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ABSTRACT
A major goal of visualization is to appropriately express knowledge of scientific data. Generally, gathering visual
information contained in the volume data often requires a lot of expertise from the final user to setup the parameters
of the visualization. One way of alleviating this problem is to provide the position of inner structures with different
viewpoint locations to enhance the perception and construction of the mental image. To this end, traditional
illustrations use two or three different views of the regions of interest. Similarly, with the aim of assisting the
users to easily place a good viewpoint location, this paper proposes an automatic and interactive method that
locates different complementary viewpoints from a reference camera in volume datasets. Specifically, the proposed
method combines the quantity of information each camera provides for each structure and the shape similarity
of the projections of the remaining viewpoints based on Dynamic Time Warping. The selected complementary
viewpoints allow a better understanding of the focused structure in several applications. Thus, the user interactively
receives feedback based on several viewpoints that helps him to understand the visual information. A live-user
evaluation on different data sets show a good convergence to useful complementary viewpoints.
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1 INTRODUCTION
One of the most important visualization goals is to ap-
propriately express knowledge of scientific data. Dur-
ing the last few decades several methods have been pub-
lished in the bibliography to gather visual information
contained in the data. However, gathering visual infor-
mation often requires the expertise from the final user
in a difficult and tedious process in order to setup the
parameters of the visualization. Some metaphors of in-
teraction have been provided to help users in data nav-
igation between focus and context (importance-driven,
VolumeShop, exoVis, LiveSync++, ClearView).

Over the centuries, the traditional paradigm used in il-
lustration for visual abstraction has been to enhance the
most important structures into an environment or con-
text with different painting techniques. As an example,
Fig. 1 shows two traditional illustrations which use two
or three different views of the region of interest to en-
hance the construction of the mental image. Particu-
larly, in Fig. 1(a) the focused structure is an eye which
shows two complementary viewpoints, an oblique view
and a frontal view, and Fig. 1(b) illustrates complemen-
tary views of the foot.

Previously, we proposed an enhancement of the
ClearView paradigm where the context’s volume data

(a) (b)
Figure 1: Illustration examples of the complementary
camera viewpoint. Images (a) and (b) come from
http://www.keithtuckerart.com/Illustration.html and the
medical dictionary Allen’s Anatomy, respectively.

is adaptively clipped around the focus region [GP09].
Apart from the focus, to select a good starting
viewpoint of the focus is a difficult task as volume
renderings often include a barrage of complex 3D
structures that can overwhelm the user. Several meth-
ods have been published to gather visual information
contained in the data. There are methods in the field of
illustrative visualization [RBGV08], such as [VKG05]
and [BG05], where the main goal is to develop appli-
cations that can integrate illustrations in the expert’s
ordinary data analysis in order to get more semantics
from the data.



Once a good focus and context is obtained, it is also im-
portant to concentrate on alleviating the normally diffi-
cult abstraction process that a user should carry out to
convey the desired information in the underlying data.
Specifically, to select a good starting viewpoint is some-
times a tedious task for a non-experimented users. Ac-
tually, in the clinical routine prefixed views are used
based on saggital, axial and coronary views, despite that
they are not always the best. In the bibliography, we
can find techniques that automatically locate the view-
point according to the importance of the structure to be
rendered [BS05a, TFTN05, PPVN08]. Most of them
are computed in a preprocessed stage due to their high
computational cost.

In this paper we propose the computation of the corre-
lated view that shows highly complementary informa-
tion of the focused structures. Also, in our proposal
the user can adjust suggested cameras interactively, and
our system computes the new complementary view. To
this end, we consider both the visual information and
the shape similarity of the projections of each sampled
camera. Similarity is based on Dynamic Time Warp-
ing, ranking the projections using a weighted similarity
related to the reference camera. In this manner, the pro-
posal is able to cope with the problem of locating au-
tomatically the complementary camera that maximizes
the complementary information of the structures. By
its nature, the proposed algorithm is general enough to
be applied in combination to state-of-the-art approaches
for selecting the optimal camera. Based on a live-user
evaluation, we show how the proposal efficiently com-
putes complementary viewpoints and rapidly converges
to a good solution.

The rest of the paper is structured as follows: Section 2
describes relevant previous work on viewpoint selec-
tion. Our proposal is described in Section 3. Section 4
analyzes the proposal with different data sets. Finally,
Section 5 concludes the paper.

