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Introduction

In a sequence of recent papers (see [CO-ME-ST 1-2]), Coifman, Meyer and

Stein have introduced a new family of function spaces, the Tent spaces. These

spaces are well adapted for the study of a variety of questions related to harmonic

analysis and its applications, for example, the Cauchy integral on Lipschitz curves,

maximal functions and atomic decompositions. Tent spaces have been also studied

by other authors (see, for example, Bonami and Johnson [BO-JO], Alvarez and

Milman [AL-MI 1-2]), where they are generalized to also consider norms based

on the classical Lorentz spaces Lp,q. These new spaces show up in a natural way as

the interpolated spaces for the real interpolation method of Lions and Peetre (see

[LI-PE]).

Our present work continues this line of development. We consider the theory

of Tent spaces related to a class of weights on R+, namely, positive and measurable

functions that satisfy Hardy’s inequalities (see [MU]). The main motivation for our

study comes from the method of interpolation with a function parameter, due to

Kalugina and Gustavsson (see [KA] and [GU]). The function parameters we use

allow us to prove new interpolation results for some weighted spaces; for example

Lp(log L)γ . Our goal is to give a through account of the properties of the Tent

spaces defined by weights related to a function parameter, extend their atomic

decomposition and the characterization of the dual spaces, (which brings in the

theory of Carleson measures), to the new setting of weighted spaces, and develop

the techniques necessary to obtain such results. As a consequence, we are able

to apply some of these results to the theory of maximal Hardy spaces, weighted

1



inequalities for fractional maximal operators, and related topics.

We now give a brief review of the topics in each of the chapters:

In Chapter I, after introducing two classes of function parameters and giving

a detailed list of properties that the functions in these classes satisfy, we show,

in Theorem 1.2.7, that the family of weights we are dealing with make both the

Hardy operator and its adjoint, bounded operators on some weighted Lp-spaces;

that is, they satisfy Hardy’s inequalities. This fact will turn out to be one of the

main tools in the remaining chapters. Theorem 1.2.7 appeared in a joint work with

E. Hernández (see [HE-SO]).

In Chapter II we define in (§1) the weighted Lorentz spaces in terms of the

non-increasing rearrangement of a function and find a new description involving the

distribution function (see Theorem 2.1.6). We analyze other properties, as duality

and embbedings, depending on the several indices defining the spaces. In (§2) we

exhibit a discrete decomposition of functions in some of the weighted Lorentz spaces.

In (§3) we take up the study of the interpolation results, using the theory of complex

interpolation of Banach spaces, as in [CCRSW 1-2]. Our main technique is a new

reiteration theorem that relates the interpolation of a couple of Banach spaces with

a family of function parameters, which can then be interpolated using the method

of CCRSW. The reiteration result, (Theorem 2.3.7), was first proved by the author

in the work mentioned above of [HE-SO] and generalizes some previous results

of the first named author (see [HE 2]), and Karadžov and Berg (see [BE-LO]).

Finally in (§4) we answer a question of Y. Sagher regarding the interpolation with

a function parameter of some endpoint spaces, as H1 and C0 or similarly the space

of finite Borel measures and BMO. The result in all cases is that we always obtain

the weighted Lorentz spaces as the intermediate spaces.

In Chapter III, we give the definition of the weighted Tent spaces, whose mo-

tivation can be found in the Littlewood-Paley theory and we prove in (§3) their

atomic decomposition, using a new discretization of the norm in terms of the dis-

tribution function. As is shown in the next chapter, this decomposition allows us
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to easily get the boundedness of certain maximal operators. In (§4) we find the

dual spaces of the weighted Tent spaces, and for a particular case, we obtain a new

class of Carleson measures. In (§5) we investigate the extension of the previous

results to the case where the functionals defining the norms of the Tent spaces are

replaced by functionals over general domains, instead of the standard cones. In

(§6) we study the interpolation results for the Tent spaces and our new spaces of

Carleson measures, using the real interpolation method. Again, as in Chapter II,

we obtain the corresponding results for the method of CCRSW by means of our

reiteration theorem.

In Chapter IV we give several applications of the theory developed in the

previous chapters. In (§1) we consider the study of the maximal Hardy spaces,

relative to a not necessarily smooth kernel, as in [WE]. Our main theorem is the

extension to Rn of the minimality property, proved in one dimension by Uchiyama

and Wilson in [UC-WI], of the space of special atoms with respect to this family

of Hardy spaces. We also characterize a class of Carleson measures, satisfying

another minimality condition and using the recent discrete decomposition of the

Triebel-Lizorkin spaces, Ḟα,q
p , due to Frazier and Jawerth (see [FR-JA 2]), we find

necessary and sufficient conditions on a kernel so that the corresponding Hardy

space contains a particular Ḟ 0,p
1 , 1 ≤ p ≤ 2. In (§2) we show several results

dealing with pointwise estimates for a class of operators, which gives another proof

of the pointwise boundedness of the Fourier transform of distributions in Hp and we

improve the Féjer-Riesz inequality for harmonic extensions of Hp functions. Finally

in (§3) we study the boundedness of a fractional maximal function on a weighted

Lorentz space. The proof is based on the atomic decomposition of a certain Tent

space.
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Chapter I

Preliminaries

(§1) Function parameter.

Function parameters were first introduced by T. F. Kalugina (see [KA]) in the

real interpolation setting in order to construct new interpolation spaces.

In this section we give the definition of two classes of function parameters, show

in a precise way that they are equivalent, and give a detailed list of properties that

the functions in theses classes satisfy.

definition 1.1.1. Suppose f : R+ −→ R+. f belongs to the class BK if:

f is continuous, non-decreasing and f(1) = 1·(1)

f(s) = sup
t>0

f(st)
f(t)

< ∞, for every s > 0·(2) ∫ ∞

0

min(1, 1/t)f(t)
dt

t
< ∞·(3)

examples 1.1.2:

(a) If 0 < α < 1 then f(t) = tα belongs to BK and f(t) = tα.

(b) If 0 < α < β < 1 then f(t) = log 2
tβ

log(1 + tα)
belongs to BK and we have

that f(t) = max(tβ−α, tβ).

definition 1.1.3. The class BΨ consists of all continuously differentiable functions

f : R+ −→ R+ such that f(1) = 1 and

(4) 0 < αf = inf
t>0

tf ′(t)
f(t)

≤ sup
t>0

tf ′(t)
f(t)

= βf < 1.
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example 1.1.4:

If 0 < α < 1, θ ∈ R, then

f(t) =
1

(log 2)θ
tα (log(1 + tγ))θ

belongs to BΨ, if γ is small enough. In fact

αf = min(α, α + θγ), βf = max(α, α + θγ).

The following two results show that the classes BK and BΨ are equivalent.

proposition 1.1.5. ([GU], Prop. 1.2)

The class of functions BΨ is contained in BK .

proposition 1.1.6. ([GU], Prop. 1.3)

If f ∈ BK , there is a function g ∈ BΨ such that f and g are equivalent; i.e., there

are two positive constants C1 and C2 such that

C1 g(t) ≤ f(t) ≤ C2 g(t), t > 0.

In fact, we can choose

(5) g(s) = Cf

∫ ∞

0

min(1,
s

t
) f(t)

dt

t
,

where Cf is chosen so that g(1) = 1.

There is a nice way of constructing all functions in the class BΨ:

proposition 1.1.7. Suppose

C =
{

h : R+ −→ (0, 1) : h continuous, 0 < inf
t>0

h(t) ≤ sup
t>0

h(t) < 1
}

.

Then there exists a one to one correspondence T from C to BΨ given by

C T−→ BΨ

h −→ T (h)(t) = exp
(∫ t

1

h(s)
s

ds

)
.
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In fact,

T−1(g)(t) =
tg′(t)
g(t)

·

proof: The proof is an easy exercise in differential equations. To see that T is well

defined we observe that

(Th)′(t) = Th(t)
h(t)

t
·

Hence,

h(t) =
t (Th)′(t)

Th(t)
,

and so

0 < αTh ≤ βTh < 1.

Clearly,

(T ◦ T−1)(g)(t) = g(t) and (T−1 ◦ T )(h)(t) = h(t).

The next propositions give a list of properties that the classes BK and BΨ satisfy.

As we shall see later, they turn out to be of vital importance for the development

of our theory on Lorentz spaces.

proposition 1.1.8. ([GU])

Suppose f ∈ BK . Then:

f(s)f(
1
s
) = 1, where f(s) = inf

t>0

f(st)
f(t)

·(6)

0 < f(s)f(t) ≤ f(st) ≤ f(s)f(t), (f is quasi-homogeneous)·(7)

f and f are non-decreasing and f(1) = f(1) = 1·(8)

f(st) ≤ f(s)f(t), (f is submultiplicative)·(9)

f(s) = o(max(1, s)), s −→ 0 or ∞·
(10)

For sufficiently small ε > 0, f(s) = o(max(sε, s1−ε)), s −→ 0 or ∞·
(11)

∫ ∞

0

(
min(1, 1/t)f(t)

)p dt

t
< ∞, for any p > 0·

(12)
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1
p1/p

≤ f(s)
s

(∫ s

0

(
t

f(t)

)p
dt

t

)1/p

≤
(∫ ∞

1

(
f(t)

t

)p
dt

t

)1/p

(13)

for any p > 0; i.e.,∫ s

0

(
t

f(t)

)p
dt

t
≈

(
s

f(s)

)p

·

(∫ ∞

1

(
1

f(t)

)p
dt

t

)1/p

≤ f(s)
(∫ ∞

s

(
1

f(t)

)p
dt

t

)1/p

(14)

≤
(∫ 1

0

(f(t))p dt

t

)1/p

, for any p > 0; i.e.,∫ ∞

s

(
1

f(t)

)p
dt

t
≈ 1

fp(s)
·

If g ∈ BΨ, property (11) can be improved using Proposition 1.1.7:

proposition 1.1.9. Let g ∈ BΨ. Then

min(tα, tβ) ≤ g(t) ≤ g(t) ≤ max(tα, tβ).

proof: By Proposition 1.1.7,

g(t) = exp
(∫ t

1

h(s)
s

ds

)

where α ≤ h(s) ≤ β, all s > 0. Hence,

g(t) ≥
{

tα if t ≥ 1
tβ if t ≤ 1.

Thus, min(tα, tβ) ≤ g(t).

Similarly, since
g(ts)
g(s)

= exp
(∫ st

s

h(u)
u

du

)
,

then
g(ts)
g(s)

≤
{

tβ if t ≥ 1
tα if t ≤ 1.

Hence, g(t) ≤ max(tα, tβ).

We now use the following result to improve (13) and (14) above.
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proposition 1.1.10. ([SA])

Let m be a positive function. Then, for all r, 0 < r < ∞,∫ r

0

m(s)
ds

s
≈ m(r)

if and only if for all r, 0 < r < ∞,∫ ∞

r

1
m(s)

ds

s
≈ 1

m(r)
·

corollary 1.1.11. Let f ∈ BK . Then∫ ∞

s

(
f(t)

t

)p
dt

t
≈

(
f(s)

s

)p

, p > 0·(15) ∫ s

0

(f(t))p dt

t
≈ (f(s))p, p > 0·(16)

As was mentioned at the beginning of this section, the class BΨ was introduced

to generalize the real method of interpolation of Peetre and Lions. It is then natural

that to obtain the reiteration theorem or the duality theorem (see [BE-LO]), we

show that BΨ is closed under certain types of operations.

proposition 1.1.12. Let g ∈ BΨ and β = βg as in (4).

(17) If a, b ∈ R, then

ga(tb) ∈ BΨ if and only if 0 < ab < β−1·

(18) If 0 < b ≤ a, with aβ < 1, then

1
2
(ga(t) + gb(t)) ∈ BΨ.

(19) If 0 < b ≤ a, d > 0, c ≥ 0 and ca + dβ < 1, then

1
2c

(ta + tb)cgd(t) ∈ BΨ.

(20) The functions tg(1/t) and t/g(t) belong to BΨ.

(21) Suppose f ∈ BΨ and if we set τ(t) = f(t)/g(t) then τ satisfies that∣∣∣∣ tτ ′(t)
τ(t)

∣∣∣∣ ≥ ε > 0, for some ε > 0.
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Then for all h ∈ BΨ, the function

ϕ(t) = g(t) h

(
f(t)
g(t)

)

belongs to BΨ. In particular, fθ(t)g1−θ(t) ∈ BΨ, 0 < θ < 1.

proof: The proofs are elementary. For further references see [CO], [ME 1].

(§2) Weighted Hardy’s inequalities.

Hardy’s inequalities can be considered as a fundamental tool in the study of a

wide variety of function spaces in Harmonic Analysis and, in particular, the Lorentz

spaces. Our goal in this section is to provide some results dealing with these in-

equalities (in particular the work of B. Muckenhoupt [MU]), and establish more

properties of functions in BΨ related to Hardy’s inequalities.

definition 1.2.1. We define the Hardy operator as

Sf(t) =
1
t

∫ t

0

f(s) ds, f ≥ 0.

