In	tr.	0	а		\sim	•	\sim	m
		U	u	u		υı	U	ш

Results

Conclusions

Automatic Hand Detection in RGB-Depth Data Sequences

Vitaly KONOVALOV, Albert CLAPÉS, Sergio ESCALERA

CCIA 2013

Introduction	Automatic Hand Detection method	Results 000000	Conclusions

Outline

Introduction

- 2 Automatic Hand Detection method
 - Body segmentation
 - Reference point estimation
 - Body graph design
 - Geodesic distances map estimation
 - Including restrictions based on optical flow
 - Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introc	luction
1111100	uction

Results

Motivation

Contextualization

- **Problem** Automatically detecting hands in RGB-D data (involving changes in illumination, viewpoint variations, and hand and wrist's articulated and deformable nature).
- Scenario People seated at the desk (only upper body is visible).

• Assumptions (a) Upper body frontal view, (b) non-cluttered desk, and (c) hand landmarks remain at constant geodesic distance from an anatomical reference point.

Applications

• Natural human-computer interaction, gaming, and monitorization.

Introduction		Automatic Hand Detection method	Results 000000	Conclusion
•	a .			

State-of-the-art

- Two paradigms for body part detection in visual data:
 - Learning based approaches.
 - Body parameter estimation from observed features.
- Typically, computer vision methods were relying on RGB information.
- Hardware devices for depth (or rgb-depth) data acquisition:
 - Structured Light (Microsoft[®]Kinect[™]).
 - Time-of-Flight.

Introduction	Automatic Hand Detection method	Results 000000	Conclusions

Outline

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

Results

Conclusions

Automatic Hand Detection method

Introduction	Automatic Hand Detection method ●000000000000	Results 000000	Conclusions
Body segmentation			
Outline			

・ロト ・聞ト ・ヨト ・ヨト

э

Introduction

2 Automatic Hand Detection method

Body segmentation

- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Body segmentation			
Body segme	entation		

Given a new depth frame \mathbf{D}^t , in which a subject seated in a non-cluttered desk appears,

- Foreground segmentation Otsu's thresholding on depth values, assuming a bimodal distribution (foreground vs background).
- Point cloud representation Project the foreground in a cloud of 3D points P^t.
- Table extraction The table plane is modeled using RANSAC, featuring the points in P^t by their surface normal vectors.

Introduction	Automatic Hand Detection method ○○●●○○○○○○○○○○	Results 000000	Conclusions
Reference point estimation			
Outline			

ヘロン 人間 とくほと くほとう

э

Introduction

2 Automatic Hand Detection method

Body segmentation

• Reference point estimation

- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Reference point estimation

Reference anatomical landmark (torso point)

Given the point cloud \mathbf{B}^t , representing the segmented human body segmented from \mathbf{P}^t ,

- Re-project B^t into a 2D dense depth image and compute a distance map within the body region.
- Compute the reference point x^t_{ref}. Let C be the set of contour points in the silhouette, then

$$\mathbf{x}_{\mathrm{ref}}^t = \mathrm{argmax}_{\mathbf{x}} \mathrm{min}_{\mathbf{x}_{\mathcal{C}} \in \mathcal{C}} d(\mathbf{x}, \mathbf{x}_{\mathcal{C}})$$

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Body graph design			
Outline			

ヘロン 人間 とくほと くほとう

э

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation

Body graph design

- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Body graph design			
Body graph de	esign		

- Project the 2D point reference point x^t_{ref} to a 3D point p^t_{ref} (from which the graph construction will start).
- 2 Partitionate \mathbf{B}^t in a voxel grid.
- **③** The body graph $G^t = (V^t, E^t, W^t)$ is constructed as follows:

 $V^{t} = \{\mathbf{q}_{ijk} : \mathbf{q} \text{ is the centroid of the points } \mathbf{p} \text{ of } \mathbf{B}^{t} \text{ in the } (i, j, k) \text{ voxel} \}$ $E^{t} = \{(\mathbf{q}_{ijk}, \mathbf{q}_{i'j'k'}) \in V^{t} \times V^{t} : \parallel (i, j, k)^{T} - (i', j', k')^{T} \parallel_{\infty} < 1\}$ $W^{t} = \{w(e) = ||\mathbf{q} - \mathbf{q}'||_{2} : e = (\mathbf{q}, \mathbf{q}') \in E^{t} \}$

that is, two points **q** and **q'** are connected by an edge if they are in the same 3D neighborhood of $3 \times 3 \times 3$ voxels.