2 RELATED WORK
The cognitive process to comprehend the meaningful
structures in an image varies according to the visual
purpose. A single visual event is easily processed in an
intuitive way. However, multiple visual events involve
a more complex cognitive process. Several studies have
addressed this problem. This section summarizes pre-
vious works on visual information measures used to de-
fine the best viewpoint selection.

Setting the camera to focus on the relevant structures
of the model sometimes requires a lot of user expertise.
Therefore, many authors [BS05a, TFTN05, VFSG06,
MNTP07a, PPVN08, KBKG08, ZWD12] have ad-
dressed viewpoint optimization in direct volume
rendering, extending the ideas used in surface-based
scenes.

Visual information is the measure used to estimate
the quality of a viewpoint according to the percep-
tion of the structures of interest of a volume data
set. Then, information theory approaches, such as
viewpoint entropy [BS05a], generalize the analysis
of the visual information associated to a specific
viewpoint. Particular cases are the approaches fo-
cused on heuristic functions [KBKG08, TFTN05,
MNTP07b, CQWZ06, GP09]. These metrics are
not universal and, as [PPB∗05] concludes, not one
descriptor performs a perfect job. Several descriptors
to measure the visual information associated to a
view projection have been previously described in
the literature. Heuristic functions and entropy-based
methods mainly consider three types of descrip-
tors: environment-dependent [KBKG08, PPVN08],
object-dependent [VFSG06, BS05a, KBKG08] and
viewpoint-dependent [ZWD12].
First, environment-dependent descriptors depend on
contextual parameters such as patient orientation
and viewpoint history [KBKG08, PPVN08]. Object-
dependent descriptors characterize the information
contained in the data set, such as the importance of
the selected objects [VFSG06], the noteworthiness of
each voxel that contributes in the final image [BS05a],
the shape of the selected object [KBKG08], and the
use of heuristics for complementary views [GP09].
These type of descriptors depend upon two main
requirements: a complete model of each view and the
position of the camera. The process of all these models
involves a high computational cost that is mostly
alleviated by introducing a preprocessing stage for
each view. Finally, viewpoint-dependent descriptors
are based on the visibility and the location of the final
projection of the object in the viewport. They measure
only the information that will be effectively seen by the
user. The feature most considered are the size of the
projected area of the object [MNTP07b], the occlusion
between objects [MNTP07b, KBKG08], object self-
occlusions [CQWZ06], the important viewport areas
[VFSG06] and the entropy of the image [PPVN08].
Some approaches study correlations between cameras
in varying time measuring the stability between the
views based on the Jense-Shanon divergence metric
[BS05b]. Also, in path-views searching a Normalized
Compression Distance is used [PPVN08]. They search
the next best view at the greatest distance from the
previous one. [CMH08] proposes a global search of
optimal points in the solution space using potential
fields.
Our main goal in this work is to measure the informa-
tion that will be effectively seen by the user in two cor-
related views. The requirements are that the measure
should be simple, easy to evaluate, robust to changes
in the resolution of the final view, and without user
intervention. Viewpoint-dependent descriptors are the



most suitable since they are focused on the final visual
user’s perception. They are easy to compute and they do
not require a preprocess stage such as object-dependent
ones. In addition, we propose to measure a new de-
scriptor based on the shape similarity of the projected
structures that complements the projected area infor-
mation. We present a 2D-geometrical approach based
on Dynamic Time Warping that matches distortions be-
tween the projected shapes. This method is based on
implicit distance functions that are stable and robust to
shape perturbations and noise. Thus, our proposal ob-
tains a representative complementary projection using
a viewpoint-dependent approach, i.e. analyzing the vi-
sual information associated to each view by an entropy-
based method that combines the entropies of each pro-
jected visible structure and shape similarities.

3 LOCATING COMPLEMENTARY
VIEWPOINTS

The main goal of our system is to provide an interac-
tive exploration of volume data sets by unexperienced
users. To visualise the volume, we use an interactive
interface, allowing users to both understand and control
aspects of the visualization process that would other-
wise go unnoticed.