We also define the formal adjoint of S by

S∗f(t) =
∫ ∞

t

f(s)
ds

s
, f ≥ 0.

Remark 1.2.2: S∗ is in fact the adjoint of S:

〈Sf, g〉 =
∫ ∞

0

Sf(t) g(t) dt =
∫ ∞

0

(
1
t

∫ t

0

f(s) ds

)
g(t) dt

=
∫ ∞

0

f(s)
(∫ ∞

s

g(t)
dt

t

)
ds = 〈f, S∗g〉.

We can now formulate Hardy’s inequalities:
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theorem 1.2.3. If q ≥ 1, r > 0, and f ≥ 0, then

(22)

(∫ ∞

0

(∫ t

0

f(s) ds

)q

t−r−1 dt

)1/q

≤ q

r

(∫ ∞

0

(sf(s))qs−r−1 ds

)1/q

.

(23)
(∫ ∞

0

(∫ ∞

t

f(s) ds

)q

tr−1 dt

)1/q

≤ q

r

(∫ ∞

0

(sf(s))qsr−1 ds

)1/q

.

For a proof of the theorem see [HA-LI-PO] Chapter IX or [ST].

Using the notation introduced above, this theorem can be restated as:

(24) S is a bounded operator on Lq(s−r/q−1/q+1)

and

(25) S∗ is a bounded operator on Lq(sr/q−1/q)

where for a non-negative function v defined on R+, we set, for 1 ≤ q ≤ ∞,

Lq(v) =
{

f :
(∫ ∞

0

(|f(t)|v(t))q dt

)1/q

< ∞
}
·

Hence, (22) and (23) are weighted inequalities for the operators S and S∗. A

natural problem is to characterize all pairs of weights (u, v) for which S or S∗

is bounded from Lq(u) to Lq(v), 1 ≤ q ≤ ∞. A complete solution was given by

B. Muckenhoupt in [MU].

theorem 1.2.4. If (u, v) is a pair of non-negative weights on R+ and 1 ≤ q ≤ ∞,

then S is a bounded operator from Lq(u) to Lq(v) if and only if

(26) sup
r>0

(∫ ∞

r

s−q(v(s))q ds

)1/q (∫ r

0

(u(s))−q′
ds

)1/q′

< ∞·

Similarly we have a result for S∗.

theorem 1.2.5. If (u, v) is a pair of non-negative weights on R+ and 1 ≤ q ≤ ∞,

then S∗ is a bounded operator from Lq(u) to Lq(v), if and only if

(27) sup
r>0

(∫ r

0

(v(s))q ds

)1/q (∫ ∞

r

s−q′
(u(s))−q′

ds

)1/q′

< ∞·
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definition 1.2.6. Suppose 1 ≤ q ≤ ∞. Let

(28) Wq(S) =
{
u : u weight and (u, u) satisfies (26)

}
,

(29) Wq(S∗) =
{
u : u weight and (u, u) satisfies (27)

}
·

We can now extend the list of properties given in (§1) for functions in BΨ. We

will use the following result very often.

theorem 1.2.7. ([HE-SO])

Suppose f ∈ BK , 1 ≤ q ≤ ∞ and w(t) = t1−1/q/f(t). Then

w ∈ Wq(S) ∩ Wq(S∗).

proof: Assume first that 1 ≤ q < ∞.

To show that w ∈ Wq(S) we need to check (26) for u = v = w.

sup
r>0

(∫ ∞

r

s−q(w(s))q ds

)1/q (∫ r

0

(w(s))−q′
ds

)1/q′

= sup
r>0

(∫ ∞

r

(
1

f(s)

)q
ds

s

)1/q (∫ r

0

(f(s))q′ ds

s

)1/q′

(by (14) and (16))

= sup
r>0

C
1

f(r)
f(r) = C < ∞·

Similarly, to show that w ∈ Wq(S∗) we have to check (27) for u = v = w.

sup
r>0

(∫ r

0

(w(s))q ds

)1/q (∫ ∞

r

s−q′
(w(s))−q′

ds

)1/q′

= sup
r>0

(∫ r

0

(
s

f(s)

)q
ds

s

)1/q
(∫ ∞

r

(
f(s)

s

)q′
ds

s

)1/q′

(by (13) and (15))

= sup
r>0

C
r

f(r)
f(r)

r
= C < ∞·

For the case q = ∞, conditions (26) and (27) read as follows:

sup
r>0

(
sup
r<s

v(s)
s

) (∫ r

0

1
u(s)

ds

)
< ∞

11



and

sup
r>0

( sup
0<s<r

v(s))
(∫ ∞

r

1
su(s)

ds

)
< ∞·

By Proposition 1.1.6 we may assume that f ∈ BΨ.

Now, with u = v = w(t) = t/f(t) :

sup
r>0

(
sup
r<s

1
f(s)

) (∫ r

0

f(s)
ds

s

)

(f is an increasing function and (16))

≤ sup
r>0

C
1

f(r)
f(r) = C < ∞·

Hence, w ∈ W∞(S).

To show that w ∈ W∞(S∗) we first observe that w is an increasing function. In

fact,

w′(t) =
1

f(t)

(
1 − tf ′(t)

f(t)

)
> 0

since βf < 1.

Hence,

sup
r>0

( sup
0<s<r

w(s))
(∫ ∞

r

f(s)
s

ds

s

)
≤ sup

r>0
Cw(r)

f(r)
r

= C < ∞,

by the observation just made and (15).

As a consequence of this theorem and the characterization of BΨ given in Propo-

sition 1.1.7 we can construct, in a very simple way, a large class of weights satisfying

Hardy’s inequalities.

corollary 1.2.8. Let h : R+ −→ [0, 1] be a continuous function satisfying

‖h‖∞ < 1 and ‖1/h‖∞ < ∞

and let 1 ≤ q ≤ ∞. Then(∫ ∞

0

(
exp

(
−

∫ t

1

h(s)
ds

s

) ∫ t

0

f(s) ds

)q
dt

t

)1/q

≤ C

(∫ ∞

0

(
t exp

(
−

∫ t

1

h(s)
ds

s

)
f(t)

)q
dt

t

)1/q

12



and (∫ ∞

0

(
t exp

(
−

∫ t

1

h(s)
ds

s

) ∫ ∞

t

f(s)
ds

s

)q
dt

t

)1/q

≤ C

(∫ ∞

0

(
t exp

(
−

∫ t

1

h(s)
ds

s

)
f(t)

)q
dt

t

)1/q

for all f ≥ 0.
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Chapter II

Weighted Lorentz spaces

(§1) Definitions and properties.

Lorentz spaces were first studied by G. G. Lorentz ([LO]). They are rearrange-

ment invariant spaces and appear, in a natural way, as interpolation spaces between

L1 and L∞ (see [ST-WE]).

To define these spaces, we need to introduce some notation.

definition 2.1.1. Suppose (X, Σ, µ) is a σ-finite measurable space and f is a

function on X. We define the distribution function of f , with respect to the measure

µ as

λf (t) = λf (t, dµ) = µ({x ∈ X : |f(x)| > t}), for all t > 0·

definition 2.1.2. We define the non-increasing rearrangement of f ,

f∗(t) = inf
s>0

{λf (s) ≤ t}·

For further information about the properties of the functions λf and f∗, we refer

to [BE-SH], Chapter II and [KR-PE-TE].

definition 2.1.3. Let w be a non-negative function on R+ and let 0 < q ≤ ∞.

We define the weighted Lorentz space:

Λq(w) =
{

f : ‖f‖Λq(w) =
(∫ ∞

0

(w(t)f∗(t))q dt

)1/q

< ∞
}
·
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For q = ∞, this is understood as:

‖f‖Λ∞(w) = sup
0<t<∞

w(t)f∗(t)·

examples:

(a) With w(t) = t1/p−1/q we get that Λq(w) = Lp,q, the classical (p, q)-Lorentz

space.

(b) With w(t) = t1/p−1/q(1 + | log t|)γ then Λq(w) = Lp,q(log L)γ (see [ME 1]).

For now, we only assume that w is nonnegative, but for applications we shall

consider later, w will be of the form:

w(t) =
t1−1/q

ϕ(t)
, ϕ ∈ BΨ·

As in the case of Lp,q spaces (see [NE]), there exists an equivalent “quasi-norm”on

Λq(w) in terms of the distribution function. The next two lemmas give additional

insight about functions in BΨ and generalize some properties proved in Proposi-

tion 1.1.8.

lemma 2.1.4. Let ϕ ∈ BΨ, 0 < q < ∞ and 0 ≤ a ≤ b < ∞. Then

1
q

bq − aq

ϕq(b)
≤

∫ b

a

(
t

ϕ(t)

)q
dt

t
≤ 1

q(1 − β)
bq − aq

ϕq(b)

where β = βϕ.

proof: Set s = t/b. Then∫ b

a

(
t

ϕ(t)

)q
dt

t
=

∫ 1

a/b

(
bs

ϕ(bs)

)q
ds

s

=
(

b

ϕ(b)

)q ∫ 1

a/b

(
sϕ(b)
ϕ(bs)

)q
ds

s

(
ϕ(bs)
ϕ(b)

≤ ϕ(s)
)

≥
(

b

ϕ(b)

)q ∫ 1

a/b

(
s

ϕ(s)

)q
ds

s
(ϕ increases and ϕ(1) = 1)

≥
(

b

ϕ(b)

)q ∫ 1

a/b

sq−1 ds =
1
q

bq − aq

ϕq(b)
·
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On the other hand,∫ b

a

(
t

ϕ(t)

)q
dt

t
=

(
b

ϕ(b)

)q ∫ 1

a/b

(
sϕ(b)
ϕ(bs)

)q
ds

s

≤
(

b

ϕ(b)

)q ∫ 1

a/b

(sϕ(1/s))q ds

s
=

(
b

ϕ(b)

)q ∫ b/a

1

(
ϕ(t)

t

)q
dt

t

(by Proposition 1.1.9)

≤
(

b

ϕ(b)

)q ∫ b/a

1

tq(β−1) dt

t
=

1
q(1 − β)

(
b

ϕ(b)

)q (
1 −

(a

b

)q(1−β)
)

≤ 1
q(1 − β)

bq − aq

ϕq(b)
since

1 − rq(1−β)

1 − rq
≤ 1, if 0 < r < 1 ·

lemma 2.1.5. Let ϕ ∈ BΨ and 0 < y < x. Then

xϕ(y) − yϕ(x)
(x − y)ϕ(y)

≥ 1 − β > 0

where β = βϕ.

proof: By Proposition 1.1.7, we have that

ϕ(x)
ϕ(y)

=
exp

(∫ x

1
h(s) ds

s

)
exp

(∫ y

1
h(s) ds

s

) (αϕ ≤ h(t) ≤ βϕ)

= exp
(∫ x

y

h(s)
ds

s

)
≤ exp(β log

x

y
) =

(
x

y

)β

·

Hence,
xϕ(y) − yϕ(x)
(x − y)ϕ(y)

=
x

x − y
− y

x − y

ϕ(x)
ϕ(y)

≥ x

x − y
− y

x − y

(
x

y

)β

=
1

1 − (y/x)
− 1

(x/y) − 1

(
x

y

)β

·

Set r = y/x. Then, we want to show that

1
1 − r

− 1
(1/r) − 1

(
1
r

)β

≥ 1 − β, 0 < r < 1·

Now,
1

1 − r
− r1−β

1 − r
=

1 − r1−β

1 − r
≥ 1 − β ⇐⇒ β ≥ r1−β + (β − 1)r·

But if we set f(r) = r1−β + (β − 1)r then f ′(r) = (1 − β)r−β − 1 + β which is

positive on the interval (0, 1) and f(0) = 0, f(1) = β.
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theorem 2.1.6. Let ϕ ∈ BΨ, 0 < q < ∞ and w(t) = t1−1/q/ϕ(t). Suppose

f ∈ Λq(w), then

‖f‖Λq(w) ≈
(∫ ∞

0

(tw(λf (t)))q
λf (t)

dt

t

)1/q

·

remarks:

(i) Since λf (t) = 0 if and only if t > ‖f‖∞ then the right hand side above equals(∫ ‖f‖∞

0

(
tw(λf (t))

)q
λf (t)

dt

t

)1/q

so that w is never evaluated at zero.

(ii) If Λq(w) = Lp,q (w(t) = t1/p−1/q) then we get

‖f‖Lp,q ≈
(∫ ∞

0

(
tλ

1/p−1/q
f (t)

)q

λf (t)
dt

t

)1/q

=
(∫ ∞

0

(
tλ

1/p
f (t)

)q dt

t

)1/q

·

proof of the theorem: By a density argument, it suffices to show the equiva-

lence of the quasi-norms for simple functions; i.e., we may assume that

f(x) =
n∑

j=1

ajχEj (x)

where the sets Ej are pairwise disjoint with finite measure. Since we have that

‖f‖Λq(w) = ‖ |f | ‖Λq(w) we may also assume that a1 > a2 > ... > an > 0.