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Geodesic distances map estimat	tion		
Outline			

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation
- Body graph design

• Geodesic distances map estimation

- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results 000000	Conclusions	
Geodesic distances map estimation				
Geodesic dista	nces map estimation			

- Using *G^t*, it is possible to measure geodesic distances between two different body locations.
- The **geodesic distance between two body locations** is the length of the shortest path over the body surface.
- The geodesic distance $d_G(\mathbf{q}, \mathbf{q}')$ is estimated:

$$d_G(\mathbf{q},\mathbf{q}') = \sum_{e\in E_{SP}(\mathbf{q},\mathbf{q}')} w(e)$$

where $E_{SP}(\mathbf{q}, \mathbf{q}')$ contains all the edges along the shortest path between \mathbf{q} and \mathbf{q}' , computed using the min-path Dijkstra's algorithm.

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Including restrictions ba	ised on optical flow		
Outline			

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Including restrictions ba	used on optical flow		
Geodesic p	aths desambiguation (I)		
Problem			

The arms are stick together or to another body part \Rightarrow undesired graph connections \Rightarrow bad geodesic paths estimations

Introd	uction	Automatic Hand Detection m	lethod	Results 000000	Conclusions
Includi	ng restrictions based on c	optical flow			
Ge	odesic paths	s desambiguat	ion (II)		
	Solution				
	Use the optica	I flow magnitude	to remove unde	sired graph edge	s.
	At each t	ima atan a danaa	antical flaur man	n Tt is somewhat	

 At each time step, a dense optical flow map *F^t* is computed using *I^t* and *I^{t-1}*.

• Update E^t :

$$E^{t} := E^{t} - \{(\mathbf{x}_{ij}, \mathbf{x}_{kl}) \in E^{t} : \parallel |\mathcal{F}^{t}(i, j)| - |\mathcal{F}^{t}(k, l)| \parallel_{2} > \beta\}$$

Introduction

Automatic Hand Detection method

Results 000000 Conclusions

Including restrictions based on optical flow

Geodesic paths desambiguation (III)

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Automatic hand detection			
Outline			

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow

Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Automatic hand detection			
Automatic har	nd detection		

Once the geodesic map has been computed from G^t (considering optical flow restrictions), a **histogram of geodesic values** H_{G^t} is computed.

The **hands' regions are segmented** as those two biggest connected components in which their points have a value greater than ϕ . Being $\phi = g(H_{G^t}, \theta)$, and θ an experimental parameter expressing the 'percentage' of highest geodesic distance values.

The hands are located at the 3D centroid of the segmented regions.

Introduction	Automatic Hand Detection method	Results 000000	Conclusions

Outline

2 Automatic Hand Detection method

3 Results

- Data, settings, and validation
- Experiments

Introduction	Automatic Hand Detection method	Results ••••••	Conclusions
Data, settings, and valida	tion		
Outline			
1 Introdu	ction		
2 AutomaBodyBefer	tic Hand Detection method segmentation		

- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

Inti	rod	110	÷	or
	lou	u c		

Results

Data, settings, and validation

Data, settings, and validation

• Data

- RGB-D dataset recorded with a KinectTM.
- 6 different users simulating upper-body HCI scenarios.
- 3000 RGB-D frames at 640 \times 480 resolution.
- Groundtruth: 2171 manually annotated hands (interactive 3D viewer).
- Settings $s=20\,\mathrm{mm},\ \beta=0.2,\ \gamma=25\,\mathrm{mm},$ and $\theta=1\%$
- Validation Detection accuracy based on groundtruth hands and different tolerance values for β , γ , and θ . Posterior fine-tuning of γ and θ .

Introduction	Automatic Hand Detection method	Results	Conclusions
Experiments			
Outline			

イロト イポト イヨト イヨト

Introduction

2 Automatic Hand Detection method

- Body segmentation
- Reference point estimation
- Body graph design
- Geodesic distances map estimation
- Including restrictions based on optical flow
- Automatic hand detection

3 Results

- Data, settings, and validation
- Experiments

	t i	\sim	а	 0	÷	\sim	m
					L		ш

Results ○○0●00 Conclusions

Experiments

Quantitative results: detection accuracy

Introduction

Automatic Hand Detection method

Results ○○○○●○

Experiments

Qualitative results (I): geodesic distance map estimations

Figure : Color images, depth maps, estimated geodesic maps, and labeled hands.

Introduction

Automatic Hand Detection method

Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions

Experiments

Qualitative results (II): a sequence of detections

Figure : Detection in a sequence of frames.

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Outline			

3 Results

Introduction	Automatic Hand Detection method	Results 000000	Conclusions
Conclusions			

- Simple and fully-automatic.
- Robust to partial occlusions (detection in still images, not relying in tracking strategies).
- Not requiring large training datasets and training phase.
- More cumbersome body segmentation strategies to deal with clutter in desks.
- Thinking in possible improvements for efficency.
- FYI

Introduction	Automatic Hand Detection method	Results	Conclusions

Thank you for you attention!