In order to define the location of the complementary
camera of the underlying structures of the data from a
reference viewpoint, vr, we calculate the entropy of a
set of sampled cameras, H(v). Next, we analyze the
shape similarity, Sim, of the viewpoint projections re-
lated to the vr viewpoint based on Dynamic Time Warp-
ing. The weighted combination of these measures pro-
duces the final complementary view, Dual(vr).

3.1 Visual information descriptor
We use an entropy-based method to estimate the quality
of a camera based on the projected area of the isosur-
faces of the selected structures. Multiple focused re-
gions are considered in the visual information estima-
tion. We calculate the weighted sum of the viewpoint
entropy’s of the extracted structures. We assign higher
weights to these structures with opacity transfer func-
tions, as in [TFTN05]. Let F = { f1, f2, ..., f f } be the
set of user-selected structures, or features, we define
the function, w( f j), as the weight associated to the each
feature, f j. Let H f j(v) be the entropy of the viewpoint,
v, associated to the f j feature. Thus, the final entropy
associated to a viewpoint, v, is defined as:

H(v) =
|F |

∑
j=1

H f j(v) ·w( f j). (1)

The entropy H f j(v) is based on view-dependent de-
scriptors. In the bibliography, the most used are the

size of the projected area of the object [PPVN08], the
occlusion between objects [KBKG08], object self-
occlusions, the important viewport areas [VFSG06],
and the luminance [ZWD12]. In this proposal, without
loss of generality, we use as a proof of concept, the
projected area of the voxels of the feature f j.

Finding a good view assumes that the data set is cen-
tered at the origin and the camera is restricted to be at
a fixed distance from the origin, defining a boundary
sphere. The surface of this sphere represents all view
directions. Thus, let S be the 3D space which repre-
sents the bounding sphere of the complete model that
contains the set of camera locations or viewpoints. Let
V = {v1,v2, ...,vN} be the space of |V | camera locations
defined as a discrete and finite set of iso-distributed
samples over the surface of S. To guarantee a regu-
lar distribution we use the HealPix package [GHB∗05].
An example of a sphere and the iso-distributed samples
over the surface is shown in Fig. 2, highlighting the im-
ages related to each viewpoint.

Figure 2: Description of the sampled sphere, S, each image
Ii is related to each viewpoint vi.

We assume that the up vector of the cameras can be ar-
bitrarily chosen at each location due to the camera rolls
not having an effect on the visibility. Each view pro-
jection of the selected features is a 2D image, Ii. Let
I = {I1, I2, ..., IN} be the set of all images projected over
the sphere and H(vi) their corresponding entropy. Gen-
erally, focused regions can be completely occluded by
others, and this fact can difficult the computation of the
final entropy of a viewpoint. We can assume that each
Ii is the set of layers where each one is the projection of
all the voxels of the f j feature without occluders. These
layers could be used to compute the H f j(v) entropy, and
also to define the shape similarity function.

3.2 Shape similarity term
Once we have the camera locations and a reference
2D image Ir projected from the reference camera view-
point, the objective is to find a complementary image



Ii ∈ I so that it offers the most complementary informa-
tion to the reference image Ir. For this task, an image
similarity procedure among Ir and each candidate Ii is
computed iteratively. In order to perform this estima-
tion, we first need a definition about what we refer for
similarity. Although different features and definitions
can be considered for this task, we just will use sim-
ple image information that can be useful to discriminate
similar visual shapes in terms of silhouette and region
properties. In particular, we focus on the external con-
tour similarity of 3D object projections as well as the
amount of visual information of each volume structure
from a particular point of view. As we will see, it allows
for a simple estimation that is effective on selecting an
useful complementary camera.
The similarity measure used to compute this informa-
tion is obtained as follows:

Sim(Ir, Ii) = (1−β ) ·Dist(Ir, Ii)+β ·Corr(Ir, Ii), (2)

