96.52±0.61

Ecoli 75.68±1.28 69.74±0.76
Glass 57.83±1.93 59.93±1.99

Segmentation 97.84±1.12 95.23±0.59
Vowel 69.14±3.01 77.55±0.96

Satimage 89.04±0.63 85.60±0.40
Yeast 52.58±1.73 52.57±0.92

Pendigits 98.43±0.99 98.72±0.17
Rank 1.12 1.38

Table 3.12: Accuracy of the Euclidean and weighted Euclidean decoding at UCI
data sets using Discrete Adaboost and N×2 columns, being N the number of classes,
and dense random coding.

Dermathology Ecoli Glass Segmentation
Euclidean 96.74±0.79 78.39±1.43 62.59±2.74 95.38±1.51
Weighted 96.85±0.73 79.29±1.53 64.48±2.60 96.22±1.20

% Absolute +0.11 +0.90 +1.89 +0.84
% Relative +0.11 +1.15 +3.02 +0.88

Vowel Satimage Yeast Pendigits
Euclidean 78.10±2.38 85.80±1.49 54.73±1.66 96.95±1.05
Weighted 78.53±2.32 87.50±1.03 55.00±1.46 97.15±0.95

% Absolute +0.43 +1.70 +0.27 +0.20
% Relative +0.55 +1.98 +0.49 +0.21
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3.3 Sub-class ECOC

One of the main reasons why the present problem-dependent designs attain a good
performance is because of the high number of possible sub-groups of classes that
is possible in the ternary ECOC framework. On the other hand, considering the
training data in the process of the ECOC design allows to obtain compact codewords
with high classification performance. However, the final accuracy is still based on the
ability of the base classifier to learn each individual problem. Difficult problems, those
which the base classifier is not able to find a solution for, require the use of complex
classifiers, such as Support Vector Machines with Radial Basis Function kernel [37],
and expensive parameter optimizations. Look at the example of fig. 3.11(a). A linear
classifier is used to split two classes. In this case, the base classifier is not able to
find a convex solution. On the other hand, in fig. 3.11(b), one of the previous classes
has been split into two sub-sets, that we call sub-classes. Then, the original problem
is solved using two linear classifiers, and the two new sub-classes have the same
original class label. Some studies in the literature tried to form sub-classes using the
labels information, which is called Supervised Clustering [96][21]. In these types of
systems, clusters are usually formed without taking into account the behavior of the
base classifier that learns the data. In a recent work [102], the authors use the class
labels to form the sub-classes that improve the performance of particular Discriminant
Analysis algorithms.

In this section, we present a problem-dependent ECOC design where classes are
partitioned into sub-classes using a clustering approach for the cases that the base
classifier is not capable to distinguish the classes. Sequential Forward Floating Search
based on maximizing the Mutual Information is used to generate the sub-groups of
problems that are split into more simple ones until the base classifier is able to learn
the original problem. In this way, multi-class problems which can not be modeled by
using the original set of classes are modeled without the need of using more complex
classifiers. The final ECOC design is obtained by combining the sub-problems.

(a) (b)

Figure 3.11: (a) Decision boundary of a linear classifier of a 2-class problem. (b)
Decision boundaries of a linear classifier splitting the problem of (a) into two more
simple tasks.
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3.3.1 Problem-dependent ECOC Sub-class

From an initial set of classes C of a given multi-class problem, the objective of the
Sub-class ECOC strategy is to define a new set of classes C ′, where |C ′| > |C|, so
that the new set of binary problems is easier to learn for a given base classifier. For
this purpose, we use a guided procedure that, in a problem-dependent way, groups
classes and splits them into sub-sets if necessary.

Look at the 3-class problem shown on the top of fig. 3.12(a). The standard DECOC
algorithm [73] considers the whole set of classes to split it into two sub-sets of classes
℘+ and ℘− maximizing the MI criterion on a sequential forward floating search pro-
cedure (SFFS ). In the example, the first sub-sets found correspond to ℘+ = {C1, C2}
and ℘− = {C3}. Then, a base classifier is used to train its corresponding dichotomizer
h1. This classifier is shown in the node h1 of the tree structure shown in fig. 3.12(d).
The procedure is repeated until all classes are split into separate sub-sets ℘. In the
example, the second classifier is trained to split the sub-sets of classes ℘+ = C1 from
℘− = C2 because the classes C1 and C2 were still contained in a single sub-set after
the first step. This second classifier is codified by the node h2 of fig. 3.12(d). When
the tree is constructed, the coding matrix M is obtained by codifying each internal
node of the tree as a column of the coding matrix (see fig. 3.12(c)).

In our case, sequential forward floating search (SFFS ) is also applied to look for
the sub-sets ℘+ and ℘− that maximizes the mutual information between the data and
their respective class labels [73]. The encoding algorithm is shown in table 3.13.

Given a N -class problem, the whole set of classes is used to initialize the set L
containing the sets of labels for the classes to be learned. At the beginning of each
iteration k of the algorithm (Step 1), the first element of L is assigned to Sk in the first
step of the algorithm. Next, SFFS is used to find the optimal binary partition BP
of Sk that maximizes the mutual information I between the data and their respective
class labels (Step 2). The SFFS algorithm used [70] is shown in Appendix I, and
the implementation details of the fast quadratic mutual information can be found in
Appendix II.

To illustrate our procedure, let us return to the example of the top of fig. 3.12(a).
On the first iteration of the sub-class ECOC algorithm, SFFS finds the sub-set
℘+ = {C1, C2} against ℘− = {C3}. The encoding of this problem is shown in the
first matrix of fig. 3.12(c). The positions of the column corresponding to the classes
of the first partition are coded by +1 and the classes corresponding to the second
partition to -1, respectively. In our procedure, the base classifier is used to test if the
performance obtained by the trained dichotomizers is sufficient. Observe the decision
boundaries of the picture next to the first column of the matrix in fig. 3.12(b). One
can see that the base classifier finds a good solution for this first problem.

Then, the second classifier is trained to split ℘+ = C1 against ℘− = C2, and its
performance is computed. To separate the current sub-sets is not a trivial problem,
and the classification performance is poor. Therefore, our procedure tries to split the
data J℘+ and J℘− from the current sub-sets ℘+ and ℘− into more simple sub-sets.
At Step 3 of the algorithm, the splitting criteria SC takes as input a data set J℘+

or J℘− from a sub-set ℘+ or ℘−, and splits it into two sub-sets J+
℘+ and J−℘+ or J+

℘−

and J−℘− . On the experimental results chapter we discuss the selection of the splitting
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(a) (b)

(c)

(d) (e)

Figure 3.12: (a) Top: Original 3-class problem. Bottom: 4 sub-classes found. (b)
Sub-class ECOC encoding using the four sub-classes using Discrete Adaboost with
40 runs of Decision Stumps. (c) Learning evolution of the sub-class matrix M . (d)
Original tree structure without applying sub-class. (e) New tree-based configuration
using sub-classes.
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Table 3.13: Problem-dependent Sub-class ECOC algorithm.
Inputs: J,C, θ = {θsize, θperf , θimpr} //Thresholds for the number of sam-

ples, performance, and improvement between iterations

Outputs: C ′, J ′, ℘′,M

[Initialization:]
Create the trivial partition {℘+

0 , ℘−0 } of the set of classes {Ci}:
{℘+

0 , ℘−0 } = {{∅}, {C1, C2, ..., CN}}
L0 = {℘−0 };J ′ = J ;C ′ = C;℘′ = ∅;M = ∅;k = 1

Step 1 Sk is the first element of Lk−1

L′k = Lk−1\{Sk}

Step 2 Find the optimal binary partition BP (Sk):
{℘+

k , ℘−k } = argmaxBP (Sk)(I(x, d(BP (Sk))))
where I is the mutual information criterion, x is the random variable
associated to the features and d is the discrete random variable of the
dichotomizer labelsa, defined in the following terms,

d = d(x, BP (Sk)) =
{

1 if x ∈ Ci|Ci ∈ ℘+
k

−1 if x ∈ Ci|Ci ∈ ℘−k

Step 3 // Look for sub-classes

{C ′, J ′, ℘′} = SPLIT (Jp+
k
, Jp−

k
, C ′, J ′, J, ℘′, θ)b

Step 4 Lk = {L′k ∪ ℘i
k} if |℘i

k| > 1 ∀i ∈ {+,−}

Step 5 If |Lk| 6= 0
k = k + 1 go to Step 1

Step 6 Codify the coding matrix M using each partition {℘+
i , ℘−i } of ℘′, i ∈

[1, .., |℘′|] and each class Cr ∈ ℘i = {℘+
i ∪ ℘−i } as follows:

M(Cr, i) =





0 if Cr 6∈ ℘i

+1 if Cr ∈ ℘+
i

−1 if Cr ∈ ℘−i

(3.7)

aUse SFFS of Appendix I as the maximization procedure and MI of Appendix II to
estimate I

bUsing the splitting algorithm of table 3.14.

criterion. The splitting algorithm is shown in table 3.14.
When two data sub-sets {J+

℘+ , J−℘+} and {J+
℘− , J−℘−} are obtained, only one of both

split sub-sets is used. We select the sub-sets that have the highest distance between
the means of each cluster. Suppose that the distance between J+

℘− and J−℘− is larger
than between J+

℘+ and J−℘+ . Then, only J℘+ , J+
℘− , and J−℘− are used. If the new
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Table 3.14: Sub-class SPLIT algorithm.
Inputs: J℘1 , J℘2 , C ′, J ′, J, ℘′, θ // C ′ is the final set of classes, J ′ the data

for the final set of classes, and ℘′ is the labels for all the partitions of
classes of the final set.

Outputs: C ′, J ′, ℘′

Step 1 Split problems:

{J+
℘+ , J−℘+} = SC(J℘+)a

{J+
℘− , J−℘−} = SC(J℘−)

Step 2 Select sub-classes:

if |J+
℘+ , J−℘+ | > |J+

℘− , J−℘− | // find the largest distance between the means
of each sub-set.

{J+
+ , J−+ } = {J+

℘+ , J℘−}; {J+
− , J−−} = {J−℘+ , J℘−}

else

{J+
+ , J−+ } = {J+

℘− , J℘+}; {J+
− , J−−} = {J−℘− , J℘+}

end

Step 3 Test parameters to continue splitting:

if TEST PARAMETERS(J℘1 , J℘2 , J1
1 , J2

1 , J1
2 , J2

2 , θ)// call the function
with the new sub-sets

{C ′, J ′, ℘′} = SPLIT (J1
1 , J2

1 , C ′, J ′, J, ℘′, θ)

{C ′, J ′, ℘′} = SPLIT (J1
2 , J2

2 , C ′, J ′, J, ℘′, θ)

end

Step 4 Save the current partition:

Update the data for the new sub-classes and previous sub-classes if inter-
sections exists J ′.

Update the final number of sub-classes C ′.

Create ℘c = {℘c1 , ℘c2} the set of labels of the current partition.

Update the labels of the previous partitions ℘.

Update the set of partitions labels with the new partition ℘′ = ℘′ ∪ ℘c.
aSC corresponds to the splitting method of the input data into two main clusters.

sub-sets improve the classification performance, new sub-classes are formed, and the
process is repeated.

In the example of fig. 3.12, applying the splitting criteria SC over the two sub-sets,
two clusters are found for ℘+ = C1 and for ℘− = C2. Then, the original encoding
of the problem C1 vs C2 (corresponding to the second column of the matrix in the
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center of fig. 3.12(c)) is split into two columns marked with the dashed lines in the
matrix on the right. In this way, the original C1 vs C2 problem is transformed to
two more simple problems {C11} against {C2} and {C12} against {C2}. Here the
first subindex of the class corresponds to the original class, and the second subindex
to the number of sub-class. It implies that the class C1 is split into two sub-classes
(look at the bottom of fig. 3.12(a)), and the original 3-class problem C = {C1, C2, C3}
becomes the 4-sub-class problem C ′ = {C11, C12, C2, C3}. As the class C1 has been
decomposed by the splitting of the second problem, we need to save the information of
the current sub-sets and the previous sub-sets affected by the new splitting. The steps
to update this information are summarized in the Step 4 of the splitting algorithm.
We use the object labels to define the set of sub-classes of the current partition ℘c. If
new sub-classes are created, the set of sub-classes C ′ and the data for sub-classes J ′

have to be updated. Note that when a class or a sub-class previously considered for a
given binary problem is split in a future iteration of the procedure, the labels from the
previous sub-sets {℘+, ℘−} need to be updated with the new information. Finally,
the set of labels for the binary problems ℘′ is updated with the labels of the current
sub-set ℘′ = ℘′ ∪ ℘c. In the example of fig. 3.12, the dichotomizer h1 considers the
sub-sets ℘+

1 = {C1, C2} and ℘−1 = {C3}. Then, those positions containing class C1

are replaced with C11 and C12. The process is repeated until the desired performance
is achieved or the stopping conditions are full-filled.

The conditions that guide the learning and splitting process are defined by the set
of parameters θ = {θsize, θperf , θimpr}, where θsize corresponds to the minimum size
of a sub-set to be clustered, θperf contains the minimum error desired for each binary
problem, and θimpr looks for the improvement of the split sub-sets regarding the
previous ones. The function TEST PARAMETERS in table 3.14 is responsible for
testing the constraints based on the parameters {θsize, θperf , θimpr}. If the constraints
are satisfied, the new sub-sets are selected and used to recursively call the splitting
function (Step 3 of the algorithm in table 3.14). The constraints of the function
TEST PARAMETERS are fixed by default as follows:

• The number of objects in J℘+ has to be larger than θsize.
• The number of objects in J℘− has to be larger than θsize.
• The error ξ(h(J℘− , J℘+)) obtained from the dichomomizer h using a particular

base classifier applied on the sets {℘+, ℘−} has to be larger than θperf .
• The sum of the well-classified objects from the two new problems (based on the

confusion matrices) divided by the total number of objects has to be greater than
1− θimpr.

θsize avoids the learning of very unbalanced problems. θperf determines when the
performance of a partition of classes is insufficient and sub-classes are required. And
finally, when a partition does not obtain the desired performance θperf , the splitting
of the data stops, preventing overtraining.

In the example of fig. 3.12, the three dichotomizers h1, h2, and h3 find a solution
for the problem (look the trained boundaries shown in fig. 3.12(b)), obtaining a clas-
sification error under θperf , so, the process stops. Now, the original tree encoding
of the DECOC design shown in fig. 3.12(d) can be represented by the tree structure
of fig. 3.12(e), where the original class associated to each sub-class is shown in the
leaves.
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Summarizing, when a set of objects belonging to different classes is split, object
labels are not taken into account. It can be seen as a clustering in the sense that the
sub-sets are split into more simple ones while the splitting constraints are satisfied.
It is important to note that when one uses different base classifiers, the sub-class
splitting is probably applied to different classes or sub-classes, and therefore, the final
number of sub-classes and binary problems differs.

When the final set of binary problems is obtained, its respective set of labels ℘′ is
used to create the coding matrix M (eq. (3.7)). The outputs C ′ and J ′ contain the
final set of sub-classes and the new data for each sub-class, respectively.

Finally, to decode the new sub-class problem-dependent design of ECOC, we take
advantage of the Loss-Weighted decoding design of section 4.5. The decoding strategy
uses a set of normalized probabilities based on the performance of the base classifier
and the ternary ECOC constraints.

Illustration over toy problems

To show the effect of the Sub-class ECOC strategy for different base classifiers, we
used the previous toy problem of the top of fig. 3.12(a). Five different base classifiers
are applied: Fisher Linear Discriminant Analysis (FLDA), Discrete Adaboost, Nearest
Mean Classifier, Linear SVM, and SVM with Radial Basis Function kernel7. Using
these base classifiers on the toy problem, the original DECOC strategy with the
Loss-Weighted algorithm obtains the decision boundaries shown on the top row of
fig. 3.13. The new learned boundaries are shown on the bottom row of fig. 3.13 for
fixed parameters θ. Depending on the flexibility of the base classifier more sub-classes
are required, and thus, more binary problems. Observe that all base classifiers are
able to find a solution for the problem, although with different types of decision
boundaries.

(a) (b) (c) (d) (e)

Figure 3.13: Sub-class ECOC without sub-classes (top) and including sub-classes
(bottom): for FLDA (a), Discrete Adaboost (b), NMC (c), Linear SVM (d), and
RBF SVM (e).

The selection of the set of parameters θ has a decisive influence on the final results.
7The parameters of the base classifiers are explained in the evaluation section.
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We can decrease the value of θperf and increase the value of θimpr to obtain a better
solution for a problem, but we need to optimize the parameters to avoid overtraining
by stopping the procedure if no more improvement can be achieved. In the same
way, sometimes to obtain the best solution for a problem implies to learn more simple
problems. These points should be considered to obtain the desired trade-off between
performance and computational cost. A simple example to show the evolution of
learning for different parameters θ over the previous problem is shown in fig. 3.14.
The base classifier applied is FLDA. One can observe that when θperf decreases,
more dichotomizers are required to obtain a higher performance. Thus, to achieve
the desired accuracy, more sub-classes and binary problems are needed.

(a) (b) (c) (d) (e)

Figure 3.14: Learned boundaries using FLDA with θsize = |J|
50

, θimpr = 0.95, and
θperf = 0.2 (a), θperf = 0.15 (b), θperf = 0.1 (c), θperf = 0.05 (d), and θperf = 0 (e),
respectively.

3.3.2 Sub-class ECOC Evaluation

In this section, we compare the Sub-class approach with different state-of-the-art
coding designs and base classifiers on different data sets. In order to evaluate the
methodology, first we discuss the data, compared methods, experiments, and perfor-
mance evaluation8.

• Data: The data used for the experiments consists of eight arbitrary multi-class
data sets from the UCI Machine Learning Repository [8]: Iris, Ecoli, Wine, Glass,
Thyroid, Vowel, Balance, and Yeast (the details of the UCI data sets can be found
in chapter F). All data sets have been normalized with respect to the mean and
variance.

• Compared methods: We compare our method with the state-of-the-art ECOC
coding designs: one-versus-one [88], one-versus-all [68], dense random [5], sparse ran-
dom [5], and DECOC [73].

The random matrices were selected from a set of 20000 randomly generated ma-
trices, with P (1) = P (−1) = 0.5 for the dense random matrix and P (1) = P (−1) =
P (0) = 1/3 for the sparse random matrix. The number of binary problems was
fixed to the number of classes. Therefore, a direct comparison to the one-versus-all
and DECOC designs is possible. Each strategy uses the previously mentioned Lin-
ear Loss-weighted decoding to evaluate their performances at identical conditions.
Five different base classifiers are applied over each ECOC configuration: Nearest

8More experimental results and analysis of the Sub-class ECOC methodology are shown in chap-
ter 7.
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Mean Classifier (NMC ) with the classification decision using the Euclidean distance
between the mean of the classes, Discrete Adaboost with 40 iterations of Decision
Stumps [32], Linear Discriminant Analysis implementation of the PR Tools using
the default values [3], OSU implementation of Linear Support Vector Machines with
the regularization parameter C set to 1 [37], and OSU implementation of Support
Vector Machines with Radial Basis Function kernel with the default values of the
regularization parameter C and the gamma parameter set to 1 [66]9.

• Experiments: First, we classify the set of UCI Machine Learning Repository
data sets with the ECOC designs and the different base classifiers. Second, focusing
on particular data sets, we analyze the performance of our methodology over the
training and test sets by changing the values of the set of parameters θ. Moreover,
we also perform an experiment to show the behavior of our procedure when working
with different training sizes.

• Performance evaluation: To evaluate the performance of the different experi-
ments, we apply stratified ten-fold cross-validation and test for the confidence interval
at 95% with a two-tailed t-test. Moreover, we use the statistical Nemenyi test to look
for significant differences between the method performances [22].

UCI Machine Learning Repository

Using the UCI Machine Learning Repository data sets, we perform different exper-
iments. First, we classify the eight data sets. Second, we look for the statistical
significance of the results, and final, we discuss the effect of the sub-class parameters
and the training size.

UCI Machine Learning Repository classification
Using the previous eight UCI data sets, the five base classifiers, and the six ECOC

designs, we have performed a total of 240 ten-fold tests. The set of parameters of the
sub-class approach θ = {θsize, θperf , θimpr} has been fixed to θsize = |J|

50 minimum
number of objects to apply sub-class (thus, 2% of the samples of each particular
problem), θperf = 0 to split classes if the binary problem does not learn properly the
training objects, and θimpr = 0.95, that means that the split problems must improve
at least a 5% of the performance of the problem without splitting. The last measure
is simply estimated by dividing the sum of the well-classified objects from the two
sub-problems the total number of objects by looking at the confusion matrices. For
simplicity and fast computation, the used splitting criterion is k-means with k=2.
k-means is a fast way to split a set of objects into k clusters satisfying intra-cluster
compactness and high inter-cluster separability by minimizing an objective function:

Km =
2∑

i=1

m∑

j=1

‖ xj
i − ζj ‖2 (3.8)

9For all the experiments of this chapter and the rest of the chapters of the thesis, the regularization
parameter C and the gamma parameter are set to 1 for Linear and Radial Basis function Support
Vector Machines. We selected this parameter after a preliminary set of experiments. We decided to
keep the parameter fixed for the sake of simplicity and easiness of replication of the experiments,
though we are aware that this parameter might not be optimal for all data sets. However, since
the parameters are the same for all the compared methods, any weakness in the results will also be
shared.
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for m object instances, ζj the centroid for the cluster i ∈ {1, 2}, and Km the
objective function to be minimized10.

The results for each base classifier are shown in the tables 3.17 to 3.19. Each posi-
tion of the table contains the performance obtained applying ten-fold cross-validation
and the confidence interval at 95%. The mean number of classes (or sub-classes) and
the mean number of binary problems are shown below each performance. In fig. 3.15
and 3.16, the results are graphically illustrated for the Discrete Adaboost and NMC
classifiers, respectively.

Table 3.15: UCI repository experiments for Discrete Adaboost.
Problem one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Balance 78.3(4.9) 76.5(5.9) 80.9(6.2) 78.8(4.1) 78.3(4.9) 79.0(5.0)
3×3 3×3 3×3 3×3 3×2 3.8×3.2

Wine 93.7(1.3) 96.05(1.2) 96.0(1.2) 96.0(1.2) 96.0(1.2) 96.0(1.2)
3×3 3×3 3×3 3×3 3×2 3×2

Thyroid 92.1(2.7) 92.1(2.7) 92.1(2.7) 92.1(2.7) 92.1(2.7) 92.1(2.7)
3×3 3×3 3×3 3×3 3×2 3×2

Vowel 59.0(2.8) 45.6(3.4) 29.7(2.1) 45.1(2.4) 66.7(2.6) 67.4(2.1)
11×55 11×11 11×11 11×11 11×10 12.1×11.2

Ecoli 77.8(1.7) 75.5(1.9) 79.7(1.7) 53.9(1.6) 77.0(1.5) 78.2(1.9)
8×28 8×8 8×8 8×8 8×7 9×10.1

Iris 93.3(2.2) 93.3(2.2) 93.3(2.2) 93.3(2.2) 93.3(2.2) 93.3(2.2)
3×3 3×3 3×3 3×3 3×2 3×2

Yeast 49.1(1.5) 41.3(1.2) 46.9(1.8) 39.5(1.4) 51.8(1.3) 52.0(1.2)
10×45 10×10 10×10 10×10 10×9 10.7×12.3

Glass 67.1(3.1) 60.2(3.7) 52.7(4.0) 59.2(3.7) 66.5(2.8) 66.8(2.6)
7×21 7×7 7×7 7×7 7×6 8×8.1

Table 3.16: UCI repository experiments for NMC.
Problem one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Balance 78.1(5.2) 77.7(4.7) 77.6(5.1) 70.3(5.7) 78.1(4.2) 79.3(4.8)
3×3 3×3 3×3 3×3 3×2 6.4×9.3

Wine 71.3(4.9) 67.9(4.7) 66.8(3.7) 69.1(3.9) 92.6(3.3) 96.7(3.2)
3×3 3×3 3×3 3×3 3×2 7.2×11.5

Thyroid 88.9(2.0) 81.8(2.1) 83.1(2.6) 80.0(2.3) 83.5(2.1) 93.7(2.2)
3×3 3×3 3×3 3×3 3×2 5.1×6.4

Vowel 58.1(2.3) 47.2(4.1) 38.6(5.3) 35.7(3.6) 54.5(3.6) 63.9(3.7)
11×55 11×11 11×11 11×11 11×10 22.3×24.7

Ecoli 82.5(2.0) 64.9(1.8) 73.4(2.2) 65.0(2.5) 83.1(2.5) 84.5(2.8)
8×28 8×8 8×8 8×8 8×7 14.3×26.8

Iris 92.6(1.6) 78.6(2.2) 78.3(2.4) 59.3(3.6) 91.1(3.0) 94.0(2.8)
3×3 3×3 3×3 3×3 3×2 6.3×9.5

Yeast 52.0(2.4) 48.8(2.3) 44.0(2.7) 48.7(2.7) 49.0(3.1) 49.2(2.8)
10×45 10×10 10×10 10×10 10×9 13.2×14.4

Glass 41.9(4.8) 25.1(4.4) 30.8(4.8) 35.6(5.2) 48.8(4.0) 66.9(3.8)
7×21 7×7 7×7 7×7 7×6 16.6×29.4

These two base classifiers obtain the least and most performance improvements,
respectively. Although the results for Adaboost show that the sub-class approach is
comparable with the other ECOC approaches, it can not be considered statistically
significantly better. It is caused by the fact that Adaboost is a relatively strong

10It is important to save the history of splits to re-use the sub-groups if they are required again.
It speeds up the method and also reduces the variation in the results induced by different random
initializations of k-means.
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Table 3.17: UCI repository experiments for FLDA.
Problem one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Balance 80.7(4.8) 80.7(4.8) 80.7(4.8) 80.7(4.8) 80.7(4.8) 80.7(4.8)
3×3 3×3 3×3 3×3 3×2 3×2

Wine 96.5(2.9) 96.5(2.9) 96.4(3.0) 96.5(2.9) 96.7(2.7) 96.7(2.7)
3×3 3×3 3×3 3×3 3×2 3×2

Thyroid 94.8(3.4) 88.8(4.0) 90.6(4.3) 88.8(4.5) 86.0(3.7) 93.8(3.6)
3×3 3×3 3×3 3×3 3×2 5.3×6.4

Vowel 70.3(3.8) 45.1(4.7) 46.5(4.3) 41.6(3.1) 67.5(2.8) 74.2(3.2)
11×55 11×11 11×11 11×11 11×10 19.9×32.8

Ecoli 85.2(3.5) 77.5(3.4) 78.3(3.9) 49.8(3.8) 85.2(3.4) 85.2(3.4)
8×28 8×8 8×8 8×8 8×7 8×7

Iris 98.0(2.0) 91.3(3.3) 93.3(3.4) 66.6(1.3) 97.7(2.1) 97.7(2.1)
3×3 3×3 3×3 3×3 3×2 3×2

Yeast 51.8(2.8) 30.0(3.3) 46.0(3.6) 45.5(3.4) 51.3(2.1) 51.3(2.1)
10×45 10×10 10×10 10×10 10×9 10×9

Glass 60.0(4.6) 46.8(4.9) 51.8(3.9) 53.3(4.2) 61.1(3.2) 63.0(3.7)
7×21 7×7 7×7 7×7 7×6 8.8×10.5

Table 3.18: UCI repository experiments for Linear SVM.
Problem one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Balance 84.6(3.2) 85.5(3.1) 85.5(3.1) 85.5(3.1) 85.5(3.1) 85.5(3.1)
3×3 3×3 3×3 3×3 3×2 3×2

Wine 93.7(1.7) 93.2(1.6) 93.2(1.6) 93.2(1.6) 95.5(1.4) 98.0(1.6)
3×3 3×3 3×3 3×3 3×2 8.7×11.3

Thyroid 94.3(2.1) 94.3(2.1) 94.3(2.1) 94.3(2.1) 94.3(2.1) 94.3(2.1)
3×3 3×3 3×3 3×3 3×2 3×2

Vowel 65.9(3.6) 32.8(2.1) 31.1(3.0) 35.7(2.5) 58.8(3.4) 68.7(2.1)
11×55 11×11 11×11 11×11 11×10 16.3×21.8

Ecoli 78.6(2.4) 68.8(3.4) 71.5(2.7) 68.3(3.8) 79.2(2.4) 81.5(2.4)
8×28 8×8 8×8 8×8 8×7 11.5×14.7

Iris 97.3(1.0) 97.3(1.0) 97.3(1.0) 97.3(1.07) 97.3(1.0) 97.3(1.0)
3×3 3×3 3×3 3×3 3×2 3×2

Yeast 51.1(4.2) 17.0(3.4) 40.5(1.2) 34.1(1.7) 51.1(2.6) 53.5(2.5)
10×45 10×10 10×10 10×10 10×9 17.8×26.1

Glass 55.5(3.2) 41.3(6.4) 37.7(2.8) 44.3(2.1) 63.8(3.1) 66.9(2.8)
7×21 7×7 7×7 7×7 7×6 10.7×13.2

Table 3.19: UCI repository experiments for RBF SVM.
Problem one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Balance 80.4(3.2) 69.2(3.9) 71.0(3.5) 69.2(2.9) 83.0(3.8) 83.0(3.8)
3×3 3×3 3×3 3×3 3×2 3×2

Wine 39.9(0.8) 33.1(1.0) 33.1(1.3) 33.1(1.0) 35.8(1.1) 90.8(3.1)
3×3 3×3 3×3 3×3 3×2 4.5×6.2

Thyroid 90.7(1.0) 89.8(1.6) 90.7(1.0) 90.7(1.0) 91.7(1.2) 93.7(1.3)
3×3 3×3 3×3 3×3 3×2 3.6×4.1

Vowel 82.5(2.1) 52.5(2.2) 72.2(3.6) 47.9(3.8) 73.6(3.2) 75.9(2.4)
11×55 11×11 11×11 11×11 11×10 12.4×13.5

Ecoli 80.1(3.2) 78.7(4.4) 84.2(2.8) 75.2(3.1) 82.2(3.2) 84.2(3.8)
8×28 8×8 8×8 8×8 8×7 9.8×10.3

Iris 96.0(2.8) 96.0(2.8) 96.0(2.8) 96.0(2.8) 96.0(2.8) 96.0(2.8)
3×3 3×3 3×3 3×3 3×2 3×2

Yeast 52.1(2.5) 45.5(3.2) 52.4(2.9) 46.7(2.7) 51.6(2.1) 53.2(3.2)
10×45 10×10 10×10 10×10 10×9 12.1×14.7

Glass 64.7(3.5) 51.0(3.4) 64.7(3.4) 37.4(2.2) 63.9(4.2) 66.1(3.2)
7×21 7×7 7×7 7×7 7×6 8.5×10

classifier and it is able to fit better the problem boundaries. On the other hand,
looking at the results of fig. 3.16, one can see that the results of the sub-class approach
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are significantly better for most of the cases because of the failure of NMC to model
the problems by only using the original set of classes.

Statistical significance
To check for statistically significant differences between the methods, we use the

Nemenyi test - two techniques are significantly different when the corresponding av-
erage ranks differ by at least the critical difference value. The ranks are obtained
estimating each particular rank rj

i for each problem i and each ECOC design j, and
then, computing the mean rank R for each design as Rj = 1

P

∑
i rj

i , being P the
number of experiments. The mean rank of each ECOC design for each base classifier
and for the whole set of problems are numerically shown in table 3.2011. The critical
value (CD) [22] is defined as follows:

CD = qα

√
k(k + 1)

6P
(3.9)

where qα is based on the Studentized range statistic divided by
√

2, k = 6 is the
number of methods in the comparison, and P = 40 is the total number of experiments
performed (8 data sets × 5 base classifiers). In our case, when comparing six methods
with a confidence value α = 0.05, q0.05 = 2.20. Substituting this in (4.28), we obtain
a critical difference value of 0.81.

Observing the ranks of each ECOC design in the global rank row of table 3.20,
one can observe that there are no combinations of methods for which the difference
is smaller than the critical value of 0.81, and therefore, we can argue that the sub-
class approach is significantly better at 95% of the confidence interval in the present
experiments.

Table 3.20: Rank positions of the classification strategies for the UCI experiments.
one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

Discrete Adaboost 2.2 3.2 2.6 3.5 2.2 1.3
NMC 2.2 4.7 5.0 5.2 2.6 1.1
FLDA 1.6 3.8 3.1 3.8 2.1 1.3

Linear SVM 2.1 3.5 3.3 3.2 1.8 1.0
RBF SVM 2.3 4.2 2.6 4.3 2.6 1.2

Global rank 2.1 3.9 3.3 4.0 2.3 1.2

Parameters and training size
To show the effect of changing the parameters θ, we performed an experiment

using the UCI Glass data set. In this experiment, the parameter θsize is fixed to |J|
50 ,

and the values for θperf are varied between 0.45 and 0 decreasing by 0.025 per step.
For each value of θperf , the values for θimpr are {0, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.

The results of these experiments using NMC as the base classifier are shown
graphically in fig. 3.17. In this particular problem, one can observe that until the
value of θperf = 0.35, the sub-class is not required since all the binary problems
achieve a performance greater than this value. When this value is decreased, binary
problems require the sub-class splitting approach. When θimpr is increased, both

11We realize that averaging over data sets has a very limited meaning as it entirely depends on
the selected set of problems.
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the training and test performance increase. One can also observe that in the case
of values near 0 for θsize and near 1 for θperf , the system can specialize into very
small problems, which results in overtraining. This phenomenon is just visible for
θperf = 0.025 and high values for θimpr on the test set.