It is easy to show (see [BE-SH]) that

λf (t) =
n∑

j=1

mjχ[aj+1,aj)(t) and f∗(t) =
n∑

j=1

ajχ[mj−1,mj)(t)

where mj =
j∑

i=1

|Ei|, m0 = 0 and an+1 = 0.

Hence,

‖f‖q
Λq(w) =

∫ ∞

0

(w(t)f∗(t))q dt =
∫ ∞

0

w(t)
n∑

j=1

ajχ[mj−1,mj)(t)

q

dt

=
n∑

j=1

(∫ mj

mj−1

wq(t) dt

)
aq

j =
n∑

j=1

(∫ mj

mj−1

(
t

ϕ(t)

)q
dt

t

)
aq

j (by Lemma 2.1.4)

≈
n∑

j=1

mq
j − mq

j−1

ϕq(mj)
aq

j ·
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On the other hand,∫ ∞

0

(
tw(λf (t))

)q
λf (t)

dt

t

=
∫ a1

0

tw

 n∑
j=1

mjχ[aj+1,aj)(t)

q
n∑

j=1

mjχ[aj+1,aj)(t)
dt

t

=
n∑

j=1

∫ aj

aj+1

(tw(mj))qmj
dt

t
=

n∑
j=1

wq(mj)mj

∫ aj

aj+1

tq−1 dt

≈
n∑

j=1

aq
j − aq

j+1

ϕq(mj)
mq

j ·

Therefore, we need to show

n∑
j=1

mq
j − mq

j−1

ϕq(mj)
aq

j ≈
n∑

j=1

aq
j − aq

j+1

ϕq(mj)
mq

j ·

Set xj = mq
j , yj = aq

j and Ψ(t) = ϕq(t1/q). Then Ψ ∈ BΨ (in fact αΨ = αϕ and

βΨ = βϕ), and the above expression gives

n∑
j=1

xj − xj−1

Ψ(xj)
yj ≈

n∑
j=1

yj − yj+1

Ψ(xj)
xj ·

Summing by parts we obtain

n∑
j=1

yj − yj+1

Ψ(xj)
xj =

xn

Ψ(xn)
yn+1 −

n∑
j=1

(
xj−1

Ψ(xj−1)
− xj

Ψ(xj)

)
yj

=
n∑

j=1

yj

Ψ(xj)

(
xj −

Ψ(xj)
Ψ(xj−1)

xj−1

)
·

We still have to show that

n∑
j=1

yj

Ψ(xj)
(xj − xj−1) ≈

n∑
j=1

yj

Ψ(xj)

(
xj −

Ψ(xj)
Ψ(xj−1)

xj−1

)
·

Since xj−1 < xj and Ψ increases,
Ψ(xj)

Ψ(xj−1)
> 1 and so

n∑
j=1

yj

Ψ(xj)
(xj − xj−1) ≥

n∑
j=1

yj

Ψ(xj)

(
xj −

Ψ(xj)
Ψ(xj−1)

xj−1

)
·
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Using Lemma 2.1.5 we have

xj − Ψ(xj)
Ψ(xj−1)

xj−1

xj − xj−1
=

xjΨ(xj−1) − xj−1Ψ(xj)
Ψ(xj−1)(xj − xj−1)

≥ 1 − β·

Therefore,

n∑
j=1

yj

Ψ(xj)
(xj − xj−1) ≤

1
1 − β

n∑
j=1

yj

Ψ(xj)

(
xj −

Ψ(xj)
Ψ(xj−1)

xj−1

)
·

The following deep result, due to E. Sawyer, gives us some very useful information

about Λq(w) and its dual space.

theorem 2.1.7. [SAW]

(i) Suppose 1 < q < ∞ and w is a non-negative weight. The following are equivalent

statements:

(a) Λq(w) is a Banach space.

(b) Λq(w) = Γq(w) =
{

f : ‖f‖Γq(w) =
(∫ ∞

0

(f∗∗(t)w(t))q dt

)1/q

< ∞
}

with

‖f‖Γq(w) ≈ ‖f‖Λq(w) where f∗∗(t) = S(f∗)(t) =
1
t

∫ t

0

f∗(s) ds. In this case,

‖ · ‖Γq(w) is a norm in Λq(w).

(c)
(∫ r

0

wq(t)
dt

t

)1/q
(∫ r

0

(
1
t

∫ t

0

wq(s) ds

)1−q′
dt

t

)1/q′

≤ Cr, for all r > 0.

(d)
(∫ ∞

r

t−qwq(t) dt

)1/q

≤ C

r

(∫ r

0

wq(t) dt

)1/q

, for all r > 0.

(ii) If
∫ ∞
0

wq(t) dt = ∞ then the dual of Λq(w) can be identified with Γq′
(w̃), where

w̃(t) =
(

1
t

∫ t

0

wq(s) ds

)−1

(w(t))q/q′
, under the pairing 〈f, g〉 =

∫
Rn f(y)g(y) dy,

f ∈ Λq(w) and g ∈ Γq′
(w̃).

(iii)

(a) For 1 < p ≤ q < ∞, Λp(v) ⊂ Λq(w), if and only if

(1)
(∫ r

0

wq(t) dt

)1/q

≤ C

(∫ r

0

vp(t) dt

)1/p

for all r > 0.
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(b) For 1 < q < p < ∞, Λp(v) ⊂ Λq(w), if and only if

(2)

(∫ ∞

0

((∫ t

0

wq(s) ds

)1/p (∫ t

0

vp(s) ds

)−1/p
)r

wq(t) dt

)1/r

< ∞

where 1/r = 1/q − 1/p.

We now examine what this theorem says in the case where the weights are con-

structed from functions in BΨ. From the three parts of the theorem, we get the

following three corollaries:

corollary 2.1.8. Suppose ϕ ∈ BΨ and 1 < q < ∞. Let w(t) = t1−1/q/ϕ(t).

Then Λq(w) is a Banach space and

(3) ‖f‖Λq(w) ≈
(∫ ∞

0

(f∗∗(t)w(t))q dt

)1/q

·

proof: Using (i)-(b) of Theorem 2.1.7, it suffices to show (3). Since

f∗(t) ≤ 1
t

∫ t

0

f∗(s) ds = f∗∗(t)

it is clear that

‖f‖Λq(w) ≤
(∫ ∞

0

(f∗∗(t)w(t))q dt

)1/q

·

On the other hand, by Theorem 1.2.7, we know that w ∈ Wq(S); i.e.,(∫ ∞

0

(w(t)S(g)(t))q dt

)1/q

≤ C

(∫ ∞

0

(w(t)g(t))q dt

)1/q

·

Hence, with g ≡ f∗,(∫ ∞

0

(w(t)f∗∗(t))q dt

)1/q

≤ C‖f‖Λq(w) ·

corollary 2.1.9. Suppose ϕ ∈ BΨ, 1 < q < ∞ and w(t) = t1−1/q/ϕ(t). Then

the dual of Λq(w) is Λq′
(1/w). Moreover, 1/w is also of the form t1−1/q′

/ψ(t), with

ψ ∈ BΨ.

proof: By (ii) of Theorem 2.1.7, we need to show that
∫ ∞
0

wq(t) dt = ∞. But by

Proposition 1.1.8 (13),∫ t

0

wq(s) ds =
∫ t

0

(
s

ϕ(s)

)q
ds

s
≈

(
t

ϕ(t)

)q
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and by Proposition 1.1.9, ϕ(t) ≤ tβ , for t ≥ 1, where β = βϕ < 1. Hence(
t

ϕ(t)

)q

≥ tq(1−β), t ≥ 1

and therefore ∫ ∞

0

wq(s) ds = lim
t→∞

∫ t

0

wq(s) ds ≥ C lim
t→∞

tq(1−β) = ∞.

We still need to show that w̃(t) ≈ 1
w(t)

· But

w̃(t) =
(

1
t

∫ t

0

wq(s) ds

)−1

(w(t))q/q′

=
(

1
t

∫ t

0

(
s

ϕ(s)

)q
ds

s

)−1

(w(t))q/q′
(by Proposition 1.1.8- (13))

≈
(

1
t

(
t

ϕ(t)

)q)−1

(w(t))q/q′
=

ϕq(t)
tq−1

(w(t))q/q′
= (w(t))−q(w(t))q−1 =

1
w(t)

·

Now, 1/w(t) = t1−1/q′
/ψ(t), where ψ(t) = t/ϕ(t) and by Proposition 1.1.12-(20),

we have that ψ ∈ BΨ.

Thus, by the last corollary,

(Λq(w))∗ = Γq′
(1/w) = Λq′

(1/w) ·

corollary 2.1.10. Suppose 1 < p, q < ∞, ϕ, ψ ∈ BΨ and consider the weights

w(t) = t1−1/q/ϕ(t), v(t) = t1−1/p/ψ(t).

(a) For 1 < p ≤ q < ∞, Λp(v) ⊂ Λq(w) if and only if ψ(t) ≤ Cϕ(t), t > 0.

(b) For 1 < q < p < ∞, Λp(v) ⊂ Λq(w) if and only if∫ ∞

0

(
ψ(t)
ϕ(t)

)r
dt

t
< ∞,

where 1/r = 1/q − 1/p.

proof: To prove (a) we use (iii)-(a) of the theorem:

Λp(v) ⊂ Λq(w) ⇐⇒
(∫ r

0

(
t

ϕ(t)

)q
dt

t

)1/q

≤ C

(∫ r

0

(
t

ψ(t)

)p
dt

t

)1/p

⇐⇒ r

ϕ(r)
≤ C

r

ψ(r)
, r > 0 by Proposition 1.1.8-(13))

⇐⇒ ψ(r) ≤ Cϕ(r), for all r > 0·
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Similarly, to prove (b) we use (iii)-(b):

Λp(v) ⊂ Λq(w)

⇐⇒
∫ ∞

0

(∫ t

0

(
s

ϕ(s)

)q
ds

s

) 1
p

(∫ t

0

(
s

ψ(s)

)p
ds

s

)−1
p

r (
t

ϕ(t)

)q
 dt

t
< ∞

⇐⇒
∫ ∞

0

(((
t

ϕ(t)

)q/p (
t

ψ(t)

)−1
)r (

t

ϕ(t)

)q
)

dt

t
< ∞

⇐⇒
∫ ∞

0

((
t

ϕ(t)

) qr
p +q (

ψ(t)
t

)r
)

dt

t
< ∞ (

qr

p
+ q = r)

⇐⇒
∫ ∞

0

(
ψ(t)
ϕ(t)

)r
dt

t
< ∞ ·

remark 2.1.11:

(i) Since Lp,q = Λq(w), with w(t) = t1−1/q/ϕp(t) and ϕp(t) = t1−1/p ∈ BΨ and

ϕp0(t) ≤ Cϕp1(t) ⇐⇒ p0 = p1 and∫ ∞

0

(
ϕp0(t)
ϕp1(t)

)r
dt

t
= ∞, for all choices of 1 < p0, p1 < ∞

then we conclude that

Lp0,q0 ⊂ Lp1,q1 ⇐⇒ p0 = p1 and q0 ≤ q1·

(ii) By Proposition 1.1.9, it is very easy to see that a necessary condition for

part (b) of the last corollary to hold is that αϕ < βψ and αψ < βϕ.

A priori, it is not clear that we can find two functions ϕ, ψ ∈ BΨ satisfying

condition (b). The following proposition shows that even more is true.

proposition 2.1.12. Suppose 1 < q < p < ∞ and ϕ ∈ BΨ. Then we can find

ψ ∈ BΨ such that if w(t) = t1−1/q/ϕ(t) and v(t) = t1−1/p/ψ(t) then Λp(v) ⊂ Λq(w).

proof: We know that it suffices to find ψ ∈ BΨ such that∫ ∞

0

(
ψ(t)
ϕ(t)

)r
dt

t
< ∞, 1/r = 1/q − 1/p
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By Proposition 1.1.12-(17) we can assume that r = 1. Also, by Proposition 1.1.6

we only need to find g ∈ BK satisfying the above condition.

By Proposition 1.1.8-(11), there exists 0 < ε < 1/2 so that

ϕ(t) ≤
{

Ctε, if 0 < t ≤ 1
Ct1−ε, if 1 ≤ t < ∞·

Pick 0 < δ < min(αϕ, ε) and set

g(t) =
{

tδϕ(t) 0 < t ≤ 1
t−δϕ(t) 1 < t < ∞ ,

g is a continuous function, g(1) = 1 and g is non-decreasing. In fact, if 0 < t ≤ 1,

then g is the product of two increasing functions, and if 1 < t < ∞ then we

have that g′(t) = t−δϕ′(t) − δt−δ−1ϕ(t). Hence g′(t) > 0 ⇐⇒ tϕ′(t)
ϕ(t)

> δ. But

tϕ′(t)
ϕ(t)

≥ αϕ > δ.