where Sim stands for the similarity measure between a
pair of images, Dist (see Eq. 3) is the function that com-
putes a shape similarity among a pair of images, and
Corr (see Eq. 6) is the function that computes the corre-
lation among percentage of visible information for each
structure present in both images. Finally, β is a regu-
larization factor. Sim(Ir, Ii) tends to 0 when Ir and Ii are
close to each other. On the other hand Sim(Ir, Ii) tends
to 1. Note that for simplicity, we consider shape con-
tour and label properties information in order to com-
pute shape similarity.
For the shape similarity term Dist(Ir, Ii), our goal is
to obtain a matching cost among two object external
contours. This cost is low for similar shapes even if
the shape is captured under different rotations or reflec-
tions. As shown in Fig. 3, for this task, we first bina-
rize the image. Next, we compute the external contour
of the volume by applying a Canny [Can86] edge de-
tector on the binary volume information projected to a
particular 2D view. Finally, the contour is vectorized
by looking over the contour the distance of each point
to the center of mass, see Fig. 3(c). In order to re-
duce the matching time, we just extract the main ex-
ternal shape silhouette removing inner object contour
points from projected 2D shape. We experimentally
found that this does not have a negative effect on fi-
nal performance. Figure 4 depicts the resulting vec-
torized contour of the foot shown in Fig. 3 where the
x-axis corresponds to the position on the contour and
the y-axis is the distance of this position to the center
of mass. Once the contour is vectorized, it can be effi-
ciently analyzed using dynamic programming. [SK08]
presents an indexing approach for time series indexing
and mining based on hashing Euclidean distance rules.
Although this approach presents promising results for
large time series datasets, it is demonstrated that for re-
duced feature vectors, like the ones we use to codify

the shape silhouette, the estimated warping cost based
on dynamic programming uses to obtain more accurate
results. In consequence, we use Dynamic Time Warp-
ing (DTW). The rationale behind DTW is, given two
time series, to stretch or compress them locally in or-
der to make one resemble the other as much as possi-
ble. The distance between both time series is computed,
after stretching, by summing the distances of individ-
ual aligned elements. DTW is an algorithm commonly
used for measuring similarity between two sequences
which may vary in time or speed. DTW has been ap-
plied to video, audio, and graphics -indeed, any data
which can be turned into a linear representation can be
analyzed with DTW. In this sense, we apply DTW to
match the vectorized shapes of each 2D projected vol-
ume viewpoint in relation to the reference image.

Figure 3: Description of the process for extracting the con-
tour of the reference image.

Figure 4: Vectorized contour of the reference image.

In order to obtain reflection invariance we apply the
same procedure for the image Ii, and for the horizontal
and vertical image reflections, Ih

i and Iv
i , respectively.

Figures 5 and 6 depict the process for extracting the
contour of a candidate image Ii, and its final vectorized
contour, respectively.

Figure 5: Description of the process for extracting the con-
tour of an image, Ii.

On the other hand, note that rotation and viewpoint in-
variance will be obtained by the matching procedure



Figure 6: Duplicated vectorized contour of a candidate im-
age Ii to guarantee rotation invariance.

based on Dynamic Time Warping, according to the hor-
izontal an vertical image reflections. Thus, final simi-
larity is obtained as:

Dist(Ir, Ii) = min(d(Ir, Ii),d(Ir, Ih
i ),d(Ir, Iv

i )), (3)

where d function computes the Dynamic Time Warp-
ing alignment between two series. For this task, Ir is
decomposed into a one-dimensional sequence, vector-
izing the external shape contour of the connected com-
ponents in Ir as described above, see Fig. 4. The shape
vectors of a image, Ii, are duplicated in size, concatenat-
ing twice the vectoring shape to guarantee rotation in-
variance, see Fig. 6. Then d(Ir, Ii) is computed as a Dy-
namic Time Warping algorithm. Specifically, our DTW
algorithm is defined to match distortions between two
models, finding an alignment/warping path between the
two shape series Ir and Ii. In order to align these two se-
quences, a Mm×n matrix is designed, where the position
(x,y) of the matrix contains the alignment cost (i.e., de-
fined later in Eq. 5) between positions x and y of both
series, see Fig.7.

Figure 7: Cost matrix, M, with the cost alignment between
positions x and y of both series.

From the matrix, M, a warping path of length T is de-
fined as a set of contiguous matrix elements, defining a
mapping between Ir and Ii as W = {w1, ...,wT}, where
wi indexes a position in the cost matrix. This warping
path is typically subjected to several constraints:

Boundary conditions: w1 = (1,1) and wT = (m,n).