Furthermore, we analyzed the behavior of the present methodology when the
training size is changed. In particular, we selected the 11-class Vowel UCI data set
and performed ten-fold classification using the different ECOC designs for different
training sizes: 5, 10, 20, 35, 50, 70, and 100 per cent of the training size. The base
classifier in this case is also NMC. The results are shown in fig. 3.18(a). The mean
number of sub-classes and binary problems is shown in the table of fig. 3.18(b). One
can observe that for small training sizes the Sub-class ECOC does not split classes.
At these first stages, the Sub-class ECOC becomes the DECOC strategy, and the
performance is also similar, even inferior, to the one obtained by the one-versus-one
strategy. When the training size is increased, though the general behavior for all the
strategies is to increase their performance, the Sub-class ECOC is the one which the
improvement is the most significant. Note that the performance improvement of the
sub-class strategy also increases the number of sub-classes and binary problems. Still,
the mean number of binary problems of 24.7 is significantly less than the 55 required
for the one-versus-one strategy.

Experimental discussion

Regarding the space of parameters θ, in the present experiments the Sub-class ECOC
obtains significantly better performance with fixed parameters. The fixed parameters
have been chosen after a preliminary set of experiments. If it is required, one can also
look for the optimum set θ which attains the best performance by using, for example,
cross-validation over the training or validation sets.

Similarly, the k-means splitting criterion (that was used as a simple clustering
strategy for the sake of simplicity and fast computation) can be replaced by another
criterion. Suppose that we decide to keep the base classifier to be linear. In that case,
it is more desirable to adapt the clustering strategy so that it guarantees the linear
separability of the new clusters.

In fig. 3.19, we performed the classification of UCI data sets for the Sub-class strat-
egy and the different base classifiers changing the splitting criterion. We compared
the k-means splitting with a hierarchical clustering and the Graph Cut clustering [85].
The two clusters of the hierarchical tree are estimated using Euclidean distance to
centroid for linkage. The results show that the behavior of three strategies are very
similar, and there are no significant differences on the final performances.

Obviously, when we have the new split of classes, an important consideration is
to decide if they contribute to improve the accuracy of the whole system. At this
point, θimpr looks for the improvement of the new sub-classes respect to the previous
group without splitting. We commented that the value of θimpr has been selected to
obtain reasonably good results after a previous set of experiments. A good selection
of this parameter is crucial for a good generalization of the strategy. Note that if we
fix θimpr to require a high performance improvement, in some cases the system could
not gain from sub-classes. On the other hand, a small improvement could make the
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system to focus on very small problems witch really do not contribute to the whole
performance and that can produce overtraining.

To look for the minimum θimpr, the implemented heuristic is based on the errors of
the confusion matrix for the split groups. It provides a fast computation. Of course,
the heuristic may be not optimal, and different strategies can be used instead. A
natural way to deal with this problem is to look for the improvement of the whole
system when including the new split problems (thus, evaluating the whole Sub-class
ECOC system each time that a new problem is tested to be included). Testing this
heuristic, we found that the obtained performance was very similar to the one obtained
by the former approach, still maintaining a similar final number of sub-classes and
binary problems, but considerably increasing the computational cost.

The sub-class technique also presents an alternative to the use of complex base
classifiers. As a consequence of applying the Sub-class strategy, in the worst case
it remains the same than without using sub-classes. One of the important points is
that both, base classifier and sub-class, can be optimized. If the base classifier is
well tuned, less binary problems and sub-classes would be required by the Sub-class
strategy. On the other hand, the Sub-class approach could be seen as an incremental
tool independent of the base classifier to improve the weakness of the base classifiers.
For example, none of the variants of Adaboost with decision stumps is able to model
the XOR problem shown in fig. 3.20(a). Fig. 3.20(b) shows the first splitting of classes
found by the Sub-class strategy. In this case, Adaboost is able to model a solution
considering partitions of problems using the three new sub-classes. Thus, we can
take advantage from both, optimizing a base classifier and optimizing the Sub-class
approach.
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Balance Wine

Thyroid Vowel

Ecoli Iris

Yeast Glass

Figure 3.15: UCI experiments for Discrete Adaboost.
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Figure 3.16: UCI experiments for NMC.



62 ECOC CODING: PROBLEM-DEPENDENT ECOC DESIGNS

Figure 3.17: Comparison of the Sub-class ECOC performances using NMC on
the UCI Glass data set for different parameters θperf and θimpr. Top: training set,
bottom: test set.
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(a)
Training size (%) 5 10 20

Sub-classes × binary problems 11×10 11×10 11.5×10.3
35 50 70 100

12.3×13.7 15.5×16.4 18.2×19.1 22.3×24.7
(b)

Figure 3.18: (a) Test performances for the Vowel UCI data set for different per-
centages of the training size. (b) Mean number of sub-classes and binary problems
estimated by the Sub-class ECOC for each training size. The confidence intervals of
the results are between 1% and 2%.
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Nearest Mean Classifier

Discrete Adaboost

Linear SVM

SVM with Radial Basis Function

Fisher Linear Discriminant Analysis

Figure 3.19: Classification performance on UCI data sets for Sub-class ECOC strat-
egy with different splitting criteria.
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(a) (b)

Figure 3.20: (a) Original distribution of data for two classes. (b) First Sub-class
splitting.
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3.4 Problem-dependent ECOC discussion

In this chapter, we presented problem-dependent designs of Error-Correcting Output
Codes. The first tentative to problem-dependent design was the Forest-ECOC ap-
proach. The main idea of the method was to define binary tree structures based on
the knowledge of the problem-domain. Then, the internal nodes of the tree structures
are embedded as binary problems in the ECOC coding matrix. This technique can
be applied to any kind of multi-class problem, yielding a small code length. The
idea of trying to obtain sub-optimal tree structures as balanced as possible instead
of using of the possible combinations of sub-groups of classes provides a faster way
to obtain the problem-dependent code. However, when the number of classes and
features increases, a greedy search remains computationally expensive, and the al-
ternative SFFS proposed to speed up the ECOC construction does not assure an
optimal codeword.

The second proposed problem-dependent design is an advanced point of view from
the previous design. In this case, the Optimal Node Embedding procedure provides a
way to progressively increase the ECOC performance based on the evaluation of the
whole system using a training/validation sub sets each time that a new dichotomizer is
embedded in the coding matrix. In this sense, the length of the codeword in increased
in the way that a better solution for the training data is obtained. This technique
can also be applied to any kind of multi-class problem, yielding a small code length.
In particular, the code obtained by this coding design tends to be smaller than the
one provided by the forest-ECOC strategy since it only considers those nodes of the
tree that increase the performance of the system. On the other hand, the evaluation
of the system at each iteration and the search for an optimal binary problem is
more expensive than the forest-ECOC approach, even when using similar sub-optimal
alternatives to look for the next dichotomizer of the coding matrix.

Finally, the Sub-class ECOC approach avoids the limitations produced by the rest
of ECOC designs when some distributions of the data are difficult to be modelled using
some types of base classifiers due to the overlapping of the data. The Sub-class ECOC
strategy splits the original set of classes into sub-classes until the base classifier is able
to learn the training data or the stopping criteria are accomplished. This strategy
is useful when one can not guarantee that the ECOC base classifier is able to model
the binary problems of the coding matrix. In this sense, it avoids the requirement of
using complex classifiers and spending several time tuning parameters. On the other
hand, in the case where sub-classes are not required, this strategy remains as the
DECOC approach, which could offer inferior performances to those obtained with the
two previous coding alternatives presented in this chapter.



Chapter 4

ECOC Decoding

Once a problem-dependent coding matrix is learnt applying a base classifier, a decod-
ing strategy should be applied in order to obtain a classification decision. Literature
is full of binary decoding strategies, however, when we need to deal with a 3-symbol
decoding, the rules of the traditional binary strategies can not be applied to the
ternary case. In this section, we first overview the ternary ECOC framework. We
show examples where the use of the traditional decoding strategies are inconsistent
to deal with a successful classification. Second, we give a general representation of
decoding strategies, from which some general properties are obtained. The properties
are analyzed for the state-of-the-art decoding strategies on the new representation,
and the techniques are grouped based on the properties they fulfill. Finally, different
decoding strategies are proposed to deal with a successful decoding.

67
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4.1 Ternary decoding analysis

In order to work with the large set of binary problems of the ternary ECOC frame-
work, we need to know how to decode a ternary ECOC matrix, M ∈ {−1, 0, +1}.
Although standard decoding strategies are currently applied over 3-symbol matrices,
it seems reasonable to analyze if the traditional decoding rules are correctly used in
the ternary case. To show the behavior of the standard Hamming decoding strategy
of the ternary ECOC framework, we designed the example of fig. 4.1(a). In this ex-
ample, a ternary coding matrix for a 7-class problem {c1, .., c7} is codified by means
of seven dichotomizers {h1, .., h7}. Observe that the first dichotomizer h1 splits class
c1 from the rest of classes. To distinguish among classes {c2, .., c7}, the dichotomizers
{h2, .., h7} codify an one-versus-all strategy.

Now, let us observe the test codeword x of fig. 4.1(a) obtained by applying the
seven dichotomizers {h1, .., h7} of the coding matrix M to a new data sample ρ. The
values of the codeword correspond to x = {1,−1,−1,−1,−1,−1,−1}. As commented,
the test codeword can not contain the zero symbol since each classifier should vote
in a way. In the example, the Hamming decoding takes as input the test codeword
x and each class codeword yi, i ∈ {1, .., 7}. The decoding measure obtained for each
class is shown on the right of the matrix. Codeword y1 matches the first position of
x and its value is due to the six positions set to zero. When compared to the other
codewords, the measure value is due to two failures between each base codeword and
the test one. The output of the HD strategy assigns a higher decoding value to class
c1 in comparison to the other classes, and thus, classes {c2, .., c7} are selected as the
first choice.

(a) (b)

Figure 4.1: Ternary coding matrices for a 7-class problem codified using seven
dichotomizers {h1, .., h7}. A new test codeword x is classified using the Hamming
decoding.

To analyze this example, let us have a look at the sub-set of codewords rep-
resented in the coding space of fig. 4.2. A zero symbol in a class code introduces
one degree of freedom, that means that both +1 and -1 are possible values dur-
ing the test classification since the class has not been taken into account to train
the corresponding dichotomizer. Any codeword yi containing the zero symbol de-
fines an extended set of possible codewords that could be obtained by examples of
the class ci. In this sense, the codeword y1 = {1, 0, 0} represented by the plane
π = y1

1 = 1 in the figure can be disambiguated into its extended set of codewords
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Y e
1 = {{1, 1, 1}, {1, 1,−1}, {1,−1, 1}, {1,−1,−1}}, where each of the four codewords

of y1 is a possible representation1 of the same codeword y1. Now observe the code-
word y2 = {1, 1, 1} shown in the figure. Note that y2 corresponds to one of the four
representations of y1 (y2 ∈ Y e

1 ). In the figure, y2 then corresponds to a point in the
previous plane π. Taking into account this decomposition, the test codeword x of
fig. 4.1(a) is a possible representation of codeword y1 of class c1. Thus, it seems rea-
sonable to classify x as c1. However, in the example c1 is the last choice. One can see
this effect occurs because the decoding value increases with the number of positions
that contain the zero symbol when we use the HD strategy. Let us introduce a term
to denote this phenomenon:

Definition 1: Decoding bias is the value introduced by the comparison of two
codewords on positions containing the zero symbol (being the magnitude of the value
proportional to the number of zero positions).

Figure 4.2: Cube of codewords of length n = 3.

Now observe the example of fig. 4.1(b). A new test codeword x = {−1, 1, 1, 1, 1, 1, 1}
is evaluated in the same ECOC design. In this case, the classification decision ob-
tained by the HD is class c1 with a minimum decoding value of four, while the
decoding value of the rest of classes is five. Observe that the only trained classifier
that takes into account c1 is h1. However, if we use the HD, we are deciding class c1

according to the information obtained from the classifiers that have not considered
class c1 in their learning process. Therefore, all the information provided by class c1

is contained in the first position of its codeword y1.
In the example of fig. 4.1(b), either considering or not the zero positions to decode,

when we use the HD, the decision in both cases is class c1. This effect can be ex-
1Possible representation means that any test example of class c1 would give a codeword from Y e

1 .
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plained by the fact that the amount of bits codified by {−1, +1} introduces a second
bias that makes the measures between codewords non-comparable. It is produced
because the decoding process for each codeword works in a different range of values.
This effect leads to another definition:

Definition 2: A dynamic range bias corresponds to the difference among the
ranges of values associated to the decoding process of each codeword.

Observe that this range depends on the number of positions codified by zero.
In fig. 4.1(b), the codeword y1 works on a different dynamic range than the rest of
codewords {y2, .., y7}. In the example of fig. 4.1, the decoding process of codeword
y1 takes a minimum value of three when the first bit matches, and a maximum value
of four when the first bit fails. It means that the dynamic range for the codeword y1

is [3,4]. On the other hand, codewords {y2, .., y7} can take a minimum value of zero
at the decoding process when all bits match, and a maximum value of seven when all
bits fails, obtaining a dynamic range of [0,7]. When we consider the first position of
y1 to decode, a failure on that position should have the same influence as the failure
at all positions containing {−1,+1} symbols on the rest of codewords (independently
of the number of zero positions). In the same way, a match on that position also must
represent the same information than to match all the positions containing {−1, +1}
symbols on the rest of codewords. Then, the codewords take values from the same
dynamic range, and the results are comparable.
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4.2 Decoding decomposition

Based on the three possible symbols of the ternary ECOC framework, we define the
following terms: let b be the value produced when a bit with a {−1, +1} value is com-
pared to a zero symbol, a the value produced by a match in a position of a codeword
containing a {−1, +1} value, and e the value introduced by an error in a position of a
codeword containing a {−1, +1} value. Then, we introduce the following definition:

Definition 3: A general decoding decomposition to represent decoding strate-
gies is defined as follows:

d =
∑

k∈Ib

bk +
∑

i∈Ia

ai +
∑

j∈Ie

ej (4.1)

where Ib, Ia, and Ie are the sets of indexes of a codeword corresponding to the zero
positions, matches on {−1,+1} values, and failures on {−1, +1} values, respectively.
Let |Ib| = z, |Ia| = α, and |Ie| = β be the number of zeros, number of matches
between two codewords, and number of failures between two codewords, respectively.
In this sense, the length of a codeword is n = z + α + β. Note that eq.(4.1) depends
on the value induced by the zero symbols (b), the failures on the positions containing
{−1, +1} values (e), and the matching on the positions containing {−1, +1} values
(a). The value b corresponds to the bias induced by a zero position applying a
particular decoding strategy.

As a zero symbol means that the corresponding classifier is not trained over a
class, considering the decision of this classifier to estimate the similarity of the new
test example to that class does not make sense. Thus, we define the first hypothesis
as follows:

Hypothesis I: The bias induced by a zero position applying a particular decoding
strategy should be zero (b = 0).

Moreover, we argue that to obtain comparable results between classes codewords,
each codeword of the coding matrix M should take values in the same dynamic range.
The dynamic range (DR) associated to each codeword is determined as follows:

DR = [min(K1, K2),max(K1,K2)],K1 =
∑

i∈Ia

|ai|,K2 =
∑

j∈Ie

|ej | (4.2)

If K1 and K2 are constant shared factors for all the codewords, the dynamic range
is maintained for all classes, and the decoding measures are comparable. Then, we
define the second hypothesis as follows:

Hypothesis II: K1 and K2 should be constant shared factors for all the code-
words.

Based on the previous hypotheses, we define four types of decoding strategies:
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Table 4.1: Types of decoding strategies.

b 6= 0 b = 0
Different dynamic ranges Type 0 Type I

Same dynamic ranges Type II Type III

Definition 4: A decoding strategy is of Type 0 if the bias produced by the 0
symbol is higher than zero (b > 0), and the dynamic ranges between codewords differ.

Definition 5: A decoding strategy is of Type I if the bias produced produced by
the 0 symbol is null (b = 0), and the dynamic ranges between codewords differ.

Definition 6: A decoding strategy is of Type II if the bias produced by the 0
symbol is higher than zero (b > 0), and the dynamic ranges between codewords are the
same.

Definition 7: A decoding strategy is of Type III if the bias produced by the 0
symbol is null (b = 0), and the dynamic ranges between codewords are the same.

Table 4.1 summarizes the groups of decoding strategies based on the previous
definitions.

4.2.1 Analysis of state-of-the-art decoding strategies

Following the introduced notation, we split the state-of-the-art decoding strategies
according to the decomposition of eq.(4.1) and analyze the two previous properties in
each case.

The analysis is performed over the decoding strategies reviewed in the previous
section: Hamming decoding, Inverse Hamming decoding, Euclidean decoding, At-
tenuated Euclidean decoding, Loss-based decoding, and the Probabilistic decoding
approach of [67]. To split each decoding strategy in the decomposition representa-
tion, we change the decision rules of the probabilistic strategies in order to consider
eq.(4.1) as a function of the measure to be minimized.

• Hamming decoding :
We can easily find a correspondence between the original formulation of the HD

and the representation of eq.(4.1). HD always includes a value of 1
2 for bk, k ∈ Ib.

A match does not take influence in the measure (ai = 0, i ∈ Ia), and a failure on a
position increases the measure in ej = 1, j ∈ Ie. Then, the new representation can
be defined as follows:

HD(x,y) =
∑

k∈Ib

bk +
∑

j∈Ie

ej =
z

2
+ β (4.3)

Analyzing the Hamming decoding in the ternary case, one can observe that the
zero positions introduce a bias of z

2 . Moreover, the prediction is influenced by the
value of z, which makes codewords take values from different dynamic ranges for
different number of zero positions. In this sense, HD corresponds to the strategies of
Type 0.

• Inverse Hamming decoding:
Looking at eq. (2.3), the term ∆−1 of the IHD corresponds to a constant factor

dependent of the class codes. Therefore, we can fix on the term DT to find a corre-
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spondence to eq. (4.1). The term ∆−1
1 DT stands for the IHD for the first codeword

of the coding matrix M . Note that ∆−1
1 does not depend on the test codeword x.

Then, if the components of the first row of ∆−1 correspond to {W1, ..,WN}, the result
of the product ∆−1

1 DT can be defined as follows:

IHD(x, y1) = ∆−1
1 DT =

N∑

j=1

Wj ·HD(x, y1) =
N∑

j=1

Wj

(zj

2
+ βj

)
(4.4)

which implies:

IHD(x, y1) = z1
1
2

(
W1 +

N∑

i=2

Wizi

z1

)
+ β1

(
W1 +

N∑

i=2

Wiβi

β1

)
(4.5)

This expression exactly corresponds to the representation of eq. (4.1) for a code-
word y1, where bk = −1

(
W1 +

∑N
i=2

Wizi

z1

)
, k ∈ Ib, ej = −1

(
W1 +

∑N
i=2

Wiβi

β1

)
, j ∈

Ie, and ai = 0, i ∈ Ia, being the weights W dependent on the design of the coding
matrix M . Note that different bias are induced by different number of zeros, and
different dynamic ranges are also obtained for different values of z and β. Thus, the
IHD corresponds to the Type 0 strategies.

• Euclidean decoding:
The parameters in this case are: bk = 1, k ∈ Ib, ai = 0, i ∈ Ia, and e=4, j ∈ Ie,

obtaining the following representation:

ED(x, y) =
∑

k∈Ib

bk +
∑

j∈Ie

ej =
∑

k∈Ib

1 +
∑

j∈Ie

4 = z + 4β (4.6)

Compared to the error induced by the zero symbol in the HD strategy, one can
observe that in this case, bk, k ∈ Ib is less significative in comparison with ej , j ∈ Ie.
In fig. 4.3 one can see this behavior for different number of zero positions. When the
number of zeros increases, the error accumulated by the ED is less significative than
the HD error. This is one of the main reasons why the ED usually improves the
performance of the HD asymptotically when applied to ternary symbol-based ECOC
[73]. This strategy also is of Type 0.

• Loss-based decoding:
We introduce the Loss-Based decoding in the representation of eq.(4.1) for the

Linear Loss-based function and the Exponential Loss-based function. Using a Loss-
function, the final measure is obtained by means of an additive model where the
matches introduce negative weights. In particular, the LLB parameters are as follows:
bk = 0, k ∈ Ib, ai = −1, i ∈ Ia, and ej = 1, j ∈ Ie, giving:

LLB(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

(−1) +
∑

j∈Ie

1 = −α + β (4.7)

The ELB parameters are: bk = 1, k ∈ Ib, ai = 1/e, i ∈ Ia, and ej = e, j ∈ Ie,
obtaining:

ELB(x, y) =
∑

k∈Ib

bk +
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

k∈Ib

1+
∑

i∈Ia

1/e+
∑

j∈Ie

e = z +
α

e
+βe (4.8)
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Figure 4.3: Errors induced by the zero symbol for the HD and ED decoding
strategies.

In the case of LLB, the matches and the failures have the same influence, while
in the ELW , a failure is e2 times more significant than a match. One can see that
bk = 0, k ∈ Ib by LLB, but in both LLB and ELB, different dynamic ranges are
obtained for different values of α and β for LLB, and z, α, and β for ELB. Thus,
ELB is of Type 0 and LLB of Type I.

• Probabilistic decoding:
From the initial definition of this strategy (eq.(2.6)), we can fix the parameters

K = ω = 0 and υ = 1 in order to simplify the study of the technique, which leads to
the following equation:

PD(x, y) = − log

((
1

1 + e

)α (
1

1 + 1/e

)β
)

(4.9)

We can easily change this representation into the form of eq. (4.1) by defining:
bk = 0, k ∈ Ib, ai = log

(
1

1+e
)

, i ∈ Ia, ej = log
(

1
1+1/e

)
, j ∈ Ie, which implies:

PD(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej

PD(x, y) =
∑

i∈Ia

log
(

1
1 + e

)
+

∑

j∈Ie

log
(

1
1 + 1/e

)

PD(x, y) = α log
(

1
1 + e

)
+ β log

(
1

1 + 1/e

)

This strategy was proposed to deal with the ternary decoding. In particular, it
satisfies that bk = 0, k ∈ Ib since the induced bias by the zero symbol is null. However,
note that different dynamic ranges are obtained for different values of α and β, and
thus, the strategy is of Type I.
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4.3 Attenuated Euclidean Decoding

This technique is an adaptation of the Euclidean decoding that takes into account
Hypothesis I. The formulation is redefined taking into account the factors | yj

i || xj |;
that makes the measure to be unaffected by the positions of the codeword yi that
contain the zero symbol (| yj

i |= 0). Note that in most of the cases |xj | = 1. Then,
the Euclidean Decoding measure is redefined as follows:

AED(x, yi) =

√√√√
n∑

j=1

| yj
i || xj | (xj − yj

i )2 (4.10)

In this case, the difference between the ED and the AED is the value of bk, k ∈ Ib,
fixed to zero by AED. The new representation is as follows:

ED(x, y) =
∑

j∈Ie

ej =
∑

j∈Ie

4 = 4β (4.11)

Note that the weighting parameter of AED avoids the bias produced by the zero
symbol. Nevertheless, different dynamic ranges are obtained for different values of β.
This strategy corresponds to Type I.
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4.4 Laplacian and Pessimistic β-Density Distribu-
tion Decoding

Based on the presented grouping of strategies, none of the decoding techniques in the
literature belongs to Type II or Type III. In this section, we introduce two novel decod-
ing strategies of Type III. First, we propose a methodology based on the discrete out-
put of the classifiers, called Pessimistic β-Density Distribution decoding (β −DEN).
After that, we extend its behavior using a continuous extension.

The simplest way to avoid the bias of the third symbol is to ignore the positions
coded by zero. This yields in a measure that counts the number of coincidences be-
tween the input codeword and the class codeword. In order to make all the codewords
to work in the same dynamic range, the measure is normalized by the total number
of positions coded by {−1,+1}, obtaining d(x, yi) = αi/(αi + βi). The main draw-
back of this definition is that it is not robust when there is a small number of coded
positions in one word. In order to alleviate this problem, we introduce a prior bias,
known as the Laplace correction. With this correction, the new decoding score, called
Laplacian decoding (LAP ), is defined as follows:

LAP (x, yi) =
αi + 1

αi + βi + K
(4.12)

where K is an integer value that codifies the number of classes considered by the
classifier - two in this case.

Based on this formulation, we can define a sub-optimal method, called Pessimistic
β-Density Distribution decoding. The method is based on estimating the probability
density functions between two codewords. The main goal of this strategy is to model
at the same time the accuracy and uncertainty based on a pessimistic score in order
to obtain more reliable predictions. We use an extension of the continuous binomial
distribution, the β-distribution, defined as follows:

ψi(ν, αi, βi) =
1
K

ναi(1− ν)βi (4.13)

where ψi is the β-Density Distribution between a codeword x and a class codeword
yi for class ci, and ν ∈ [0, 1]. The expectation of ψi is αi/(αi + βi). Note that
it asymptotically tends to the Laplace corrected estimator without the prior K in
eq.(4.12).

Given a test codeword x and the set of functions ψ(ν, α, β) =[ψ1(ν, α1, β1) ,...,
ψN (ν, αN , βN )], the class ci is assigned to x if it achieves the highest score si, defined
as the pessimistic score satisfying the following equivalency:

si :
∫ νi

νi−si

ψi(ν, αi, βi)dν = u (4.14)

where u is a threshold parameter. After a preliminary set of experiments, we
fixed u = 1

3 . Note that u governs the uncertainty influence in the final score. Fig-
ure 4.4 shows the estimated density functions [ψ1, ψ2, ψ3, ψ4] for the design shown in
fig. 2.1(b). Observe that on the design of fig. 2.1(b), the HD and the ED decoding
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strategies classify the test codeword x by class c1, although the decision should be
class c2. In fig. 4.4, one can see that the β-DEN decoding classifies the test data
sample to its correct class c2, obtained by fig. 4.4(b). It can be shown that when a
function ψi is estimated by a combination of values αi and βi, the sharpness is higher
when it is generated by a majority of one of the two types. Besides, this sharpness
depends on the number of code positions different to zero and the balance between
the number of matches and failures. In this way, the pessimistic score reflects the
confidence in the expectation of the probability density function.

(a) (b)

(c) (d)

Figure 4.4: Pessimistic Score decoding for the test codeword x and the matrix M
for the four classes of fig. 2.1(b). (a) Class c1, (b) class c2, (c) class c3, and (d) class
c4. The probability for the second class allows a successful classification in this case.

Now, let us analyze the β-Density to obtain the representation in the form of
eq.(4.1). We can apply minus logarithm to the β-Density formulation to split it. We
obtain the parameters: bk = 0, k ∈ Ib, ai = − log(ν), i ∈ Ia, and ej = − log(1−ν), j ∈
Ie, and the following representation:

β−DEN(x, y) =
∑
i∈Ia

ai +
∑
j∈Ie

ej =
∑
i∈Ia

(− log(ν))+
∑
j∈Ie

(− log(1−ν)) = −α log(ν)−β log(1−ν) (4.15)

Note that in the β-DEN decoding the zero symbol has no influence, and the
dynamic range for all the codewords takes values in the same interval [0, 1], being a
strategy of Type III.
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4.5 Loss-Weighted Decoding

We define the novel Loss-Weighted decoding based on a combination of normalized
probabilities to adapt the ternary ECOC decoding to the Type III strategies. The
properties are encoded in a matrix that is used to weight the decoding process. The
weight matrix codifies hypothesis I and II, being independent of the coding and decod-
ing strategy applied. Moreover, as not all the hypotheses have the same performance
on learning the data samples, the accuracy of each binary problem is used to adjust
the final classification decision.

We define a weight matrix MW , by assigning to each position of the codeword
codified by {−1, +1} a weight of 1

n−z . As α + β = n − z, by excluding the zero-
positions, the previous process codifies the same dynamic range for all codewords.
Moreover, the bias of the third symbol is avoided by assigning a weight of zero to
those positions of the weight matrix MW that contain a zero in the coding matrix M .
In this way,

∑n
j=1 MW (i, j) = 1, ∀i = 1, ..., N , satisfying Type III properties.

We assign to each position (i, j) of a performance matrix H a continuous value
that corresponds to the performance of the dichotomizer hj classifying the samples
of class ci as follows:

H(i, j) =
1

mi

mi∑

k=1

ϕ(hj(ρi
k), i, j), based on ϕ(xj , i, j) =

{
1, if xj = yj

i ,
0, otherwise.

(4.16)
Note that eq.(4.16) makes H to have zero probability at those positions corre-

sponding to unconsidered classes.
We normalize each row of the matrix H so that MW can be considered as a discrete

probability density function:

MW (i, j) =
H(i, j)∑n

j=1 H(i, j)
, ∀i ∈ [1, ..., N ], ∀j ∈ [1, ..., n] (4.17)

In fig. 4.5, a weight matrix MW for a 3-multi-class problem of four hypotheses is
estimated. Figure 4.5(a) shows the coding matrix M . The matrix H of fig. 4.5(b)
represents the accuracy of the hypotheses classifying the instances of the training set.
The normalization of H results in a weight matrix MW shown in fig. 4.5(c).

(a) (b) (c)

Figure 4.5: (a) Coding matrix M of four hypotheses for a 3-class problem. (b)
Performance matrix H. (c) Weight matrix MW .

Once we obtain the weight matrix MW is done, we introduce the weight matrix
in the Loss-based decoding. The decoding estimation is obtained by means of an
ELB decoding model L(θ) = e−θ, where θ corresponds to yj

i · f(ρ, j) (similar to the
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Loss-based decoding), weighted using MW
2:

LW (ρ, i) =
n∑

j=1

MW (i, j)L(yj
i · f(ρ, j)) (4.18)

The summarized algorithm is shown in table 4.2.
Note that the weight matrix MW encoding the ternary decoding properties is

independent of the coding and decoding strategies applied. In this sense, It can be
potentially applied to any existing decoding strategy. For the present formulation,
we choose the Loss-based decoding as the base decoding strategy to apply the weight
matrix MW since LB was one of the firsts attempts to the ternary decoding. In
this sense, different weighted decodings can be formulated3. Moreover, note that
depending on the problem we are working on, not only the continuous output of the
base classifier could be useful to weight the matrix MW , but also prior information
about the classes distribution (or class frequencies instead) as well as other useful
information can also be included.

Table 4.2: Loss-Weighted algorithm.

Loss-Weighted strategy: Given a coding matrix M ,

1) Calculate the performance matrix H:

H(i, j) =
1

mi

mi∑

k=1

ϕ(hj(ρi
k), i, j) based on ϕ(xj , i, j) =

{
1, if xj = y

j
i
,

0, otherwise.

(4.19)

2) Normalize H:
∑n

j=1 MW (i, j) = 1, ∀i = 1, ..., N :

MW (i, j) =
H(i, j)∑n

j=1 H(i, j)
, ∀i ∈ [1, ..., N ], ∀j ∈ [1, ..., n] (4.20)

3) Given a test data sample ρ, decode based on:

LW (ρ, i) =
n∑

j=1

MW (i, j)L(yj
i · f(ρ, j)) (4.21)

To obtain the formulation of LW in the representation of eq.(4.1), we consider
the use of the linear and the exponential Loss-functions with discrete and continuous
possible outputs of the classifiers.

In the case of the Linear Loss-Weighted using the continuous output of the classifier
LLWC , we obtain the values bk = 0, k ∈ Ib, ai = −MW ( , i)|f i(ρ)|, i ∈ Ia, MW ( , i) ∈
[0, 1], where ’ ’ stands for the row which corresponding codeword is being compared,

2Note that different Loss-functions as well as discrete and continuous outputs of the classifiers
can also be applied.

3We have performed some experiments applying the weight matrix over other decoding strategies,
such as the Weight-Euclidean decoding, obtaining significant performance improvements
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and ej = MW ( , j)|f j(ρ)|, j ∈ Ie, MW ( , j) ∈ [0, 1]. Then, the new representation is
as follows:

LLWC(ρ, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

−MW ( , i)|f i(ρ)|+
∑

j∈Ie

MW ( , j)|f j(ρ)| (4.22)

And the following parameters considering a discrete output of the classifier LLWD:
bk = 0, k ∈ Ib, ai = −MW ( , i), i ∈ Ia, MW ( , i) ∈ [0, 1], and ej = MW ( , j), j ∈ Ie,
MW ( , j) ∈ [0, 1], giving:

LLWD(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

−MW ( , i) +
∑

j∈Ie

MW ( , j) (4.23)

If we take as baseline the previous discrete representation of eq.(4.23), and consider
each dichotomizer to properly learn the complete training data, we obtain: bk = 0, k ∈
Ib, ai = − 1

n−z , i ∈ Ia, and ej = 1
n−z , j ∈ Ie, which implies:

LLWD(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

(
− 1

n− z

)
+

∑

j∈Ie

1
n− z

= − α

n− z
+

β

n− z

(4.24)
Then, we can observe that in the discrete LLWD, the zero symbol is not con-

sidered. Moreover, independently of the number of positions coded by {−1,+1}, if
all these positions match, then α = n − z, and the parameter − α

n−z of eq. (4.24) is
maintained constant to K1 = −1 for all the codewords. In the case that all positions
coded by {−1, +1} correspond to failures, β = n − z, obtaining a constant value
K2 = 1. Therefore, all the codewords take values in the interval [−1, 1]. The same
occurs with the continuous LLWC , since the previous behavior is only affected by the
factor introduced by the margin of the output of the classifier.