A simple calculation shows that

g(t) ≤
{

t−δϕ(t) 0 < t ≤ 1
tδϕ(t) 1 ≤ t < ∞·

Therefore,∫ ∞

0

min(1,
1
t
) g(t)

dt

t
=

∫ 1

0

g(t)
dt

t
+

∫ ∞

1

t−1 g(t)
dt

t

≤
∫ 1

0

t−δ−1 ϕ(t) dt +
∫ ∞

1

t−2+δ ϕ(t) dt

≤C

(∫ 1

0

tε−δ−1 dt +
∫ ∞

1

t−2+δ+1−ε dt

)
< ∞, since δ < ε ·

(§2) Atomic decomposition and discrete characterization of Λq(w).

We now introduce a family of sequence spaces that allows us to give a discrete

version of the Λq(w) spaces.
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definition 2.2.1. Let w = {wk}k be a sequence of non-negative numbers and let

0 < q ≤ ∞. We define the weighted Lorentz space of sequences,

λq(w) =
{
{ak}k : ‖{ak}k‖λq(w) =

( ∞∑
k=−∞

2k(wka∗
k)q

)1/q

< ∞
}

where {a∗
k}k is the non-increasing rearrangement of {ak}k, as in Definition 2.1.2.

proposition 2.2.2. Let w be a non-negative weight and let 0 < q < ∞.

(i) Assume there exists C > 0 such that

(4)
∫ 2k+1

2k

wq(t) dt ≤ C2kwq(2k), all k ∈ Z·

Then,

‖f‖Λq(w) ≤ C‖{f∗(2k)}k‖λq(w)·

(ii) Assume there exists C > 0 such that

(5)
∫ 2k+1

2k

wq(t) dt ≥ C2kwq(2k+1), all k ∈ Z·

Then,

‖f‖Λq(w) ≥ C‖{f∗(2k)}k‖λq(w)·

(iii) If w(t) =
t1−1/q

ϕ(t)
, with ϕ ∈ BΨ, then

‖f‖Λq(w) ≈ ‖{f∗(2k)}k‖λq(w)·

proof: To prove (i) and (ii) we use the fact that f∗ is a non-decreasing function:

‖f‖q
Λq(w) =

∫ ∞

0

(w(t)f∗(t))q dt

=
∞∑

k=−∞

∫ 2k+1

2k

(w(t)f∗(t))q dt ≤ C
∞∑

k=−∞
2k(w(2k)f∗(2k))q

and similarly,

‖f‖q
Λq(w) ≥ C

∞∑
k=−∞

2k(w(2k+1)f∗(2k+1))q·
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To prove (iii) we want to show that there exists C > 1 such that

1
C

(
2k+1

ϕ(2k+1)

)q

≤
∫ 2k+1

2k

(
t

ϕ(t)

)q
dt

t
≤ C

(
2k

ϕ(2k)

)q

, all k ∈ Z·

But ∫ 2k+1

2k

(
t

ϕ(t)

)q
dt

t
≤

∫ 2k+1

0

(
t

ϕ(t)

)q
dt

t

≤ C

(
2k+1

ϕ(2k+1)

)q

≤ C2q

(
ϕ(

1
2
)
)q (

2k

ϕ(2k)

)q

·

For the other estimate, we must carefully keep track of the constants in Proposi-

tion 1.1.8-(13):∫ 2k+1

2k

(
t

ϕ(t)

)q
dt

t
=

∫ 2k+1

0

(
t

ϕ(t)

)q
dt

t
−

∫ 2k

0

(
t

ϕ(t)

)q
dt

t

≥
(∫ ∞

1

(
ϕ(t)

t

)q
dt

t

) (
2k+1

ϕ(2k+1)

)q

− 1
q

(
2k

ϕ(2k)

)q

≥
(∫ ∞

1

(
ϕ(t)

t

)q
dt

t

) (
2k+1

ϕ(2k+1)

)q

− 1
q
2−q(ϕ(2))q

(
2k+1

ϕ(2k+1)

)q

=
((∫ ∞

1

(
ϕ(t)

t

)q
dt

t

)
− 1

q
2−q(ϕ(2))q

) (
2k+1

ϕ(2k+1)

)q

·

Thus, we only need to show that∫ ∞

1

(
ϕ(t)

t

)q
dt

t
>

1
q
2−q(ϕ(2))q·

But, by Proposition 1.1.8-(8):∫ ∞

1

(
ϕ(t)

t

)q
dt

t
≥

∫ ∞

2

(
ϕ(t)

t

)q
dt

t
> (ϕ(2))q

∫ ∞

2

t−q−1 dt =
1
q
2−q(ϕ(2))q ·

Before proving the atomic decomposition for Λq(w) we need the following obser-

vation:

lemma 2.2.3. Let 0 < q < ∞. Then

(6) ‖f‖Λq(w) = ‖fq‖1/q
Λ1(wq)

and

(7) ‖{αk}k‖λq(w) = ‖{αq
k}k‖1/q

λ1(wq)·

proof: This follows easily from the fact that λfq (t) = λf (t1/q) and, as a conse-

quence (fq)∗(t) = (f∗)q(t) ·
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theorem 2.2.4. Suppose 0 < q < ∞ and w is a non-negative weight satisfying (4),

(5) and

(8)
∫ 2t

0

wq(s) ds ≈ twq(t), for all t > 0·

Then, the following are equivalent statements:

(i) f ∈ Λq(w).

(ii) There exist {αk}k ∈ λq(w) and {gk}k ⊂ L∞ such that

(a) ‖gk‖∞ ≤ 1.

(b) |supp gk| ≤ 2k+1.

(c) |supp gk ∩ supp gj | = 0, if j �= k.

(d) f ≡ ∑
k

αkgk.

In this case, ‖f‖Λq(w) ≈ inf ‖{αk}k‖λq(w), where the infimum is taken over all

sequences satisfying (d).

proof: Suppose f ∈ Λq(w). Define

gk(x) =


f(x)

f∗(2k)
f∗(2k+1) ≤ |f(x)| < f∗(2k)

0 otherwise

and αk = f∗(2k). Then (a) is obvious,

|supp gk| ≤ |{x : |f(x)| ≥ f∗(2k+1)}| = λf (f∗(2k+1)) ≤ 2k+1

and (c) and (d) are immediate. By Proposition 2.2.2, we get that {αk}k ∈ λq(w).

Now suppose that (ii) holds. We can assume that {αk}k = {α∗
k}k. Suppose first

that q = 1. To estimate ‖f‖Λ1(w) we calculate ‖gk‖Λ1(w) for each gk:

‖gk‖Λ1(w) =
∫ ∞

0

w(t)g∗k(t) dt =
∫ |supp gk|

0

w(t)g∗k(t) dt

≤ ‖g∗k‖∞
∫ 2k+1

0

w(t) dt ≤ C2kw(2k), (by (8) and (a))·

Thus,

‖f‖Λ1(w) ≤ C
∑

k

|αk| ‖gk‖Λ1(w) ≤ C
∑

k

α∗
k2kw(2k) = C‖{αk}k‖λ1(w)·
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Hence, ‖f‖Λ1(w) ≤ C inf ‖{αk}k‖λ1(w). Proposition 2.2.2 gives the desired equiva-

lence.

Now suppose that q > 1, and assume that (ii) holds; i.e.,

f ≡
∑

k

αkgk, {αk}k ∈ λq(w), ‖gk‖∞ ≤ 1, |supp gk| ≤ 2k+1

and |supp gj ∩ supp gk| = 0, j �= k·
Set v ≡ wq, h ≡ fq, βk = αq

k and uk ≡ gq
k. Then,

h ≡
∑

k

βkuk, {βk}k ∈ λ1(v), {uk}k ⊂ λ∞, ‖uk‖∞ ≤ 1, |supp uk| ≤ 2k+1

and |supp uj ∩ supp uk| = 0, j �= k·
Moreover, v satisfies (4), (5) and (8), with q = 1. Hence, by the first part we con-

clude that h ∈ Λ1(v) and ‖h‖Λ1(v) ≈ inf ‖{βk}k‖λ1(v)· Therefore, by Lemma 2.2.3:

‖f‖Λq(w) = ‖h‖1/q
Λ1(v) ≈ inf ‖{βk}k‖1/q

λ1(v) ≈ inf ‖{αk}k‖λq(v) ·

corollary 2.2.5. Suppose 0 < q < ∞ and w(t) = t1−1/q/ϕ(t) where ϕ ∈ BΨ.

Then w satisfies conditions (4), (5) and (8) and hence the above atomic decompo-

sition holds true for Λq(w).

proof: (4) and (5) are proved in Proposition 2.2.2-(iii) and (8) is a consequence

of Proposition 1.1.8-(13) and the fact that ϕ(t) ≈ ϕ(2t).

remark 2.2.6: For the case of Lp,q-spaces (ii) of Theorem 2.2.4 can be found in

[COL]. A similar result, for Lp,1 is also proved in [BO-JO].

(§3) Interpolation results. Main theorem.

Interpolation Theory has developed considerably since the classical results of

Riesz-Thorin and Marcinkiewicz were announced (see [BE-LO] Chapter 1). The
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proof of the former contains the idea behind the complex interpolation method of

Calderón (see [CA]) and from the latter one can see the main ingredients of the real

interpolation method of Lions and Peetre (see [LI-PE] and [PE 1]). Both methods

of interpolation have been studied and generalized to more general settings. In

particular, we want to mention the work of Coifman, Cwikel, Rochberg, Sagher and

Weiss for a theory of complex interpolation for families of Banach spaces, indexed

by the boundary of the unit disc on C (see [CCRSW 1-2]). With regard to

real interpolation, we have already mentioned the method of interpolation with a

function parameter (see [KA] and [GU]).

The results in this section deal with both methods simultaneously. We find a

reiteration theorem that relates the interpolation of a couple of Banach spaces with

a family of function parameters, which can then be interpolated using the method

of CCRSW. As a consequence of this theorem, we can identify the interpolation

spaces for Λq(w). We will see another application of the reiteration theorem for

Tent spaces in the next chapter.

Before stating and proving our results, we give a brief description of the complex

and real interpolation methods.

The complex method of interpolation.

We describe the complex method of interpolation for families of Banach spaces

as given in [CCRSW 1]. Let T = {z ∈ C : |z| = 1}. To simplify notation we shall

write θ ∈ T instead of eiθ ∈ T. Let {B(θ)}θ∈T be a family of Banach spaces. We

say that this family is an interpolation family of Banach spaces (or interpolation

family, for short) if each B(θ) is continuously embedded in a Banach space (U, ‖·‖U ),

the function θ −→ ‖b‖B(θ) is measurable for each b ∈ ∩θ∈T B(θ), and if we define

B =
{
b ∈ ∩θ∈T B(θ) :

∫ 2π

0

log+ ‖b‖ B(θ) dθ < ∞
}
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then ‖b‖U ≤ k(θ)‖b‖ B(θ) for all b ∈ B, with log+ k(θ) ∈ L1(T). The space B is

called the log-intersection space of the given family and U is called the containing

space.

Let us denote by N+(B) the space of all B-valued analytic functions of the form

g(z) =
m∑

j=1

Xj(z)bj for which ‖g‖∞ = supθ ‖g(θ)‖B(θ) < ∞, where Xj ∈ N+ and

bj ∈ B, j = 1, ..., m. (N+ denotes the positive Nevalinna class for the unit disc

D = {z ∈ C : |z| ≤ 1}.) The completion of the space N+(B) with respect to ‖ · ‖∞
is denoted by F(B). For z ∈ D, the space [B(θ)]z will consist of all elements of the

form f(z) for f ∈ F(B). A Banach space norm is defined on [B(θ)]z by

‖v‖z = inf
{
‖f‖∞ : f ∈ F(B), f(z) = v

}
, v ∈ [B(θ)]z, z ∈ D·

These spaces are also called in the literature the St. Louis spaces. It can be proved

that ([B(θ)]z, ‖·‖z) is a Banach space and B is dense in each [B(θ)]z. Other proper-

ties of these spaces, such as the interpolation property and reiteration are discussed

in [CCRSW 1-2]. The only one we shall need in order to prove our main theorem

is the following subharmonicity property, which is contained in Proposition (2.4) of

[CCRSW 1]:

proposition 2.3.1. For each f ∈ F(B) and each z ∈ D,

‖f(z)‖z ≤ exp
∫
T

(
log ‖f(θ)‖B(θ)

)
Pz(θ) dθ

where Pz(θ) = �
(

1
2π

1 + ze−iθ

1 − ze−iθ

)
is the Poisson Kernel for D.

For further references see also [HE].

The real method of interpolation with a function parameter.

Let A0, A1 be two Banach spaces. We say that A0 and A1 are compatible if

there is a Hausdorff topological vector space U such that A0 and A1 are subspaces
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of U . We then can form their sum and their intersection. We set A = (A0, A1) and

Σ(A) = A0 + A1 and define the Peetre K-functional by

K(t, a) = K(t, a; A) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1), all t > 0, a ∈ Σ(A)·

It is easy to see that for each t, K(t, a) is an equivalent norm on Σ(A). More

precisely, we have ([BE-LO] Lemma 3.1.1):

(9) K(t, a) ≤ max(1, t/s)K(s, a).