Continuity and monotonicity: Given wt−1 = (a′,b′),
then wt = (a,b), a− a′ ≤ 1 and b− b′ ≤ 1, this condi-
tion forces the points in W to be monotonically spaced
in shape.
We are generally interested in the final warping path
that minimizes the warping cost:

d(Ir, Ii) = min
(

M(wt)
|W |

)
, (4)

where |W | compensates the different lengths of the
warping paths. The cost at a certain position M(x,y)
can be found as the composition of the Euclidean dis-
tance c(x,y) between the feature vectors of the two se-
quences and the minimum cost of the adjacent elements
of the cost matrix up to that point, i.e.,

M(x,y) = c(x,y)+min(M(x−1,y−1),M(x−1,y),M(x,y−1)). (5)

The cost c(x,y) = (x−y)2 that is the Euclidean distance
between the feature vectors at positions x and y.
In order to detect the beginning and ending positions of
the candidate shape that minimizes the matching cost,
the current ending cost is checked (the cost of the ele-
ment in the last row). This minimum value is assigned
to d(Ir, Ii), which is used in Eq. 3. Figure 8 depicts in
green color the best alignment (i.e., the one that mini-
mizes the matching cost) among the vectorized shapes
of the reference image, Ir, and the candidate image, Ii.

Figure 8: Alignment found using DTW among Ir and the
candidate image Ii.

Given that some labeled structures may have similar
shape but different resolution, and thus offer different
percentage of information, we complement the DTW
similarity procedure with a correlation of information
from each feature f j, f j ∈ F , among two images. The
features we use in our foot example are the labels of the
volume (i.e, toes, palm and ankle). For this task Corr is
computed as follows:

Corr(Ir, Ii)= ∑
f j∈F

∣∣∣∣ count(Ir, f j)
∑ fl∈F count(Ir, fl)

−
count(Ii, f j)

∑ fl∈F count(Ii, fl)

∣∣∣∣ ,
(6)

where count(Ir, f j) estimates the number of visible pix-
els of feature f j in Ir. When transparency is taken into
account in the rendering, each projected pixel can con-
tribute several times in the count function for differ-
ent structure labels, as many as non-occluded structures



have been projected onto that pixel. Thus, in Eq. 6 nor-
malization is based on the total amount of visible pix-
els for each structure. In this sense, similar external
shape projections but with different amount of visible
information from each structure in relation to the refer-
ence image will penalize the similarity measure. On the
other hand, similar visual proportion for each structure
in comparison with the reference image will be penal-
ized if the external projected structure among views dif-
fers. This trade-off regularized by the β term in Eq. 2
allows for a robust estimation of complementary view
selection, assigning higher score to those views that of-
fer additional information to the primary view in terms
of visual structures and external shape.

3.3 Selecting the optimal complementary
camera

Given a reference camera viewpoint vr ∈ S and its pro-
jected image Ir, we define the function Dual(vr) as1,

Dual(vr) = max(Sim(Ir, Ii) ·H(vi)) : ∀Ii ∈ I. (7)

Similarity measure defined in Eq. 2 is used to mask the
entropy at each sampled viewpoint location vr into the
sampled space S.

Figure 9: The first row shows the projection of the sampled
sphere of each computed viewpoint function. The second row
shows the reference image and the complementary camera
projection. The entropy H(v), similarity Sim(Ir, Ii) and the
final composition H(vi) · Sim(Ir, Ii) is used to find the com-
plementary viewpoint, Dual(vr).

Figure 9 describes the final composition to find the op-
timal complementary viewpoint. The entropy H(v) is
computed for all the selected features (or isovalues) (see
Eq. 1). Each projected image stores for each pixel the
first intersection with the focused feature and the corre-
sponding depth, when this intersection exists. These
images are next used to compute the entropy, H(v).
Next, given a viewpoint location, vr, of the sampled
sphere, S, the similarity of all the samples related can

1 We experimentally found that the product rule obtained better
trade off results in comparison to other metrics, such as the
sum rule.

be computed using the Sim(Ir, Ii) function. Finally, the
maximum value of these former costs locates the com-
plementary camera Dual(vr).

4 SIMULATIONS
This section describes the design of the experiments,
the analysis of the proposal for computing complemen-
tary camera viewpoints and the obtained results.

4.1 Design of the experiments
We have analyzed the proposed method using an In-
tel Core I7 870 with 16 GB memory equipped with an
NVidia GeForce GTX 690 GPU with 4GB of GDDR5
memory. The viewport size is 512×512.