Applying the same formalism in the case of the continuous Exponential Loss-
Weighted ELWC , we obtain the following parameters: b

(0)
k = 0, k ∈ Ib, ai = MW ( ,i)

e|fi(ρ)| , i ∈
Ia, MW ( , i) ∈ [0, 1], and ej = MW ( , j)e|f

j(ρ)|, j ∈ Ie, MW ( , j) ∈ [0, 1], obtaining:

ELWC(ρ, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

MW ( , i)
e|fi(ρ)| +

∑

j∈Ie

MW ( , j)e|f
j(ρ)| (4.25)

And the following parameters considering a discrete output of the classifier ELWD:
b
(0)
k = 0, k ∈ Ib, ai = MW ( ,i)

e , i ∈ Ia, MW ( , i) ∈ [0, 1], and ej = MW ( , j)e, j ∈ Ie,
MW ( , j) ∈ [0, 1], obtaining:

ELWD(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

MW ( , i)
e

+
∑

j∈Ie

MW ( , j)e (4.26)

If we take as baseline the previous discrete representation of eq.(4.26), and consider
each dichotomizer to properly learn the complete training data, we obtain: bk = 0, k ∈
Ib, ai = 1

(n−z)e , i ∈ Ia, and ej = e
n−z , j ∈ Ie, which implies:

ELWD(x, y) =
∑

i∈Ia

ai +
∑

j∈Ie

ej =
∑

i∈Ia

1
(n− z)e

+
∑

j∈Ie

e
n− z

=
α

(n− z)e
+

βe
n− z

(4.27)
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In the previous ELW cases, the zero symbol is not considered. If all positions
coded by {−1, +1} correspond to matches, α = n− z, which makes all the codewords
to obtain the constant value K1 = −1

e . On the other hand, if all positions coded by
{−1, +1} correspond to failures, then β = n − z implies a constant factor K2 = e,
which makes all codewords to obtain values in the same dynamic range [− 1

e , e]. Thus,
all the LW variants correspond to Type III strategies.

4.6 Taxonomy of decoding strategies

Table 4.3 summarizes the values of the parameters obtained using the representation
of eq.(4.1) for all the decoding strategies. The decoding strategies of table 4.3 are
sorted from Type 0 to Type III designs. At the first column of the table, the values
of b different to zero point out the methods that introduce a bias for the zero symbol.
Note that four of the traditional approaches do not avoid this bias. The columns of
values a and e stands for the values introduced by a match and a fail at the decoding
step, respectively. Note that none of the traditional decoding strategies presented in
the literature belongs to Type II and Type III strategies since the dynamic ranges
differ for different number of positions coded by zero. Only the β −DEN and LW
decoding variants normalize the dynamic ranges to work in the same range of values
for all codewords. Note that if we substitute in eq.(4.1) the parameters b, a, and e
of each decoding strategy, we obtain an equivalent decoding evaluation than using its
original formulation.

Table 4.3: Decoding parameters in the decomposition of eq.(4.1).

Strategy b a e
HD 1/2 0 1

IHD −1
2

(
W1 +

∑N
i=2

Wizi

z1

)
0 −1

(
W1 +

∑N
i=2

Wiβi

β1

)

ED 1 0 4
AED 0 0 4
LLB 0 -1 1

PD 0 log
(

1
1+e

)
log

(
1

1+1/e
)

ELB 1 1/e e
β-DEN 0 log(ν) log(1− ν)
LLWC 0 −MW ( , i)|f(ρ)| MW ( , j)|f(ρ)|
LLWD 0 −MW ( , i) MW ( , j)
ELWC 0 MW ( ,i)

e|f(ρ)| MW ( , j)e|f(ρ)|

ELWD 0 MW ( ,i)
e MW ( , j)e

Based on the previous types of decoding strategies and with the use of discrete
or continuous outputs of the classifiers, six different groups of decodings are shown
in table 4.4. The Laplacian decoding LAP has also been included as the simplest
choice of Type III strategy. Some strategies, such as ED, AED, LB, and PD can
also be used in both discrete and continuous domains, though there are no evidences
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of their use in the literature. Note that none of the decoding strategies presented
in the literature belongs to Type II strategies since it does not exists a method that
maintain the dynamic range for all codewords at same time that includes bias for the
zero symbol.

Table 4.4: Decoding strategies grouped by type and discrete/continuous domains.

Type Discrete Continuous
Type 0 HD, IHD, ED -
Type I AED LB, PD

Type III β −DEN , LAP, LW LW

On the next section, we perform several experiments to test the proposed method-
ology. Based on the present formulation, our working hypothesis is that when the
decoding strategies avoid the bias produced by the zero symbol and all the codewords
work in the same dynamic range, the performance of the ECOC designs is improved.
Therefore, we apply the decoding strategies on the state-of-the-art coding designs and
we test their behavior over different multi-class data sets.
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4.7 Decoding evaluation

Before the results are presented, we discuss our validation methodology regarding the
data, comparatives, measurements, and experiments4.

• Data: The data used for the experiments consists of 16 multi-class data sets
from the UCI Machine Learning Repository data set [8].

• Comparatives: For the comparatives, we used the decoding strategies analyzed
in this chapter: Hamming decoding, Euclidean decoding, Inverse Hamming decoding,
Attenuated Euclidean decoding, Loss-based decoding with Linear and Exponential
Loss-functions, Probabilistic decoding, Laplacian decoding as the simplest choice of
Type III strategy, Pessimistic β-Density Distribution decoding, and four variants of
the Loss-Weighted decoding strategy: the Linear Loss-Weighted with discrete and
continuous outputs of the classifier, and the Exponential Loss-Weighted with discrete
and continuous outputs of the classifier.

Furthermore, all the decoding strategies are applied over the state-of-the-art ECOC
coding designs: one-versus-one [88], one-versus-all [68], dense random [5], sparse ran-
dom [5], DECOC [73], and ECOC-ONE designs. The parameters of the coding strate-
gies are the predefined or the default values given by the authors. The dense and
sparse matrices are selected from a set of 20000 generated random matrices, and
fixed to length of N for a further comparison with the one-versus-all, DECOC, and
ECOC-ONE strategies for a similar number of dichotomizers.

• Measurements: To measure the performance of the different strategies we apply
stratified ten-fold cross-validation and test for confidence interval at 95% with a two-
tailed t-test. We also use the Nemenyi test to look for significant statistical differences
between the methods performances at 95% [22]. The base classifiers used for the
experiments are Gentle Adaboost with 40 runs of decision stumps [32] and the Linear
OSU implementation of Support Vector Machines (SV M) [37][66].

• Experiments: we evaluate the classification of 16 UCI data sets.

UCI classification
The first experiment consists of classifying 16 multi-class UCI repository data sets.

The details of the data sets can be found in chapter F.
In this experiment, the 13 decoding strategies are applied over the six coding de-

signs and tested on the 16 UCI data sets for the two base classifiers, which corresponds
to a total of 2496 ten-fold experiments. In order to summarize these results, we es-
timated the ranking of each particular decoding strategy for the two different base
classifiers. Thus, each decoding strategy has been applied over six codings × 16 data
sets. Using these 96 experiments for each decoding, the ranking considering the inter-
section of confidence intervals on one hand and without considering the confidences
on the other hand are shown in fig. 4.6 for Gentle Adaboost and Linear SV M , re-
spectively. All the performances from which the ranking are computed are also shown
in the tables of Appendix D. The rankings are obtained estimating each particular
ranking rj

i for each problem i and each decoding j, and computing the mean ranking
R for each decoding as Rj = 1

J

∑
i rj

i , where J is the total number of problems (6
codings × 16 data sets). Note that either for the Gentle Adaboost base classifiers and

4More experimental results and analysis of the decoding methodology are shown in chapter 7.
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the Linear SV M classifier the ranking positions of each decoding strategy is the same
in most cases. When the confidence interval is considered, the ranking differences are
less significative, but the relative positions are also maintained. The general behavior
of this graphics shows that Type III strategies, and in particular the four variants of
the Loss-Weighted decoding, attain the best performance in the experiments, followed
by Type I strategies, and finally by Type 0 strategies. Note that in the variants of
LW , for both Gentle Adaboost and Linear SV M , the differences between LLW with
discrete and continuous outputs of the classifier are not significant, but in the case
of ELW , the performance is improved by considering the continuous values of the
output of both base classifiers.

Figure 4.6: Ranking for the decoding strategies over all coding designs and UCI data
sets: Gentle Adaboost without (in black) and considering (in white) the intersection
of the confidence intervals, and Linear SV M without (in light grey) and considering
(in dark grey) the intersection of the confidence intervals, respectively.

Now, we analyze if the results of the different strategies are statistically significant.
To check for the statistically significant methods, we use the Nemenyi test - two
techniques are significantly different if the corresponding average rankings differ by
at least the critical difference value (CD):

CD = qα

√
k(k + 1)

6J
(4.28)

where qα is based on the Studentized range statistic divided by
√

2, k is the
number of methods in the comparative, and J is the total number of performed
experiments. In our case, when comparing 13 methods with a confidence value α =
0.05, q0.05 = 1.771. Substituting in eq.(4.28), we obtain a critical difference value of
0.9955. Looking at the rankings of each decoding strategy shown in the first and third
column of each group in fig. 4.6, one can observe that any variant of the Loss-Weighted
strategy has a difference superior to the critical value of Type 0 and Type I strategies,
only intersecting with the Laplacian and β−DEN Type III strategies. Thus, we can
argue that the LW variants are significantly better than Type 0 and Type I strategies
at 95% of the confidence interval in the present experiments. In the case of the Type 0
and Type I strategies, although Type I strategies tend to have inferior ranking (thus,
better position) than the Type 0 methods, there are combinations of methods for
which the difference is inferior to the critical value, and therefore, we can not argue
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that in those cases the Type I strategies are significantly better than the methods of
Type 0.

Finally, the mean ranking positions grouping the techniques in their respective
types are shown in table 4.5. One can observe that the ranking performance in all
cases is better when satisfying the decoding properties, as claimed in the previous
section. Besides, the novel Type III strategies obtain results statistically significantly
better than the rest of the state-of-the-art strategies.

Table 4.5: Ranking positions of the decoding strategies on the UCI experiments
grouped by type.

Gentle Adaboost Linear SV M

Type 0 Type I Type III Type 0 Type I Type III

Discrete 5.5000 4.9844 3.3715 5.6042 5.3880 3.2951

Continuous 3.0799 2.7839 1.7813 3.2778 3.0469 1.8681

An interesting point of the previous experiments is to focus on the cases where
the new decoding rules obtain the highest performance improvements. We showed
that the new methods encoding the presented decoding rules improve the rest of
decoding strategies for all coding designs. Looking at the tables of Appendix I, one
can observe that the improvements are more significant when the new rules are applied
over coding designs with higher sparseness degree (high percentage of zero symbols
in the coding matrix M). It is produced because when we increase the percentage
of zero symbols, the two biases produced by the third symbol also increase, and the
classification performance for the traditional decoding strategies is more affected. A
particular case where this effect is less significant is in the one-versus-one design, where
though the sparseness is high the results for the different decoding strategies do not
significantly differ. It can be explained because the amount of positions containing
the zero symbol and the {−1, +1} values coincide for all codewords, and thus, the
bias and dynamic range are the same.
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4.8 Decoding discussion

In this chapter, we analyzed the decoding step of the ternary symbol-based ECOC
framework. We showed some inconsistences introduced by the traditional decod-
ing strategies when using the zero symbol. Two working hypotheses to deal with a
successful decoding were formulated and analyzed on a new taxonomy of decoding
strategies. As a consequence, different strategies fulfilling the presented properties
were proposed. The validation of the methodology was performed over a wide set of
the UCI Machine Learning Repository data sets using the state-of-the-art coding and
decoding strategies as well as Adaboost and Support Vector Machines as the base
classifiers. We showed that when the decoding strategies avoid the bias introduced
by the zero symbol and all the codewords work in the same dynamic range, significant
performance improvements are obtained in the ECOC evaluation.

Four alternatives to decode were proposed. The Attenuated Euclidean decoding
is useful to avoid the influence of the ECOC coding matrix positions that do not
provide relevant information of the data. This is the simplest choice for ternary
decoding. The strategy has a low complexity, but its performance decreases when the
sparseness degree between rows of the coding matrix increases.

The Laplacian decoding introduces a measure that counts the number of coinci-
dences between the input codeword and the class codeword, normalizing by the total
number of codeword positions. The complexity of this strategy is higher than the one
provided by the Attenuated Euclidean decoding, but it is tolerant to high sparseness
degrees.

The Pessimistic β-density decoding slightly increase the performance and com-
plexity of the previous Laplacian decoding but it extends the discrete behavior to
continuous by estimating the probability density functions between two codewords.

Finally, the Loss-Weighted decoding has the highest estimation complexity, but
it is the most suitable choice when our objective is to maximize the classification
performance. The accurate results are obtained by means of a combination of proba-
bilities that avoids the influence of the positions that do not provided information at
the coding step while making the decoding measures between codewords comparable
either in the binary as in the ternary ECOC framework.



Chapter 5

Separability of Ternary Codes for
Sparse Designs

In the previous sections, we presented ternary ECOC designs that are better adapted
to the distribution of the data than traditional approaches, and redefined the decoding
step in the ternary ECOC framework. However, some coding techniques still contain
inconsistences. As a result, problematic coding designs are used, and therefore, they
require to be reconsidered. In this section, we present a new formulation of the ternary
ECOC distance and the error-correcting capabilities in the ternary ECOC framework.
Based on the new measure, we stress on how to design coding matrices preventing
coding ambiguity and proposing a new Sparse Random coding matrix with ternary
distance maximization.

87
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5.1 Random ECOC Designs

In this section, we overview both Dense and Sparse Random ECOC designs [5]. We
show the inconsistence of the classical Sparse Random design and introduce a new
measure for sparse coding designs.

5.1.1 Dense Random Design

Given a binary ECOC matrix M ∈ {−1, 1}N×n, where N is the number of classes
and n the codeword length, the minimum Hamming distance dr among all pairs of
rows is defined as follows [5]:

dr = min





n∑

j=1

(1− sign(yj
i1
· yj

i2
))/2



 (5.1)

for i1, i2 ∈ {1, ..., N}, i1 6= i2, being yj
i1

the jth position of the codeword for
class ci1 . Suppose that two codewords coded using {−1, +1} values have a Hamming
distance of three. Then, it means that even if we fail in a bit, we still are able to
obtain the correct classification. It suggests that a distance dr in a binary ECOC
matrix M can correct [dr − 1]/2 codeword errors at the decoding step [24]. Because
of these binary error-correction capabilities, many ECOC designs, such as random
ECOC strategies, base the design of the ECOC coding matrix on maximizing the
value dr [5].

Let us consider the distance dc between all pairs of columns and their opposites:

dc = minj1,j2 {min (A(j1, j2), B(j1, j2))} (5.2)

being:

A(j1, j2) =
N∑

i=1

(1− sign(yj1
i · yj2

i ))/2 (5.3)

B(j1, j2) =
N∑

i=1

(1− sign(−1 · (yj1
i ) · yj2

i ))/2 (5.4)

where j1, j2 ∈ {1, ..., n}, j1 6= j2. High value of dc contributes to consider differ-
ent sub-partitions of classes and to increase the variability of the knowledge of the
classifiers. Note that in eq.(5.4) the factor (-1) is used to take into account the inde-
pendence of the class ordering, i.e. the base classifier learns the same problem from
the partition C1 versus C2 and from C2 versus C1.

The Dense Random ECOC strategy [5] tries to maximize simultaneously both
previous dr and dc distances to design matrices where the decoding strategies are
able to obtain a correct classification still when there exist failures in some bits of the
tested codewords. The Dense random strategy generates a high number of random
coding matrices M of length n, where the values {+1,−1} have a certain probability
to appear (usually P (1) = P (−1) = 0.5). Studies on the performance of the dense
random strategy suggests a length of n = 10 log N [5]. In order to assure optimal
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performance of ECOC classification, for the set of generated dense random matrices,
the optimal one should maximize the Hamming Decoding measure between rows dr

and columns dc (also considering the opposites), taking into account that each column
of the matrix M must contain both different symbols {−1, +1}.

In fig. 5.1 some coding errors are shown. Fig. 5.1(a) has a dichotomizer (h3) with
all the elements coded by -1. In this case, we do not have two groups of classes to
split. Fig. 5.1(b) has the hypotheses h1 and h4 splitting the same sub-groups of classes
in opposite order, which exactly learns the same problem. The coding matrix M of
fig. 5.1(c) is not able to distinguish between classes c1 and c3 since their respective
codewords y1 and y3 are the same. The three previous problems in the ECOC designs
do not occur when we use standard coding strategies such as one-versus-one or one-
versus-all. When we use the dense random strategy, by definition [5] one needs to
consider each dichotomizer to have positions coded by +1 and -1 in order to maximize
the Hamming Decoding measure among the columns and their opposites; and to have
a high Hamming Decoding value between rows, which prevents the errors produced
in fig. 5.1(a), fig. 5.1(b), and fig. 5.1(c), respectively.

(a) (b)

(c) (d)

Figure 5.1: Wrong binary and ternary ECOC designs. (a) Wrong hypothesis h3.
(b) Redundant hypotheses h1 and h4. (c) Repeated codewords y1 and y3 for classes
c1 and c3. (d) Codification error between classes c1 and c3.

5.1.2 Classical Sparse Random Design

One of the main limitations of the binary ECOC framework is the need of considering
all classes for each binary classifier. Although a high distance dr and dc can be
computed, the selection of the most relevant sub-partition of classes for different
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multi-classification problems is not assured in the coding design. This fact implies the
need of designing large codes to increase the discriminating ability of the combined
set of binary problems. Moreover, taking into account the whole set of classes for
each classifier significantly reduces the number of possible sub-partitions of classes to
consider.

To take into account a higher number of possible classifiers, a third symbol was
introduced in the ECOC framework [5]. In this sense, the Sparse Random strategy
is designed in the same way than the Dense design, but it includes the third symbol
zero with another probability to appear, given by P (0) = 1 − P (−1) − P (1).
Studies suggest a sparse code length of 15 log N [5].

We consider that to increase the class separability in the ternary ECOC frame-
work, the distance dc of the binary case can be maintained since all three symbols
{−1, 0, +1} have influence on the information learnt by each dichotomizer. It means
that the distance between columns produced by the positions coded by zero increases
the variability of the classifiers. However, we argue that the use of the codewords sep-
arability maximizing the measure dr to design a Sparse Random matrix may contain
inconsistency.

5.1.3 Sparse Random Design with Ternary Separability

Let us show an example to analyze sparse designs. A zero symbol in a class code
introduces one degree of freedom, that means that both +1 and -1 are possible values
during the test classification since the class has not been taken into account to train
the corresponding dichotomizer. Any codeword yi containing the zero symbol defines
an extended set of possible codewords that could be obtained by examples of the class
ci. In this sense, a possible codeword y1 = {1, 0, 0} can be disambiguated into its
extended set of codewords Y e

1 = {{1, 1, 1}, {1, 1,−1}, {1,−1, 1}, {1,−1,−1}}, where
each of the four codewords of y1 is a possible representation1 of the same codeword
y1. Now, a possible codeword for a second class y2 = {1, 1, 1} corresponds to one of
the four possible representations of y1 (y2 ∈ Y e

1 ).
Let us consider another example of codewords of length six. Suppose that we

randomly define two codewords y1 = {1, 1, 1, 0, 0, 0} and y2 = {0, 0, 0, 1, 1, 1} in a
Sparse Random design. If we use the classical distance dr between y1 and y2, we
obtain a class separability of three. However, based on the previous example, if we
disambiguate y1 and y2, we obtain that Y e

1 ∩ Y e
2 = {1, 1, 1, 1, 1, 1}. Thus, an input

test codeword X = {1, 1, 1, 1, 1, 1} belongs to both previous codewords, which implies
a wrong Sparse design.

Finally, observe the ternary coding matrix M of fig. 5.1(d). Suppose that the
matrix M of the figure receives an input test data sample which codeword corresponds
to X = {−1, 1, 1, 1, 1}. This codeword matches with the four positions different of
zero from class c1 and the three from class c3. In this case, X ∈ Y e

1 and X ∈ Y e
3 . Thus,

both classes can be a possible solution. However, the HD between codewords y1 and
y3 produces a value of 1.5. Note that in the literature [5], a Sparse Random matrix
is generated by selecting the matrix from a previous set of matrices that maximizes
the distances dr and dc. As commented, the HD between columns containing the

1Possible representation means that any test example of class c1 would give a codeword from Y e
1 .
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third symbol is still useful since the zero positions help to create create a rich set of
partitions to be learnt. However, the measure dr for the row separability in terms
of the HD, as claimed, is inconsistent. Instead, to assure that the coding matrix M
splits all pairs of classes, each pair of codewords of M should be split by at least one
hypothesis:

Definition 8.: The ternary separability condition of a matrix M is defined as:

∀(yi1 , yi2)|i1, i2 ∈ {1, ..., N}, i1 6= i2,∃hj |(ci1 ∈ Cj
1 , ci2 ∈ Cj

2) ∨ (ci2 ∈ Cj
1 , ci1 ∈ Cj

2)
(5.5)

where Cj
1 and Cj

2 are the two subsets of classes for hypothesis hj , respectively.
Then, we can define the distance between two codewords in a ternary symbol-based
ECOC:

Definition 9.: The ternary distance between two codewords (y1,y2) is defined
as:

d(y1, y2) =
n∑

j=1

1
2
|yj

1||yj
2|(1− y1y2) (5.6)

It defines the number of different bits between two codewords without taking into
account the positions coded by zero. Note that the term 1

2 (1 − y1y2) is equivalent
to the standard Hamming distance estimated in the binary case expressed in a more
compact way. Thus, the weighting term |yj

1||yj
2| makes the distance to ignore the zero

positions which do not give information about the classes separability. Then, the
pair of codewords (yi1 , yi2) that are split by the minimum number of hypothesis in a
ternary ECOC matrix M defines the new distance dt:

Definition 10.: The distance dt of a coding matrix M is defined as follows:

dt = argmini1,i2

n∑

j=1

1
2
|yj

i1
||yj

i2
|(1− yi1yi2) (5.7)

where the term dt defines the distance between the pair of codewords that are
split by the minimum number of binary problems in a ternary symbol-based ECOC
matrix.

Based on the new ternary distance, we can define the error-correcting capabilities
in the ternary ECOC framework. As the distance in the ternary case has been refor-
mulated, the new measure of error-correction also changes. Having a N -multi-class
classification problem in the binary ECOC framework, a distance dr between rows of
M can correct [dr − 1]/2 bits errors. In the ternary case, the maximum class separa-
bility is defined by the measure dt. Thus, on a sparse ECOC matrix, [dt − 1]/2 bits
errors can be corrected2.

As the use of the distance dr applied to the classical design of the Sparse Random
matrix M produces inconsistences, we suggest to redefine the coding stage of the
Sparse Random designs. A good codification of a ternary matrix should assure the
highest number of codeword bits splitting each pair of rows; that is to maximize the

2We realize that the error-correcting capability also depends on the way that the decoding strate-
gies are applied.
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value dt. Therefore, we propose to use the new measure of ternary separability for
the Sparse Random design. In this case, the selected random matrix should be that
one which maximizes simultaneously dc and dt.
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5.2 Sparse Design Evaluation

We discuss the data, comparatives, and measurements of the experiments before the
results are presented3.

• Data: The data used for the experiments consists of 16 multi-class data sets
from the UCI Machine Learning Repository data set [8]. The details of the data sets
can be found in chapter F.

• Comparatives: For the comparatives, we use the classical Sparse Random design
[5] and the new Sparse Random with ternary distance maximization. The sparse ma-
trices are selected from a set of 20000 randomly generated matrices with a length of
codewords of N . To decode, we use the state-of-the-art decoding strategies and the
new decoding designs presented on previous chapters: Hamming Decoding, Euclidean
Decoding, Inverse Hamming Decoding, Attenuated Euclidean Decoding, Loss-based
Decoding with Linear and Exponential Loss-functions, Probabilistic Decoding, Lapla-
cian Decoding, Pessimistic β-Density Distribution Decoding, Linear Loss-Weighted
with discrete and continuous outputs of the classifier, and the Exponential Loss-
Weighted with discrete and continuous outputs of the classifier.

• Measurements: To measure the performance of the different strategies we apply
stratified ten-fold cross-validation and test for confidence interval at 95% with a two-
tailed t-test. The base classifiers used for the experiments are Gentle Adaboost with
50 runs of decision stumps and the Linear Support Vector Machines.

UCI classification
In this experiment, we classify the 16 multi-class UCI Machine Learning Repos-

itory data sets. To test the Sparse Random strategies, we generated a set of 20000
arbitrary random matrices, where the probabilities of appearance of each symbol are
P (0) = P (1) = P (−1) = 1/3. From exactly the same set of generated matrices, we
selected the classical Sparse Random matrix by the one which maximizes dr and dc,
and the new Sparse Random matrix by selecting the one which maximizes dt and
dc. To decode, the commented 13 decoding strategies are applied over the Sparse
Random designs for Gentle Adaboost and Linear SV M as the base classifiers.

Tables 5.2 and 5.3 show the performance results on the UCI data sets for the
Sparse Random designs using Gentle Adaboost and Linear SV M , respectively. The
nomenclature used for the data sets is shown in the table 5.1. For each data set
shown in the tables 5.2 and 5.3, the results on the top correspond to the performance
and confidence interval using the classical Sparse Random strategy. The results on
the bottom correspond to the results using the Sparse Random selection based on
maximizing the new ternary distance. Note that in most cases, the new Sparse design
outperform the results of the classical one. Only in few cases, such as at the Satimage
data set with SVM or the Iris data set with Adaboost, there are some performances
inferior to the classical approach.

To show the performance improvements by selecting the new Sparse Random ma-
trix, the absolute and relative improvements are shown in fig. 5.2 for Gentle Adaboost
and Linear SV M , respectively. The relative improvement is computed as the division
between the performance of the new Sparse design and the classical one, and the

3More experimental results and analysis of the Sparse design methodology are shown in the
Applications chapter.
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(a) (b)

Figure 5.2: Absolute (light lines) and relative (dark lines) improvement for the
Sparse Random designs using ternary distance maximization for Gentle Adaboost
(left) and Linear SV M (right) on the UCI experiments, respectively.

absolute improvement correspond to the direct difference of performances. The light
bars correspond to the relative improvement, and the dark lines to the absolute one.
Note that simply changing the decision on the selection of the sparse matrix from the
same set of generated random matrices, the performance significantly increases inde-
pendently of the decoding strategy applied. It is produced since the maximization of
dt assures us to select the matrix with the higher number of bits splitting codewords
(and thus, classes).

Table 5.1: Codification of the UCI data sets.
A Dermathology I Yeast
B Iris J Satimage
C Ecoli K Letter
D Wine L Pendigits
E Glass M Segmentation
F Thyroid N OptDigits
G Vowel O Shuttle
H Balance P Vehicle

As a conclusion of the experiments, we can state that the ternary distance dt based
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Table 5.2: Sparse Random results using Gentle Adaboost on the UCI data sets.
HD IHD ED AED LLB ELB P D LAP βDEN LLW LLW ELW ELW

Disc. Cont. Disc. Cont.
A 0.588 0.634 0.636 0.647 0.549 0.587 0.444 0.636 0.636 0.650 0.452 0.650 0.436

0.027 0.012 0.011 0.009 0.017 0.021 0.035 0.011 0.011 0.008 0.051 0.008 0.042
0.926 0.923 0.926 0.923 0.896 0.926 0.945 0.926 0.926 0.929 0.920 0.929 0.940
0.017 0.018 0.017 0.015 0.024 0.021 0.013 0.017 0.017 0.017 0.015 0.017 0.015

B 0.933 0.933 0.933 0.933 0.953 0.953 0.953 0.933 0.933 0.933 0.953 0.933 0.953
0.019 0.019 0.019 0.019 0.014 0.014 0.014 0.019 0.019 0.019 0.014 0.019 0.014
0.926 0.926 0.926 0.926 0.960 0.960 0.960 0.926 0.926 0.933 0.960 0.933 0.960
0.020 0.020 0.020 0.020 0.014 0.014 0.014 0.020 0.020 0.019 0.014 0.019 0.014

C 0.373 0.379 0.367 0.533 0.284 0.302 0.493 0.370 0.357 0.539 0.443 0.551 0.477
0.017 0.016 0.021 0.014 0.019 0.020 0.017 0.018 0.021 0.015 0.033 0.011 0.029
0.373 0.379 0.367 0.533 0.284 0.302 0.493 0.370 0.357 0.539 0.443 0.551 0.477
0.017 0.016 0.021 0.014 0.019 0.020 0.017 0.018 0.021 0.015 0.033 0.011 0.029

D 0.943 0.943 0.943 0.943 0.960 0.954 0.954 0.943 0.943 0.943 0.960 0.943 0.960
0.018 0.018 0.018 0.018 0.011 0.013 0.013 0.018 0.018 0.018 0.011 0.018 0.011
0.949 0.949 0.949 0.949 0.960 0.960 0.954 0.949 0.949 0.949 0.954 0.949 0.960
0.012 0.012 0.012 0.012 0.011 0.011 0.013 0.012 0.012 0.012 0.013 0.012 0.011

E 0.592 0.569 0.592 0.588 0.486 0.598 0.614 0.592 0.592 0.592 0.530 0.592 0.605
0.037 0.040 0.037 0.036 0.036 0.039 0.032 0.037 0.037 0.037 0.028 0.037 0.036
0.655 0.646 0.645 0.645 0.626 0.640 0.643 0.645 0.645 0.645 0.579 0.645 0.625
0.026 0.025 0.032 0.033 0.031 0.028 0.034 0.032 0.032 0.032 0.035 0.032 0.032

F 0.907 0.907 0.907 0.907 0.921 0.921 0.911 0.907 0.907 0.907 0.921 0.907 0.921
0.026 0.026 0.026 0.026 0.027 0.027 0.026 0.026 0.026 0.026 0.027 0.026 0.027
0.898 0.898 0.898 0.898 0.921 0.921 0.911 0.898 0.898 0.898 0.921 0.898 0.921
0.025 0.025 0.025 0.025 0.027 0.027 0.026 0.025 0.025 0.025 0.027 0.025 0.027

G 0.382 0.279 0.441 0.430 0.362 0.396 0.439 0.443 0.443 0.451 0.405 0.449 0.431
0.020 0.012 0.022 0.025 0.023 0.024 0.020 0.021 0.021 0.024 0.022 0.025 0.019
0.443 0.373 0.452 0.441 0.449 0.465 0.452 0.454 0.454 0.441 0.472 0.441 0.481
0.023 0.021 0.025 0.023 0.031 0.029 0.023 0.026 0.026 0.024 0.027 0.024 0.027

H 0.425 0.425 0.801 0.801 0.481 0.639 0.785 0.801 0.801 0.788 0.710 0.788 0.735
0.020 0.020 0.040 0.040 0.027 0.048 0.037 0.040 0.040 0.051 0.050 0.051 0.052
0.504 0.504 0.504 0.504 0.730 0.721 0.800 0.504 0.504 0.809 0.756 0.809 0.756
0.061 0.061 0.061 0.061 0.079 0.079 0.077 0.061 0.061 0.082 0.077 0.082 0.077

I 0.433 0.402 0.435 0.393 0.421 0.415 0.345 0.435 0.435 0.395 0.401 0.402 0.403
0.021 0.011 0.020 0.008 0.014 0.015 0.008 0.019 0.019 0.013 0.020 0.016 0.018
0.435 0.408 0.436 0.454 0.429 0.425 0.464 0.435 0.435 0.447 0.413 0.447 0.425
0.012 0.011 0.012 0.013 0.014 0.013 0.010 0.012 0.012 0.014 0.015 0.014 0.014

J 0.795 0.766 0.814 0.639 0.766 0.787 0.637 0.814 0.814 0.673 0.638 0.656 0.705
0.019 0.018 0.018 0.014 0.025 0.026 0.021 0.018 0.018 0.025 0.034 0.015 0.030
0.789 0.776 0.814 0.807 0.814 0.820 0.829 0.814 0.814 0.818 0.832 0.818 0.833
0.019 0.017 0.021 0.020 0.019 0.019 0.017 0.021 0.021 0.019 0.020 0.019 0.020

K 0.803 0.821 0.823 0.841 0.821 0.828 0.812 0.834 0.838 0.848 0.855 0.862 0.880
0.016 0.016 0.018 0.018 0.017 0.017 0.017 0.017 0.015 0.014 0.015 0.015 0.016
0.839 0.840 0.850 0.863 0.836 0.845 0.834 0.860 0.876 0.872 0.885 0.874 0.889
0.016 0.018 0.016 0.017 0.017 0.017 0.016 0.017 0.016 0.014 0.015 0.014 0.015

L 0.839 0.818 0.858 0.889 0.836 0.857 0.848 0.927 0.932 0.932 0.940 0.932 0.947
0.011 0.010 0.009 0.010 0.009 0.007 0.011 0.010 0.010 0.008 0.009 0.007 0.010
0.859 0.848 0.883 0.921 0.872 0.889 0.869 0.942 0.942 0.952 0.953 0.960 0.967
0.010 0.010 0.010 0.010 0.009 0.007 0.011 0.009 0.011 0.007 0.008 0.006 0.011

M 0.921 0.922 0.921 0.891 0.711 0.863 0.920 0.921 0.921 0.927 0.865 0.928 0.925
0.010 0.009 0.010 0.012 0.016 0.006 0.010 0.010 0.010 0.010 0.008 0.009 0.008
0.939 0.933 0.938 0.933 0.897 0.919 0.938 0.939 0.938 0.938 0.935 0.938 0.941
0.009 0.010 0.009 0.009 0.015 0.014 0.008 0.009 0.009 0.009 0.009 0.009 0.009