We also need to introduce the J-functional. Set ∆(A) = A0 ∩ A1, and for each

a ∈ ∆(A) and t > 0, define

J(t, a) = J(t, a;A) = max(‖a‖A0 , t‖a‖A1)·

Clearly J(t, a) is an equivalent norm on ∆(A) for a given t > 0. More precisely,

we have (see [BE-LO]):

(10) J(t, a) ≤ max(1, t/s)J(s, a)

(11) K(t, a) ≤ min(1, t/s)J(s, a), all a ∈ ∆(A).

Given a couple A = (A0, A1) of compatible Banach spaces, a function parameter

ϕ ∈ BΨ and 0 < q ≤ ∞ we define

Aϕ,q,K = (A0, A1)ϕ,q,K =
{

a ∈ Σ(A) : ‖a‖q
ϕ,q,K =

∫ ∞

0

(
1

ϕ(t)
K(t, a)

)q
dt

t
< ∞

}
·

Also

Aϕ,q,J =
{

a ∈ Σ(A) : a =
∫ ∞

0

u(t)
dt

t

}
,

where the integral converges in Σ(A) and u(t) is measurable with values in ∆(A)

and ∫ ∞

0

(
1

ϕ(t)
J(t, u(t))

)q
dt

t
< ∞·

In this case, we have

‖a‖Aϕ,q,J
= inf

u

(∫ ∞

0

(
1

ϕ(t)
J(t, u(t))

)q
dt

t

)1/q

·
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In the classical case ϕ(t) = tθ, 0 < θ < 1, we have the equivalence theorem ( see

[BE-LO] Theorem 3.3.1):

(12) Aϕ,q,K = Aϕ,q,J ,

with equivalent norms.

The results needed to prove (12) are based on a discretization of the corresponding

quasi-norms and an extension of the fundamental lemma of interpolation theory (see

[BE-LO] Lemma 3.3.2).

proposition 2.3.2. If ϕ ∈ BΨ, 0 < q ≤ ∞, then

‖a‖Aϕ,q,K
≈

( ∞∑
n=−∞

(
1

ϕ(2n)
K(2n, a)

)q
)1/q

·(13)

‖a‖Aϕ,q,J
≈ inf

{( ∞∑
n=−∞

(
1

ϕ(2n)
J(2n, un)

)q)1/q }
(14)

where a =
∑
n

un, with convergence in Σ(A) and un ∈ ∆(A). In particular,

‖a‖Aϕ,q,J
≤ C

(∫ ∞

0

ϕ(s) min(1,
1
s
)

ds

s

) ( ∞∑
n=−∞

(
1

ϕ(2n)
J(2n, un)

)q
)1/q

·

proof: Similar to the case ϕ(t) = tθ ( see [BE-LO] Lemmas 3.1.3 and 3.2.3).

proposition 2.3.3. If ϕ ∈ BΨ, 0 < q ≤ ∞, then,

K(t, a) ≤ Cϕ(t)‖a‖Aϕ,q,K
·

In particular, ‖a‖A0+A1 ≡ K(1, a) ≤ C‖a‖Aϕ,q,K
.

proof: By (9), min(1, s/t)K(t, a) ≤ K(s, a). Hence,

‖a‖Aϕ,q,K
=

(∫ ∞

0

(
1

ϕ(s)
K(s, a)

)q
ds

s

)1/q

≥K(t, a)
(∫ ∞

0

(
1

ϕ(s)
min(1, s/t)

)q
ds

s

)1/q

·
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Changing variables and using the definition of ϕ (see (6) Chapter I):

‖a‖Aϕ,q,K
≥ K(t, a)

(∫ ∞

0

(
1

ϕ(t/u)
min(1, 1/u)

)q
du

u

)1/q

≥ K(t, a)
ϕ(t)

(∫ ∞

0

(
ϕ(u) min(1, 1/u)

)q du

u

)1/q

(by (6) Chapter I)

=
K(t, a)
ϕ(t)

(∫ ∞

0

(
1

ϕ(1/u)
min(1, 1/u)

)q
du

u

)1/q

=
K(t, a)
ϕ(t)

(∫ ∞

0

(
1

ϕ(u)
min(1, u)

)q
du

u

)1/q

and the integral is finite by Proposition 1.1.5 and Proposition 1.1.8-(12).

proposition 2.3.4. (Fundamental lemma of interpolation theory )

If ϕ ∈ BΨ and 0 < q ≤ ∞, then for each a ∈ Aϕ,q,K and for all ε > 0 there exists

a sequence {un}n ⊂ ∆(A) such that a =
∞∑

n=−∞
un, with convergence in Σ(A) and

J(2n, un) ≤ 3(1 + ε)K(2n, a), n ∈ Z·

proof: Since, by Proposition 1.1.9 we have that

ϕ(t) ≤ max(tαϕ , tβϕ) and K(t, a) ≤ Cϕ(t)‖a‖Aϕ,q,K

then

min(1, 1/t)K(t, a) −→ 0 as t −→ 0 or ∞·

Now apply Lemma 3.3.2 in [BE-LO] to obtain the desired sequence {un}n.

note 2.3.5:

(a) Because of (12) we will denote by Aϕ,q either of the spaces Aϕ,q;K or Aϕ,q;J .

(b) We can now give the result that is equivalent to Proposition 2.3.3 for the

J− functional; i.e.,

‖a‖Aϕ,q
≤ C

J(t, a)
ϕ(t)

, a ∈ ∆(A)·
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In fact,

‖a‖Aϕ,q
=

(∫ ∞

0

(
1

ϕ(s)
K(s, a)

)q
ds

s

)1/q

(by (11))

≤ J(t, a)
(∫ ∞

0

(
1

ϕ(s)
min(1,

s

t
)
)q

ds

s

)1/q

= J(t, a)
(∫ ∞

0

(
1

ϕ(t/u)
min(1,

1
u

)
)q

du

u

)1/q

≤ J(t, a)
ϕ(t)

(∫ ∞

0

(
ϕ(u) min(1,

1
u

)
)q

du

u

)1/q

and the integral is finite, since ϕ ∈ BK .

We are now ready to prove the reiteration theorem mentioned above. We will

now be dealing with functions F : T × R+ −→ R+ such that Fθ(t) = F (θ, t) is

measurable on θ for every t > 0 and Fθ ∈ BΨ for every θ ∈ T. Given q : T −→ R+

measurable, the basic assumption on F is the following:

definition 2.3.6. Let F and q be as above. We say that F satisfies the condition

(A), with respect to q, if:

∫ 2π

0

log+

(∫ ∞

0

(
F θ(t) min(1, 1/t)

)q(θ) dt

t

)1/q(θ)

dθ < ∞·(15) ∫ 2π

0

log
(∫ ∞

0

(
F θ(t) min(1, 1/t)

) dt

t

)
dθ < ∞·(16) ∫ 2π

0

log+

(∫ ∞

0

((
F θ(t)

)−1
min(1, t)

)q(θ) dt

t

)−1/q(θ)

dθ < ∞·(17)

As we shall see later in the proof of the theorem, condition (A) is the appropriate

one for the complex method of interpolation of families.

theorem 2.3.7. Suppose A = (A0, A1) is a pair of compatible Banach spaces,

and F satisfies condition (A) with respect to q. Set A(θ) = (A0, A1)Fθ,q(θ). Then

{A(θ)}θ∈T is an interpolation family of Banach spaces and

[A(θ)]z = (A0, A1)Fz,q(z),
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with equivalent norms, where

Fz(t) = exp
( ∫

T

(log F (θ, t))Pz(θ) dθ

)
and

1
q(z)

=
∫
T

1
q(θ)

Pz(θ) dθ·

proof: We begin by showing that Fz ∈ BΨ for all z ∈ D, so that it makes sense

to write (A0, A1)Fz,q(z). For Fθ ∈ BΨ we set

Gθ(t) =
tF ′

θ(t)
Fθ(t)

·

As in Proposition 1.1.7 we get

(18) Fθ(t) = exp
(∫ t

1

Gθ(s)
s

ds

)
·

Thus,

Fz(t) = exp
(∫

T

(∫ t

1

Gθ(s)
s

ds

)
Pz(θ) dθ

)
= exp

(∫ t

1

Gz(s)
s

ds

)
where Gz(s) = G(z, s) is the Poisson integral of G(·, s). Hence,

Gz(t) =
tF ′

z(t)
Fz(t)

·

The Maximum Principle and the continuity of F (θ, ·) show that

sup
t>0

(Gz(t)) ≤ sup
t>0

sup
θ∈T

(Gθ(t)) < 1

and similarly

inf
t>0

(Gz(t)) > 0·

Therefore, Fz ∈ BΨ as we wanted.

Our next step is to prove that {A(θ)}θ∈T is an interpolation family. To see

this, observe that A(θ) ↪→ A0 + A1 and by Proposition 2.3.3 we have the estimate

‖a‖A0+A1 ≤ k(θ)‖a‖A(θ), with

k(θ) =
(∫ ∞

0

((
F θ(t)

)−1
min(1, t)

)q(θ) dt

t

)−1/q(θ)
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so that by (17), log+ k(θ) ∈ L1(T), which is all we need to show.

We now come to the main part of the proof. We first prove the inclusion

(19) [A(θ)]z ⊂ (A0, A1)Fz,q(z)

and the corresponding norm inequality.

Let a ∈ [A(θ)]z and take ε > 0. We can find f ∈ F(A) with f(z) = a such that

(20) ‖f‖∞ ≤ ‖a‖z(1 + ε)·

By the subharmonicity of log K(t, f(z)) (see Lemma 4.1 of [HE 2]) and the

definition of Fz(t) we obtain

‖a‖Fz,q(z) =

(∫ ∞

0

(
1

Fz(t)
K(t, f(z))

)q(z)
dt

t

)1/q(z)

≤
(∫ ∞

0

(
1

Fz(t)
exp

(∫
T

(log K(t, f(θ)))Pz(θ) dθ

))q(z)
dt

t

)1/q(z)

=

(∫ ∞

0

(
exp

(∫
T

log
(

1
Fθ(t)

K(t, f(θ))
)

Pz(θ) dθ

))q(z)
dt

t

)1/q(z)

·

We need the following result:

lemma 2.3.8. (Fundamental inequality, Proposition 3.1 in [HE 1])

Let p : D −→ [1,∞) be a function such that 1/p(z) is harmonic in D and

G : T × R+ −→ C be a function for which∫
T

‖G(θ, ·)‖Lp(θ)Pz(θ) dθ < ∞,

for some z ∈ D, (G is called p-admissible). Then

log ‖uG(z, ·)‖Lp(z) ≤
∫
T

log ‖G(θ, ·)‖Lp(θ)Pz(θ) dθ,

where

uG(z, x) = exp
(∫

T

log |G(θ, x)| Hz(θ) dθ

)
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and

Pz(θ) = �(Hz(θ)) = �
(

1
2π

1 + ze−iθ

1 − ze−iθ

)
,

for all z ∈ D·

Using the lemma and (20):

‖a‖Fz,q(z) ≤ exp

∫
T

log

(∫ ∞

0

(
1

Fθ(t)
K(t, f(θ))

)q(θ)
dt

t

)1/q(θ)
 Pz(θ) dθ


≤ exp

(∫
T

(log ‖f(θ)‖Fθ,q(θ))Pz(θ) dθ

)
≤ ‖f‖∞ ≤ ‖a‖z(1 + ε)·

The inclusion (19) now follows with norm less than or equal to 1, upon letting

ε −→ 0.

To prove the inclusion

(21) [A(θ)]z ⊃ (A0, A1)Fz,q(z)

and the corresponding norm inequality, we need the following lemma:

lemma 2.3.9. Under condition (A), A0 ∩ A1 ⊂ A, where A denotes the log-

intersection space of the family {A(θ)}θ∈T.

proof: Since K(t, a) ≤ min(1, t)‖a‖A0∩A1 , we deduce

‖a‖q(θ)
Fθ,q(θ) ≤ ‖a‖q(θ)

A0∩A1

(∫ 1

0

(
t

Fθ(t)

)q(θ)
dt

t
+

∫ ∞

1

(
1

Fθ(t)

)q(θ)
dt

t

)
·

Using Proposition 1.1.8-(13) and (14), with s = 1, we obtain

‖a‖q(θ)
Fθ,q(θ) ≤ ‖a‖q(θ)

A0∩A1

(∫ ∞

0

(
Fθ(t) min(1, 1/t)

)q(θ) dt

t

)
·

The desired result now follows from condition (15).