In order to test our method, we have sampled the
searching space S with 192, 768 and 3072 viewpoint
locations. We are able to compute 192 views in 0.03
seconds in average, 768 in 0.15 seconds and 3072 in
0.61 seconds. We have used three data sets: (1) the
Foot2 data set is a 1283-sized CT scan of a human
foot; (2) the Thorax 3 data set represents a phantom
human torso of 4003 voxels; and (3) the Walnut4 data
set, which is a CT scan of a walnut of 400×296×352
voxels. In the walnut dataset, the structures have a
configuration of onion-peel-like, i.e., each structure is
totally or partially contained in another structure.

We have selected three structures of the foot (toes,
palm and ankle), twelve for the thorax to test different
amount of overlapping between structures, and three
features for the walnut (i.e., shell, seed, and core seg-
ments). The selected structures are based on the public
label annotations of the used datasets. We empirically
setup the β parameter to 0.5 in order to compute the
similarity term.

With the aim of validating the goodness of our proposal,
we performed a live-user evaluation. In our trial partic-
ipated 20 subjects. The users were asked to score a best
view and a set of best complementary views in relation
to the reference ones. With this experiment we look for
the correlation among observers to the best and comple-
mentary viewpoint selection based on the mean number
of votes per viewpoint. This 3D map serves as a qual-
itative evaluation in order to look for observers agree-
ment. We also use this information to compare the user
selection with our automatic generated 3D score maps
for the best and the complementary viewpoints.

4.2 Analysis
In our analysis, the trial performed by the users con-
sisted of the four following steps. Firstly, each trial-
ist rated all the images in the range [1..5]. Secondly,

2 http://www.slicer.org/archives.
3 http://www.voreen.org.
4 http://www.uni-muenster.de/EIMI/.



among all the images, each trialist selected the one that
he considered best reference image (Ir). Next, looking
at this reference image and the remaining ones again,
they were asked to rate them according to how good the
complementary view each one offers is. Finally, they
were asked to locate the best complementary image to
the one previously chosen as the reference image. For
the sake of simplicity, all users were asked to rate the
best viewpoint only on the Thorax data set, meanwhile
they were asked to rate all the complementary view-
points for the three data sets. For all the cases of study,
192 images were provided to the participants.

On the other hand, we did similar steps for evaluating
our proposal. First of all, for each viewpoint, we rated
them using the entropy, H(v). Secondly, we selected as
reference image, Ir, the viewpoint with the maximum
entropy. Next, we computed the shape similarity term.
Finally, we selected the optimal complementary cam-
era for the previously selected reference image, Ir, as
described in Section 3.3.

Table 1 depicts the results for the Thorax data set with
192 viewpoint locations for the live-user evaluation and
the proposed algorithm. The first observation for the
best camera selection on the Thorax data set is that the
users tend to rate all those viewpoints that they do not
consider relevant very low in the scale, meanwhile they
offer high values to those viewpoints they consider rele-
vant. In this sense the densities of the 3D map tend to be
a bimodal distribution. In contrast, in our case our auto-
matically computed map tends to be a Gaussian distri-
bution of scores. The important point of this experiment
is that there exists a high agreement among observers in
relation with the best viewpoint and that this viewpoint
(Table 1 (a) and (e)) highly correlates with the one ob-
tained by our automatic method (Table 1 (b) and (f)).
Moreover, both distributions of scores of the best view
share similar patterns.

In relation to the complementary viewpoints, as de-
picted in the figures of Table 1 (c) and (d), there also
exists a high agreement among observers and a high
correlation with our computed scores for complemen-
tary viewpoint selection. It is remarkable that for some
symmetric volumes, such as the Thorax data set, we
still obtain a high score for that view (Table 1 (g) and
(h)), although the average complementary view chosen
by the users do not correspond to the one selected by
our system. This is mainly because we obtain similar
scores for opposite viewpoints given the symmetry of
the visualized objects, especially when the number of
analyzed viewpoints tends to be 3072 views.

In Table 2, we also show the best complementary se-
lection obtained by the live-user evaluation for the Foot
and Walnut data sets based on our best primary view
selection. Comparing these views with the complemen-

tary ones computed by our approach (see Table 3 and 5)
one can see a high agreement among the selected views.