N 0.753 0.716 0.796 0.740 0.787 0.795 0.783 0.795 0.796 0.769 0.794 0.773 0.809
0.018 0.016 0.022 0.023 0.026 0.025 0.024 0.023 0.022 0.021 0.025 0.021 0.020
0.769 0.651 0.811 0.779 0.685 0.724 0.810 0.811 0.811 0.815 0.772 0.815 0.803
0.022 0.016 0.025 0.030 0.018 0.019 0.023 0.026 0.026 0.023 0.025 0.023 0.024

O 0.658 0.703 0.702 0.710 0.653 0.669 0.716 0.702 0.702 0.702 0.691 0.702 0.699
0.023 0.024 0.023 0.036 0.021 0.022 0.027 0.023 0.023 0.023 0.019 0.023 0.019
0.723 0.724 0.723 0.724 0.730 0.734 0.727 0.723 0.723 0.727 0.730 0.729 0.730
0.033 0.029 0.033 0.032 0.031 0.029 0.025 0.033 0.033 0.033 0.034 0.032 0.030

P 0.850 0.849 0.998 0.998 0.854 0.859 0.944 0.998 0.998 0.998 0.936 0.998 0.990
0.000 0.000 0.000 0.000 0.002 0.004 0.008 0.000 0.000 0.000 0.022 0.000 0.006
0.998 0.989 0.998 0.998 0.779 0.957 0.853 0.998 0.998 0.998 0.817 0.998 0.967
0.000 0.003 0.000 0.000 0.067 0.020 0.152 0.000 0.000 0.000 0.078 0.000 0.021

on maximizing the ternary separability allows high splitting of the classes codewords.
In the previous experiments significant performance improvements are obtained, in-
dependently of the decoding strategy applied, when the sparse matrix is selected by
maximizing the dt criterion. Note that the classical sparse matrix is selected from the
same set of matrices as the new sparse matrix, but it obtains very inferior results.
This suggests that for designs that consider the new measures, class separability
is increased. Thus, the decoding strategies are able to distinguish among different
codewords with higher confidence. Moreover, the ternary distance can be applied to
problem-dependent ECOC schemes, assuring the consistence of the designs. At the
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Table 5.3: Sparse Random results using Linear SV M on the UCI data sets.
HD IHD ED AED LLB ELB P D LAP βDEN LLW LLW ELW ELW

Disc. Cont. Disc. Cont.
A 0.374 0.382 0.440 0.868 0.456 0.623 0.853 0.440 0.719 0.870 0.766 0.870 0.835

0.005 0.007 0.024 0.017 0.042 0.027 0.030 0.024 0.024 0.015 0.060 0.015 0.041
0.936 0.847 0.936 0.939 0.950 0.950 0.961 0.936 0.936 0.936 0.953 0.933 0.953
0.011 0.028 0.011 0.011 0.010 0.010 0.009 0.011 0.011 0.011 0.010 0.012 0.010

B 0.666 0.666 0.973 0.973 0.666 0.920 0.773 0.973 0.973 0.973 0.780 0.973 0.933
0.010 0.010 0.010 0.010 0.010 0.019 0.019 0.010 0.010 0.010 0.023 0.010 0.016
0.720 0.720 0.720 0.720 0.926 0.926 0.826 0.720 0.720 0.973 0.940 0.973 0.933
0.025 0.025 0.025 0.025 0.020 0.020 0.022 0.025 0.025 0.010 0.020 0.010 0.021

C 0.684 0.269 0.726 0.723 0.699 0.743 0.275 0.726 0.726 0.683 0.413 0.613 0.411
0.022 0.025 0.031 0.030 0.026 0.031 0.029 0.031 0.031 0.038 0.033 0.058 0.042
0.758 0.726 0.758 0.737 0.770 0.761 0.766 0.758 0.758 0.667 0.616 0.711 0.610
0.026 0.029 0.026 0.023 0.029 0.027 0.031 0.026 0.026 0.037 0.044 0.026 0.047

D 0.932 0.932 0.932 0.932 0.955 0.955 0.949 0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.016 0.013 0.013 0.009 0.016 0.016 0.016 0.013 0.016 0.013
0.932 0.932 0.932 0.932 0.955 0.955 0.949 0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.016 0.013 0.013 0.009 0.016 0.016 0.016 0.013 0.016 0.013

E 0.438 0.460 0.446 0.457 0.428 0.456 0.452 0.452 0.446 0.443 0.457 0.427 0.458
0.024 0.029 0.033 0.023 0.025 0.029 0.022 0.028 0.033 0.021 0.030 0.031 0.033
0.503 0.509 0.503 0.484 0.552 0.523 0.524 0.503 0.503 0.504 0.517 0.504 0.534
0.028 0.019 0.028 0.029 0.028 0.030 0.028 0.028 0.028 0.043 0.031 0.043 0.036

F 0.814 0.814 0.943 0.943 0.818 0.948 0.897 0.943 0.943 0.943 0.856 0.943 0.948
0.009 0.009 0.021 0.021 0.007 0.015 0.023 0.021 0.021 0.021 0.011 0.021 0.020
0.916 0.916 0.916 0.916 0.934 0.934 0.855 0.916 0.916 0.943 0.934 0.943 0.934
0.026 0.026 0.026 0.026 0.025 0.025 0.019 0.026 0.026 0.021 0.025 0.021 0.025

G 0.343 0.308 0.341 0.301 0.313 0.298 0.241 0.352 0.352 0.357 0.328 0.359 0.360
0.018 0.018 0.017 0.021 0.021 0.020 0.025 0.018 0.018 0.025 0.029 0.025 0.023
0.382 0.376 0.366 0.314 0.365 0.367 0.269 0.360 0.362 0.368 0.334 0.364 0.379
0.026 0.029 0.018 0.010 0.027 0.022 0.018 0.016 0.017 0.018 0.021 0.020 0.015

H 0.855 0.855 0.855 0.855 0.833 0.833 0.822 0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.041 0.035 0.035 0.040 0.041 0.041 0.041 0.045 0.041 0.041
0.855 0.855 0.855 0.855 0.833 0.833 0.822 0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.041 0.035 0.035 0.040 0.041 0.041 0.041 0.045 0.041 0.041

I 0.380 0.385 0.380 0.378 0.379 0.390 0.217 0.380 0.381 0.341 0.210 0.346 0.221
0.012 0.013 0.012 0.013 0.016 0.012 0.005 0.012 0.013 0.017 0.009 0.021 0.006
0.491 0.476 0.493 0.489 0.492 0.495 0.506 0.493 0.493 0.484 0.472 0.483 0.497
0.018 0.015 0.019 0.018 0.014 0.019 0.016 0.018 0.018 0.024 0.024 0.024 0.031

J 0.718 0.710 0.726 0.615 0.670 0.725 0.634 0.726 0.726 0.618 0.403 0.638 0.660
0.016 0.014 0.014 0.019 0.048 0.019 0.021 0.014 0.014 0.019 0.028 0.030 0.021
0.724 0.626 0.734 0.732 0.656 0.750 0.739 0.734 0.734 0.776 0.489 0.776 0.782
0.014 0.009 0.013 0.014 0.014 0.011 0.012 0.013 0.013 0.017 0.037 0.017 0.018

K 0.632 0.637 0.648 0.662 0.648 0.652 0.643 0.671 0.672 0.702 0.705 0.703 0.710
0.010 0.009 0.008 0.009 0.014 0.009 0.010 0.011 0.009 0.010 0.008 0.009 0.009
0.642 0.653 0.663 0.675 0.649 0.660 0.648 0.678 0.692 0.708 0.717 0.718 0.729
0.010 0.009 0.007 0.008 0.006 0.007 0.008 0.010 0.008 0.007 0.008 0.008 0.010

L 0.878 0.887 0.893 0.912 0.902 0.902 0.897 0.913 0.916 0.917 0.921 0.918 0.927
0.008 0.007 0.008 0.009 0.009 0.010 0.009 0.008 0.009 0.008 0.014 0.013 0.013
0.897 0.908 0.917 0.932 0.910 0.912 0.901 0.938 0.939 0.941 0.944 0.948 0.953
0.010 0.009 0.008 0.009 0.014 0.013 0.011 0.010 0.009 0.008 0.014 0.009 0.010

M 0.706 0.627 0.838 0.800 0.475 0.849 0.716 0.837 0.837 0.837 0.700 0.837 0.851
0.013 0.015 0.006 0.005 0.010 0.007 0.003 0.007 0.007 0.007 0.030 0.007 0.007
0.793 0.727 0.800 0.810 0.727 0.843 0.751 0.840 0.840 0.844 0.791 0.844 0.856
0.005 0.012 0.005 0.006 0.010 0.007 0.006 0.005 0.005 0.006 0.014 0.006 0.007

N 0.710 0.664 0.767 0.738 0.616 0.763 0.719 0.769 0.769 0.769 0.620 0.768 0.813
0.019 0.021 0.017 0.021 0.029 0.012 0.020 0.016 0.016 0.015 0.047 0.018 0.024
0.795 0.573 0.797 0.785 0.664 0.845 0.832 0.797 0.797 0.812 0.719 0.812 0.847
0.030 0.016 0.029 0.027 0.021 0.030 0.025 0.029 0.029 0.031 0.023 0.031 0.030

O 0.520 0.722 0.703 0.702 0.670 0.730 0.620 0.703 0.703 0.703 0.704 0.703 0.728
0.011 0.016 0.022 0.022 0.026 0.017 0.029 0.022 0.022 0.022 0.025 0.022 0.014
0.728 0.728 0.728 0.730 0.742 0.781 0.763 0.728 0.728 0.736 0.751 0.736 0.776
0.025 0.025 0.025 0.027 0.026 0.018 0.018 0.025 0.025 0.025 0.026 0.025 0.021

P 0.977 0.977 0.977 0.977 0.892 0.977 0.969 0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.014 0.003 0.007 0.003 0.003 0.003 0.003 0.003 0.003
0.977 0.977 0.977 0.977 0.902 0.977 0.971 0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.013 0.003 0.008 0.003 0.003 0.003 0.003 0.003 0.003

same time, the new measures can also help the decoding strategies to evaluate those
positions of codewords that directly affect class separability.
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5.3 Separability of Sparse designs discussion

In previous section, we redefined the decoding strategies. In this section, we showed
that the coding step also is affected by the zero symbol. We showed that the rows
separability in terms of the Hamming distance of the binary ECOC framework can
not be applied in the ternary case, and we presented a new formulation of the ternary
ECOC distance and the error-correcting capabilities in the ternary ECOC framework.
Based on the new measure, we stressed on how to design coding matrices prevent-
ing codification ambiguity and proposed a new Sparse Random coding matrix with
ternary distance maximization.

This new formulation of Sparse random design is suitable in cases where we want
to use an ECOC scheme without taking into account the information provided by the
domain of the problem we are working on.
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Chapter 6

Object Recognition

In object recognition, a new instance is categorized according to the pool of trained
objects (cars, motorbikes, horses, flowers, etc.). As commented at previous sections,
a powerful multi-class pattern and object recognition system requires to make use of
a rich feature set that universally describes the data so that the new representation
should minimize intra-class variability and increase inter-class variability. In order to
describe objects with discriminative features, in this section, we propose two tech-
niques for object detection and description so that the obtained features can be used
in combination with the previous proposed ECOC coding and decoding designs in
order to increase the categorization performance.

First, we introduce a technique that considers a region as an object, and de-
scribes its content by considering the relevant gradient magnitude points to define
a probability density map of the shape of the object, even if it suffers from irregu-
lar deformations. And second, we introduce a new object detection method based
on training the discriminant features of the object description. Such description in-
cludes the information of correlograms to learn at the same time the object local
representation and the spatial relationship among its parts fragments.
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6.1 Blurred Shape Models Descriptors

To describe an object that can suffer from irregular deformations, we propose to
codify its shape by determining its external appearance. External appearance pixels
use to have high gradient magnitude. Taking into account those pixels, the Blurred
Shape Model descriptor defines spatial regions where some parts of the object can
be involved. For this task, the input region to describe should be binary, and the
activated pixels (those set to one) should belong to the shape of the object.

To process the image and obtain the object shape, different pre-processing tech-
niques can be applied depending on each particular problem domain. For instance,
in the case of handwriting symbols, the skeleton is a good choice since it maintains
the structure of the symbols for different author strokes. In the case of grey-level or
binary object classes, as the one shown in fig. 6.1(c), a contour map is more suitable
to obtain the structure map.

(a) (b) (c) (d)

Figure 6.1: Object shape estimation by means of (a)(b) skeleton and (c)(d) Contour
map.

Before applying the proposed descriptor, a shape alignment process is performed.
This process is composed of two steps: the first step, provides invariance to rotation
by means of the Hotelling transform. And the second step deals with the possible
mirroring effect.

The Hotelling transform finds a new coordinate system equivalent to locating the
main axis of the object. Given a set of n representative object points defined as pairs
of coordinates x = (xi, yi), where i ∈ [1, .., n], the center of mass of the object mx,
and the eigenvectors V of the covariance matrix, the new transformation is obtained
by means of the projection of the centered points of the object in the following way:

x′i = V (xi −mx), i ∈ [1, .., n] (6.1)

Using this transform, we find the common axes for the different object instances.
In fig. 6.2(a), the mean shape for the samples of the MPEG07 category shown in
fig. 6.2(b) after applying the Hotelling transform is shown. One can observe that
the shapes are not properly aligned. For this reason, a second step, consisting of
an area density estimation process is used. Horizontal and vertical projections are
applied to obtain the area of the object. Then, this area is projected on the two axes.
The final alignment is obtained by horizontal and vertical reflection of the object in
the direction of the higher area projections. The result of adjusting the alignment is
shown in fig. 6.2(c). Another example of alignment for two MPEG07 object categories
is shown in fig. 6.3.
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(a) (b) (c)

Figure 6.2: (a) Mean aligned shape based on principal components. (b) Horizontal
and vertical area estimation. (c) Readjusted alignment.

(a) (b) (c) (d)

Figure 6.3: Mean aligned shapes for two MPEG07 categories.

At this point, given a shape image forming the shape S = {x1, .., xm}, we treat
each point xi, called from now SP , as a feature to compute the BSM descriptor of the
symbol shape. The image region is divided in a grid of n× n equal-sized sub-regions
(cells) ri. Each cell receives votes from the SP s in it and also from the SP s in the
neighboring sub-regions. Thus, each SP contributes to a density measure of its cell
and its neighboring ones, and thus, the grid size identifies the blurring level allowed
for the shape. This contribution is weighted according to the distance between the
point and the center of coordinates ci of the region ri. The algorithm is summarized
in table 6.1.

In Fig. 6.4, a shape description is shown for an apple data sample. Figure 6.4(a)
shows the distances di of a SP to the nearest sub-regions centers. To give the same
importance to each SP , all the distances to the neighbor centers are normalized. The
output descriptor is a vector histogram v of length n× n, where each position corre-
sponds to the spatial distribution of SP s in the context of the sub-region and their
neighbors ones. Fig. 6.4(b) shows the vector descriptor updating once the distances of
the first point in Fig. 6.4(a) are computed. Observe that the position of the descriptor
corresponding to the affected sub-region r15, which centroid is nearest to the analyzed
SP , obtains a higher value.

The resulting vector histogram, obtained by processing all SP s, is normalized
in the range [0, 1] to obtain the probability density function (pdf) of n × n bins.
In this way, the output descriptor represents a distribution of probabilities of the
symbol structure considering spatial distortions, where the distortion level allowed is
determined by the grid size. The BSM descriptors for different grid sizes applied to
the previous example of Fig. 6.4 are shown in Fig. 6.5. Concerning the computational
complexity, for a region of n× n pixels, the k relevant considered SP s to obtain the
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Given an image I:
1. Obtain the shape S contained in I
2. Divide I in n×n equal size sub-regions R = {r1, ..., rn2}, with
ci the center of coordinates for each region ri.
3. Let N(ri) be the neighbor regions of region ri, defined as
N(ri) = {rk|rk ∈ R, ||ck − ci|| ≤ 2|g|}, where g is the cell size.
4.

For each point x ∈ S,

For each ri ∈ N(rx),
di = d(x, ri) = ||x− ci||2

End For

Update the probability vector v as:
v(ri) = v(ri) + 1

diDi
, Di =

∑
ck∈N(ri)

1
||x−ck||2

End For

5. Normalize the vector v as: v = v(i)∑n2

j=1
v(j)

∀i ∈ [1, ..., n2]

Table 6.1: BSM algorithm.

Figure 6.4: BSM density estimation example.

BSM descriptor require a cost of O(k) simple operations. In Fig. 6.6(a) four BSM
descriptors of apple samples of length 10 × 10 are shown. Figure 6.6(b) shows the
correlation of the four previous descriptors. Note that though it exists some variations
on the shape of the symbols, the four descriptors remain closely correlated.

An important point of the BSM description is the selection of the grid size. The
optimum size defines the optimum grid encoding the blurring degree based on a
particular data set distortions. Because of this reason, a common way to look for the
optimum grid size is applying cross-validation over the data for different descriptor
parameters. The selected grid is the one which attains the highest performance on a
validation subset, defining the optimum grid encoding the different distortions over
each particular problem, and offering the required tradeoff between inter-class and
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(a) (b) (c) (d) (e)

Figure 6.5: (a) Input shape. BSM for (b) 8 × 8, (c) 16 × 16, (d) 32 × 32, and (e)
64× 64 grid sizes.

(a)

(b)

Figure 6.6: (a) Plots of BSM descriptors of length 10×10 for four apple samples.
(b) Correlation of previous BSM descriptors.

intra-class variability in a problem-dependent way.
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6.2 Boosted Landmarks of Contextual Descriptors

In this section, we introduce a new object detection method based on training the
discriminant features of the object description. Such description includes the infor-
mation of correlograms to learn at the same time the object local representation and
the spatial relationship among its parts fragments.

6.2.1 Boosting landmarks

A common strategy to address the object detection problem is to model the object
as an arrangement of its parts. The representative parts of the object (e.g. repre-
sented by a set of landmarks) must be highly discriminable; incorporating the spatial
relationship between different parts [9] can improve significantly the robustness of the
object detection.

In order to avoid considering all possible ROIs of an image where an object can
be located, first we define candidate locations of the object of interest by means of
a set of landmarks. The set of object landmarks is selected manually from a data
set. Using a training set of positive samples and a negative set of background image
regions, we train each landmark using a cascade of classifiers [32]. In particular,
Gentle Adaboost with Haar-like features estimated on the Integral Image [32] has
been used in the cascade since it has been shown to outperform most of the other
boosting variants in real applications [32]. Each level of the cascade is specialized on
a complex set of features corresponding to a landmark. By adding cascade levels, the
number of false positives is reduced while maintaining the detection of true positives,
and the process is repeated for each landmark of the object. This approach has the
advantage of reducing the number of landmark candidates when compared to other
well-known techniques. For instance, Torralba et al. [90] use a set of masks and
parts of an object and use normalized cross-correlation to obtain and detect the set
of landmarks. By using the Haar-like features, compared to other methods like the
normalized cross-correlation [90], we are more permissive to detect objects in case of
object transformations and to obtain a lower level of confusion with the background
regions. Summarizing, the steps to train a landmark detector are:

for each landmark:

• Define a positive set of image regions (centered in the landmark);

• Define a set of non-containing landmark images (negative set);

• Train a cascade of classifiers for each landmark.

To illustrate the process observe the triangular traffic sign image in fig. 6.8(a).
To distinguish this object type, we have manually identified six different object parts
(landmarks) that can represent the object. The selected fragments are shown in
fig.1. In the detection step, the set of selected landmarks is learnt using Gentle
Adaboost with the Haar-like features estimated in the integral image. In particular,
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for the example in fig. 6.8 we used 100 real triangular signs to generate a set of
100 positive samples of 21×21 pixels for each landmark. For each fragment, its 100
positives samples and 500 random background samples of the same size are trained
in an attentional cascade of 10 levels, allowing a false alarm rate by stage of 30%.
This measure assures that each landmark classifier has learnt correctly 100% of the
positives samples, and the small number of detected false positives does not introduce
ambiguity at the detection step. The use of six landmark cascades gives the results
shown in fig. 6.8(b). We can observe that it has a small number of detected labeled
landmarks compared to all possible locations and scales. Note that the presented
scheme is quite robust to scale, translation, global illumination and to small object
affine transformations, avoiding the problems of background confusion of masked
landmarks because of the use of the Haar-like features.

(a) (b) (c) (d) (e) (f)

Figure 6.7: Selected landmarks for triangular signs.

(a) (b) (c) (d) (e)

Figure 6.8: (a) Input image. (b) Detected landmarks. (c) Contextual descriptors.
(d) Resulting bins at feature selection of the correlogram of the landmark of fig. 6.7(b).
(e) Detected sign.

6.2.2 Contextual Descriptors

In order to refine the set of landmarks we use their contextual description. This step
focuses on defining the spatial relationship among the previously detected landmarks
to be learnt. Our approach proposes an alternative point of view of the method of [7]
in which a set of points of interest P = {pi}N

i=1 is considered, where N is the number
of points of interest coming from the edges of the image. These points are used to
build the constellation of multi-scale correlograms. However, opposed to the work
presented in [7], our relevant information is provided by landmarks instead of a set
of contour points. Since we are focusing on landmark candidates, we can exploit the
previous knowledge about the relationship between the landmarks and the size of the
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object of interest, reducing considerably the number of false positives and avoiding
the multi-scale step. Considering n landmarks and their sets of detected candidates:

L1 = {L1
1...L

1
i1}, ..., Ln = {Ln

1 ...Ln
in
} (6.2)

where ij is the number of instances of landmark j found in the image, for each
combination of possible landmarks candidates:

{L1
j1 , ..., L

n
jn

, j1 ∈ {1, ..., i1}, ..., jn ∈ {1, ..., in}} (6.3)

we generate n correlograms centered at the n chosen candidates. Their combina-
tion forms a constellation. From this constellation, we design a contextual descriptor
vector:

D = (D1, ..., Dn) (6.4)

The descriptor vector associated to each landmark candidate is described by:

Di = {B1
i , ..., Bn

i } (6.5)

being:

Bj
i = {(oj , hj , xj)}n

i=1 (6.6)

where oj is the label identifying the part, hj are the properties describing the
part, and xj is its spatial description in the image defined by its shape context [10],
as shown in fig. 6.8(c). Hence, the spatial relationship vector is defined by the values
of the correlogram bins for each of the landmarks. For example, using the 6 landmarks
shown in fig. 6.7, the spatial descriptor vector for an object is 6 ×N bins in length,
where N is the number of bins that forms each correlogram.

Given L correlograms of N bins, we create the object descriptor rearranging the
bins as a vector of size N×L. Since the constructed descriptor is, usually, very highly
dimensional, we use Gentle Adaboost (as in the case of learning the landmarks) as
a feature selection algorithm to reduce the dimensionality of the feature space and
to learn the representative features of the object. In this way, the final classifier
learns at the same time the features that correspond to relevant landmarks and their
respective spatial relations. Note that we can also introduce extra information, such
as the image contour map as an additional information to the boosted landmarks.

The detected landmarks involved in the detection step are shown in fig. 6.8(b).
First, all candidates of each type of landmark (each positive detection of a given
landmark) are sorted by their likelihood using the margin of the output of the Gentle
Adaboost classifier. Afterwards, we select the first combination of landmarks (one of
each type) that maximizes the sum of the likelihood. The individual vector descriptors
of each set of selected landmarks are merged. In fig. 6.8(c), the correlogram applied
to the landmark displayed in fig. 6.7(b) is shown. In fig. 6.8(d), the locations learnt
for the correlogram of the same landmark are shown. The gray level of the bins of the
correlogram corresponds to the importance assigned by the boosting procedure - which
is intuitively related to the likelihood of the presence of the other landmarks in the
descriptor of a current landmark. When a combined descriptor from a set of landmark
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candidates is classified as positive using the trained Gentle Adaboost classifier, the
object presence and the location of its landmarks are defined. In fig. 6.8(e) we can
observe a detected object, which contextual descriptor, defined by the combination
of detected landmarks, has been accepted as a positive example using the classifier
based on boosted landmarks.
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6.3 Object recognition discussion

In this chapter, we presented two novel strategies for object detection and description
that can be useful in combination with the coding and decoding ECOC strategies
presented in this tesis to deal with multi-class visual pattern recognition problems.

Concerning the suitability of the presented BSM scheme for object description,
several benefits should be mentioned: The method is rotation invariant because of
the use of the Hottelling transform and the area density adjustment. The method is
also scaling and stretching invariant because of the use of the BSM grid. Moreover,
the BSM descriptor is robust against symbols with rigid and elastic deformations since
the size of the BSM grid defines the region of activity of the symbol shape.

The previous properties makes the BSM approach to be useful on those problems
where the shape is a relevant feature to describe objects, and the use of the ECOC
schemes allows the BSM descriptor to be extended to multi-class object recognition
problems.

Moreover, there exists other applications where the Multi-class BSM scheme could
also be applied. Many description techniques are applied on problems where a pre-
vious region detection is required. This type of applications use to detect circular
regions to be described. In this case, the BSM descriptor should be applied to this
type of problems since it provides a feasible way to robustly describe grey-level regions
on real environments. In the same way, circular grids could also be defined to allow
the BSM descriptor to be described on this type of applications. Another possible
application consists in symbol spotting. Because of the good shape encoding and fast
computation of the BSM descriptor, it can be applied to this type of applications. It
only requires the descriptor to be included in a detection procedure, such as the one
proposed by Viola & Jones [92] based on a cascade of detectors.

Concerning the Boosted Landmarks of Contextual Descriptors applicability, the
strategy provides a fast and robust way to detect objects in clutter scenes. The
method is able to learn simultaneously the most relevant object features and their
relations, being potentially useful to deal with problems that suffer from small vari-
ations in scale, translation, global illumination, partial oclusions, and small affine
transformations.

On next chapters, we show the suitability of the techniques presented in this
chapter jointly with the multi-class ECOC designs presented at the previous sections
to solve several real world visual pattern recognition problems.



Chapter 7

Applications

In this chapter, we present different real applications where our methodology is ap-
plied. First, we introduce and model two medical categorization problems: intravas-
cular ultrasound tissue characterization and Chaga’s disease categorization. Then, we
present a Mobile Mapping System to detect and categorize a wide set of traffic signs
in uncontrolled environments. Finally, different benchmarking data sets from public
data and symbol recognition domains are learnt using the novel object detection and
feature extraction methodology jointly with the new ECOC designs.
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7.1 Intravascular Ultrasound Tissue Characteriza-
tion

Cardiovascular diseases represented the first cause of sudden death in the occidental
world [65]. Plaque rupture is one of the most frequent antecedent of coronary patholo-
gies. Depending on the propensity to collapse, coronary plaque can be divided into
stable and vulnerable plaque [13]. According to pathological studies, the main fea-
tures of a stable plaque are characterized by the presence of a large lipid core with a
thin fibrous cap. This last type of plaque can rupture generating thrombi followed by
an intimal hyperplasia. Therefore, an accurate detection and quantification of plaque
types represents an important subject in the diagnosis in order to study the nature
and the plaque evolution to predict its final effect.

One of the most widely used diagnostic procedures consists of screening the coro-
nary vessels employing Intravascular Ultrasound Imaging (IVUS). This technique
yields a detailed cross-sectional image of the vessel allowing coronary arteries and
their morphology to be extensively explored. This image modality has become one
of the principal tools to detect coronary plaque. An IVUS study consists of intro-
ducing a catheter which shots a given number of ultrasound beams and collect their
echoes to form an image. According with these echoes, three distinguishable plaques
are considered in this type of images: calcified tissue (characterized by a very high
echo-reflectivity and absorbtion of the ultrasound signal), fibrous plaque (medium
echo-reflectivity and good transmission coefficient), and lipidic or soft plaque (char-
acterized with very low reflectance of the ultrasound signal).

Despite the high importance of studying the whole coronary vessel, in clinical prac-
tice, this plaque characterization is performed manually in isolated images. Moreover,
due to the variability among different observers, a precise manual characterization
becomes very difficult to perform. Therefore, automatic analysis of IVUS images rep-
resents a feasible way to predict and quantify the plaque composition, avoiding the
subjectivity of manual region classification and diminishing the characterization time
in large sequences of images.

Given its clinical importance, automatic plaque classification in IVUS images has
been considered in several research studies. The process can be divided into two
stages: plaque characterization step which consists of extracting characteristic fea-
tures in order to describe each tissue, and a classification step where a learning
technique is used to train a classifier. In the first stage there are mainly two ba-
sic strategies: image-based approaches [99][74], and Radio Frequency (RF) signal
analysis [41][58]. The main advantage of image-based methods is the availability of
the images since they are the standard data source of the equipment. Additionally
there is a high variety of descriptors which capture the spatial information of gray
level values of a pixel together with its neighborhood in the image. On the other
hand, characterization of RF signal has been proposed to take advantage of the raw
IVUS signals. This data source avoids the introduction of artifacts from the pixel
interpolation in the process of image formation. Due to the higher resolution of the
unprocessed data, small regions of plaque could be distinguished.

In this section, we present an intravascular data set based on texture-based fea-
tures, RF signals, combined features, and slope-based features to characterize the
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different types of tissues.

7.1.1 Feature Extraction

We consider three types of features, the first ones obtained from RF signals, the
second ones based on texture-based features from reconstructed images, and finally,
the slope-based features proposed in [60].

RF Features

In order to analyze ultrasound images, the RF signals are acquired from the IVUS
equipment with a sampling rate of at least two times the transducer frequency, and
filtered using a band-pass filter with 50% gain centered at the transducer frequency
[40]. Then, an exponential Time Gain Compensation (TGC) is applied [40]. Once the
RF signals have been acquired, filtered and exponentially compensated by the TGC,
the power spectrum is obtained. Nair et al. in [60] show the modelling of the power
spectrum using Autoregressive Models (ARM) as one of the most suitable and stable
methods to analyze ultrasound signals [60]. It also represents an alternative to the
Fourier Transform since the ARM have been proved to be more stable when small
signal windows are considered.

The ARM are defined as a linear prediction equation where the output x at a
certain point t for each A-line is equal to a linear combination of its p previous
outputs weighted by a set of parameters ap [69]:

x(t) =
p∑

k=1

ap(k)x(t− k),

where p is the ARM degree and the coefficients ap are calculated minimizing the
error of the modelled spectrum with respect to the original using the Akaike’s error
prediction criterium [69].

A sliding window is formed by n samples and m contiguous A-lines with a dis-
placement of n/4 samples and m/3 A-lines in order to obtain an average AR model of
a region. Only one side of the obtained spectrum is used because of its symmetrical
properties. This spectrum is composed of h sampled frequencies ranging from 0 to
fs/2 [69].

In addition to the spectrum, two global measures are computed: the energy of the
A-line and the energy of the window spectrum. All these features are compiled into a
unique vector of h+2 dimensions which is used as a feature vector in the classification
process.

Texture Features Extraction

Given that different plaques can be discriminated as regions with different grey-level
distributions, it is a natural decision to use texture descriptors. In the bibliography,
one can find a wide set of texture descriptors and up to our knowledge there are no
optimal texture descriptors for image analysis in the general case. Our strategy is
instead of trying to find out the optimal texture descriptor for our problem to gather
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several families of descriptors and apply multiple classifiers able to learn and extract
the optimal features for the concrete problem.

Therefore, we employ three different texture descriptors: co-occurrence Matrix [63],
local binary patterns [64] and Gabor filters [20, 11]. Additionally, taking into account
that highly non-echogenic plaques produce significant shade in the radial direction
of the vessel, we include in the feature set the presence of shading in the image as a
complementary feature.

The co-occurrence matrix is defined as the estimation of the joint probability
density function of gray level pairs in an image [63]. The sum of all element values is:

P (i, j, D, θ) = P (I(l,m) = i⊗ I(l + Dcos(θ), m + Dsin(θ)) = j),

where I(l, m) is the gray value at pixel (l, m), D is the distance among pixels and
θ is the angle between neighbors. We have established the orientation θ to be
[0o, 45o, 90o, 135o] [77, 63]. After computing this matrix, Energy, Entropy, Inverse
Difference Moment, Shade, Inertia and Promenance measures are extracted [63].

Local Binary Patterns (LBP) are used to detect uniform texture patterns in circu-
lar neighborhoods with any quantization of angular space and spatial resolution [64].
LBP are based on a circular symmetric neighborhood of P members with radius R.
To achieve gray level invariance, the central pixel gc is subtracted to each neighbor
gp, assigning the value 1 to the result if the difference is positive and 0, otherwise.
LBPs are defined as follows:

LBPR,P =
∑P

p=0 a(gp − gc) · 2p

A Gabor filter is a special case of wavelets [20] which is essentially a Gaussian
modulated by a complex sinusoid s. In 2D, it has the following form in the spatial
domain:

h(x, y) = 1
2πσ2 exp{− 1

2 [(x2+y2

σ2 )]} · s(x, y)
s(x, y) = exp[−i2π(Ux + V y)] φ = arctan V/U

where σ is the standard deviation, U and V represent the 2D frequency of the complex
sinusoid, and φ is the angle of the frequency.

According to [34], one of the main differences in the appearance of calcified tissue
compared to the rest of tissue types is the shadow which is appreciated behind it.
In order to detect this shadow, we perform an accumulative mean of the pixels gray
values on the polar image from a pixel to the end of the column (the maximal depth
considered). As a result of extracting the texture descriptors, we construct an n-
dimensional feature vector where n = k + l + m + 1, k is the number of co-occurrence
matrix measurements, l is the number of Gabor filters, m is the number of LPB and
the last feature is the measure of the ”shadow” in the image.