To prove (21) let a ∈ (A0, A1)Fz,q(z) and ε > 0. By Proposition 2.3.4, there

is a representation of a of the form a =
∑
n

un (convergence in A0 + A1) with

un ∈ A0 ∩ A1 and such that

(22) J(2n, un) ≤ 3(1 + ε)K(2n, a), for all n ∈ Z·
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Fix t > 0 and let G̃(ξ, t), ξ ∈ D be the harmonic conjugate of G(·, t) normalized

by G̃(z, t) = 0. Similarly, let (1/q)∼ be the harmonic conjugate of 1/q such that

(1/q)∼(z) = 0. Set W (ξ, t) = G(ξ, t) + iG̃(ξ, t), and

1
s(ξ)

=
1

q(ξ)
+ i

(
1
q

)∼
(ξ), ξ ∈ D·

Let H(ξ, t) be so that W (ξ, t) =
tH ′(ξ, t)
H(ξ, t)

; that is

H(ξ, t) = exp
(∫ t

1

W (ξ, s)
s

ds

)
·

Define

An(ξ) =
H(ξ, 2n)
Fz(2n)

(
J(2n, un)
Fz(2n)

)−1+
q(z)
s(ξ)

, n ∈ Z·

We now show that An is bounded for every n. In fact,

|H(ξ, 2n)| = exp

(∫ 2n

1

G(ξ, 2n)
s

ds

)
≤ 2n,

since G(ξ, s) ≤ 1 and

∣∣∣∣ (
J(2n, un)
Fz(2n)

)−1+
q(z)
s(ξ)

∣∣∣∣ =
(

J(2n, un)
Fz(2n)

)−1+
q(z)
q(ξ)

≤ Fz(2n)
J(2n, un)

max

(
1,

(
J(2n, un)
Fz(2n)

)q(z)
)
·

These two estimates give the desired result.

Set gN (ξ) =
N∑

n=−N

fn(ξ), ξ ∈ D where fn(ξ) = unAn(ξ) ∈ A0 ∩ A1, so that by

Lemma 2.3.9 and the boundedness of An we have gN ∈ N+(A), for all positive

integers N . Let

C(θ) = C

∫ ∞

0

Fθ(s) min(1, 1/s)
ds

s
,

be the constant coming from the equivalence of norms in Proposition 2.3.2-(6).
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Using this proposition and the definition of An, we obtain

‖gN (θ)‖Fθ,q(θ) ≤ C(θ)

(
N∑

n=−N

(
1

Fθ(2n)
J(2n, fn(θ))

)q(θ)
)1/q(θ)

= C(θ)

 N∑
n=−N

 1
Fθ(2n)

∣∣∣∣H(θ, 2n)
Fz(2n)

(
J(2n, un)
Fz(2n)

)−1+
q(z)
s(θ)

∣∣∣∣J(2n, un)

q(θ)


1/q(θ)

= C(θ)

(
N∑

n=−N

(
1

Fz(2n)
J(2n, un)

)q(z)
)1/q(θ)

·

Using (22), we obtain

‖gN (θ)‖Fθ,q(θ) ≤ 3(1 + ε)C(θ)

(
N∑

n=−N

(
1

Fz(2n)
K(2n, a)

)q(z)
)1/q(θ)

·

Proposition 2.3.1 now implies

‖gN (z)‖z ≤ 3(1 + ε) exp
(∫

T

(log C(θ))Pz(θ) dθ

) (
N∑

n=−N

(
K(2n, a)
Fz(2n)

)q(z)
) 1

q(z)

where C(z) = exp
(∫

T
(log C(θ))Pz(θ) dθ

)
is finite due to (16) of condition (A).

Notice that limN→∞ gN (z) coincides formally with
∞∑

n=−∞
un = a, convergence in

A0 + A1, so that a density argument will give ‖a‖z ≤ k(1 + ε)C(z)‖a‖Fz,q(z), after

using Proposition 2.3.2-(5).

The details of this density argument are similar to the ones given on page 89 of

[HE 2] and therefore, omitted. The inclusion (21) follows upon letting ε −→ 0 and

hence Theorem 2.3.7 is proved.

Before using this theorem to get the interpolation results for the Λq(w) spaces, we

want to show, as a consequence of it, two particular cases that were already known

in the literature. The first one deals with the classical real interpolation method,

and it is due to E. Hernández ([HE 2]) and the second result involves the classical

complex interpolation of Calderón, and it is due to Karadžov ([KAR]) and Berg

(see [BE-LO]).
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corollary 2.3.10. [HE 2]

Suppose 0 < α(θ) < 1, 1 ≤ q(θ) ≤ ∞ are two measurable functions defined on T

and A(θ) = (A0, A1)α(θ),q(θ), where A0, A1 is a pair of compatible Banach spaces.

Then {A(θ)}θ∈T is an interpolation family of Banach spaces. If, in addition, we

suppose

(A′)
∫ 2π

0

1
q(θ)

dθ > 0,

∫ 2π

0

log α(θ) dθ > −∞, and

∫ 2π

0

log(1 − α(θ)) dθ > −∞

the spaces [A(θ)]z and (A0, A1)α(z),q(z) coincide and their norms are equivalent,

where z ∈ D and α(z), 1/q(z) are the harmonic functions on D whose boundary

values are α(θ) and 1/q(θ) respectively.

proof: Set F (θ, t) = tα(θ), θ ∈ T, t > 0. Then condition (A′) implies condition

(A) of Theorem 2.3.7 and since

Fz(t) = exp
(∫

T

(log tα(θ))Pz(θ) dθ

)
= t

(∫
T

α(θ)Pz(θ) dθ
)

= tα(z)

we obtain the corollary.

We need the following proposition to prove our next result.

proposition 2.3.11. (Corollary 5.1 in [CCRSW 1])

Suppose T0, T1 are two disjoint measurable subsets of T, whose union is T,

and A = (A0, A1) is a pair of compatible Banach spaces. If {A(θ)}θ∈T is such that

A(θ) = A0 for all θ ∈ T0 and A(θ) = A1 for all θ ∈ T1, then [A(θ)]z = [A0, A1]θ(z),

where

θ(z) =
∫
T1

dPz(γ)·

corollary 2.3.12. Suppose A = (A0, A1) is a pair of compatible Banach spaces

and ϕ0, ϕ1 ∈ BΨ. Then, if 0 < θ < 1, 1 ≤ q0, q1 < ∞ :

[Aϕ0,q0 , Aϕ1,q1 ]θ = Aϕ,q

where

ϕ(s) = (ϕ0(s))1−θ(ϕ1(s))θ and
1
q

=
1 − θ

q0
+

θ

q1
·
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proof: Let T1 = {eiγ ∈ T : 0 ≤ γ ≤ 2πθ}, T0 = T\T1, A(γ) = Aϕ0,q0 if γ ∈ T0

and A(γ) = Aϕ1,q1 if γ ∈ T1. Put

F (γ, t) =
{

ϕ0(t) γ ∈ T0

ϕ1(t) γ ∈ T1

and q(γ) =
{

q0 γ ∈ T0

q1 γ ∈ T1

·

We are then under the hypotheses of Theorem 2.3.7 and Proposition 2.3.11; hence,

[A(γ)]z=0 = (A0, A1)F0,q(0), where

F0(t) = exp
(∫

T0

log ϕ0(t) dγ +
∫
T1

log ϕ1(t) dγ

)
= (ϕ0(t))

1−θ (ϕ1(t))
θ

and
1

q(0)
=

∫
T

1
q(γ)

dP0(γ) =
∫
T0

1
q0

dγ +
∫
T1

1
q1

dγ =
1 − θ

q0
+

θ

q1
·

Thus [A(γ)]z=0 = (A0, A1)ϕ,q = Aϕ,q. Now, by Proposition 2.3.11, we know that

[A(γ)]z=0 = [Aϕ0,q0 , Aϕ1,q1 ]θ. Hence,

[Aϕ0,q0 , Aϕ1,q1 ]θ = Aϕ,q ·

corollary 2.3.13. (See Theorem 4.7.2 in [BE-LO])

If 0 < θ0 < θ1 < 1, θ = (1 − η)θ0 + ηθ1, 1 ≤ pi < ∞, i = 0, 1, and if we set

1/p = (1 − η)/p0 + η/p1, then [Aθ0,p0 , Aθ1,p1 ]η = Aθ,p.

proof: In the last corollary, take ϕ0(t) = tθ0 , ϕ1(t) = tθ1 and θ = η. Then

Aϕi,pi = Aθi,pi and [Aθ0,p0 , Aθ1,p1 ]η = Aθ,p, because tθ = (ϕ0(t))1−θ(ϕ1(t))θ.

We now want to show the interpolation property for the weighted Lorentz spaces,

when using the complex method for families of Banach spaces. We do this by show-

ing that this is a consequence of our main result, Theorem 2.3.7. The corresponding

result, for the real method of interpolation has been proved by Gustavsson in [GU]:

first one shows that Λq(w) is an intermediate space between L1 and L∞, and then,

using the reiteration theorem it is easy to identify the intermediate spaces of the

spaces Λq(w). (See [ME 2] for more details). We shall need Gustavsson’s theorem

to prove our result:
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theorem 2.3.14. ([GU])

If ϕ ∈ BΨ, 1 ≤ q ≤ ∞ and w(t) = t1−1/q/ϕ(t), then (L1, L∞)ϕ,q = Λq(w), with

equivalent norms.

The proof of the previous theorem is a simple consequence of the fact that

K(t, f ;L1, L∞) =
∫ t

0
f∗(s) ds and our Theorem 1.2.7. Notice, that using Propo-

sition 2.3.2, this theorem also gives an equivalent discrete norm on Λq(w), as in

Theorem 2.2.4.

We now prove the interpolation result:

theorem 2.3.15. Suppose q : T −→ [1,∞) and w : T × R+ −→ R+ are mea-

surable functions on T such that ϕθ(t) = t1−1/q(θ)/w(θ, t) belongs to BΨ, for every

θ ∈ T and satisfies condition (A) of Definition 2.3.6. Then {Λq(θ)(w(θ, ·))}θ∈T is

an interpolation family of Banach spaces and

[Λq(θ)(w(θ, ·))]z = Λq(z)(w(z, ·)),

with equivalent norms, where

1
q(z)

=
∫
T

1
q(θ)

Pz(θ) dθ

and

w(z, s) = exp
( ∫

T

(log w(θ, s))Pz(θ) dθ

)
·

proof: By Theorem 2.3.14

Λq(θ)(w(θ, ·)) = (L1, L∞)ϕ(θ),q(θ)·

By Theorem 2.3.7, {Λq(θ)(w(θ, ·))}θ∈T is an interpolation family, and

[Λq(θ)(w(θ, ·))]z = (L1, L∞)ϕz,q(z) = Λq(z)(w(z, ·)) ·
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corollary 2.3.16. Suppose ϕ0, ϕ1 ∈ BΨ, 1 ≤ q0, q1 < ∞ and consider the

weigths wi(t) = t1−1/qi/ϕi(t), i = 0, 1. Then,

[Λq0(wo),Λq1(w1)]θ = Λq(w)

where w(s) = [w0(s)]1−θ[w1(s)]θ and 1/q = (1 − θ)/q0 + θ/q1·

proof: Use Corollary 2.3.12, and argue as above.

(§4) Reiteration.

As we saw in the previous section, the weighted Lorentz spaces Λq(w) show up

naturally as the intermediate spaces between L1 and L∞. In this section, we will

show that this correspondence also holds for other endpoint spaces such as the

Hardy space H1, the space of bounded mean oscillation functions BMO, the space

of continuous functions that tend to zero at infinity C0, the space of finite Borel

measures M , etc. In particular, for the case of H1 and C0, or similarly for M and

BMO, this gives an answer to a question that Yoram Sagher asked the author.

The idea of the proof is to reduce the interpolation with a function parameter to

the classical case, by means of a reiteration theorem, (see [GU] and [PER]).

theorem 2.4.1. Suppose A = (A0, A1) is a pair of compatible Banach spaces,

ϕ0, ϕ1,Ψ ∈ BΨ, and 1 ≤ q0, q1, q ≤ ∞. Let Aϕi,qi
= (A0, A1)ϕi,qi

, i = 0, 1. Assume

also that if we let ϕ(t) = ϕ1(t)/ϕ0(t) then |tϕ′(t)/ϕ(t)| ≥ ε > 0. Then

(Aϕ0,q0 , Aϕ1,q1)Ψ,q = (A0, A1)ξ,q,

where

ξ(t) = ϕ0(t)Ψ
(

ϕ1(t)
ϕ0(t)

)
·

proof: We only need to show the following two estimates:

(23) K(t, a;A0, A1) ≤ Cϕi(t)‖a‖Aϕi,qi
, a ∈ Σ(A), i = 0, 1; i.e., Aϕi,qi is of class

CK(ϕi, A).
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(24) ‖a‖Aϕi,qi
≤ C

ϕi(t)
J(t, a;A0, A1), a ∈ ∆(A), i = 0, 1; i.e., Aϕi,qi is of class

CJ(ϕi, A).