Live-User Evaluation Proposed Algorithm

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Table 1: Comparison of the results obtained with the
live-user evaluation and our proposed method for the
Thorax data set with 192 viewpoint locations: (a) and
(b) show the initial score distribution, (c) and (d) refer
to the complementary view score distribution, (e) and
(f) show renderings of the reference image Ir selected
by users and computed by our proposed algorithm, re-
spectively, and (g) and (h) show renderings of the com-
plementary view in relation to the same reference im-
age.

(a) (b) (c)
Table 2: Best complementary camera selection by live-
user evaluation on the (a) thorax, (b) foot and (c) walnut
data sets.
In the tested data sets, the convergence of the comple-
mentary camera location directly depends on the varia-
tion of the number of samples on the bounding sphere
as well as the used searching space.

Tables 3, 4, and 5 show the obtained results for differ-
ent number of samples in the sphere, |V |, from 192 to
3072. The first three rows represent the H(v) entropy of



FOOT
|V| 192 768 3072

H(v)

Sim(v)

H(v)·Sim(v)

vbest

Dual(vbest)
Table 3: A comparison with different number of sampled viewpoints for Foot data set.

the sampled viewpoints over the sphere, the Sim(v) as-
sociated the concrete view, and the H(v) · Sim(v) com-
position, respectively. Each of them is mapped to a plot
that represents the whole set of sampled viewpoints in
the sphere S. The best viewpoint location in the first row
(vbest ) is highlighted with a white bullet. The similarity
plot is computed according to this location (Sim(vbest))
in the second row. Finally, the third row shows the
Dual(vbest) as a white bullet in the composed plot of
H(v) · Sim(v). The two last rows are the final render-
ings associated to vbest and Dual(vbest), respectively.

It can be observed that the computed entropy maps be-
come stable between 192 and 768 cameras. Similar-
ity maps converge from 768 to 3072 sampled positions.
Additionally, if we evaluate the final renderings, the 768
is enough in order to obtain a dual camera position with
complementary information to the first camera. In this
experiment, the reference camera is the best viewpoint
located in the entropy map, but we can define any arbi-
trary position, and then compute the similarity map and
its dual function. Note that the complementary camera
viewpoints computed highly correlate on average to the
ones defined by the live-user evaluation validation.

In addition, we tested the accuracy of the similarity
in transparent scenes. Walnut data set is composed
of onion-peel-like structures. We analyzed the num-
ber of visible pixels of each feature taking into account
that several structures can be projected in a pixel. The

count function introduced in Section 3.2 allows one to
compute the similarity of this kind of projection. Our
method maintains the convergence of the complemen-
tary camera between 192 and 768 views for opaque re-
gions as well as the non-transparent structures.

5 CONCLUSIONS AND FUTURE
WORK

Traditional research in volume visualization has been
focused on involving the user to assist on gathering vi-
sual information contained in the data. With this ap-
proach users require some expertise, apart from being
introduced in a difficult and tedious task in order to
setup the parameters of the visualization. In this pa-
per we have described a proposal for obtaining a repre-
sentative complementary camera in volume rendering
without user intervention. Moreover, the proposal is
easy to evaluate and robust to changes in the resolution
of the final view. Specifically, the proposed method is
able to cope with the problem of locating automatically
the complementary camera that maximizes the comple-
mentary information of the structures. It combines the
quantity of information each camera provides for each
structure and the shape similarity of the projections
of the remaining viewpoints based on Dynamic Time
Warping. We have demonstrated the efficacy of our pro-
posal against a benchmark of three data sets. In general,
our experiments indicate that the proposal has the po-



THORAX
|V| 192 768 3072

H(v)

Sim(v)

H(v)·Sim(v)

vbest

Dual(vbest)
Table 4: A comparison with different number of sampled viewpoints for Thorax data set.

tential to deliver worthwhile similarities in comparison
with real users. Our live-user analysis has shown that
our approach is close to the preferences of the users.
Our results also show that the proposal quickly con-
verges and, with only a 768 sampled positions, it is able
to obtain a dual camera position with complementary
information to the reference camera. Our future work
will focus on exploring new view-dependent descrip-
tors. Currently, we are working on the parallelization
of the whole process using OpenCL to get real-time.
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