Intravascular data set

In order to generate the data sets, we used the RF signals and their reconstructed
images from a set of 10 different patients with Left Descent Artery pullbacks acquired
in Hospital ”German Trias i Pujol” from Barcelona, Spain. All these pullbacks contain
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the three classes of plaque. For each one, 10 to 15 different vessel sections were selected
to be analyzed. Two physicians independently segmented 50 areas of interest per
pullback. From these segmentations we took 15 regions of interest (ROI) of tissue per
study randomly making a total of 5000 evaluation ROIs. To build the data set, these
selections were mapped in both RF signals and reconstructed images. In order to
reduce the variability among different observers, the regions where both cardiologist
agreed have been taken under consideration. Some samples from the data set are
shown on the left of fig. 7.1.

Figure 7.1: Left: IVUS data set samples. Right: (top) segmentation by a physician
and (down) Automatic classification with Texture-Based Features. The white area
corresponds to calcium, the light gray area to fibrosis, and the dark gray area to soft
plaque.

To generate the data set on texture features, the intersection between segmented
images is mapped into a feature vector. Then, all the features collected are cate-
gorized by patient and each of the three possible plaques type. The image features
are extracted by using the previous texture descriptors: Co-ocurrence Matrix, Local
Binary Patterns, and Gabor Filters. Those features are calculated for each pixel and
gathered in a feature vector of 68 dimensions. An example of a manual and automatic
texture-based segmentation for the same sample is shown on the right of fig. 7.1.

To generate the data set of RF features, the RF signals have been acquired using a
12-bit acquisition card with a sampling rate of fs = 200MHz. The IVUS equipment
used is Galaxy II from Boston Scientific with a catheter transducer frequency of
f = 40Mhz, and it is assumed a sound speed in tissue of 1565m/s. Each IVUS
image consists of a total of 256 A-lines (ultrasound beams), with a radial distance
of r = 0.65cm. The attenuation in tissue factor used is α = 1Db/Mhz × cm. To
analyze the RF signals, the sliding window is composed of n = 64 samples of depth
and m = 12 radial A-lines, and the displacement is fixed in 16 samples and four A-
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lines. The power spectrum of the window ranges from 0 to 100MHz and it is sampled
by 100 points. Then, it is complemented with two energy measures yielding a 102
feature vector.

We also consider a third data set that concatenates the descriptors from the previ-
ous RF and texture-based features, obtaining a feature vector of length 170 features.

Slope-based features

Finally, the fourth data set considers the slope-based features proposed by [60]. In
particular, each sample is characterized by means of 14 slope-based features corre-
sponding to: maximum power in DB from 20 to 60 MHz, frequency at the maximum
power, negative slope in db/MHz between maximum and 60, minimum power in that
slope, frequency corresponding to this negative slope, the estimated y intercept of this
slope, the positive slope in db/Mhz between 20 and maximum, minimum power in
that slope, frequency corresponding to this negative slope, the estimated y intercept
of this slope, the mean power, the power at 0 MHz, power Db at 100 Mhz, and the
power at the midband frequency (40 MHz) in DB [60].

7.1.2 Intravascular tissue characterization

To solve the problem of Intravascular tissue characterization, first we apply the Sub-
class ECOC strategy over the four previous data sets, and second, we apply an incre-
mental tissue categorization using the decoding evaluation presented in this thesis.

IVUS characterization with sub-classes

For this experiment, we use the four previous IVUS data sets. To measure the per-
formances, we apply leave-one-patient-out evaluation.

Applying NMC, Adaboost, and FLDA over a set of ECOC configurations, the per-
formance results for RF features, texture-based features, combined RF and texture-
based features, and slope-based features are shown in fig. 7.2. Comparing the results
among the different data sets, one can see that the worst performances are obtained
by the RF and slope-based features, which obtain very similar results for all the base
classifiers and ECOC configurations. The texture-based features obtain in most cases
results upon 90%. Finally, the data set of combined RF and texture-based features
slightly outperform the results obtained by the texture-based feature, though the re-
sults do not significantly differ1. This behavior is summarize on table 7.1, where
the mean rank obtained by each feature set is shown. The rankings are obtained
estimating each particular ranking rj

i for each problem i and each feature set j, and
computing the mean ranking R for each feature set as Rj = 1

N

∑
i rj

i , where N is the
total number of problems (3 base classifiers × 6 ECOC designs). Note that the best
ranking corresponds to the combined set of features, and that the individual feature
set that obtains the best results correspond to texture-based.

Concerning the classification strategies, observing the obtained performances in
fig. 7.2, one can see that independently of the data set and the ECOC design applied,

1Due to the high similitude among slope-based and RF features results, the combination of
texture-based and slope-based features has been omitted.
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Table 7.1: Mean rank for each feature set.
Feature set RF Texture-based RF+Texture-based Slopes
Mean rank 2.94 2.28 1.72 2.83

the Sub-class ECOC approach always attains the best results. To compare these
performances, the mean rank of each ECOC design considering the twelve different
experiments is shown in table 7.2. In this case, the rankings are obtained estimating
each particular ranking rj

i for each problem i and each ECOC configuration j, and
computing the mean ranking R for each ECOC design as Rj = 1

N

∑
i rj

i , where N
is the total number of problems (3 base classifiers × 4 data sets). One can see that
the Sub-class ECOC attains the best position for all experiments. To analyze if the
difference between methods ranks are statistically significant, we apply the Friedman
and Nemenyi tests. In order to reject the null hypothesis that the measured ranks
differ from the mean rank, and that the ranks are affected by randomness in the
results, we use the Friedman test. The Friedman statistic value is computed as follows:

X2
F =

12N

k(k + 1)
[
∑

j

R2
j −

k(k + 1)2

4
] (7.1)

In our case, with k = 6 ECOC designs to compare, X2
F = 30.71. Since this value

is undesirable conservative, Iman and Davenport proposed a corrected statistic:

FF =
(N − 1)X2

F

N(k − 1)−X2
F

(7.2)

Applying this correction we obtain FF = 11.53. With six methods and twelve
experiments, FF is distributed according to the F distribution with 5 and 55 degrees
of freedom. The critical value of F (5, 55) for 0.05 is 2.40. As the value of FF is
higher than 2.45 we can reject the null hypothesis. One we have checked for the for
the non-randomness of the results, we can perform a post hoc test to check if one of
the techniques can be singled out. For this purpose we use the Nemenyi test - two
techniques are significantly different if the corresponding average ranks differ by at
least the critical difference value (CD):

CD = qα

√
k(k + 1)

6N
(7.3)

where qα is based on the Studentized range statistic divided by
√

2. In our case,
when comparing six methods with a confidence value α = 0.10, q0.10 = 1.44. Substi-
tuting in eq.7.3, we obtain a critical difference value of 1.09. Since the difference of
any technique rank with the Sub-class rank is higher than the CD, we can infer that
the Sub-class approach is significantly better than the rest with a confidence of 90%
in the present experiments.
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Table 7.2: Mean rank for each ECOC design over all the experiments.

ECOC design one-versus-one one-versus-all dense random
Mean rank 2.33 5.08 4.25

ECOC design sparse random decoc sub-class
Mean rank 5.00 2.67 1.00

IVUS characterization with decoding evaluation

Given the high variability of IVUS problem, we consider a multi-patient classification
strategy for this experiment. Starting from three arbitrary plaques that can belong to
different patients, and increasing the set of plaques by one, the one-versus-one strategy
is applied to see the performance of each decoding strategy in this problem. All the
decoding strategies presented in this thesis are considered in this experiment with
Gentle Adaboost as base classifier. Once a classification is done among all patient
plaques, label by its corresponding tissue. The classification results are shown in
fig. 7.3. In this experiment, one can see that the classification performance tends to
increase when the number of classes also increases. The results of most of the decoding
strategies are highly correlated. Only the ELW and LLW strategies obtain different
results from the rest of approaches. The continuous ELW attains the lowest accuracy
on this problem in comparison with the others. Finally, the continuous LLW is the
most appropriated choice in this case, outperforming at each step of the experiment
(thus, for any number of plaques) the results obtained by the rest of strategies.
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Performance results with Radial Frequency features

Performance results with texture-based features

Performance results combining features

Performance results with slope-based features

Figure 7.2: Performance results for different sets of features, ECOC designs and
base classifiers on the IVUS data set.
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Figure 7.3: Classification results for the decoding strategies when the size of the
training data increases.
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7.2 Chagas’ disease

Chagas’ disease is an infectious illness caused by the parasite Tripanosoma Cruzi,
which is transmitted to humans through the feces of a bug called Triatoma infestans.
The most common insect species belong to the genera Triatoma (fig. 7.2(a)), Rhodnius
(fig. 7.2(b)), and Panstrongylus.

(a) (b)

Figure 7.4: (a) Triatoma and (b) adult Rhodnius prolixus, a kissing bug.

Trypanosoma cruzi is a member of the same genus as the infectious agent of the
African sleeping sickness and the same order as the infectious agent of leishmaniases,
but its clinical manifestations, geographical distribution, life cycle and insect vectors
are quite different. The Chagas disease is endemic in all Latin America, and according
to the studies of the OMS, about a 18 millions of people suffer from this disease in the
continent, 100 million (25% of the Latin American population) have risk of acquiring
the disease, and around 50.000 infected people annually die [62]. The black regions of
fig. 7.5 correspond to the geographical Latin American areas affected by the Chagas
disease.

Figure 7.5: Geographic influence of the Chagas disease in Latin American.

An infected triatomine insect vector feeds on blood and releases trypomastigotes in
its feces near the site of the bite wound. The victim, by scratching the site of the bite,
causes trypomastigotes to enter the host through the wound, or though intact mu-
cosal membranes, such as the conjunctiva. Then, inside the host, the trypomastigotes
invade cells, where they differentiate into intracellular amastigotes. The amastigotes
multiply by binary fission and differentiate into trypomastigotes, then are released
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into the circulation as bloodstream trypomastigotes (fig. 7.6). These trypomastig-
otes infect cells from a variety of biological tissues and transform into intracellular
amastigotes in new infection sites.

Figure 7.6: Tripomastigote and bloodstream trypomastigotes.

In general terms, two different stages of Chagas’ disease can be distinguished. The
first stage, called acute phase, appears shortly after the parasitical infection and it is
occasionally manifested by high temperature, inflammations, and heart rate accelera-
tion. Following this phase, which lasts for one or two months, there is an undetermined
latent period. After that, some patients go into a chronic phase, which is character-
ized by alterations in the cardiovascular system, normally associated to the so-called
Chagas’ cardiomyopathy. This type of cardiomyopathy produces malfunctioning in
the propagation of the electrical impulse as well as destruction of cardiac fibers. In
areas where the illness is endemic, Chagas’ cardiomyopathy represents the first cause
of cardiovascular death [51].

In order to optimize treatment for chronic chagasic patients, it is essential to make
use of an effective diagnosis tool able to determine the existence of cardiac injury and,
if positive, its magnitude. Clinical diagnosis is usually based on tests such as chest x-
rays, echocardiogram, or electrocardiogram (ECG), which can be either Holter ECG
or conventional rest ECG. The use of high-resolution electrocardiography (HRECG)
has been reported in the literature as a useful tool for clinical assessment of Chagas’
disease [14][26][55]. Specifically, the presence of ventricular late potentials (VLP)
has been detected in chronic chagasic patients using high-resolution ECGs. VLP,
which are usually measured on temporally averaged beats, are very low-amplitude
high-frequency signals found within the terminal part of the QRS complex and the
beginning of the ST segment. A different approach has been proposed in other studies
[45][46], in which the beat-to-beat variability of the QRS duration on HRECG has
been measured, and it has been shown that such a variability is more accentuated in
chagasic patients, particularly when the degree of myocardial damage is severe.

Since Chagas’ cardiomyopathy frequently leads to alterations in the heart’s elec-
trical conduction, recently it has been proposed the slopes of QRS complex in order
to determine the myocardial damage associated with the disease [71].

QRS features
To obtain the features to evaluate the degree of myocardial damage associated with
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the disease, the QRS slopes are analyzed for all the HRECG recordings of 107 indi-
viduals from the Chagas data set recorded at Simón Boĺıvar University (Venezuela).
For each recording, let’s denote xi(n), n = 0, ..., N , the i-th beat of lead X, where i
runs from 0 to I (being I the total number of beats in the recording). Analogously,
let’s denote yi(n) and xi(n) the i-th beats of leads Y and Z, respectively. QRS slopes
are measured on temporally averaged signals x(n), y(n), and z(n), n = 0, .., N , which
are calculated as the average of all normal beats i = 0, .., I of the recording. Ectopic
and grossly noisy beats were excluded of the averaging process. The averaging is
performed following the standard recommendations described in [12].

A three-step process is applied to compute the upward QRS slope, αUS , and the
downward QRS slope, αDS , of each averaged beat x(n), y(n), and z(n). In the first
step, delineation is performed using a wavelet-based technique [53] that determines
the temporal locations Q, R, and S wave peaks, which are denoted by nQ, nR, and
nS , respectively [72]. The second step identifies the time instant nU associated with
maximum slope of the ECG signal (i.e., global maximum of its derivative) between
nQ and nR. Analogously, the time instant nD corresponding to minimum slope of the
ECG signal between nR and nS is identified. As a final step, a line is fitted in the
least squares sense to the ECG signal in a window of 15ms around nU , and the slope
of that line is defined as αUS . In the same manner, αDS is defined as the slope of a
line fitted in a 15ms window around nD.

Other temporal indices defined to detect the presence of VLP in HRECG record-
ings are also evaluated in this work. Previous studies in the literature have shown the
ability of those indices to determine the severity of Chagas’ cardiomyopathy [45][46].
Consequently, we use such indices in conjunction with the QRS slopes. Computation
of QRS-based indices considers filtered leads X, Y, and Z using a bi-directional 4th-
order Butterworth filter with passband between 40 and 250 Hz. The filtered signals
are denoted by xi,f (n), yi,f (n), and zi,f (n).

The QRS-based indices QRSD, RMS40, and LAS40, which are described next,
require temporal signal averaging (xf (n), yf (n), and zf (n)) as well as the calculation
of the vector magnitude, defined as follows:

v(n) =
√

xf
2(n) + yf

2(n) + zf
2(n) (7.4)

On the signal v(n) the three temporal QRS indices defined to detect VLP are com-
puted based on identification of time instants nb and ne corresponding to the begin-
ning and the end of the QRS complex [12]:

QRSD = ne − nb (7.5)

RMS40 =

√√√√ 1

n2 − n1

n2∑
n=n1

v2(n), n1 = ne − 40ms, n2 = ne (7.6)

LAS40 = ne − argmax{n|v(n) ≥ 40µV } (7.7)

On the other hand, the index ∆QRSD is considered, which is defined next. This
index is measured on the vector magnitude of the ultraveraged filtered leads (xi,f (n),
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yi,f (n), zi,f (n)):

vi(n) =
√

x2
i,f (n) + y2

i,f (n) + z2
i,f (n) (7.8)

On each signal vi(n), i = 0, .., I, the duration of its complex QRS is estimated and
denoted by QRSDi. The index ∆QRSD is defined as the standard deviation of the
beat-to-beat QRSDi series [46]:

∆QRSD =

√∑I

i=1
(QRSDi −QRSD

2
)

I − 1
, QRSD =

∑I

i=1
QRSDi

I
(7.9)

Data set
We analyzed a population composed of 107 individuals from the Chagas data set

recorded at Simón Boĺıvar University (Venezuela). For each individual, a continu-
ous 10-minute HRECG was recorded using orthogonal XYZ lead configuration. All
the recordings were digitalized with a sampling frequency of 1 kHz and amplitude
resolution of 16 bits.

Out of the total 107 individuals of the study population, 96 are chagasic patients
with positive serology for Trypanosoma Crucy, clinically classified into three different
groups according on their degree of cardiac damage (Groups I, II, and III). This
grouping is based on the clinical history, Machado-Guerreiro test, conventional ECG
of twelve derivations, Holter ECG of 24 hours, and myocardiograph study for each
patient. The other 11 individuals are healthy subjects with negative serology taken
as a control group (Group 0). All individuals of the data set are described with a
features vector of 16 features based on the previous analysis of section 2. The four
analyzed groups are described in detail next:

• Group 0: 11 healthy subjects in the age 33.6±10.9 years, 9 men and 2 women.
• Group I: 41 total patients with the Chagas’ disease in the age of 41.4±8.1 years,

21 men and 20 women, but without evidences of cardiac damage in cardiographic
study.

• Group II: 39 total patients with the Chagas’ disease in the age of 45.8±8.8 years,
19 men and 20 women, with normal cardiographic study and some evidences of weak
or moderate cardiac damage registered in the conventional ECG or in the Holter ECG
of 24 hours.

• Group III: 16 total patients with the Chagas’ disease in the age of 53.6±9.3
years, 9 men and 7 women, with significant evidences of cardiac damage detected in
the conventional ECG, premature ventricular contractions and/or cases of ventricular
tachycardiac registered in the Holter ECG and reduced fraction of ejection estimated
in the cardiographic study.

7.2.1 Chagas’ disease characterization

We compare our results with the performances reported in [71] for the previous data.
Moreover, we compare different ECOC designs: the one-versus-one ECOC coding
strategy applied with the Hamming, Euclidean, Probabilistic, and the presented Loss-
Weighted decoding strategies. We selected the one-versus-one ECOC coding strategy
because the individual classifiers are usually smaller in size than they would be in the
rest of ECOC approaches, and the problems to be learned are usually easier, since the
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classes have less overlap. Each ECOC configuration is evaluated for three different
base classifiers: Fisher Linear Discriminant Analysis (FLDA) with a previous 99.9%
of Principal Components, Discrete Adaboost with 50 runs of Decision Stumps, and
Linear Support Vector Machines with the regularization parameter C set to 1. To
evaluate the methodology we apply leave-one-patient-out classification on the Chagas
data set.

We divide the Chagas categorization problem into two experiments. First, we
classify the features obtained from the 107 patients considering the four groups in
a leave-one-patient-out experiment for the different ECOC configurations and base
classifiers. Since each patient is described with a vector of 16 features, 107 tests are
performed. And second, the same experiment is evaluated over the 96 patients with
the Chagas’ disease from groups I, II, and III. This second experiment is more useful
in practice since the splitting of healthy people from the patients with the Chagas’
disease is solved with an accuracy upon 99.8% using the Machado-Guerreiro test.

4-class characterization

The results of categorization for the four groups of patients reported by [71] are shown
in fig. 7.7. Considering the number of patients from each group, the mean classification
accuracy of [71] is of 57%. The results using the different ECOC configurations for
the same four groups are shown in fig. 7.8. In fig. 7.8(a), the mean accuracy for
each base classifier and decoding strategy is shown. The individual performances of
each group of patients for each base classifier are shown in fig. 7.8(b), fig. 7.8(c), and
fig. 7.8(d), respectively. Observing the mean results of fig. 7.8(a), one can see that any
ECOC configuration outperforms the results reported by [71]. Moreover, even if we
use FLDA, Discrete Adaboost, or Linear SVM in the one-versus-one ECOC design,
the best performance is always obtained with the proposed Loss-Weighted decoding
strategy. In particular, the one-versus-one ECOC coding with Discrete Adaboost as
the base classifier and Loss-Weighted decoding attains the best performance, with a
classification accuracy upon 60% considering the four groups of patients.

Figure 7.7: Classification performance reported by [71] for the four groups of pa-
tients.
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3-class characterization

Now, we evaluate the same strategies on the three groups of patients with the Chagas’
disease, without considering the healthy people. The new results are shown in fig. 7.9.
In fig. 7.9(a), the mean accuracy for each base classifier and decoding strategy is
shown. The individual performances of each group of patients for each base classifier
are shown in fig. 7.9(b), fig. 7.9(c), and fig. 7.9(d), respectively. In the mean results
of fig. 7.9(a), one can see that independently of the base classifier applied, the Loss-
Weighted decoding strategy attains the best performances. In this example, the
one-versus-one ECOC coding with Discrete Adaboost as the base classifier and Loss-
Weighted decoding also attains the best results, with a classification accuracy about
72% distinguishing among three levels of patients with the Chagas’ disease.
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(a) Mean classification performance for each base classifier

(b) Classification performance for each group using FLDA

(c) Classification performance for each group using Discrete Adaboost

(d) Classification performance for each group using Linear SVM

Figure 7.8: Leave-one-patient-out classification using one-versus-one ECOC design
(HD: Hamming decoding, ED: Euclidean decoding, LW: Loss-Weighted decoding,
PD: Probabilistic decoding) for the four groups with and without Chagas’ disease.
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(a) Mean classification performance for each base classifier

(b) Classification performance for each group using FLDA

(c) Classification performance for each group using Discrete Adaboost

(d) Classification performance for each group using Linear SVM

Figure 7.9: Leave-one-patient-out classification using one-versus-one ECOC design
(HD: Hamming decoding, ED: Euclidean decoding, LW: Loss-Weighted decoding,
PD: Probabilistic decoding) for the three groups with Chagas’ disease.
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7.3 Mobile Mapping System

We use the video sequences obtained from the Mobile Mapping System [16] to design
a real traffic sign multi-class data set.

7.3.1 Data acquisition

In this system, the position and orientation of the different traffic signs are measured
with video cameras fixed on a moving vehicle (see fig. 7.10). The system has a stereo
pair of calibrated cameras, which are synchronized with a GPS/INS system. The
result of the acquisition step is a set of stereo-pairs of images with their position and
orientation information. We focus on the speed data set since the low resolution of
the images, the non-controlled conditions, and the high similarity among classes make
the categorization of these signs a difficult task.

Figure 7.10: Geovan.

We use Adaboost [32] to train a cascade that defines regions of interest (ROI) con-
taining a sign. Depending on the type of the detected sign, a different model fitting
is applied, looking for affine transformations that perform the spatial normalization
of the object.

7.3.2 Model fitting

Because of the few changes on the point of view of the captured signs, we apply the
fast radial symmetry [50] for the circular signs, which offers high robustness against
image noise. As it is shown if Figure 7.11, the fast radial symmetry provides an
approximation to the center and the radius of the circular sign.
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Figure 7.11: (a) Input image, (b) X-derivative, (c) Y -derivative, (d) image gradient,
(e) accumulator of orientations, (f) center and radius of the sign.

On the other hand, for the case of triangular signs, the method that allows a
successful model fitting is based on the Hough transform [56]. Nevertheless, we need
to consider additional constraints to obtain the three representative border lines of a
triangular traffic sign. Each line has associated a position in relation to the others.
In Figure 7.12(a) a false horizontal line is shown. Since this line does not fulfil the
expected spatial constraints of the object, we iterate the Hough procedure to detect
the next representative line in the allowed range of degrees. The corrected image is
shown in Figure 7.12(b). Once we have the three detected lines, we calculate their
intersection, as shown in Figure 7.12(c). To assure that the lines are the expected
ones, we complement the procedure looking for a corner at the circular region of each
intersection surroundings (as shown in Figure 7.12(d) and (e)) S = {(xi, yi) | ∃p <
((x − xi)2 + (y − yi)2 − r2)} | i ∈ [1, ..., 3], where S is the set of valid intersection
points, and p corresponds to a corner point to be located in a neighborhood of the
intersection point.

Figure 7.12: (a) Detected lines, (b) corrected line, (c) intersections, (d) corner
region, (e) corner found.

7.3.3 Spatial normalization

Once the sign model is fitted using the previous methods, the next step is the spa-
tial normalization. The steps are: a) transform the image to make the recognition
invariant to small affine deformations, b) resize the object to the signs data set size,
c) filter using the Weickert anisotropic filter [93], and d) mask the image to exclude
the background pixels at the classification step. To prevent the effects of illumination
changes, the histogram equalization improves image contrast and yields an uniform
histogram.
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Figure 7.13: Samples from the road video sequences.

7.3.4 Traffic signs data set

Figure 7.13 shows examples of video sequences. We defined three groups of classes us-
ing the most common types of signs. The considered classes are shown in Figure 7.14.
Speed signs need special attention. These types of signs are less discriminative, being
some of them only differentiated by a few pixels. With this type of signs it is better
to work on binary images to avoid the errors that can be accumulated because of the
grey levels of the signs. For the twelve classes of circular signs and twelve of triangular
signs we have 750 training images in both cases. For the nine speed classes we use
600 training samples. Finally, the resolution of each data set is: 35 × 35 pixels for
the circular group, 44× 39 pixels for the triangular group, and 41× 41 pixels for the
speed group, respectively.
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(a) Speed classes

(b) Circular classes

(c) Triangular classes

Figure 7.14: Set of classes considered in the classification module.

7.3.5 Mobile Mapping System characterization

First, we evaluate the Forest-ECOC methodology with the state-of-the-art classifiers
to solve the traffic sign categorization problem. Moreover, an analysis of the tree
structure embedding in the Forest-ECOC matrix for the Mobile Mapping System is
shown. Then, we classify the Speed data set applying the Sub-class ECOC strategy.
The Speed categorization is also used to evaluate the decoding methodology presented
in this thesis. Finally, the same data set is used to evaluated the Sparse random
designs presented in this thesis.

Forest-ECOC and state-of-the-art comparison

To evaluate the Forest-ECOC performance, we compare it with the state-of-the-art
classifiers. The details for each strategy are: 3-Euclidean distance Nearest neighbors
(K-NN), Tangent Distance (TD) [86] with invariant tangent vector with respect to
translation, rotation, and scaling, 99.98% of Principal Components Analysis followed
by 3-Nearest neighbors (PCA K-NN) [3], Fisher Linear Discriminant Analysis with
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a previous 99.98% PCA (FLDA) [3], Support Vector Machine with projection kernel
Radial Basis Function and the parameter γ = 1 (SVM) [37], Gentle Adaboost with
decision stumps using the Haar-like features (BR) [32], multi-class Joint Boosting with
decision stumps (JB) [90], Gentle Adaboost [32] Sampling with FLDA (BS), statistical
Gentle Naive Boosting with decision stumps (NB) [32], and our Forest-ECOC (F-
ECOC) with 3-embedded optimal trees using a 99% FLDA as a base classifier. In the
different variants of boosting we apply 50 iterations. We use Gentle Adaboost since it
shown to outperform the other Adaboost variants in real applications [32]. Table 7.3
shows the characteristics of the previous data used for the classification experiments.

Table 7.3: Characteristics of the data sets used for classification.
#Training #Test

Dataset examples examples #Features #Classes

Circular 750 200 1225 12

Speed 500 200 1681 7

Triangular 750 200 1716 12

The classification results are shown graphically in Figure 7.15 for the different
groups. One can see that the Forest-ECOC using FLDA as a base classifier attains
the highest accuracy in all cases. Nevertheless, for the circular and triangular signs
the differences among classifiers are significatively different because of the high dis-
criminability of these two groups. The speed group is a more difficult classification
problem. The numerical results for this group are shown in table 7.4. In this case,
the Forest-ECOC strategy obtains an accuracy upon 90%, outperforming the rest of
classifiers.

Table 7.4: Classification results for the Speed group.
Classification technique Accuracy

K-NN 70.53±1.70

TD 46.37±2.30

PCA K-NN 68.23±1.50

FLDA 88.89±1.30

SVM 79.84±2.00

BR 85.93±2.10

JB 80.36±1.50

BS 88.85±1.90

NB 82.78±1.80

Forest-ECOC 91.73±1.10

Tree embedding analysis
The training evolution of the Forest-ECOC at the previous experiment is shown

in Figure 7.16 for the speed group. Each iteration of the figure shows the classifica-
tion accuracy by embedding a new node (binary classifier) from each optimal tree in
the Forest-ECOC matrix M . The three optimal trees are split by the dark vertical
lines. The respective trees are shown in Figure 7.17. In the first generated tree of
Figure 7.17, one can see that the most difficult partitions are reserved to the final
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classifiers of the tree. The next trees select the following best partitions of classifiers
to avoid repeating classifiers. These classifiers learn sub-groups of classes from the
same data, improving the classification results (Figure 7.16) by sharing their knowl-
edge among classes.

Speed signs categorization with sub-classes

For this experiment, we choose the previous speed data set to evaluate the Sub-class
strategy since the low resolution of the image, the non-controlled conditions, and the
high similarity among classes make the categorization a difficult task. Fig. 7.18 shows
several samples of the speed data set used for the experiments. The data set contains
a total of 2500 samples divided into nine classes. From the original feature space,
about 150 features are derived using a PCA that retained 90% of the total variance.

The performance and the estimated ranks using the different ECOC strategies for
the different base classifiers are shown in table 7.5. These results are also illustrated
in the graphics of fig. 7.19. One can see that in this particular problem, the sub-class
is only required for Discrete Adaboost and NMC, while the rest of base classifiers
are able to find a solution for the training set without the need for sub-classes. In
this case, RBF SVM obtains low performances, and parameter optimization should
be applied to improve these results. Nevertheless, it is out of the scope of this paper.
Finally, though the results do not significantly differ between the strategies, the Sub-
class ECOC approach attains a better position in the global rank of table 7.5.

Table 7.5: Rank positions of the classification strategies for the Speed data set.
one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC

D. Adaboost 66.1(3.1) 56.6(3.1) 55.2(2.8) 52.3(3.6) 58.6(3.2) 60.8(3.1)
NMC 60.7(3.2) 50.65(3.7) 47.4(3.8) 45.1(3.8) 51.9(3.2) 62.8(3.1)
FLDA 74.7(2.8) 71.4(2.9) 74.9(2.6) 72.7(2.5) 72.6(2.8) 76.2(3.0)

Linear SVM 74.9(2.7) 72.3(2.1) 71.8(2.1) 68.2(2.9) 78.9(2.1) 78.9(1.9)
RBF SVM 45.0(0.9) 45.0(0.9) 45.0(0.9) 44.0(0.9) 45.0(0.9) 45.0(0.9)

Global rank 1.8 3.6 3.4 4.6 2.6 1.2

Speed signs categorization with decoding evaluation

For this experiment, we also choose the previous speed data set to evaluate the de-
coding methodology. For this experiment, we apply ten-fold cross-validation over the
set of coding and decoding designs.

The rankings obtained from the experiments are shown in fig. 7.20. The perfor-
mances from which the rankings are computed are shown in tables E.1 and E.2 of
Appendix E. Note that the different variants of Loss-Weighted strategy obtain the
best positions in this real experiment. In particular, the Exponential Loss-Weighted
decoding using the continuous output of the base classifiers attains the best positions
either when we use Gentle Adaboost as well as Linear SV M . The rest of Type III
strategies obtain good performance too. This behavior is more significant if we observe
the rankings without considering the confidence interval of fig. 7.20, corresponding to
the second and fourth column of each group.
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Speed signs categorization with Sparse designs

For this experiment, we use the same Speed data set used in the previous experiments.
For this experiment, we applied the same random criteria than at the Sparse random
chapter, with a length of codewords of nine, as the number of classes.

Table 7.6 shows the performance results on the Speed traffic data set for the
Sparse Random designs using Gentle Adaboost and Linear SV M , respectively. The
results on the top correspond to the performance and confidence interval using the
classical Sparse Random strategy. The results on the bottom correspond to the results
using the Sparse Random selection based on maximizing the new ternary distance.
Note that in all cases, the results obtained by the new Sparse designs outperform the
performances obtained by the classical approach.

Table 7.6: Classical Sparse Random results (performances on the top of each data
set) and Sparse Random with ternary distance maximization (performances on the
bottom of each data set) using Adaboost and SV M on the Speed traffic sign data
set.

HD IHD ED AED LLB ELB

Adaboost 0.526 0.483 0.516 0.514 0.404 0.430
0.041 0.043 0.047 0.044 0.031 0.029
0.539 0.508 0.557 0.537 0.533 0.553
0.030 0.034 0.029 0.028 0.037 0.032

SVM 0.629 0.531 0.605 0.633 0.656 0.662
0.048 0.048 0.054 0.049 0.053 0.058
0.668 0.619 0.646 0.675 0.656 0.697
0.035 0.041 0.036 0.032 0.045 0.029

PD LAP βDEN LLW LLW ELW ELW
Discrete Continuous Discrete Continuous

0.561 0.524 0.526 0.528 0.450 0.539 0.492
0.055 0.047 0.047 0.044 0.035 0.041 0.039
0.570 0.547 0.547 0.546 0.551 0.548 0.564
0.031 0.027 0.027 0.033 0.041 0.030 0.038

0.650 0.640 0.640 0.648 0.661 0.642 0.678
0.043 0.055 0.056 0.055 0.045 0.056 0.057
0.659 0.706 0.706 0.706 0.669 0.706 0.711
0.031 0.036 0.036 0.036 0.035 0.035 0.029

To show the performance improvements by selecting the new Sparse Random ma-
trix, the absolute and relative improvements are shown in fig. 7.21 for Gentle Adaboost
and Linear SV M , respectively. The light bars correspond to the relative improve-
ment, and the dark lines to the absolute one. In this experiment, one can see that
the ternary sparse maximization criterion also obtains performance improvements for
all decoding strategies.
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Tringular sign detection using Boosted Landmarks with Contextual De-
scriptors

Some samples of the triangular sign data set illustrating the variation of appearance
of the signs are shown in fig. 7.22. Observe the high variability of the signs due
to the non-controlled conditions of acquisition. In this experiment, triangular signs
are detected using the boosted landmarks technique. The landmarks are located
at the three corners of the signs. In order to learn each landmark at size 21×21
pixels (see previous fig. 6.7) we use cascades of classifiers. We used stratified ten-fold
cross-validation to train each cascade of 10 levels and 500 negatives samples, with an
expected error of 0.3. The correlograms used have a diameter of 150 pixels, 20 radius
regions and 13 geometric circles with an enlarging factor of 1.3. As a result, we obtain
a total of 780 features for each landmark correlogram including the object attributes
and spatial positions.