(23) is proved in Proposition 2.3.3 and (24) is Note 2.3.5-(b). Thus, Theorem 2.3

in [GU] finishes the proof.

lemma 2.4.2. Let ϕ ∈ BΨ, 0 < p0 < 1/(1 − αϕ) and 1/(1 − βϕ) < p1. Let

a = 1 − 1/p0 and b = 1/p0 − 1/p1. Set Ψ(t) = t−a/bϕ(t1/b). Then Ψ ∈ BΨ.

proof: Since

Ψ′(t) =
−a

b
t−a/b−1ϕ(t1/b) +

t−a/b+1/b−1

b
ϕ′(t1/b),

then
tΨ′(t)
Ψ(t)

=
−a

b
+

1
b

t1/bϕ′(t1/b)
ϕ(t1/b)

·

Hence,

αΨ =
−a

b
+

αϕ

b
, βΨ =

−a

b
+

βϕ

b
·

That is,

αΨ =
1
b
(

1
p0

− 1 + αϕ) > 0, βΨ < 1 ⇐⇒ p1 >
1

1 − βϕ
·

Therefore 0 < αΨ ≤ βΨ < 1 and so Ψ ∈ BΨ.

theorem 2.4.3. Suppose ϕ ∈ BΨ and 1 ≤ q ≤ ∞. Set w(t) = t1−1/q/ϕ(t). Then

(a) (H1, C0)ϕ,q = Λq(w),

(b) (M, BMO)ϕ,q = Λq(w),

(c) (L1, BMO)ϕ,q = Λq(w),

(d) (H1, BMO)ϕ,q = Λq(w).

proof: We only need to give the proof of (a), since the others are similar.

If ϕ(t) = tθ, 0 < θ < 1, (a) follows from Theorem (4) of [RI-SA] and the fact

that Λq(t1−1/q−θ) = Lp,q where 1/p = 1 − θ.

Choose 1 ≤ p0 < 1/(1 − αϕ) and p1 > 1/(1 − βϕ). Set θi = 1 − 1/pi, i = 0, 1,

and define Ψ(t) = tθ0/(θ0−θ1)ϕ(t1/(θ1−θ0)). Then, by Lemma 2.4.2, Ψ ∈ BΨ. Also,
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(Lp0 , Lp1)Ψ,q = Λq(w). In fact, since Lpi = (L1, L∞)θi,pi , i = 0, 1 and we have that

ϕ(t) = tθ0Ψ(tθ1−θ0), then by Theorem 2.4.1 and Theorem 2.3.14 we get that

(Lp0 , Lp1)Ψ,q = (L1, L∞)ϕ,q = Λq(w)·

Again, by Theorem 2.4.1 and the result of [RI-SA],

(H1, C0)ϕ,q = ((H1, C0)θ0,p0 , (H1, C0)θ1,p1)Ψ,q = (Lp0 , Lp1)Ψ,q = Λq(w) ·

remark 2.4.4:

(i) One can also get the theorem for the case of quasi-Banach spaces; i.e., when

0 < q < 1.

(ii) It is also possible to give a direct proof of some of the previous results. For

example, to prove (a), if we denote by Mr(f)(x) = (M(|f |r)(x))1/r
, x ∈ Rn, and

1 < r < ∞, where M is the Hardy-Littlewood maximal operator and

fr(t) = (S (((Mrf)∗)r) (t))1/r
, t > 0

then it is proved in [RI-SA] that

K(t, f ;H1, C0) ≤ Ctfr(t), t > 0

and f ∈ C0· One shows that if ϕ ∈ BΨ, 1 ≤ q ≤ ∞ and if 1 < r < 1/(1 − αϕ) then

Mr : Λq(w) −→ Λq(w),

where w(t) = t1−1/q/ϕ(t)· Then using the weighted Hardy’s inequalities of our
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Theorem 1.2.7, we conclude that

‖f‖(H1,C0)ϕ,q
=

(∫ ∞

0

(
1

ϕ(t)
K(t, f ;H1, C0)

)q
dt

t

)1/q

≤ C

(∫ ∞

0

(
1

ϕ(t)
tfr(t)

)q
dt

t

)1/q

= C

(∫ ∞

0

(
1

ϕ(t)
t

(
1
t

∫ t

0

((Mrf)∗(s))r
ds

)1/r
)q

dt

t

)1/q

= C

(∫ ∞

0

(
w(t) (S ((Mrf)∗)r (t))1/r

)q

dt

)1/q

= C

(∫ ∞

0

(wr(t)S ((Mrf)∗)r (t))q/r
dt

)1/q

(wr ∈ Wq/r(S))

≤ C

(∫ ∞

0

(wr(t) ((Mrf)∗(t))r)q/r
dt

)1/q

≤ C

(∫ ∞

0

(w(t)(Mrf)∗(t))q
dt

)1/q

= C‖Mrf‖Λq(w) ≤ C‖f‖Λq(w),

for all f ∈ C0, and hence, by a density argument Λq(w) ⊂ (H1, C0)ϕ,q.

The other inclusion follows easily, since

(H1, C0)ϕ,q ⊂ (L1, L∞)ϕ,q = Λq(w)·

(iii) As in (ii) one can also give a direct proof of (c) by the same argument that

shows the result for the case ϕ(t) = tθ, 0 < θ < 1, (see Theorem 8.11 [BE-SH]):

the condition needed there to get (L1, BMO)ϕ,q ⊂ Λq(w) also holds now; i.e., if

f ∈ (L1, BMO)ϕ,q then

(25)
∫ ∞

1

(
f#

)∗
(s)

ds

s
< ∞,

where

f#(t) = sup
x∈Q

1
|Q|

∫
Q

|f(y) − fQ| dy, fQ =
1
|Q|

∫
Q

f(y) dy·
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To show (25) one uses the equivalence

K(t, f ;L1, BMO) ≈ t
(
f#

)∗
(t)

and the estimate

∫ ∞

1

(
f#

)∗
(s)

ds

s
< ∞ ≤

(∫ ∞

1

(
ϕ(t)

t

)q′
dt

t

)1/q′

‖f‖(L1,BMO)ϕ,q
·

The integral is finite by Proposition 1.1.11-(15) and finally, Theorem 1.2.7 gives

the desired norm estimate.
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Chapter III

Tent spaces

(§1) Introduction.

The theory of Tent spaces was first developed by Coifman, Meyer and Stein

(see [CO-ME-ST 1]), as a tool to get a simpler proof of the boundedness of

commutator integrals of Calderón, that are related to the Cauchy Integral operator

(see [JOU]). Later, in [CO-ME-ST 2], they studied in detail properties of Tent

spaces, as (quasi) Banach spaces of measurable functions on the upper half space.

The main results that they obtain deal with the equivalence of norms on these

spaces in terms of several functionals (balayages), the atomic decomposition, from

which one can obtain a simple and elegant proof of the atomic decomposition of

the Hardy spaces Hp, interpolation theorems for both the real and complex method

(results that can be used to get the similar theorems for Hardy spaces), and finally

a very interesting conection, by duality, with Carleson measures.

As is written in [CO-ME-ST 2], “... these spaces lead to unifications and

simplifications of some basic techniques in harmonic analysis.” Besides the ones

already mentioned, one can also point out the recent works of Alvarez and Milman

(see [AL-MI 1], [AL-MI 2]) and Bonami and Johnson (see [BO-JO]), where

applications to maximal operators, square functions, weighted norm inequalities, as

well as other applications are given. These authors have also extended the class of

tent spaces by considering not only Lp- but also Lp,q-norms.
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Our goal in this chapter is to further enhance the range of the tent spaces to

include the more general weighted Lorentz spaces Λq(w). One way to justify this

comes from the fact that the spaces that one gets, are precisely the intermediate

spaces obtained when one applies the real method of interpolation with a function

parameter to the Tent spaces of Coifman, Meyer and Stein. Another feature is that

the duality theorems now give a richer class of Carleson-type measures. As we shall

see later, this can be used to get more general weighted inequalities for maximal

operators.

(§2) Definitions and first properties.

definition 3.2.1.

(i) Let x ∈ Rn. We shall denote by Γ(x) the standard cone of aperture 1, whose

vertex is x ∈ Rn. That is,

Γ(x) =
{
(y, t) ∈ Rn+1

+ : |x− y| < t
}
·

(ii) For any set F ⊂ Rn, RF = ∪x∈F Γ(x) is the union of the cones with vertices

in F .

(iii) Let Ω be the set which is the complement of F , Ω = cF . The tent over Ω is

denoted

T (Ω) = Ω̂ = cRF =
{
(x, t) ∈ Rn+1

+ : B(x, t) ⊂ Ω
}
·

Notice that T (Ω) coincides with the set lying below the Lipschitz graph

{
(x, t) ∈ Rn+1

+ : dist(x, F ) = t
}
·

definition 3.2.2. Let 0 < q ≤ ∞. The Aq functionals mapping functions on Rn+1
+
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into functions on Rn are defined by

Aq(f)(x) =

 ∫
Γ(x)

|f(y, t)|q dydt

tn+1


1/q

if q <∞

A∞(f)(x) = sup
Γ(x)

|f(y, t)|·

definition 3.2.3. Let w be a weight on R+, 0 < q ≤ ∞, 0 < p <∞. Assume that

wp is a locally integrable function on R+; i.e.,

∫ b

a

wp(t) dt <∞, 0 ≤ a < b <∞.

The tent space Tq(Λp(w)) is defined as the space of functions f on Rn+1
+ such that

Aq(f) ∈ Λp(w)·

Tq(Λp(w)) =
{
f : ‖f‖Tq(Λp(w)) = ‖Aq(f)‖Λp(w) <∞

}
The case q = ∞, requires a natural modification: T∞(Λp(w)) will denote the

class of all f which are continuous in Rn+1
+ , for which A∞(f) ∈ Λp(w) and such

that ‖fε − f‖T∞(Λp(w)) −→ 0, as ε −→ 0+, where fε(x, t) = f(x, t + ε).

remark 3.2.4:

(i) If w(t) = t1/r−1/p then we obtain the spaces T r,p
q = Tq(Λp(w)) of [AL-MI 1,2]

and [BO-JO]. In particular, if p = r then T p
q = Tq(Λp(w)) as in [CO-ME-ST 2].

(ii) It is clear that ‖ · ‖Tq(Λp(w)) is a quasi-norm. Moreover, if 1 ≤ p, 1 ≤ q and

w(t) = t1−1/p/ϕ(t), where ϕ ∈ BΨ, then ‖ · ‖Tq(Λp(w)) is equivalent to a norm, by

Corollary 2.1.8.

(iii) The completeness of Tq(Λp(w)) follows as in [CO-ME-ST 2] and [BO-JO].

For q =∞ it is easy to show

|f(x, t)| ≤ inf
y∈B(x,t)

A∞(f)(y),

which implies that

|f(x, t)|χB(x,t)(y) ≤ A∞(f)(y) ,

for all y ∈ Rn· Taking the Λp(w) (quasi) norm on both sides,

|f(x, t)| ‖χB(x,t)‖Λp(w) ≤ C‖f‖T∞(Λp(w))·
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Therefore, since by the hypothesis on w, 0 < ‖χB(x,t)‖Λp(w) <∞, we get

(1) |f(x, t)| ≤ C

‖χB(x,t)‖Λp(w)
‖f‖T∞(Λp(w))·

If {fk}k is a Cauchy sequence in T∞(Λp(w)), (1) shows that there exists a function

f such that limk→∞ fk(x, t) = f(x, t) for all (x, t) ∈ Rn+1
+ . Thus

|fk(x, t)− f(x, t)| = lim
j→∞

|fk(x, t)− fj(x, t)| ≤ lim
j→∞

A∞(fk − fj)(y)

for all y ∈ Rn and (x, t) ∈ Γ(y). Thus,

A∞(fk − f)(y) ≤ lim
j→∞

A∞(fk − fj)(y)·

Now taking “Λp(w) norms” we obtain

‖fk − f‖T∞(Λp(w)) ≤ ‖ lim
j→∞

A∞(fk − fj)‖Λp(w) ≤ lim
j→∞

‖fk − fj‖T∞(Λp(w))

by the Fatou property for rearrangement invariant spaces (see [BE-SH]).

Finally,

lim
k→∞

‖fk − f‖T∞(Λp(w)) ≤ lim
k→∞

lim
j→∞

‖fk − fj‖T∞(Λp(w)) = 0·

The case q <∞ is handled similarly, except for using the following inequality:

for any compact set K ⊂ Rn+1
+ , there exists x0 ∈ Rn, and a constant C(K, q) such

that (∫
K

|f(x, t)|q dxdt

)1/q

≤ C(K, q)Aq(f)(x0) <∞

for all f ∈ Tq(Λp(w)), (see [BO-JO]).

(§3) Atomic decompositions.

As in Chapter II, where we considered the atomic decomposition of the Λq(w)

spaces, we now want to obtain a suitable “discrete norm” in terms of a distribution

function. This will be the right tool to get the needed estimates for the atoms

introduced below. We achieve this using Theorem 2.1.6 and a rather technical

result which has independent interest of its own.
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definition 3.3.1. Let 0 ≤ x < y <∞. We define

K(x, y) =
{
k ∈ Z : x ≤ 2k < y

}
and also

C(x, y) =
∑

k∈K(x,y)

2k.