Finally, we use the images from the described Mobile Mapping System to detect
triangular traffic signs. The whole process of detection and recognition is illustrated
for some test images in fig. 7.23. First column corresponds to the detected landmark
candidates labeled by color. The second column of the figure shows the combination of
landmarks obtained by the highest likelihood of the contextual descriptors classifiers.
At the third column one can see the final recognition results - the recovered object
from the traffic sign data set using the Forest-ECOC strategy described in section 3.1.



7.3. Mobile Mapping System 135

(a)

(b)

(c)

Figure 7.15: Classification results for the (a) Speed, (b) Circular, and (c) Triangular
problems.
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Figure 7.16: Training process of Forest-ECOC embedding the first three optimal
trees for the speed group.

Figure 7.17: Three optimal trees generated by the Forest-ECOC for the speed
group.

Figure 7.18: Speed data set samples.
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Discrete Adaboost NMC

FLDA Linear SVM

RBF SVM

Figure 7.19: Speed data set performances.
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Figure 7.20: Ranking of the decoding strategies for the different coding designs
applied over the speed data set: Gentle Adaboost considering (in black) and without
(in light grey) considering the intersection of the confidence intervals, and Linear
SV M considering (in white) and without considering (in dark grey) the intersection
of the confidence intervals, respectively.

(a) (b)

Figure 7.21: Absolute (light lines) and relative (dark lines) improvement for the
Sparse Random designs using ternary distance maximization for Gentle Adaboost
(left) and Linear SV M (right) on the Traffic sign categorization experiment, respec-
tively.
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Figure 7.22: Real triangular sign images in non-controlled conditions.

(a) (b) (c)

Figure 7.23: Two examples of the whole procedure for real traffic sign images.
(a) Landmark candidates for test images. (b) Predominant likelihoods of landmark
combination. (c) Classification results. (landmarks candidates are shown in color).
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7.4 Caltech repository data set

At the previous experiments, we showed problems where we performed multi-class
categorization. However, in most cases, a previous object detection procedure stage
is required before final classification. In this sense we use the Boosted Landmarks of
Contextual Descriptors, previously presented in section 6.2, where both parts of the
objects and their spatial arrangement are learnt at same time.

7.4.1 Boosted Landmarks in Contextual Descriptors Evalua-
tion

In order to compare the accuracy of our detector, we test the Boosted Landmarks of
Contextual Descriptors approach on the Caltech data set [2] considering the following
7 object categories: car side, face, motorbike, car rear, plane, leaf, and spotted cat
(fig. 7.24), training only three landmarks from the models of each data set. In fig. 7.25
and fig. 7.26, the models, contour points, landmarks trained, and a correlogram for
the face and car side data sets are shown. To validate the method we used 20%
of samples to train landmarks (between 30 and 80 samples for each category) and
contextual descriptors by boosting, and the rest to test. From the 20% images for
training, we select only three representative landmarks in a supervised way to train
each data set (fig. 7.24 (down)). We use 40 weaks of Gentle Adaboost with Decision
Stumps to train the cascades and the correlogram descriptors.

The results of this experiment are shown in table 7.7. We compare the results with
those reported by Fergus et. al. [76] and the boosting context proposed by Amores
et. al. [7]. We can see that our proposed technique obtains better results in most of
the cases: car (side), face, car (rear), and leaf, and comparable results in the other
three cases.

Figure 7.24: Some samples for the considered Caltech categories and relevant land-
marks trained.
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(a) (b) (c)

Figure 7.25: Fergus faces data set. (a) Original image. (b) Contour points map.
(c) Correlogram for a given landmark.

(a) (b) (c)

Figure 7.26: Fergus car side data set (a) Original image. (b) Contour points map.
(c) Correlogram of a landmark.

Boosting Context [7] shows very good behavior too, but it is more susceptible
to confusion and appearance of false positives and negatives due to the use of the
contour points. The authors in [76] use a model that involves a considerable number
of features, being susceptible to false positives appearance. We also tested the false
alarm rate using the background set of images from the Caltech data set. Testing
with 500 background images, our boosted landmarks classifiers obtained a maximum
on only one false positive at each of the 7 object categories.
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Table 7.7: Hit ratio results for the Fergus data set.
Category Fergus [76] Boosting Context [76] Boosted Landmarks in Contextual Descriptors
Car (side) 88.50% 90.00% 96.63%

Face 96.40% 89.50% 97.72%
Motorbike 92.50% 95.00% 93.85%
car (rear) 90.30% 96.90% 99.35%

Plane 90.20% 94.50% 92.50%
Leaf - 96.30% 98.85%

Spotted car 90.00% 86.50% 84.00%
Rank 2.50 1.86 1.57
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7.5 Symbol Recognition

Symbol recognition is one of the central topics of Graphics Recognition [47]. A lot of
effort has been made in the last decade to develop good symbol and shape recognition
methods inspired in either structural or statistic pattern recognition approaches. The
presence of handwritten symbols increases the difficulty of classification: there is a
high variability in writing style, with different sizes, shapes and intensities, increasing
the number of touching and broken symbols. In addition, working with old documents
even increases the difficulties in these stages because of paper degradation and the
frequent lack of a standard notation. Moreover, due to the fact that architectural, car-
tographic and musical documents use their own alphabets of symbols (corresponding
to the domain-dependent graphic notations used in these documents), the automatic
interpretation of such documents requires specific processes.

Two major focus of interest can be stated to deal with symbol recognition prob-
lems: the definition of expressive and compact shape description signatures, and the
formulation of robust classification methods according to such descriptors. Zhang [97]
reviews the main techniques used in this field, mainly classified in contour-based de-
scriptors (i.e. polygonal approximations, chain code, shape signature, and curvature
scale space) and region-based descriptors (i.e. Zernike moments, ART, and Legendre
moments [52]). A good shape descriptor should guarantee inter-class compactness
and intra-class separability, even when describing noisy and distorted shapes. It has
been proved that some descriptors, robust with some affine transformations and oc-
clusions in printed symbols, are not efficient enough for handwritten symbols. Thus,
the research of other descriptors for elastic and non-uniform distortions is required,
coping with variations in writing style and blurring.

The symbol recognition problem is a clear example where the use of a rich descrip-
tor has a determinant effect on the classification performance of object classes. In
this section, we perform the classification of real multi-class data sets from different
symbol recognition domains. Some examples of each data set are shown in fig. 7.27
and fig. 7.28. Now, we briefly describe each of these data sets:

• Clefs and alterations data set: The data set of clefs is obtained from a
collection of modern and old musical scores (19th century) of the Archive of the
Seminar of Barcelona. The data set contains a total of 3980 samples between the seven
different types of clefs from 24 different authors. The models for each of the seven
classes are shown in fig. 7.27(a). The images have been obtained from original image
documents using a semi-supervised segmentation approach [31]. The main difficulty
of this database is the lack of a clear class separability because of the variation of
writer styles and the absence of a standard notation.

• MPEG data set: The MPEG repository data set [1] has been chosen since
it provides a high intra-class variability in terms of scale, rotation, rigid and elastic
deformations, as well as a low inter-class variability. A pair of samples for some of
the 70 binary object categories are shown in fig. 7.27(b). Each of the classes contains
20 instances, which represents a total of 1400 object samples.

• Architectural hand-drawn data set: The architectural symbol database is
a benchmark data set that has been created with the logitech IO digital pen [48].
This data set, which has been used in a sketch CAD framework [80], is composed of
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(a)

(b)

(c)

(d)

(e)

Figure 7.27: Symbol data sets: (a) Clefs and alterations data set, (b) MPEG data
set, (c) Architectural hand-drawn data set, (d) GREC05 data set, and (e) GREC07
architectural data set.
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(a)

(b)

Figure 7.28: Symbol data sets: (f) GREC07 logos data set and (g) camera-based
grey-level symbols data set.
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on-line and off-line instances from a set of 50 symbols drawn by a total of 21 users.
Each user has drawn a total of 25 symbols and over 11 instances per symbol. The
data set consists on more than 5000 instances. To capture the data the following
protocol has defined: The authors give to each user a set of 25 dot papers, which
are paper containing the special pattern from anoto. Each paper is divided into 24
different spaces where the user has to draw in. The first space is filled with the ideal
model of the symbol to guide the users on their draw due to they are not experts on
the field of Architectural design. Although the data set is composed of 50 symbols,
in our experiments we have chosen the 14 architectural symbols most representative
from this database. Our experimental set consists in 2762 total samples organized in
the 14 classes shown in fig. 7.27(c). Each class consists of an average of 200 samples
drawn by 13 different authors.

• GREC05 data set: The GREC2005 database [18] is a public symbol data
set with a high number of object categories from architectural and electronic do-
mains shown under different distortions. In particular, we focus on the first level of
distortions. Some examples of the used samples are shown in fig. 7.27(d).

• GREC07 architectural data set: The GREC2007 data set [19] contains a
high number of architectural symbol classes with similar deformations to the GREC05
data set. Some models for the GREC07 architectural classes are shown in fig. 7.27(e).

• GREC07 logos data set: The GREC2007 data set [19] also contains a high
number of logos different deformations and different levels of distortions. The models
for of the logos classes are shown in fig. 7.28(a).

• Camera-based grey-level symbols data set: This data set of symbols is
composed by grey-level samples from 17 different classes, with a total of 550 samples
acquired with a digital camera from real environments. The samples are taken so
that there are high affine transformations, partial occlusions, background influence,
and high illumination changes. A pair of samples for each of the 17 classes are shown
in fig. 7.28(b).

The previous data sets of symbol recognition problems are highly affected by
many types of deformations, such as: intra-class and inter-class variabilities, elastic
and rigid deformations, rotations, occlusions, changes in the point of view, different
writing styles, etc. The main objective of this section is to show the influence of a rich
descriptor to obtain a high generalization capability of the classification methodology
applied. For this task, we fixed the classification strategy using standard ECOC
designs and state-of-the-art base classifiers to compare the effectiveness of different
types of feature sets with our Blurred Shape Model descriptor presented in section 6.1.

7.5.1 Clefs and alterations data set classification

For the classification of the clefs and alterations data sets, our BSM descriptor is
compared with ART, Zoning, Zernike, and CSS curvature descriptors from the stan-
dard MPEG [97][43][57]. Moreover, we compare with the SIFT descriptor, which has
shown to be a dominant strategy applied on real description problems. For all the
experiments, stratified ten-fold cross-validation with a two-tailed t-test at 95% of the
confidence interval is used. The descriptors for BSM and Zoning techniques are of
length 8 × 8 from the considered sub-regions. The parameters for ART are radial
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order with value 2 and angular order with value 11. For the Zernike descriptor, 7
Zernike moments are used. And a length of 200 with an initial sigma of 1 increasing
per one is applied for the curvature space of the CSS descriptor. The ECOC design
applied is one-versus-one with Exponential Loss-Weighted decoding. Different base
classifiers are applied: FLDA, Linear SV M , RBF SV M , and Discrete Adaboost.
The classification performance considering the different descriptors and classification
strategies are shown in table 7.8. One can see that the BSM descriptor is more robust
against the elastic deformations produced by the writing styles, and independently
of the classification methodology applied, the BSM features tends to outperform the
rest of feature sets. In this particular domain, the best results are obtaining using
Discrete Adaboost as the base classifier.

Table 7.8: Clefs and alterations classification performances.

FLDA Linear SV M RBF SV M Discrete Adaboost
BSM 83.53(7.52) 79.45(6.30) 80.43(6.17) 88.99(5.00)

Zoning 78.62(7.28) 80.51(7.31) 81.54(7.52) 83.61(5.24)
SIFT 71.35(9.04) 76.45(6.73) 75.47(9.76) 74.95(9.77)
CSS 68.76(11.02) 66.87(8.19) 69.87(9.18) 71.33(8.44)

Zernike 69.09(6.01) 71.66(8.29) 39.21(9.00) 72.05(7.76)

7.5.2 MPEG data set classification

Considering the MPEG data set, we perform two types of experiments. First, we use
the 23 categories from the MPEG repository database shown in fig. 7.27(b). This sub
set from the 70 original MPEG data set classes has been chosen since it provides a
high intra-class variability in terms of scale, rotation, rigid and elastic deformations,
as well as a low inter-class variability. Each of the classes contains 20 instances, which
represents a total of 460 object samples for the first experiment. The details of the
descriptors are the same than at the previous experiment.

For the first experiment, we started the classification using the first three classes
of fig. 7.27(b). Iteratively, one class is added at each step, and the classification is
repeated until the 23 classes are processed. The main objective is to analyze the
performance of the techniques when the number of classes increases. The results of
the experiment are shown in fig. 7.29. Observing the figure, one can realize that the
BSM descriptor attains the best performance for any number of classes in the classifi-
cation system. Besides, an important point is that its performance does not decrease
significatively while increasing the number of classes, obtaining results around 80%
in all cases. The second descriptor in the ranking is Zernike, which offers similar per-
formance than BSM when the number of classes is small, but substantially decreases
with the number of object categories. Finally, Zoning, CSS, and ART descriptors
offer the worst classification scores in this problem. This can be intuitively justified
by the fact that Zoning descriptors are very local, and the database is full of shape
variations. This fact also affects to the CSS descriptor, since the points of curvature
varies due to the high shape variations among objects.
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Figure 7.29: Classification of MPEG data set for different number of classes and
descriptor types.

Table 7.9: Classification accuracy on the 70 MPEG7 object categories for the dif-
ferent descriptors using 3-Nearest Neighbor and our system.

Descriptor 3−NN one-versus-one ECOC LW
BSM 0.6579±0.1203 0.7793±0.0725

Zernique 0.4364±0.0766 0.5129±0.0548
Zoning 0.6064±0.1197 0.6550±0.0664
CSS 0.3701±0.1076 0.4454±0.0711
ART 0.2443±0.0169 0.2873±0.0646
SIFT 0.2914±0.0568 0.3257±0.0404

The second experiment consists of classifying the whole set of 70 MPEG7 classes.
The classification results are shown in table 7.9 using a 3-NN classifier and a one-
versus-one design with Discrete Adaboost as the base classifier and Exponential Loss-
Weighted decoding. Note that the use of an ECOC scheme considerable increase the
classification performance, and that the BSM features allow a final performance near
80% classifying the set of 70 MPEG classes.

7.5.3 GREC05 classification

Our tests on the GREC2005 database are applied on the first level of distortions.
We have generated 140 artificial images per model (thus, for each of the 25 classes)
applying different distortions such as morphological operations, noise addition, and
partial occlusions. Then, we use a one-versus-one design with Discrete Adaboost as
the base classifier and Exponential Loss-Weighted decoding to learn the synthetic data
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Figure 7.30: Descriptors classification accuracy increasing the distortion level of
GREC05 database using 25 models and 50 test images.

Table 7.10: Architectural GREC07 contest tests performed.
Test Kind Model Image Test Images Rotation Scaling Degradation

5 Structured 50 200 None Random Random

for the different classes. The BSM grid size in this case is of 28×28 bins after looking
for the optimum grid using applying cross-validation. In this sense, 784 features are
extracted from every image, from which Adaboost selects a maximum of 50.

For this experiment, the classification is performed over 25 classes of different
distortion levels from the GREC05 data set. We compare our results with the ones
reported in [98] using the kernel density matching method (KDM). The results are
shown in fig. 7.30. One can see that the performances obtained with our methodology
are very promising, outperforming for some levels of distortions the KDM results.

7.5.4 GREC07 architectural data set classification

We used the BSM desciptor in a one-versus-one design with Discrete Adaboost as the
base classifier and Exponential Loss-Weighted decoding to learn the test described in
table 7.10 from the GREC07 architectural data set. The performance obtained on
this public data set is of 91.5%. Note that this percentage is high considering the
high number of classes and the degree of degradation of the samples.

7.5.5 GREC07 logos data set classification

We used the BSM desciptor in a one-versus-one design with Discrete Adaboost as the
base classifier and Exponential Loss-Weighted decoding to learn the tests described in
table 7.11 from the GREC07 logos data set. The performance obtained on this public
data sets are shown in table 7.12. Note that these percentages are high considering
the high number of classes and the degree of degradation of the samples involved at
each experiment.

Table 7.11: Logos GREC07 contest tests performed.
Test Kind Model Image Test Images Rotation Scaling Degradation

8 Logos 105 300 None Random None

10 Logos 105 300 None None Random

11 Logos 105 200 None None Random

12 Logos 105 300 None None Random
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Table 7.12: Logos GREC07 data set results.

Test Performance
#8 95%
#10 82.7%
#11 56.5%
#12 55%

7.5.6 Camera-based grey-level symbols data set

For the type of images of this data set the SIFT descriptor has demonstrated to be a
dominant strategy [49]. In this sense, for this experiment we compare the BSM and
SIFT descriptors.

To extend the use of the BSM descriptor from binary to grey-scale images, we
estimate an adaptive orientation threshold for each particular problem. For a given
image, our method computes the gradient module and normalizes it to unit. Then,
the histogram of gradient magnitudes is estimated, and the Otsu method is applied
in order to obtain an adaptive threshold for significant gradient modules. The points
in the image with a higher gradient module than the computed threshold use to
correspond to relevant symbol shape points. Some examples of the data set of this
experiment and their corresponding BSM descriptors are shown in Fig. 7.31.

Figure 7.31: BSM descriptors from samples of the grey-level symbols data set.

The performance and confidence interval obtained in this experiment from a ten-
fold cross-validation using the BSM and SIFT descriptors in a one-versus-one ECOC
scheme with Gentle Adaboost as the base classifier is shown in table 7.13. One can
see that the result obtained by the BSM descriptor adapted to grey-scale symbols
significantly outperforms the result obtained by the SIFT descriptor. This difference
is produced in this data set because of the high changes in the point of view of the
symbols and the background influence, which produce significant changes of the SIFT
orientations.
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BSM SIFT
75.23(7.18) 62.12(9.08)

Table 7.13: Performance of the BSM and SIFT descriptors on the grey-scale symbols
data set using a one-versus-one ECOC scheme with Gentle Adaboost as the base
classifier.
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7.6 Applications discussion

In this Chapter, we presented different real and synthetic multi-class problems where
we tested our methodology. First, we modelled a multi-class medical image problem:
Intravascular Ultrasound Tissue characterization. We used the different ECOC con-
figurations presented in this thesis to model the problem and to compare different
state-of-the-art strategies. Second, we characterized the level of damage of patients
with the Chaga’s disease. In this case, the decoding methodology was evaluated and
successfully applied, outperforming related works treating the same data. Third,
we presented a Mobile Mapping System and we proposed a methodology based on
ECOC to detect and classify a wide set of traffic sign classes. Fourth, we use the pre-
vious Boosted Landmarks of Contextual descriptors to model those problems where
a previous object detection is required before applying classification. The detection
methodology was evaluated on some categories from the public Caltech repository
data set and at the previous Mobile Mapping System. Finally, we modelled several
data sets from the symbol recognition domain. These data sets are affected by degra-
dation on the shape of the object. In this sense, we used the previous Blurred Shape
Model methodology to describe this type of data, which successfully describe symbols
with high level of degradation of the shape.



Chapter 8

Conclusion

Real-life situations are full of multi-class classification tasks. In this sense, Error-
Correcting Output Codes demonstrated to be a powerful tool to model the data
provided by these multi-class situations. In this thesis, we presented an Error-
Correcting Output Coding methodology to deal with multi-class categorization prob-
lems. As we showed in this thesis, there still exist some drawbacks in the definition
of the ECOC framework that stop down the reliability of the ECOC designs.

8.1 Summary and contribution

The common way to model a multi-class problem using an ECOC design is by means
of a coding and a decoding strategy:

1) We presented a novel problem-dependent methodology to deal with the coding
step of an Error-Correcting Output Codes design. The state-of-the-art ECOC coding
designs are problem-independent. It means that to obtain an ECOC system with
a good generalization performance, large codes are required. This implies a high
computational cost for learning and testing the system. At the same time, problem-
independent designs can not assure that the learnt boundaries based on the binary
problems are the optimal ones for a given problem. These drawbacks motivated us
the design of problem-dependent ECOC strategies.

Three alternatives to design a problem-dependent ECOC matrix were proposed.
The common point for all the strategies in that all of them exploit the problem-domain
to obtain small codewords with high discriminative power.

1.1) The Forest-ECOC strategy takes advantage of a forest of sub-optimal bi-
nary tree structures. Each internal node of the trees is embedded as a binary problem
in an ECOC coding matrix. In this sense, we can guarantee a high generalization
performance with a small number of embedded tree structures. Moreover, the main
advantage of this representation is that all the information provided by the trees for
a particular class are taken into account jointly in order to obtain a classification
decision. On the other hand, the criterion for the design of the tree structures is an
important point, which decides the generalization capability of the designed multi-
class system. Depending on the problem we are working on, greedy searches and
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sub-optimal entropy-based solutions are proposed to design binary tree structures.
This method proposes a sub-optimal solution to a multi-class problem because of the
sub-optimal designs of the tree structures.

1.2) One of the weak points of the Forest representation for ECOC designs is that
at each iteration of the procedure a whole tree structure is embedded in the ECOC
matrix, though some of the internal nodes would not be necessary to improve the
knowledge of the system. Concerning to this problem, the second problem-dependent
proposal, the Optimizing Node Embedding (ECOC-ONE), evaluates at each step
of the algorithm the generalization of the system over a training and a validation
sub-sets. Then, a new binary problem that learns the classes that decrease the per-
formance of the system is embedded to update the coding matrix. In this case, the
performance of the ECOC design is evaluated each time that a new binary prob-
lem is added in the system, and the process is repeated meanwhile the performance
of the system improves or the training error is under a certain epsilon value. This
problem-dependent design showed to obtain robust results learning different types
of multi-class data, obtaining better performance than traditional ECOC techniques
using far less number of binary problems.

1.3) Finally, the last problem-dependent design presented in this thesis is the Sub-
class ECOC strategy. Although the previous designs propose an advanced design of
Error-Correcting Output Codes with high generalization capability, the performance
of the whole system is still determined by the ability of the base classifier to learn each
binary problem. In this sense, the Sub-class ECOC approach avoids the limitations of
the rest of ECOC designs when some distributions of the data are difficult to model
using some types of base classifiers due to the overlapping of the data. The Sub-class
strategy splits classes into sub-classes based on a clustering approach for the cases
that the base classifier is not capable to distinguish the classes. Sequential Forward
Floating Search based on maximizing the Mutual Information is used to generate the
sub-groups of problems that are split into more simple ones until the base classifier
is able to learn the original problem. In this way, multi-class problems which can
not be modeled by using the original set of classes are modeled without the need of
using more complex classifiers. The final ECOC design is obtained by combining the
sub-problems. As a consequence of applying the Sub-class strategy, in the worst case
it remains the same than without using sub-classes. One of the important points is
that both, base classifier and sub-class, can be optimized. If the base classifier is
well tuned, less binary problems and sub-classes would be required by the Sub-class
strategy. On the other hand, the Sub-class approach could be seen as an incremental
tool independent of the base classifier to improve the weakness of the base classifiers.
Moreover, the sub-class scheme not only can be used in the present methodology, but
also to improve other multi-class strategies.

2) We also analyzed the behavior of the state-of-the-art decoding strategies
applied over 3-symbol coding matrices. As shown on the ECOC coding chapter, the
ECOC designs that attains the best performances are 3-symbol based. The main
reason is that the binary ECOC is a particular case of the ternary ECOC framework.
The use of the third symbol allows us to design a more rich set of binary problems to
adapt the ECOC design to each particular problem domain. However, the decoding
strategies presented in the literature that are applied over 3-symbol ECOC matrices
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were designed to deal with just two symbols. In this sense, we showed some inconsis-
tencies produced by the traditional decoding strategies when using the zero symbol.
We presented two working hypotheses to deal with a successful decoding and ana-
lyzed the decoding strategies over a new taxonomy of decoding strategies. As a
consequence, different strategies fulfilling the presented properties were proposed:

2.1) Attenuated Euclidean decoding: This technique is proposed to avoid
the influence of the ECOC coding matrix positions that do not provide relevant in-
formation of the data.

2.2) Laplacian decoding: This technique introduces a measure that counts
the number of coincidences between the input codeword and the class codeword,
normalizing by the total number of codeword positions. The procedure introduces
a previous bias to make the technique robust in cases of having a small number of
coded positions in one word.

2.3) Pessimistic β-density decoding: This technique estimates the probability
density functions between two codewords. The main goal of this strategy is to model
at the same time the accuracy and uncertainty based on a pessimistic score on the
continuous binomial distribution in order to obtain more reliable predictions.

2.4) Loss-Weighted decoding: The Loss-Weighted decoding strategy codifies a
matrix of weights that ponders the decoding process. This matrix avoids the influence
of the positions that do not provided information at the coding step. At same time,
the technique makes the decoding measures between codewords comparable either in
the binary as in the ternary ECOC framework.

We showed that when the new decoding strategies avoid the bias produced by the
zero symbol and all the codewords work in the same dynamic range, the new strate-
gies significantly outperform the traditional decoding methodologies independently of
the coding strategy applied. In particular, we showed that the performance improve-
ments are more significant when the new rules are applied over coding designs with
higher sparseness degree (high percentage of zero symbols in the coding matrix). It
is produced because when we increase the percentage of zero symbols, the two biases
produced by the third symbol also increase, and the classification performance for the
traditional decoding strategies is more affected.

From the comparison among the presented decoding strategies, we found that the
least improvement is achieved by the Attenuated Euclidean decoding, followed by the
Laplacian, the Pessimistic β-density decoding, and finally, the Loss-Weighted decod-
ing. This order corresponds to a sort from discrete to continuous approaches, taking
into account that the last ones are also sorted based on the amount of continuous
information that votes the decoding process. Thus, the order also corresponds to the
level of complexity of the decoding strategies.

3) Moreover, we showed that the ternary ECOC framework contains inconsistences
not only at the decoding step, but also in the definition of Sparse coding matrices.
We showed that the rows separability in terms of the Hamming distance of the binary
ECOC framework can not be applied in the ternary case, and we presented a new
formulation of the ternary ECOC distance and error-correcting capabilities
in the ternary ECOC framework. Based on the new measure, we stress on how to
design coding matrices preventing coding ambiguity and propose a new Sparse
Random coding matrix with ternary distance maximization. Comparing the
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results of the traditional and novel strategies of Sparse random matrix generation,
we found that the performance improvements obtained by the new methodology are
statistically significant.

4) Furthermore, we introduced two new techniques for object detection and de-
scription that can be used jointly with the multi-class ECOC methodology.

4.1) First, the Blurred Shape Model technique describes the content of a region
by considering the relevant gradient magnitude points to define a probability density
map of the shape of the object, even if it suffers from irregular deformations.

4.2) And second, we introduced the Boosted Landmarks of Contextual De-
scriptors, a new object detection method based on training the discriminant features
of the object description. Such description includes the information of correlograms
to learn at the same time the object local representation and the spatial relationship
among its parts fragments.

5) The multi-class methodology presented in this thesis has been compared with
the state-of-the-art ECOC designs, multi-class classifiers, and object detection and
description strategies. Statistical tests have been performed to look for statistical
significance among method performances. Many real and synthetic multi-class data
sets have been used to evaluate the methodology, such as the multi-class data sets
from the public UCI Machine Learning Repository. We presented a set of real
applications were our methodology is applied and compared with the state-of-the-art
strategies. We modelled an Intravascular Ultrasound tissue characterization
problem, the categorization of the level of coronary damage of patients
with the Chaga’s disease, a multi-class traffic sign classification problem
from a Mobile Mapping System, and a wide set of real and synthetic
multi-class benchmarking and symbol recognition data sets.

As a conclusion, we can state that in this thesis we defined a new methodology
that exploits the domain of each particular multi-class problem to codify a problem-
dependent ECOC coding matrix. New decoding strategies are applied to take full-
benefit from the information provided at the coding step, and significant performance
improvements are obtained compared to the state-of-the-art ECOC designs and multi-
class classifiers. The techniques obtain high generalization performance with a small
code length, being combined with object detection and description strategies and
solving several multi-class real world problems.

8.2 Future work

As future lines, it would be interesting to analyze how different the ECOC problem-
dependent designs evolve depending on the base classifier that we consider. In the
same way, we could take into account a wider set of tuned multi-class built-in classifiers
to compare with the benefits of the new ECOC designs. Another possible extension
consists on the inclusion of continuous information in the construction of the problem-
dependent ECOC matrix.

An interesting analysis on the ECOC design could be its relation with the multi-
task framework. The way in which an ECOC codeword takes into account simultane-
ously the responses of all the dichotomizers can be seen as a multi-task problem [15].
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In this sense, a further analysis to develop a problem-dependent multi-task ECOC
could benefit from both frameworks.

Particularly, in the case of the proposed problem-dependent ECOC designs, an
open issue is the selection of a proper solution to guide the forest-ECOC matrix
construction. In the case of the ECOC-ONE procedure, it could benefit from a further
analysis of the convergence procedure of the matrix construction.

In the case of the sub-class ECOC approach, a future line of work is to use the
sub-classes obtained by the splitting procedure to construct other types of problem-
dependent ECOC matrices. For example, the final sub-classes can be potentially use-
ful to improve other multi-class strategies or standard hierarchical clustering strategy.
Note that the final set of sub-classes can be used for example over the one-versus-one
ECOC configuration. Obviously, it will require a higher number of dichotomizers to
codify the problem, but in cases where the computational cost is not a problem, it
could result a promising choice.

Moreover, a further analysis on the clustering strategy applied on the Sub-class
approach, based on the behavior of each particular base classifier, can help the con-
vergence of the algorithm to model multi-class problems minimizing the number of
required sub-classes.

In the case of the new Sparse random design, an open issue is to construct the
random ECOC matrix using an alternative ternary distance maximization, such as
for example based on the ternary decoding measures proposed in this thesis.

In the case of the visual pattern recognition problems, further analysis is required
to develop techniques robust to a wide range of image/object transformations. The
research of a generic object recognition methodology is still an open issue, and several
researches are working on this problem. We want to take full advantage of the state-
of-the-art object recognition procedures (object detection methods in most cases) to
combine their behavior with our multi-class methodology in order to develop a robust
multi-class object recognition procedure.

From a practical point of view, we are developing a public ECOC toolbox that
can be useful to other authors for replicating experiments and comparing different
methodologies.
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ECOC Notation
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Table A.1: ECOC Notation.

∆ - Matrix composed by the Hamming
distances between the codewords
of M

ρj - jth feature of the object (data
sample) ρ

νt - Confusion matrix of the training
data

νv - Confusion matrix of the validation
data

θ = {θsize, θperf , θimpr} - Parameters
for the size, performance, and im-
provement.

ζj - Centroid of cluster j

ξ - Error function

α - Number of matches

β - Number of failures

ϕ - Conditional function

ψ(ν) = [ψ1(ν), ψ2(ν), ..., ψN (ν)] - Set
of Beta Density distributions for
N classes

a - Value introduced by a match in a
position coded by {−1,+1}

at - Training accuracy

av - Validation accuracy

b - Error induced by the zero symbol

CD - Critical difference for the Ne-
menyi test

C - Set of classes

ci - Class i

d(yi1 , yi1) - Decoding measure between
codewords of classes ci1 and ci2

d - Distance

dc - Minimum Hamming distance be-
tween all pairs of columns of M
and their opposites

dr - Minimum Hamming distance
among all pairs of codewords

dt - Ternary distance

D = [d1, ..., dN ] - Vector of distances

e - Value introduced by a failure in a
position coded by {−1, +1}

e - Euler number (or Neper constant)

FF - Corrected Friedman Statistic

{f1, ..., fn} - Set of continuous hy-
potheses, fj ∈ R

H - Matrix of accuracy of hypotheses

{h1, ..., hn} - Discrete hypotheses set,
hj ∈ {+1,−1}

Ib, Ia, Ie - Sets of coordinates of
a codeword corresponding to
the zero positions, matches on
{−1, +1} values, and failures on
{−1, +1} values, respectively.

I - Mutual information

J - Data matrix of the original prob-
lem

Ji - Data of class Ci
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Table A.2: ECOC Notation.

J ′ - Data matrix of the sub-classes

k - Number of methods to compare

Km - Objective function

K - Number of classes considered by a
classifier in the Laplace correction

K1,K2 - Constant factors

` = {`1, .., `N} - Set of labels

L(θ) - Loss-based function of parame-
ter θ

L - Sets of classes labels

l(ρ) = `i - Label function of data sam-
ple ρ is `i

MW - Matrix of weights

M ∈ {−1, +1}N×n - Binary coding
matrix

M ∈ {−1, 0, +1}N×n - Ternary coding
matrix

m - Number of objects

N - Number of classes

n - Number of binary problems

P (X) - Probability of item X

P - Prior

p - Probability density function

℘i = {℘+
i , ℘−i } - Set of positive and

negative sub-sets of the ith binary
problem

qα - Studentized range statistic di-
vided by

√
2

rj
i - Rank of each problem i and each

ECOC design j

Rj - Mean rank of the jth design

S - Element of L

St - Training set

Sv - Validation set

si - Pessimistic score of class ci

u - Threshold parameter

υ, ω - Optimization parameters

W - Set of weighting values

w - Weight

X2
F - Friedman Statistic

X - Set of objects

x - Test codeword

yi - Codeword of class ci

Y e
i - Extended set of codewords for

class ci zi - Number of zero sym-
bols of codeword yi
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Appendix B

Sequential Forward Floating Search
(SFFS)

Table B.1: Sequential Forward Floating Search (SFFS) algorithm.
Input:

Y = {xj |j = 1..D}//Avaliable items//

Output:
Xk = {xj |j = 1..|Y |(orD), xj ∈ Y }

[Initialization:]
X0 = {∅}; k = 0

[Termination:]
Stop when the criterion does not increase J(Xk) ≈ J(Xk−1)a

Step 1 (Inclusion)
x+ = argmaxx∈Y−Xk

J(Xk ∪ x)
Xk+1 = Xk ∪ x+, k = k + 1

Step 2 (Conditional exclusion)
x− = argmaxx∈Xk

J(Xk − x)

if J(Xk − x−) > J(Xk−1) then
Xk+1 = Xk − x−, k = k + 1
go to Step 2

else
go to Step 1

aWe apply the Fast Quadratic Mutual Information MI, see Appendix I.

The SFFS process of table B.1 begins with an empty set X0 and is filled while
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the search criterion applied to the new set increases. The most significant item with
respect to Xk is added at each inclusion step. In the conditional exclusion step, the
worst item is removed if the criterion keeps increasing. Y is our set of classes to be
partitioned. Our discriminability criterion is the mutual information (MI ). Our goal
is to maximize the MI between the data in the sets and the class labels created for
each subset [73].



Appendix C

Fast Quadratic Mutual Information
MI

Let x and y represent two random variables, and let p(x) and p(y) be their respec-
tive probability density functions. The mutual information measures the dependence
between both variables, and is defined as follows:

I(x,y) =
∫ ∫

p(x,y) log
(

p(x,y)
p(x)p(y)

)
dxdy (C.1)

Observe that mutual information is zero if p(x,y) = p(x)p(y). It is important to
note that eq. C.1 can be seen as a Kullback-Leiber divergence, defined in the following
way:

K(f, g) =
∫

f(y) log
(

f(y)
g(y)

)
dy (C.2)

where f(y) is replaced with p(x,y) and g(y) with p(x)p(y).
Alternatively, Kapur et al. [39] argued that if our goal is to find a distribution

that maximizes or minimizes the divergence, several axioms can be relaxed and the
resulting divergence measure is related to D(f, g) =

∫
(f(y)−g(y))2dy. As a result, it

was proved that maximizing K(f, g) is equivalent to maximizing D(f, g). Therefore,
we can define the quadratic mutual information as follows:

IQ(x,y) =
∫ ∫

(p(x,y)− p(x)p(y))2dxdy (C.3)

The estimation of the density functions of IQ can be done using the Parzen window
estimator. In that case, when combined with Gaussian kernels we can use the following
property: Let N(y, Σ) be a d -dimensional Gaussian function, it can be shown that:

∫
N(y − a1,Σ1)N(y − a2,Σ2)dy = N(a1 − a2, Σ1 + Σ2) (C.4)

Observe that the use of this property avoids the computation of one integral
function.
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In particular, we compute the mutual information between the random variable of
the features x and the discrete random variable associated to the class labels created
for a given partition (d). The notation for the practical implementation of IQ is as
follows: Assume that we have N samples in the whole data set; Jp are the samples of
the class p; N stands for the number of classes; xl stands for the l-th feature vector
of the data set, and xpk is the k-th feature vector of the set in class p. Then, p(d)
and p(x|d) can be written as:

p(d = p) = Jp

N

p(x|d = p) = 1
Jp

∑Jp

j=1 N(x− xpj , σ
2I)

p(x) = 1
N

∑N
j=1 N(x− xj , σ

2I)
Expanding eq. C.3 and using a Parzen estimate with a symmetrical kernel with

width σ, we obtain the following equation:

IQ(x,d) = VIN + VALL − 2VBTW (C.5)

where:
VIN =

∑∫
p(x,d)2dx = 1

N2

∑N
p=1

∑Jp

l=1

∑Jp

k=1 N(xpl − xpk, 2σ2I)
VALL =

∑∫
p(x)2p(d)2dx = 1

N2

∑N
p=1(

Jp

N )2
∑N

l=1

∑N
k=1 N(xl − xk, 2σ2I)

VBTW =
∑∫

p(x,d)p(x)p(d)dx = 1
N2

∑N
p=1

Jp

N

∑N
l=1

∑Jp

k=1 N(xl − xpk, 2σ2I)
In practical applications, σ is usually set to the half of the maximum distance

between samples as proposed by Torkkola [89].
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UCI decoding evaluation
performances

Tables D.1 to D.16 show the performance results for the UCI data sets using Gentle
Adaboost. The results using Linear SVM are shown in tables from D.17 to D.32.

Table D.1: Dermathology performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 92.04(2.32) 89.37(1.89) 91.04(2.37) 58.84(2.07) 91.82(2.33) 92.04(2.17)
IHD 91.59(2.07) 88.05(1.93) 92.37(1.85) 63.42(1.27) 91.72(2.17) 92.02(2.12)
ED 92.04(2.32) 89.37(1.89) 91.04(2.37) 63.69(1.11) 92.04(2.19) 92.04(2.32)

AED 92.04(2.32) 89.37(1.89) 91.04(2.37) 64.79(0.94) 92.04(2.26) 92.04(2.34)
LLB 91.79(2.39) 95.13(1.11) 94.00(1.76) 54.98(1.79) 90.11(2.32) 91.08(2.22)
ELB 92.07(2.14) 95.13(1.11) 94.00(1.76) 58.78(2.17) 92.04(2.25) 92.04(2.39)
PD 91.32(2.39) 95.11(1.86) 92.62(2.19) 44.49(3.58) 92.04(2.05) 91.75(2.04)

LAP 92.04(2.32) 89.37(1.89) 91.04(2.37) 63.69(1.11) 92.04(2.20) 92.04(2.20)
β −DEN 92.04(2.32) 89.37(1.89) 91.04(2.37) 63.69(1.11) 92.04(2.04) 92.04(2.11)

LLWDiscrete 92.04(2.32) 88.57(1.85) 91.59(2.39) 65.07(0.86) 92.04(2.02) 92.04(2.11)
LLWContinuous 91.79(2.39) 95.13(1.11) 93.72(1.99) 45.28(4.14) 91.54(2.13) 91.98(2.28)

ELWDiscrete 91.77(2.33) 89.39(1.38) 91.59(2.39) 65.07(0.86) 91.72(2.33) 91.81(2.04)
ELWContinuous 92.07(2.04) 95.13(1.11) 94.00(1.76) 43.61(4.24) 92.07(2.38) 92.07(2.25)

Table D.2: Iris performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 92.44(2.26) 93.33(2.18)
IHD 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 92.44(2.26) 93.33(2.18)
ED 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 92.44(2.26) 94.00(2.18)

AED 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 93.33(2.03) 95.33(1.14)
LLB 94.00(2.48) 95.33(1.14) 95.33(1.14) 95.33(1.14) 92.44(2.26) 94.00(2.18)
ELB 94.00(2.48) 95.33(1.14) 95.33(1.14) 95.33(1.14) 92.44(2.26) 94.00(2.18)
PD 94.00(2.48) 93.33(1.14) 95.33(1.14) 95.33(1.14) 92.44(2.26) 94.00(2.18)

LAP 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 93.33(2.27) 95.33(1.14)
β −DEN 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 93.33(2.18) 95.33(1.14)

LLWDiscrete 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 93.33(2.18) 95.33(1.14)
LLWContinuous 94.00(2.48) 95.33(1.14) 95.33(1.14) 95.33(1.14) 94.00(2.48) 96.00(1.14)

ELWDiscrete 94.00(2.48) 93.33(2.18) 93.33(2.18) 93.33(1.95) 93.33(2.18) 96.00(1.14)
ELWContinuous 94.00(2.48) 95.33(1.14) 95.33(1.14) 95.33(1.14) 95.33(1.14) 96.00(1.44)
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Table D.3: Ecoli performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 77.87(1.69) 76.45(1.98) 79.46(1.63) 37.32(1.71) 78.01(2.01) 77.46(1.96)
IHD 77.28(1.56) 76.45(1.98) 75.24(1.96) 37.93(1.63) 78.12(2.06) 76.24(1.76)
ED 77.87(1.69) 76.45(1.98) 79.46(1.63) 36.73(2.15) 78.23(1.91) 77.82(2.02)

AED 77.87(1.69) 76.45(1.98) 79.46(1.63) 53.34(1.49) 78.66(1.67) 79.74(1.63)
LLB 81.38(1.37) 80.53(1.56) 81.00(1.19) 28.44(1.93) 78.12(1.58) 77.82(2.02)
ELB 80.53(1.27) 80.53(1.56) 80.39(1.89) 30.22(2.05) 78.92(2.11) 78.02(1.99)
PD 81.47(1.48) 78.44(2.04) 77.73(1.98) 49.33(1.76) 78.42(1.53) 76.42(2.01)

LAP 77.87(1.69) 76.45(1.98) 79.46(1.63) 37.03(1.89) 78.77(1.88) 79.46(1.63)
β −DEN 77.87(1.69) 76.45(1.98) 79.46(1.63) 35.78(1.21) 78.93(1.85) 79.46(1.63)

LLWDiscrete 78.18(1.65) 75.57(1.97) 79.74(1.69) 53.96(1.58) 79.04(1.15) 79.74(1.69)
LLWContinuous 81.38(1.11) 78.48(1.45) 80.98(1.74) 44.34(2.21) 78.93(1.44) 80.98(1.74)

ELWDiscrete 78.76(1.64) 75.57(1.97) 79.74(1.69) 55.15(1.14) 78.93(1.44) 79.74(1.69)
ELWContinuous 80.53(0.89) 79.09(1.44) 80.68(1.89) 47.74(2.93) 79.22(1.56) 80.98(1.74)

Table D.4: Wine performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 94.35(0.81) 94.35(0.81)
IHD 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 94.35(0.81) 94.35(0.81)
ED 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 95.49(1.37) 95.49(1.37)

AED 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 96.05(1.18) 96.05(1.18)
LLB 93.79(1.27) 96.05(1.18) 96.05(1.18) 96.05(1.18) 94.35(0.81) 94.35(0.81)
ELB 94.35(0.98) 95.49(1.37) 95.49(1.37) 95.49(1.37) 94.35(0.81) 94.35(0.81)
PD 95.46(1.11) 95.49(1.37) 95.49(1.37) 95.49(1.37) 94.35(0.81) 94.35(0.81)

LAP 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 96.05(1.18) 96.05(1.18)
β −DEN 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 96.05(1.18) 96.05(1.18)

LLWDiscrete 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 96.05(1.18) 96.05(1.18)
LLWContinuous 93.79(1.27) 96.05(1.18) 96.05(1.18) 96.05(1.18) 96.05(1.18) 96.05(1.18)

ELWDiscrete 94.35(0.81) 95.49(1.37) 94.93(1.27) 94.35(1.84) 96.05(1.18) 96.05(1.18)
ELWContinuous 94.35(0.98) 96.05(1.18) 96.05(1.18) 96.05(1.18) 96.05(1.18) 96.05(1.18)

Table D.5: Glass performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 66.69(3.16) 57.51(3.78) 56.00(4.95) 59.22(3.72) 64.56(2.15) 63.53(2.22)
IHD 67.14(3.08) 53.73(3.77) 45.18(5.32) 56.97(4.04) 64.35(2.56) 65.53(2.84)
ED 66.69(3.16) 57.51(3.78) 56.00(4.95) 59.22(3.72) 64.50(3.25) 66.50(2.78)

AED 66.69(3.16) 57.51(3.78) 56.00(4.95) 58.80(3.64) 65.55(2.87) 66.50(2.78)
LLB 49.31(1.25) 63.68(4.05) 57.87(4.28) 48.64(3.61) 62.64(3.16) 64.01(2.84)
ELB 55.57(3.11) 64.59(4.14) 58.35(3.43) 59.83(3.98) 64.01(2.84) 64.01(2.84)
PD 66.21(2.62) 62.16(2.86) 57.74(4.71) 61.40(3.32) 63.26(2.93) 64.35(2.72)

LAP 66.69(3.16) 57.51(3.78) 56.00(4.95) 59.22(3.72) 66.50(2.78) 66.50(2.78)
β −DEN 66.69(3.16) 57.51(3.78) 56.00(4.95) 59.22(3.72) 66.50(2.78) 66.50(2.78)

LLWDiscrete 67.16(3.12) 60.26(3.67) 52.75(4.01) 59.22(3.72) 66.50(2.78) 66.69(3.16)
LLWContinuous 49.31(2.25) 64.01(3.79) 57.85(3.98) 53.04(2.85) 66.50(2.78) 66.69(3.16)

ELWDiscrete 67.62(3.02) 55.98(5.08) 53.23(4.28) 59.22(3.72) 66.50(2.78) 66.69(3.16)
ELWContinuous 56.03(3.19) 65.01(3.74) 57.85(3.98) 60.50(3.67) 66.69(3.16) 66.69(3.16)
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Table D.6: Thyroid performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
IHD 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
ED 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)

AED 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
LLB 91.17(3.08) 92.10(2.72) 92.10(2.72) 92.10(2.72) 91.17(3.08) 91.17(3.08)
ELB 91.17(3.08) 92.10(2.72) 92.10(2.72) 92.10(2.72) 91.17(3.08) 91.17(3.08)
PD 92.10(2.63) 91.19(2.67) 91.19(2.67) 91.19(2.67) 91.17(3.08) 91.17(3.08)

LAP 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
β −DEN 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)

LLWDiscrete 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
LLWContinuous 91.17(3.08) 92.10(2.72) 92.10(2.72) 92.10(2.72) 91.17(3.08) 91.17(3.08)

ELWDiscrete 92.10(3.13) 90.71(2.62) 90.71(2.62) 90.71(2.62) 92.10(3.13) 92.10(3.13)
ELWContinuous 91.17(3.08) 92.10(2.72) 92.10(2.72) 92.10(2.72) 91.17(3.08) 91.17(3.08)

Table D.7: Vowel performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 59.19(2.83) 42.42(2.28) 27.47(2.07) 38.28(2.08) 60.36(2.67) 61.30(2.67)
IHD 57.98(2.59) 43.33(2.29) 24.14(1.86) 27.98(1.26) 61.02(2.76) 60.82(2.57)
ED 59.19(2.83) 42.42(2.28) 27.47(2.07) 44.14(2.27) 62.83(2.62) 62.56(2.87)

AED 59.19(2.83) 42.42(2.28) 27.47(2.07) 43.03(2.56) 63.25(2.92) 64.36(2.62)
LLB 52.32(3.38) 47.47(2.40) 32.32(2.28) 36.26(2.38) 54.36(3.12) 55.63(3.06)
ELB 55.45(3.42) 47.37(2.43) 33.23(2.39) 39.60(2.48) 55.45(3.19) 56.48(3.12)
PD 58.48(3.02) 45.05(2.27) 31.52(2.29) 43.94(2.04) 56.36(3.22) 55.75(3.21)

LAP 59.19(2.83) 42.42(2.28) 27.47(2.07) 44.34(2.19) 64.91(2.68) 65.36(2.17)
β −DEN 59.19(2.83) 42.42(2.28) 27.47(2.07) 44.34(2.19) 65.12(2.62) 65.36(2.17)

LLWDiscrete 59.09(2.84) 45.66(3.41) 29.70(2.09) 45.15(2.44) 66.71(2.63) 66.79(2.25)
LLWContinuous 52.42(3.42) 48.89(2.53) 33.23(2.48) 40.51(2.24) 67.13(3.21) 69.53(3.11)

ELWDiscrete 59.70(2.82) 45.66(3.41) 29.70(2.09) 44.95(2.58) 66.93(2.53) 68.45(2.59)
ELWContinuous 55.25(3.31) 48.48(2.53) 33.13(2.44) 43.13(1.99) 69.87(3.06) 71.77(3.02)

Table D.8: Balance performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 78.97(5.02) 47.16(5.49) 50.49(6.19) 42.54(2.08) 78.97(5.02) 78.97(5.02)
IHD 78.97(5.02) 47.16(5.49) 50.49(6.19) 42.54(2.08) 78.97(5.02) 78.97(5.02)
ED 78.97(5.02) 47.16(5.49) 50.49(6.19) 80.15(4.01) 78.97(5.02) 78.97(5.02)

AED 78.97(5.02) 47.16(5.49) 50.49(6.19) 80.15(4.01) 78.97(5.02) 78.97(5.02)
LLB 75.93(4.72) 71.30(5.79) 73.08(6.97) 48.10(2.76) 75.93(4.72) 75.93(4.72)
ELB 77.86(4.53) 72.11(7.96) 72.10(7.98) 63.96(4.86) 77.86(4.53) 77.86(4.53)
PD 82.22(4.19) 79.89(7.76) 80.05(7.79) 78.54(3.79) 82.22(4.19) 82.22(4.19)

LAP 78.97(5.02) 47.16(5.49) 50.49(6.19) 80.15(4.01) 78.97(5.02) 78.97(5.02)
β −DEN 78.97(5.02) 47.16(5.49) 50.49(6.19) 80.15(4.01) 78.97(5.02) 78.97(5.02)

LLWDiscrete 78.34(4.19) 76.52(7.98) 80.94(8.24) 78.84(5.10) 78.34(4.19) 78.34(4.19)
LLWContinuous 76.09(4.67) 74.87(7.77) 75.67(7.75) 71.02(5.01) 76.09(4.67) 76.09(4.67)

ELWDiscrete 78.34(4.19) 76.52(7.98) 80.94(8.24) 78.84(5.51) 78.34(4.19) 78.34(4.19)
ELWContinuous 77.55(4.46) 74.87(7.77) 75.67(7.75) 73.56(5.24) 77.55(4.46) 77.55(4.46)
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Table D.9: Yeast performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 49.57(1.38) 45.87(1.12) 46.84(1.34) 44.30(2.15) 48.77(1.32) 49.64(1.38)
IHD 49.30(1.58) 43.32(1.09) 22.42(1.58) 40.22(1.18) 48.93(1.51) 49.94(1.62)
ED 49.57(1.38) 45.87(1.12) 46.84(1.34) 43.50(2.08) 50.32(1.44) 50.88(2.16)

AED 49.57(1.38) 45.87(1.12) 46.84(1.34) 39.35(0.81) 51.77(1.27) 51.98(1.29)
LLB 50.74(1.47) 46.54(1.43) 48.11(1.24) 46.16(1.46) 50.74(1.38) 49.52(1.33)
ELB 51.81(1.93) 46.68(1.38) 47.91(1.21) 45.53(1.54) 50.74(1.38) 50.89(1.57)
PD 49.66(1.34) 45.95(2.41) 41.57(1.25) 34.55(0.81) 48.47(1.52) 49.85(1.58)

LAP 49.57(1.38) 45.87(1.12) 46.84(1.34) 43.57(1.96) 51.77(1.35) 52.04(1.38)
β −DEN 49.57(1.38) 45.87(1.12) 46.84(1.34) 43.57(1.96) 51.79(1.37) 52.04(1.55)

LLWDiscrete 49.16(1.47) 41.38(1.21) 46.93(1.81) 39.54(1.37) 51.84(1.29) 52.04(1.27)
LLWContinuous 49.46(1.24) 47.96(1.01) 45.29(1.31) 40.12(2.02) 51.76(1.51) 51.88(1.57)

ELWDiscrete 49.16(1.47) 41.38(1.21) 46.86(1.81) 40.20(1.63) 52.04(1.37) 52.04(1.45)
ELWContinuous 51.41(1.73) 49.05(1.31) 45.42(1.35) 40.32(1.81) 51.84(1.19) 52.17(1.86)

Table D.10: Satimage performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 83.25(2.23) 79.37(2.03) 79.91(2.45) 79.56(1.99) 82.05(1.98) 82.15(2.28)
IHD 83.19(2.17) 75.28(1.56) 76.57(2.24) 76.61(1.88) 81.98(2.05) 82.04(2.27)
ED 83.25(2.23) 79.37(2.03) 79.91(2.45) 81.49(1.87) 82.32(2.02) 83.06(2.33)

AED 83.25(2.23) 79.37(2.03) 79.91(2.45) 63.96(1.48) 82.80(2.36) 84.06(2.13)
LLB 83.51(1.71) 83.56(2.03) 84.09(1.91) 76.60(2.56) 81.83(1.79) 83.10(1.19)
ELB 83.23(1.71) 83.57(1.99) 84.24(1.86) 78.71(2.61) 81.88(1.93) 83.43(2.01)
PD 83.31(2.07) 83.15(1.77) 83.90(1.82) 63.75(2.14) 82.14(2.11) 83.23(2.22)

LAP 83.25(2.23) 79.37(2.03) 79.91(2.45) 81.49(1.87) 83.07(2.19) 84.15(2.22)
β −DEN 83.25(2.23) 79.37(2.03) 79.91(2.45) 81.49(1.87) 83.11(2.28) 84.15(2.09)

LLWDiscrete 83.06(2.19) 80.96(2.02) 80.70(2.37) 67.33(2.54) 83.16(2.49) 84.88(2.36)
LLWContinuous 83.22(1.76) 83.26(2.07) 83.84(1.97) 63.80(3.46) 83.87(1.88) 85.25(1.65)

ELWDiscrete 83.11(2.14) 80.74(2.21) 80.70(2.37) 65.64(1.56) 83.17(2.23) 85.03(2.09)
ELWContinuous 84.13(1.68) 83.31(2.01) 83.82(2.00) 70.59(3.04) 84.07(1.70) 85.37(1.87)

Table D.11: Letter performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 88.16(1.71) 82.54(1.62) 84.32(1.56) 80.31(1.68) 87.35(1.66) 88.31(1.58)
IHD 87.68(1.54) 83.91(1.71) 83.35(1.71) 82.10(1.68) 86.43(1.60) 87.37(1.87)
ED 88.96(1.56) 84.34(1.65) 84.53(1.67) 82.31(1.82) 87.56(1.67) 88.85(1.58)

AED 88.96(1.56) 84.34(1.65) 84.53(1.67) 84.13(1.87) 88.16(1.63) 89.03(1.62)
LLB 88.54(1.62) 85.62(1.74) 83.76(1.68) 82.14(1.76) 86.37(1.80) 87.46(1.74)
ELB 88.76(1.62) 85.89(1.54) 84.51(1.57) 82.80(1.71) 86.77(1.67) 87.72(1.84)
PD 87.65(2.01) 84.37(1.52) 82.74(1.71) 81.21(1.78) 85.62(1.63) 86.37(1.63)

LAP 88.96(1.64) 86.89(1.63) 85.73(1.76) 83.42(1.77) 88.76(1.59) 90.12(1.81)
β −DEN 88.96(1.64) 87.12(1.60) 88.26(1.50) 83.82(1.51) 89.01(1.54) 90.32(1.58)

LLWDiscrete 88.96(1.86) 87.28(1.63) 87.85(1.50) 84.82(1.44) 89.43(1.58) 91.09(1.63)
LLWContinuous 89.91(1.44) 87.42(1.56) 89.47(1.81) 85.55(1.55) 89.35(1.77) 90.86(1.69)

ELWDiscrete 90.61(1.55) 87.64(1.63) 88.59(1.57) 86.28(1.56) 90.10(1.57) 91.12(1.72)
ELWContinuous 90.77(1.60) 88.83(1.55) 90.70(1.52) 88.05(1.66) 91.74(1.65) 91.92(1.58)
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Table D.12: Pendigits performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 96.72(0.92) 91.08(1.01) 90.34(0.96) 83.92(1.11) 91.05(0.98) 96.32(1.02)
IHD 97.02(1.09) 91.76(1.01) 92.10(1.23) 81.84(1.00) 91.24(1.13) 96.07(0.89)
ED 97.34(1.01) 92.72(1.07) 93.20(1.13) 85.87(0.96) 92.31(1.12) 96.87(1.11)

AED 97.34(1.01) 92.72(1.07) 93.20(1.13) 88.98(1.07) 92.84(1.26) 97.06(1.24)
LLB 96.78(0.91) 91.87(0.93) 91.36(1.02) 83.67(0.94) 92.13(0.89) 95.73(1.00)
ELB 96.87(0.71) 91.95(0.75) 92.37(0.77) 85.72(0.73) 93.24(0.82) 96.72(0.81)
PD 96.98(1.09) 90.66(1.39) 91.87(1.04) 84.82(1.14) 92.18(1.05) 96.01(1.13)

LAP 97.34(0.91) 93.02(0.76) 94.72(1.00) 92.73(1.00) 94.37(0.98) 97.16(0.97)
β −DEN 97.34(0.91) 93.02(0.89) 94.72(0.91) 93.26(1.06) 94.80(0.80) 97.19(0.97)

LLWDiscrete 97.88(0.87) 93.21(0.85) 94.88(0.87) 93.26(0.89) 95.02(0.89) 97.54(0.92)
LLWContinuous 97.98(0.86) 93.24(0.82) 95.32(0.86) 94.02(0.98) 95.82(0.88) 97.64(0.92)

ELWDiscrete 97.96(0.69) 93.19(0.55) 95.01(0.69) 93.26(0.75) 95.35(0.70) 97.62(0.75)
ELWContinuous 98.01(1.01) 93.98(1.06) 95.54(1.01) 94.78(1.06) 96.25(0.95) 97.84(0.97)

Table D.13: Segmentation performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 96.10(0.79) 91.82(1.26) 93.03(0.82) 92.16(1.01) 93.13(1.31) 95.09(1.24)
IHD 96.23(0.76) 92.03(1.21) 93.46(0.95) 92.21(0.91) 93.67(1.02) 95.93(1.23)
ED 96.10(0.79) 91.82(1.26) 93.03(0.82) 92.16(1.01) 93.88(1.05) 96.13(1.38)

AED 96.10(0.79) 91.82(1.26) 93.03(0.82) 89.18(1.27) 94.03(0.95) 96.44(1.24)
LLB 93.98(0.92) 95.54(0.78) 94.50(0.82) 71.13(1.61) 93.54(0.97) 94.04(1.03)
ELB 95.80(0.80) 95.58(0.76) 94.55(0.78) 86.32(0.63) 93.58(0.88) 93.92(0.88)
PD 96.06(0.87) 95.24(0.86) 94.20(0.65) 92.07(1.03) 93.25(0.69) 94.00(0.89)

LAP 96.10(0.79) 91.82(1.26) 93.03(0.82) 92.16(1.01) 94.33(0.80) 96.44(1.06)
β −DEN 96.10(0.79) 91.82(1.26) 93.03(0.82) 92.16(1.01) 94.35(0.70) 96.44(1.17)

LLWDiscrete 96.15(0.81) 93.25(1.31) 93.98(0.92) 92.73(1.06) 94.58(1.01) 96.48(1.38)
LLWContinuous 93.81(0.95) 95.58(0.70) 95.19(0.89) 86.58(0.80) 95.09(0.93) 96.76(0.90)

ELWDiscrete 96.15(0.81) 93.25(1.31) 93.98(0.92) 92.86(0.96) 94.65(0.81) 96.65(1.30)
ELWContinuous 95.84(0.80) 95.54(0.74) 95.19(0.89) 92.51(0.89) 95.97(0.90) 97.01(0.78)

Table D.14: OptDigits performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 96.50(0.71) 86.58(2.71) 80.57(2.03) 75.36(1.80) 87.99(2.56) 95.05(1.04)
IHD 96.85(1.10) 85.53(2.23) 66.53(1.96) 71.64(1.69) 87.78(2.67) 95.64(1.13)
ED 96.50(0.71) 86.58(2.71) 80.57(2.03) 79.63(2.28) 88.66(2.90) 96.58(1.32)

AED 96.50(0.71) 86.58(2.71) 80.57(2.03) 74.04(2.33) 89.07(2.80) 96.03(1.25)
LLB 93.11(1.42) 89.61(1.81) 85.91(1.56) 78.70(2.62) 86.73(2.08) 94.03(1.54)
ELB 93.95(0.54) 90.67(1.80) 85.10(1.46) 79.57(2.54) 87.83(2.21) 94.83(1.11)
PD 96.26(0.35) 91.46(1.77) 85.39(1.67) 78.38(2.48) 86.38(1.98) 93.72(0.98)

LAP 96.50(0.71) 86.58(2.71) 83.57(2.03) 79.50(2.36) 89.07(2.80) 96.60(1.03)
β −DEN 96.50(0.71) 86.58(2.71) 83.57(2.03) 79.63(2.28) 89.07(2.80) 96.60(1.03)

LLWDiscrete 96.80(0.41) 88.49(3.18) 84.43(2.10) 76.96(2.17) 90.27(2.69) 96.90(1.12)
LLWContinuous 93.11(1.42) 92.83(1.64) 86.89(1.64) 79.41(2.58) 91.09(1.87) 96.83(1.32)

ELWDiscrete 96.80(0.41) 88.58(3.02) 84.43(2.10) 77.31(2.18) 91.02(2.63) 99.82(1.04)
ELWContinuous 93.95(0.54) 92.81(1.69) 86.85(1.66) 80.92(2.05) 91.20(3.02) 97.05(1.01)



172 UCI DECODING EVALUATION PERFORMANCES

Table D.15: Vehicle performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 72.34(3.34) 66.32(3.18) 64.06(2.57) 65.85(2.37) 69.77(3.37) 72.34(3.34)
IHD 72.34(3.34) 67.50(2.68) 65.60(2.05) 70.34(2.47) 69.77(3.37) 72.34(3.34)
ED 72.34(3.34) 66.32(3.18) 64.06(2.57) 70.22(2.36) 69.77(3.37) 72.34(3.34)

AED 72.34(3.34) 66.32(3.18) 64.06(2.57) 71.06(3.69) 69.77(3.37) 72.34(3.34)
LLB 72.35(3.25) 71.99(3.91) 71.75(3.61) 65.36(2.19) 69.77(3.37) 71.08(3.43)
ELB 72.58(3.17) 72.10(3.74) 72.10(3.71) 66.90(2.22) 69.77(3.37) 72.80(3.14)
PD 71.99(3.13) 72.70(2.84) 72.58(2.95) 71.63(2.75) 69.77(3.37) 72.05(3.11)

LAP 72.34(3.34) 66.32(3.18) 64.06(2.57) 70.22(2.36) 69.77(3.37) 72.34(3.34)
β −DEN 72.34(3.34) 66.32(3.18) 64.06(2.57) 70.22(2.36) 69.77(3.37) 72.34(3.34)

LLWDiscrete 72.69(3.62) 70.58(3.65) 71.40(4.16) 70.22(2.36) 69.77(3.37) 72.70(3.62)
LLWContinuous 72.23(3.07) 72.45(3.53) 72.46(4.46) 69.14(1.99) 69.77(3.37) 72.70(3.62)

ELWDiscrete 72.69(3.62) 70.58(3.65) 71.40(4.16) 70.22(2.36) 69.77(3.37) 72.70(3.62)
ELWContinuous 72.35(3.17) 72.57(3.74) 72.33(4.42) 69.97(1.94) 69.77(3.37) 73.15(3.16)

Table D.16: Shuttle performance using Gentle Adaboost.
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 99.84(0.07) 99.83(0.07) 99.74(0.10) 85.02(0.07) 99.84(0.07) 99.84(0.07)
IHD 99.68(0.28) 99.83(0.07) 99.72(0.07) 84.97(0.07) 99.68(0.28) 99.68(0.28)
ED 99.84(0.07) 99.83(0.07) 99.74(0.10) 99.87(0.06) 99.84(0.07) 99.84(0.07)

AED 99.84(0.07) 99.83(0.07) 99.74(0.10) 99.82(0.07) 99.84(0.07) 99.84(0.07)
LLB 91.43(0.42) 99.88(0.07) 99.84(0.07) 85.45(0.28) 93.42(0.35) 91.43(0.42)
ELB 98.92(1.03) 99.88(0.07) 99.85(0.07) 85.94(0.47) 98.76(1.24) 98.92(1.03)
PD 99.15(0.60) 95.38(1.42) 97.91(3.13) 94.45(0.88) 98.73(0.82) 99.15(0.07)

LAP 99.84(0.07) 99.83(0.07) 99.74(0.10) 99.87(0.07) 99.84(0.07) 99.84(0.07)
β −DEN 99.84(0.07) 99.83(0.07) 99.74(0.10) 99.87(0.07) 99.84(0.07) 99.84(0.07)

LLWDiscrete 99.85(0.07) 99.84(0.07) 99.78(0.07) 99.88(0.07) 99.85(0.07) 99.85(0.07)
LLWContinuous 94.31(2.14) 99.88(0.07) 99.85(0.07) 93.67(2.23) 99.85(0.07) 99.85(0.07)

ELWDiscrete 99.86(0.07) 99.84(0.07) 99.78(0.07) 99.88(0.07) 99.86(0.07) 99.86(0.07)
ELWContinuous 99.52(0.20) 99.88(0.07) 99.85(0.07) 99.01(0.07) 99.86(0.07) 99.86(0.07)
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Table D.17: Dermathology performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 95.59(0.74) 94.54(1.04) 80.86(1.26) 37.43(0.57) 94.90(0.63) 94.88(1.03)
IHD 95.03(1.07) 95.11(1.27) 30.60(1.30) 38.27(0.77) 93.82(1.16) 93.51(1.07)
ED 95.59(0.74) 94.54(1.04) 80.86(1.26) 44.02(2.49) 95.07(1.02) 95.52(0.94)

AED 95.59(0.74) 94.54(1.04) 80.86(1.26) 86.81(1.70) 96.10(1.04) 95.59(0.75)
LLB 84.82(1.52) 96.12(0.93) 81.41(1.17) 45.60(3.26) 91.84(1.57) 89.26(1.04)
ELB 94.22(1.12) 96.12(0.93) 81.41(1.17) 62.33(2.70) 92.32(1.43) 93.56(1.33)
PD 94.47(1.30) 93.39(1.30) 80.88(1.09) 85.38(3.02) 91.41(1.07) 91.73(1.24)

LAP 95.59(0.74) 94.54(1.04) 80.86(1.26) 44.02(2.49) 96.10(0.94) 95.59(1.00)
β −DEN 95.59(0.74) 94.54(1.04) 80.86(1.26) 71.91(2.43) 96.10(0.94) 96.10(0.83)

LLWDiscrete 95.59(0.74) 95.10(1.01) 80.86(1.26) 87.09(1.50) 96.20(0.88) 96.31(0.87)
LLWContinuous 84.82(1.52) 96.12(0.93) 81.41(1.17) 76.68(3.03) 96.03(1.42) 96.20(1.42)

ELWDiscrete 95.59(0.74) 95.38(0.86) 80.86(1.26) 87.09(1.50) 96.26(1.03) 96.31(1.07)
ELWContinuous 94.22(1.12) 96.12(0.93) 81.41(1.17) 83.53(3.11) 96.31(1.07) 96.40(1.60)

Table D.18: Iris performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 97.33(1.07) 72.00(2.54) 72.00(2.54) 66.67(1.00) 97.33(1.07) 97.33(1.07)
IHD 97.33(1.07) 72.00(2.54) 72.00(2.54) 66.67(1.00) 97.33(1.07) 97.33(1.07)
ED 97.33(1.07) 72.00(2.54) 72.00(2.54) 97.33(1.07) 97.33(1.07) 97.33(1.07)

AED 97.33(1.07) 72.00(2.54) 72.00(2.54) 97.33(1.07) 97.33(1.07) 97.33(1.07)
LLB 58.00(1.07) 92.67(2.05) 92.67(2.05) 66.67(1.00) 58.00(1.70) 58.00(1.70)
ELB 97.33(1.07) 92.67(2.05) 92.67(2.05) 92.00(1.90) 97.33(1.07) 97.33(1.07)
PD 97.33(1.07) 82.67(2.22) 82.67(2.22) 77.33(1.99) 97.33(1.07) 97.33(1.07)

LAP 97.33(1.07) 72.00(2.54) 72.00(2.54) 97.33(1.07) 97.33(1.07) 97.33(1.07)
β −DEN 97.33(1.07) 72.00(2.54) 72.00(2.54) 97.33(1.07) 97.33(1.07) 97.33(1.07)

LLWDiscrete 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07)
LLWContinuous 58.00(1.70) 94.00(2.05) 94.00(2.05) 78.00(2.39) 58.00(1.70) 58.00(1.70)

ELWDiscrete 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07) 97.33(1.07)
ELWContinuous 97.33(1.07) 93.33(2.18) 93.33(2.18) 93.33(1.69) 97.33(1.07) 97.33(1.07)

Table D.19: Ecoli performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 77.02(3.33) 61.60(3.37) 68.12(3.36) 68.42(2.26) 77.23(2.64) 77.80(3.06)
IHD 77.02(3.33) 60.12(3.37) 72.15(2.86) 26.92(2.57) 76.01(2.36) 75.36(3.52)
ED 77.02(3.33) 61.60(3.37) 68.12(3.36) 72.63(3.16) 78.04(2.91) 78.55(2.51)

AED 77.02(3.33) 61.60(3.37) 68.12(3.36) 72.31(3.06) 78.90(3.00) 79.98(3.08)
LLB 75.56(2.76) 78.81(2.57) 76.42(3.45) 69.98(2.69) 74.53(2.94) 76.59(2.73)
ELB 76.13(3.07) 78.81(2.57) 76.42(3.45) 74.34(3.14) 75.35(3.16) 77.48(3.21)
PD 77.92(2.27) 82.44(1.91) 78.53(1.86) 27.50(2.90) 73.42(2.44) 76.98(2.53)

LAP 77.02(3.33) 61.60(3.37) 68.12(3.36) 72.63(3.16) 79.02(2.86) 80.24(2.95)
β −DEN 77.02(3.33) 61.60(3.37) 68.12(3.36) 72.63(3.16) 79.11(2.90) 80.33(2.51)

LLWDiscrete 78.64(2.49) 68.81(3.42) 71.52(2.79) 68.38(3.80) 79.22(2.45) 80.41(2.60)
LLWContinuous 80.45(2.39) 70.86(3.28) 70.44(3.50) 41.32(3.33) 79.30(2.76) 81.82(2.85)

ELWDiscrete 79.37(2.51) 66.35(3.75) 67.79(3.44) 61.35(4.88) 79.35(3.06) 80.70(2.93)
ELWContinuous 81.30(2.62) 73.05(3.21) 70.36(4.88) 41.10(4.23) 80.90(2.71) 81.94(2.50)
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Table D.20: Wine performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 94.75(1.56) 94.75(1.56)
IHD 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 94.75(1.56) 94.75(1.56)
ED 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 94.75(1.56) 94.75(1.56)

AED 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 95.55(1.49) 95.55(1.49)
LLB 90.97(2.10) 95.55(1.34) 95.55(1.34) 95.55(1.34) 94.75(1.56) 94.75(1.56)
ELB 92.64(1.70) 95.55(1.34) 95.55(1.34) 95.55(1.34) 94.75(1.56) 94.75(1.56)
PD 93.82(1.27) 94.96(0.95) 94.96(0.95) 94.96(0.95) 94.75(1.56) 94.75(1.56)

LAP 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 95.55(1.49) 95.55(1.49)
β −DEN 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 95.55(1.49) 95.55(1.49)

LLWDiscrete 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 95.55(1.49) 95.55(1.49)
LLWContinuous 90.97(2.10) 95.55(1.34) 95.55(1.34) 95.55(1.34) 95.55(1.49) 95.55(1.49)

ELWDiscrete 93.78(1.76) 93.23(1.63) 93.23(1.63) 93.23(1.63) 95.55(1.49) 95.55(1.49)
ELWContinuous 92.64(1.70) 95.55(1.34) 95.55(1.34) 95.55(1.34) 95.55(1.49) 95.55(1.49)

Table D.21: Glass performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 55.75(3.60) 48.02(2.30) 40.04(3.08) 43.83(2.45) 52.71(3.02) 55.18(3.16)
IHD 55.77(3.72) 36.35(3.86) 32.79(1.54) 46.07(2.94) 51.09(3.47) 54.52(3.18)
ED 55.75(3.60) 48.02(2.30) 40.04(3.08) 44.60(3.39) 52.99(2.51) 55.90(2.51)

AED 55.75(3.60) 48.02(2.30) 40.04(3.08) 45.72(2.38) 54.40(2.52) 57.47(2.69)
LLB 45.85(2.73) 51.48(3.36) 34.91(3.24) 42.87(2.53) 51.21(2.56) 56.46(3.02)
ELB 57.54(3.03) 51.48(3.36) 34.91(3.24) 45.67(2.95) 52.94(2.86) 57.66(3.12)
PD 57.04(3.59) 51.84(4.58) 33.40(5.46) 45.29(2.29) 51.93(3.09) 56.40(3.19)

LAP 55.75(3.60) 48.02(2.30) 40.04(3.08) 45.20(2.87) 55.93(3.06) 57.73(3.14)
β −DEN 55.75(3.60) 48.02(2.30) 40.04(3.08) 44.60(3.39) 56.04(2.68) 57.92(3.46)

LLWDiscrete 50.57(3.26) 41.36(3.64) 37.79(2.89) 44.38(2.16) 54.36(3.16) 58.03(3.07)
LLWContinuous 57.84(3.89) 40.43(3.66) 41.45(3.86) 45.77(3.09) 56.80(2.94) 59.04(3.14)

ELWDiscrete 58.14(4.47) 41.36(3.64) 37.38(3.76) 42.78(3.15) 57.89(2.86) 59.13(3.19)
ELWContinuous 58.65(2.66) 42.87(3.41) 41.50(3.47) 45.81(3.31) 58.15(3.32) 59.30(3.16)

Table D.22: Thyroid performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 94.39(2.15) 91.65(2.67) 91.65(2.67) 81.41(0.94) 94.39(2.15) 94.39(2.15)
IHD 94.39(2.15) 91.65(2.67) 91.65(2.67) 81.41(0.94) 94.39(2.15) 94.39(2.15)
ED 94.39(2.15) 91.65(2.67) 91.65(2.67) 94.39(2.15) 94.39(2.15) 94.39(2.15)

AED 94.39(2.15) 91.65(2.67) 91.65(2.67) 94.39(2.15) 94.39(2.15) 94.39(2.15)
LLB 77.23(1.00) 93.46(2.57) 93.46(2.57) 81.88(0.76) 77.23(1.00) 79.86(1.07)
ELB 92.87(2.22) 93.46(2.57) 93.46(2.57) 94.80(1.59) 92.87(2.22) 92.97(2.32)
PD 93.48(2.49) 85.58(1.98) 85.58(1.98) 89.76(2.31) 93.48(2.49) 93.41(2.46)

LAP 94.39(2.15) 91.65(2.67) 91.65(2.67) 94.39(2.15) 94.39(2.15) 94.39(2.15)
β −DEN 94.39(2.15) 91.65(2.67) 91.65(2.67) 94.39(2.15) 94.39(2.15) 94.39(2.15)

LLWDiscrete 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15)
LLWContinuous 77.23(1.00) 93.44(2.58) 93.44(2.58) 85.63(1.19) 77.23(1.00) 94.87(2.22)

ELWDiscrete 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15) 94.39(2.15)
ELWContinuous 94.87(2.22) 93.46(2.57) 93.46(2.57) 94.85(2.00) 94.87(2.22) 94.87(2.22)
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Table D.23: Vowel performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 64.95(3.71) 26.67(2.11) 28.18(3.16) 34.34(1.86) 65.73(2.62) 65.46(2.67)
IHD 64.95(3.48) 32.63(2.31) 22.83(1.62) 30.81(1.85) 64.33(3.11) 65.12(2.90)
ED 64.95(3.71) 26.67(2.11) 28.18(3.16) 34.14(1.73) 66.78(2.67) 66.90(2.73)

AED 64.95(3.71) 26.67(2.11) 28.18(3.16) 30.10(2.19) 68.26(2.64) 67.79(2.57)
LLB 31.52(2.65) 43.03(3.10) 33.23(2.56) 31.31(2.16) 67.28(2.99) 67.34(2.79)
ELB 64.95(3.19) 43.03(3.10) 32.93(2.72) 29.80(2.08) 67.82(2.89) 67.56(2.70)
PD 63.64(3.43) 40.51(2.90) 32.42(2.33) 24.18(2.52) 65.36(3.08) 66.37(2.69)

LAP 64.95(3.71) 26.67(2.11) 28.18(3.16) 35.25(1.86) 68.36(3.02) 68.40(2.94)
β −DEN 64.95(3.71) 26.67(2.11) 28.18(3.16) 35.25(1.86) 68.36(3.08) 68.53(3.13)

LLWDiscrete 65.96(3.61) 32.83(2.10) 31.11(3.05) 35.76(2.54) 69.38(2.91) 68.47(3.02)
LLWContinuous 31.21(2.61) 38.99(3.33) 38.59(2.92) 32.83(2.99) 69.73(2.62) 69.50(2.83)

ELWDiscrete 65.96(3.61) 32.83(2.10) 31.11(3.05) 35.96(2.51) 70.82(2.86) 69.88(2.96)
ELWContinuous 65.15(3.08) 44.14(2.79) 36.26(2.36) 36.06(2.34) 71.44(3.16) 70.87(3.05)

Table D.24: Balance performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 84.62(4.27) 85.57(4.18)
IHD 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 84.62(4.27) 85.57(4.18)
ED 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 82.83(4.39) 85.57(4.18)

AED 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)
LLB 82.83(4.39) 83.36(3.52) 83.36(3.52) 83.36(3.52) 82.83(4.39) 83.36(3.52)
ELB 85.43(4.32) 83.36(3.52) 83.36(3.52) 83.36(3.52) 85.43(4.32) 83.36(3.52)
PD 83.36(4.09) 82.23(4.01) 82.23(4.01) 82.23(4.01) 83.36(4.09) 82.23(4.01)

LAP 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)
β −DEN 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)

LLWDiscrete 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)
LLWContinuous 84.62(4.27) 84.59(4.59) 84.59(4.59) 84.59(4.59) 85.57(4.18) 85.57(4.18)

ELWDiscrete 84.62(4.27) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)
ELWContinuous 84.94(4.31) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18) 85.57(4.18)

Table D.25: Yeast performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 50.79(2.39) 35.52(1.00) 27.82(1.59) 38.00(1.24) 50.23(2.51) 50.35(2.42)
IHD 51.12(2.46) 35.52(1.00) 16.96(1.62) 38.55(1.35) 50.34(2.56) 50.76(2.44)
ED 50.79(2.39) 35.52(1.00) 27.82(1.59) 38.07(1.25) 50.79(2.48) 51.04(2.51)

AED 50.79(2.39) 35.52(1.00) 27.82(1.59) 37.80(1.38) 50.79(2.44) 52.20(2.57)
LLB 50.26(2.31) 50.10(1.13) 26.53(1.53) 37.99(1.64) 50.34(2.45) 50.54(2.62)
ELB 50.38(2.31) 50.10(1.13) 26.67(1.44) 39.08(1.29) 50.63(2.62) 50.98(2.59)
PD 51.17(1.41) 51.64(2.83) 33.65(1.27) 21.76(0.57) 50.73(2.41) 50.30(2.45)

LAP 50.79(2.39) 35.52(1.00) 27.82(1.59) 38.07(1.25) 50.79(2.21) 52.20(2.44)
β −DEN 50.79(2.39) 35.52(1.00) 27.82(1.59) 38.13(1.31) 50.79(2.28) 52.34(2.46)

LLWDiscrete 51.18(0.42) 17.09(3.48) 40.50(1.21) 34.12(1.75) 51.14(2.66) 52.10(2.37)
LLWContinuous 52.58(2.08) 50.13(1.10) 45.12(1.77) 21.08(0.95) 52.43(2.68) 52.38(2.62)

ELWDiscrete 49.43(2.84) 35.58(1.04) 40.78(1.06) 34.66(2.14) 52.17(2.56) 52.21(2.65)
ELWContinuous 51.36(2.61) 48.70(0.92) 44.83(1.77) 22.16(0.61) 52.45(2.60) 52.63(2.45)
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Table D.26: Satimage performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 83.36(2.02) 70.71(2.16) 72.01(1.25) 71.87(1.65) 74.25(2.12) 81.92(2.06)
IHD 83.32(2.02) 76.81(2.74) 70.24(1.88) 71.03(1.47) 75.36(2.18) 80.37(2.13)
ED 83.36(2.02) 70.71(2.16) 72.01(1.25) 72.60(1.42) 76.38(2.17) 82.03(2.00)

AED 83.36(2.02) 70.71(2.16) 72.01(1.25) 61.52(1.95) 77.89(1.51) 83.02(1.93)
LLB 62.22(2.79) 77.25(2.29) 77.31(1.44) 67.06(3.89) 70.89(1.79) 72.74(2.01)
ELB 83.88(2.13) 77.25(2.29) 77.42(1.43) 72.50(1.91) 73.74(1.97) 78.73(2.07)
PD 80.90(1.74) 77.97(1.50) 74.83(0.99) 63.45(2.15) 72.15(1.73) 77.83(2.11)

LAP 83.36(2.02) 70.71(2.16) 72.01(1.25) 72.60(1.42) 78.03(1.97) 83.20(1.97)
β −DEN 83.36(2.02) 70.71(2.16) 72.01(1.25) 72.60(1.42) 79.83(2.08) 83.27(2.05)

LLWDiscrete 83.39(2.04) 75.06(2.19) 79.56(2.63) 61.85(1.99) 80.93(1.93) 83.33(2.07)
LLWContinuous 60.28(2.14) 67.32(4.34) 61.79(2.44) 40.31(2.88) 81.73(2.62) 83.17(2.09)

ELWDiscrete 83.39(2.04) 75.06(2.19) 79.56(2.63) 63.87(3.03) 81.31(2.12) 83.49(2.17)
ELWContinuous 83.88(2.12) 78.24(2.52) 80.61(2.56) 66.08(2.18) 82.15(2.05) 84.07(2.00)

Table D.27: Letter performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 85.09(0.88) 36.38(0.76) 65.73(0.86) 63.27(1.01) 80.01(0.84) 85.11(0.97)
IHD 86.01(0.89) 36.93(0.72) 66.71(0.83) 63.74(0.94) 81.17(0.84) 84.93(0.91)
ED 86.11(0.99) 36.38(0.76) 67.28(0.81) 64.83(0.89) 82.09(0.81) 86.25(0.86)

AED 86.11(0.99) 36.38(0.76) 67.28(0.81) 66.27(0.95) 84.21(0.99) 88.71(0.91)
LLB 49.08(1.09) 60.88(0.88) 65.26(0.86) 64.89(1.46) 78.19(0.89) 72.01(0.95)
ELB 85.86(0.91) 60.88(0.88) 66.26(0.86) 65.27(0.95) 79.62(1.00) 79.82(0.80)
PD 68.72(0.91) 51.54(0.73) 65.83(0.94) 64.31(1.06) 77.82(1.01) 74.26(0.95)

LAP 86.22(1.00) 36.38(0.76) 68.73(1.01) 67.10(1.18) 85.15(0.96) 88.89(1.05)
β −DEN 86.47(0.92) 36.38(0.76) 70.37(0.97) 67.28(0.95) 85.62(0.89) 89.03(0.94)

LLWDiscrete 87.64(0.95) 40.85(0.83) 71.26(0.91) 70.21(1.07) 86.19(0.92) 89.12(0.88)
LLWContinuous 87.85(1.10) 39.85(0.65) 71.87(0.95) 70.55(0.88) 86.10(0.79) 89.10(0.78)

ELWDiscrete 88.61(1.05) 40.81(0.84) 71.66(0.92) 70.37(0.95) 87.21(0.87) 89.27(0.91)
ELWContinuous 88.98(0.96) 47.45(0.91) 72.19(0.95) 71.02(0.98) 88.02(1.07) 89.44(0.97)

Table D.28: Pendigits performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 95.73(0.76) 92.37(0.68) 92.18(0.94) 87.82(0.88) 94.28(0.93) 95.87(0.88)
IHD 96.10(0.92) 91.78(0.83) 91.72(1.03) 88.72(0.78) 95.12(0.95) 96.21(0.79)
ED 97.04(0.78) 94.05(0.85) 93.25(0.93) 89.37(0.88) 95.72(0.81) 96.89(0.88)

AED 97.04(0.78) 94.05(0.85) 93.25(0.93) 91.27(0.94) 96.04(0.92) 96.98(0.95)
LLB 95.37(1.09) 93.16(0.92) 91.78(1.01) 90.21(0.97) 93.67(0.98) 94.67(1.01)
ELB 96.21(1.20) 94.28(1.02) 92.16(1.08) 90.21(1.09) 94.26(1.09) 95.37(1.04)
PD 95.63(1.09) 91.72(1.06) 90.36(1.02) 89.71(0.94) 93.62(1.00) 94.20(1.06)

LAP 97.04(0.73) 94.27(0.82) 93.62(0.95) 91.34(0.89) 96.09(0.89) 97.09(0.93)
β −DEN 97.04(0.82) 94.38(0.87) 93.88(0.92) 91.66(0.92) 96.17(0.92) 97.11(0.94)

LLWDiscrete 97.12(0.78) 94.63(0.74) 93.65(0.84) 91.72(0.88) 96.23(0.56) 97.25(0.89)
LLWContinuous 97.04(1.44) 95.37(1.03) 94.03(1.11) 92.13(1.46) 96.30(1.05) 97.31(1.08)

ELWDiscrete 97.26(1.52) 95.54(1.61) 94.23(1.47) 91.88(1.35) 96.47(1.09) 97.27(1.17)
ELWContinuous 97.36(1.27) 95.87(2.30) 95.62(1.29) 92.73(1.37) 96.69(1.07) 97.42(1.09)
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Table D.29: Segmentation performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 95.15(0.62) 80.82(1.21) 81.86(0.66) 70.69(1.39) 94.94(1.02) 95.51(0.62)
IHD 95.11(0.59) 80.87(1.20) 80.74(0.59) 62.77(1.58) 95.03(1.05) 94.27(0.62)
ED 95.15(0.62) 80.82(1.21) 81.86(0.66) 83.81(0.67) 95.07(0.99) 95.74(0.62)

AED 95.15(0.62) 80.82(1.21) 81.86(0.66) 80.00(0.59) 95.30(0.89) 96.10(0.59)
LLB 35.11(1.23) 91.69(0.89) 85.15(0.66) 47.53(1.00) 78.02(1.09) 90.37(1.07)
ELB 95.06(0.65) 91.69(0.89) 84.81(0.71) 84.98(0.75) 95.10(0.91) 94.17(0.84)
PD 90.00(0.84) 89.31(0.76) 73.29(0.69) 71.60(0.66) 93.20(0.89) 92.31(0.57)

LAP 95.15(0.62) 80.82(1.21) 81.86(0.66) 83.72(0.73) 95.48(0.93) 96.12(0.65)
β −DEN 95.15(0.62) 80.82(1.21) 81.86(0.66) 83.72(0.73) 95.76(0.86) 96.34(0.62)

LLWDiscrete 95.32(0.66) 90.87(0.89) 85.71(0.69) 83.72(0.73) 96.06(0.95) 96.44(0.65)
LLWContinuous 34.59(1.20) 77.06(1.43) 86.71(0.53) 70.00(3.07) 95.83(1.05) 96.10(0.66)

ELWDiscrete 95.32(0.66) 90.87(0.89) 85.71(0.69) 83.72(0.73) 96.16(0.94) 96.59(0.77)
ELWContinuous 95.02(0.65) 92.21(0.73) 86.58(0.78) 85.19(0.79) 96.43(0.92) 96.98(0.69)

Table D.30: OptDigits performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 96.21(1.18) 89.39(2.38) 82.05(2.87) 71.05(1.95) 91.20(1.89) 96.21(1.08)
IHD 96.23(1.17) 88.91(2.21) 76.67(3.18) 66.47(2.18) 90.26(2.09) 96.21(1.08)
ED 96.21(1.18) 89.39(2.38) 82.05(2.87) 76.78(1.70) 92.06(2.18) 96.21(1.08)

AED 96.21(1.18) 89.39(2.38) 82.05(2.87) 73.86(2.12) 92.30(2.08) 96.21(1.08)
LLB 79.48(3.18) 93.58(1.93) 87.49(2.79) 61.69(2.95) 91.21(2.14) 89.53(2.04)
ELB 96.00(1.17) 93.58(1.93) 87.60(2.82) 76.33(1.24) 92.09(2.15) 96.12(1.13)
PD 95.11(1.16) 94.09(1.57) 87.22(2.56) 71.94(2.00) 91.04(1.87) 95.34(1.24)

LAP 96.21(1.18) 89.39(2.38) 82.05(2.87) 76.92(1.67) 92.70(2.80) 96.77(1.22)
β −DEN 96.21(1.18) 89.39(2.38) 82.05(2.87) 76.94(1.66) 92.78(2.87) 96.77(1.22)

LLWDiscrete 96.23(1.19) 91.19(2.36) 84.59(2.90) 76.99(1.58) 93.09(2.16) 96.77(1.22)
LLWContinuous 79.48(3.18) 93.59(1.92) 87.95(2.94) 62.05(1.47) 93.36(2.09) 96.83(2.53)

ELWDiscrete 96.21(1.28) 91.23(2.31) 84.57(2.93) 76.85(1.80) 92.09(2.11) 96.77(1.22)
ELWContinuous 96.00(1.17) 93.59(1.93) 87.79(2.79) 81.33(2.42) 94.09(2.22) 96.89(1.44)

Table D.31: Vehicle performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 76.12(2.40) 68.67(3.12) 71.27(2.92) 52.01(1.15) 64.00(4.39) 76.12(2.40)
IHD 76.12(2.40) 69.85(2.23) 74.46(2.10) 72.21(1.64) 64.00(4.39) 76.12(2.40)
ED 76.12(2.40) 68.67(3.12) 71.27(2.92) 70.33(2.20) 64.00(4.39) 76.12(2.40)

AED 76.12(2.40) 68.67(3.12) 71.27(2.92) 70.22(2.26) 64.00(4.39) 76.12(2.40)
LLB 71.04(3.20) 78.60(2.40) 74.81(1.84) 67.00(2.66) 65.10(4.31) 71.04(3.20)
ELB 76.47(1.83) 78.72(2.36) 74.93(1.79) 73.04(1.74) 65.70(4.23) 76.47(1.83)
PD 76.00(1.45) 75.06(2.20) 74.23(1.88) 62.06(2.94) 64.37(4.17) 76.00(1.45)

LAP 76.12(2.40) 68.67(3.12) 71.27(2.92) 70.33(2.20) 64.00(4.39) 76.12(2.40)
β −DEN 76.12(2.40) 68.67(3.12) 71.27(2.92) 70.33(2.20) 64.00(4.39) 76.12(2.40)

LLWDiscrete 76.94(2.03) 74.82(2.26) 73.75(2.74) 70.33(2.20) 64.00(4.39) 76.94(2.03)
LLWContinuous 71.62(2.63) 78.13(2.21) 74.23(2.78) 70.44(2.59) 66.09(4.80) 76.94(2.03)

ELWDiscrete 76.94(2.03) 74.82(2.26) 73.75(2.74) 70.33(2.20) 64.00(4.39) 76.94(2.03)
ELWContinuous 76.95(1.76) 79.07(2.23) 74.70(2.03) 72.81(1.44) 66.10(4.71) 76.95(1.76)
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Table D.32: Shuttle performance using Linear SV M .
one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 97.72(0.30) 97.72(0.30) 96.27(0.63) 97.72(0.30) 97.72(0.30) 97.80(0.32)
IHD 97.79(0.28) 97.72(0.30) 95.63(0.44) 97.72(0.30) 97.72(0.30) 97.78(0.29)
ED 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.80(0.32)

AED 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.80(0.32)
LLB 89.43(1.45) 88.72(1.35) 90.94(1.09) 89.20(1.42) 91.43(1.10) 91.82(1.54)
ELB 97.37(0.46) 97.72(0.30) 94.72(0.87) 97.72(0.30) 97.72(0.30) 97.65(0.87)
PD 96.63(0.33) 95.82(0.65) 93.92(0.88) 96.93(0.75) 97.30(1.00) 96.76(0.71)

LAP 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.80(0.32)
β −DEN 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.80(0.32)

LLWDiscrete 97.79(0.27) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.89(0.38)
LLWContinuous 97.79(1.44) 97.72(0.30) 97.720.30() 97.72(0.30) 97.72(0.30) 97.98(0.97)

ELWDiscrete 97.80(0.28) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.92(0.33)
ELWContinuous 97.80(0.44) 97.72(0.30) 97.72(0.30) 97.72(0.30) 97.72(0.30) 98.03(0.77)



Appendix E

Traffic sign categorization
performances

Tables E.1 and E.2 show the performance results of the traffic sign experiments using
Gentle Adaboost and Linear SVM, respectively.

Table E.1: Gentle Adaboost results for the coding and decoding strategies on the
traffic sign data set.

one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 75.27(3.36) 59.39(2.85) 53.34(1.84) 52.61(2.09) 62.31(2.85) 75.78(2.84)
IHD 75.73(3.60) 60.59(2.97) 47.60(2.27) 48.37(2.17) 63.13(3.02) 74.92(3.28)
ED 75.27(3.36) 59.39(2.85) 53.34(1.84) 54.64(2.38) 63.75(2.85) 76.31(2.79)

AED 75.27(3.36) 59.39(2.85) 53.34(1.84) 53.48(2.22) 67.27(3.33) 78.23(2.86)
LLB 68.25(2.79) 69.12(3.13) 61.04(1.86) 40.42(1.57) 63.00(2.82) 76.23(3.48)
ELB 70.86(2.80) 69.00(3.18) 61.16(1.53) 43.03(1.50) 64.91(2.63) 76.38(3.14)
PD 74.06(3.09) 64.76(4.45) 60.92(1.38) 56.17(2.78) 61.21(2.62) 72.14(3.60)

LAP 75.27(3.36) 59.39(2.85) 53.34(1.84) 54.40(2.39) 68.34(2.93) 79.21(2.64)
β −DEN 75.27(3.36) 59.39(2.85) 53.34(1.84) 54.64(2.38) 68.34(3.06) 80.10(2.90)

LLWDiscrete 75.26(3.31) 63.03(3.63) 55.44(2.38) 52.89(2.20) 69.62(2.91) 80.33(2.97)
LLWContinuous 68.38(2.75) 69.83(3.33) 62.11(1.69) 45.07(1.77) 70.43(2.84) 81.03(3.46)

ELWDiscrete 75.39(3.16) 63.50(3.38) 55.32(2.37) 53.95(2.08) 70.49(2.95) 80.37(3.32)
ELWContinuous 75.86(2.80) 70.06(3.19) 62.23(1.67) 49.20(1.97) 71.88(2.72) 81.26(3.05)

Table E.2: Linear SV M results for the coding and decoding strategies on the traffic
sign data set.

one-versus-one one-versus-all dense sparse decoc ecoc-one

HD 83.45(3.08) 67.12(2.54) 64.26(2.62) 66.99(2.41) 75.98(2.91) 82.81(2.87)
IHD 83.92(3.14) 68.30(2.82) 56.12(2.63) 61.16(2.43) 76.21(3.10) 83.01(3.08)
ED 83.45(3.08) 67.12(2.54) 64.26(2.62) 70.53(2.72) 78.21(3.00) 83.33(2.82)

AED 83.45(3.08) 67.12(2.54) 64.26(2.62) 67.33(2.45) 79.92(3.03) 84.26(3.23)
LLB 69.24(2.83) 77.76(2.51) 69.47(2.21) 65.83(2.66) 77.28(2.92) 74.39(3.38)
ELB 77.29(3.56) 77.76(2.51) 69.12(2.16) 69.25(2.90) 77.92(3.38) 75.63(3.77)
PD 78.60(3.72) 68.74(5.02) 70.07(2.24) 65.08(2.17) 76.88(3.24) 76.52(3.94)

LAP 83.45(3.08) 67.12(2.54) 64.26(2.62) 70.06(2.76) 80.33(3.00) 82.91(3.50)
β −DEN 83.45(3.08) 67.12(2.54) 64.26(2.62) 70.06(2.80) 81.11(3.16) 84.26(3.40)

LLWDiscrete 83.45(3.08) 67.12(2.54) 64.26(2.62) 70.89(2.79) 81.03(3.08) 85.36(3.05)
LLWContinuous 69.24(2.83) 77.76(2.51) 69.47(2.21) 66.99(2.27) 80.19(2.76) 85.84(3.11)

ELWDiscrete 83.10(3.24) 68.79(2.56) 64.61(2.43) 70.29(2.82) 81.14(2.90) 86.82(3.08)
ELWContinuous 83.65(3.56) 77.76(2.51) 69.12(2.16) 71.84(2.86) 81.12(3.19) 87.87(3.31)
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Appendix F

UCI Machine Learning Repository

The UCI Machine Learning is a repository of databases, domain theories, and data
generators that are used by the machine learning community for the empirical analysis
of machine learning algorithms [8]. The repository contains 111 databases and domain
theories. The construction of this repository is an on-going process. The majority of
the entries in the repository were contributed by machine learning researchers outside
of UCI.

In particular, we selected a set of 16 multi-class data sets from the UCI repository
to test de multi-class methodology presented in this thesis. The details of each of
the data sets used in the experimental results of the previous sections are shown in
table F.1.

Table F.1: UCI repository data sets characteristics.
Problem #Train #Attributes #Classes Data types Attribute types Year

Dermathology 366 34 6 Multivariate Categorical, Integer 1998
Iris 150 4 3 Multivariate Real 1998

Ecoli 336 8 8 Multivariate Real 1996
Wine 178 13 3 Multivariate Integer, Real 1991
Glass 214 9 7 Multivariate Real 1987

Thyroid 215 5 3 Multivariate Categorical, Real 1987
Vowel 990 10 11 Multivariate Real -

Balance 625 4 3 Multivariate Categorical 1994
Yeast 1484 8 10 Multivariate Real 1996

Satimage 6435 36 7 Multivariate Integer 1993
Letter 20000 16 26 Multivariate Integer 1991

Pendigits 10992 16 10 Multivariate Integer 1998
Segmentation 2310 19 7 Multivariate Real 1990

OptDigits 5620 64 10 Multivariate Integer 1998
Shuttle 14500 9 7 Multivariate Integer 1993
Vehicle 846 18 4 Multivariate Integer -
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G.1 Journals

Sergio Escalera, Oriol Pujol, and Petia Radeva. Boosted Landmarks of Contextual
Descriptors and Forest-ECOC: a novel framework to detect and classify objects in
cluttered scenes. In Pattern Recognition Letters, vol 28/13, pp. 1759-1768, 2007.

Oriol Pujol, Sergio Escalera, and Petia Radeva. Optimal Node Embedding in Er-
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pp. 713-725.
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Sergio Escalera, Oriol Pujol, and Petia Radeva, Separability of Ternary Codes for
Sparse Designs of Error-Correcting Output Codes. In Pattern Recognition Letters,
second revision.
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[45] E. Laciar, R. Jané, and D. H. Brooks. Evaluation of myocardial damage in
chagasic patients from the signal-averaged and beat-to-beat analysis of the high
resolution electrocardiogram. Computers in Cardiology, 33:25–28, 2006.
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