If K(x, y) = ∅ then C(x, y) is understood to be zero. The following result shows

the close connection between the function C(x, y) and the linear measure of the

interval (x, y), though as we will see later, they are far from being equivalent. The

difficulties arise when �K(x, y) = 0 or 1. �E denotes the cardinality of the set E.

lemma 3.3.2. Let 0 ≤ x < y <∞.

(i) If �K(x, y) ≥ 1 then C(x, y) ≥ 2
3 (y − x).

(ii) If �K(x, y) �= 1 then C(x, y) ≤ 3(y − x).

(iii) Suppose that there exists an N ∈ Z such that
2N+1

3
≤ y ≤ 2N , then

C(x, y) ≤ 3(y − x).

proof:

(i) If x = 0 the inequality is trivial. Now, if x �= 0 and K(x, y) ≥ 1 then there exist

k ∈ Z and l = 0, 1, 2, · · · such that

2k−1 < x ≤ 2k < · · · < 2k+l ≤ y ≤ 2k+l+1.

Hence C(x, y) =
k+l∑
j=k

2j = 2k+l+1−2k = 2k(2l+1− 1). Also y−x ≤ 2k+l+1− 2k−1 =

2k(2l+1 − 1
2 ). Thus, we need to show that 2l+1 − 1

2 ≤ 3
2 (2l+1 − 1), l = 0, 1, · · · ; i.e.,

2x − 1
2

2x − 1
≤ 3

2
, x ≥ 1.

But
2x − 1

2

2x − 1
=

2x − 1
2x − 1

+
1
2

2x − 1
≤ 1 +

1
2

=
3
2
.
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(ii) If �K(x, y) = 0 then the inequality is trivially true.

Observe also that �K(x, y) = ∞ if and only if x = 0. Hence if 2k < y ≤ 2k+1,

some k ∈ Z, we have

C(0, y) =
k∑

j=−∞
2j = 2k+1 ≤ 2y ≤ 3y.

If 2 ≤ �K(x, y) <∞ then there are k ∈ Z and l = 1, 2, · · · so that

2k−1 < x ≤ 2k < · · · < 2k+l < y ≤ 2k+l+1.

Hence,

C(x, y) =
k+l∑
j=k

2j = 2k(2l+1 − 1)

and y − x ≥ 2k+l − 2k = 2k(2l − 1). So we need to show

2x − 1
2x+1 − 1

≥ 1
3
, x ≥ 1.

But
2x − 1

2x+1 − 1
=

1
2

(
1− 1

2x+1 − 1

)
≥ 1

2

(
1− 1

4− 1

)
=

1
3
.

(iii) Suppose that
2N+1

3
≤ y ≤ 2N , some N ∈ Z .By (ii) we may assume that

�K(x, y) = 1; i.e.,

2N−2 < x ≤ 2N−1 <
2N+1

3
≤ y ≤ 2N .

Hence, C(x, y) = 2N−1 and

y − x ≥ 2N+1

3
− 2N−1 =

C(x, y)
3

·

Since the proof of Theorem 3.3.4 is rather involved, we want to present first the

simple case n = 2 , to make things clearer.

lemma 3.3.3. If 0 = x0 < x1 < x2 and r1 > r2 > 0, then

1
2

2∑
j=1

rjC(xj−1, xj) ≤
2∑

j=1

rj(xj − xj−1) ≤
3
2

2∑
j=1

rjC(xj−1, xj).
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proof: To prove the inequality on the left we may assume

0 = x0 < 2k < x1 ≤ 2k+1 < x2 ≤ 2k+2

(any other possibility is already taken care of, by (ii) of the previous lemma). Then

1
2

2∑
j=1

rjC(xj−1, xj) =
1
2
(r12k+1 + r22k+1) = 2k(r1 + r2) = 2kr1(1 +

r2

r1
).

Thus, we want to show: 2k(1 +
r2

r1
) ≤ x1 +

r2

r1
(x2 − x1). But

x1 +
r2

r1
(x2 − x1) ≥ x1(1−

r2

r1
) +

r2

r1
2k+1 ≥ 2k(1− r2

r1
+ 2

r2

r1
) = 2k(1 +

r2

r1
)·

To show the inequality on the right, we may also assume that 2k < x1 < x2 ≤ 2k+1,

for some k ∈ Z (by (i) of the previous lemma). Thus, we have to show

x1 +
r2

r1
(x2 − x1) ≤

3
2
2k+1.

But x1 + r(x2 − x1) ≤ x1 + x2 − x1 = x2 ≤ 2k+1 < 3
22k+1.

We now prove the result for a general n.

theorem 3.3.4. Without loss of generality, we may assume n > 2. If we choose

two sequences satisfying 0 = x0 < x1 < x2 < · · · < xn, and r1 > · · · > rn > 0, then,

(2)
1
2

n∑
j=1

rjC(xj−1, xj) ≤
n∑

j=1

rj(xj − xj−1) ≤
3
2

n∑
j=1

rjC(xj−1, xj).

proof: Let k ∈ Z be so that 2k < x1 ≤ 2k+1. Let 0 = l0 ≤ l1 ≤ · · · ≤ l(n−1),

lj ∈ Z, so that

(3) 2k+l(j−1) < xj ≤ 2k+l(j−1)+1, j = 1, · · · , n.

Suppose first that l0 = l1 = · · · = l(n−1) = 0. Then, C(0, x1) = 2k+1 and

C(xj−1, xj) = 0, j = 2, · · · , n.
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Hence,

1
2

n∑
j=1

rjC(xj−1, xj) =
r1

2
2k+1 < r1x1 <

n∑
j=1

rj(xj − xj−1).

Let us now assume that there exists 1 ≤ j0 ≤ n such that lj0 > 0, (choose the

least j0 satisfying this property). Also choose ljp so that

(4) ljp > l(jp−1), i.e. ljp ≥ l(jp−1) + 1, p = 0, · · · , m.

Notice that this is equivalent to C(xjp , xjp+1) > 0.

Then, 1 ≤ j0 ≤ · · · ≤ jm ≤ n− 1 and

(5)

0 = l1 = · · · = l(j0−1) < lj0 = l(j0+1) = · · · = l(j1−1)

· · · · · · · · · · · · · · · · · · · · ·

< lj(m−1) = lj(m−1)+1 = · · · = l(jm−1) < ljm
= ljm+1 = · · · = l(n−1),

in particular l(jp−1) = lj(p−1))· Now we calculate the infimum of

n∑
j=1

rj(xj − xj−1), 2k+l(j−1) < xj ≤ 2k+l(j−1)+1·

Claim: Setting lj(−1) = 0, then

n∑
j=1

rj(xj − xj−1) ≥ r12k +
m∑

p=0

rjp+1(2k+ljp − 2k+lj(p−1) )·

In fact,

n∑
j=1

rj(xj − xj−1) = r1x1 +
n∑

j=2

rj(xj − xj−1)

≥r12k + r1(x1 − 2k) +
j0+1∑
j=2

rj(xj − xj−1) + · · ·

+
j(m−1)+1∑

j=j(m−2)+2

rj(xj − xj−1) +
jm+1∑

j=j(m−1)+2

rj(xj − xj−1)

≥r12k + rj0+1(x1 − 2k) + rj0+1(xj0+1 − x1) + · · ·
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· · ·+ rj(m−1)+1(xj(m−1)+1 − xj(m−2)+1) + rjm+1(xjm+1 − xj(m−1)+1)

≥r12k + rj0+1(xj0+1 − 2k) + · · ·+ rj(m−1)+1(xj(m−1)+1 − 2k+lj(m−1)

+ 2k+lj(m−1) − xj(m−2)+1) + rjm+1(xjm+1 − xj(m−1)+1)

≥r12k + rj0+1(xj0+1 − 2k) + · · ·+ rjm+1(xj(m−1)+1 − 2k+lj(m−1) )

+ rjm+1(xjm+1 − xj(m−1)+1)

≥r12k +
m∑

p=0

rjp+1(2k+ljp − 2k+lj(p−1) )·

On the other hand:

1
2

n∑
j=1

rjC(xj−1, xj) =
1
2

r12k+1 +
n∑

j=2

rj2k+1(2l(j−1) − 2l(j−2))

 ,

since C(xj−1, xj) = 2k+l(j−2)+1 + · · ·+ 2k+l(j−1) . But

n∑
j=2

rj(2l(j−1) − 2l(j−2)) =

j0∑
j=2

rj(2l(j−1) − 2l(j−2)) +
j1∑

j=j0+1

rj(2l(j−1) − 2l(j−2)) + · · ·

· · ·+
jm∑

j=j(m−1)+1

rj(2l(j−1) − 2l(j−2)) +
n∑

j=jm+1

rj(2l(j−1) − 2l(j−2)) (using (5) )

= 0 + rj0+1(2lj0 − 2l(j0−1)) + · · ·+ rj(m−1)+1(2
lj(m−1) − 2lj(m−2) )

+ rjm+1(2ljm − 2lj(m−1) ) =
m∑

p=0

rjp+1(2ljp − 2lj(p−1) )·

Hence,

1
2

n∑
j=1

rjC(xj−1, xj) =
1
2
(r12k+1+

m∑
p=0

rjp+12k+1(2ljp−2lj(p−1) )) ≤
n∑

j=1

rj(xj−xj−1)·

Now we show the inequality on the right. As before, suppose

2k+l(j−1) < xj ≤ 2k+l(j−1)+1, j = 1, · · · , n·
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If l0 = l1 = · · · = l(n−1) = 0 then C(0, x1) = 2k+1 and C(xj−1, xj) = 0, for all

j = 2, · · · , n. Thus

n∑
j=1

rj(xj − xj−1) ≤ r1xn ≤ r12k+1 =
n∑

j=1

rjC(xj−1, xj)·

If there exists 1 ≤ j0 ≤ n such that lj0 > 0 then choose ljp
as in (4) and (5).

Then, by a similar argument to the one used in the first part, we get

n∑
j=1

rj(xj − xj−1)

≤ r12k+1 + rj0+1(2k+1+l(j1−1) − 2k+1) + · · ·+ rjm+1(2k+1+l(n−1) − 2k+l(jm−1)+1)

= r12k+1 + rj0+1(2k+1+lj0 − 2k+1) + · · ·+ rjm+1(2k+1+ljm − 2k+l(jm−1)+1)

= r12k+1 +
m∑

p=0

rjp+12k+1(2ljp − 2lj(p−1) ) =
n∑

j=1

rjC(xj−1, xj) ·

remark 3.3.5: The theorem also holds for any a > 1, namely

n∑
j=1

rj

 ∑
k∈Z

xj−1≤ak<xj

ak

 ≈ n∑
j=1

rj(xj − xj−1)·

We now give the discrete version of Theorem 2.1.6.

theorem 3.3.6. Suppose ϕ ∈ BΨ, 0 < q <∞ and set w(t) = t1−1/q/ϕ(t). Then

(6) ‖f‖Λq(w) ≈
(∑

k∈Z

(2kw(λf (2k)))qλf (2k)

)1/q

·

proof: As in the proof of Theorem 2.1.6 it suffices to show (6) for simple functions

of the form f(x) =
n∑

j=1

ajχEj (x), where the sets Ej are pairwise disjoint with finite

measure and a1 > a2 > · · · > an > 0. As the proof of the theorem shows

‖f‖qΛq(w) ≈
n∑

j=1

(
mj

ϕ(mj)

)q

(aq
j − aq

j+1)
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where mj =
j∑

i=1

|Ei|. Now

∑
k∈Z

(2kw(λf (2k)))qλf (2k) =
∑
k∈Z

(
2kq

(
λf (2k)

ϕ(λf (2k))

)q)

=
n∑

j=1

 ∑
k∈Z

aj+1≤2k<aj

(
2kq

(
mj

ϕ(mj)

)q) ·
Hence, we only need to show

(7)
n∑

j=1

(
mj

ϕ(mj)

)q

 ∑
k∈Z

aj+1≤2k<aj

2kq

 ≈ n∑
j=1

(
mj

ϕ(mj)

)q

(aq
j − aq

j+1)·

Set

r1 =
(

mn

ϕ(mn)

)q

, r2 =
(

mn−1

ϕ(mn−1)

)q

, · · · , rn =
(

m1

ϕ(m1)

)q

,

x0 = 0, x1 = aq
n, · · · , xn = aq

1 and a = 2q. Then (7) is equivalent to showing that

(8)
n∑

j=1

rj

 ∑
k∈Z

xj−1≤ak<xj

ak

 ≈ n∑
j=1

rj(xj − xj−1)·

Since mj is an increasing sequence, then
(

mj

ϕ(mj)

)q

increases also and thus we

get r1 > r2 > · · · > rn > 0. Also, xn > xn−1 > · · · > x1 > 0 and a > 1. Hence

we can now use Remark 3.3.5 to show that (8) holds true and this completes the

proof.

remark 3.3.7: Theorem 3.3.6 is trivially true if either w is an increasing function

or a power function, since then it suffices to write the integral as a sum of integrals

over disjoint dyadic intervals of the form [2k, 2k+1) and use basic estimates.

Our goal now is to find an atomic decomposition for functions in a suitable class

of weighted Tent spaces. As in [BO-JO] we shall be most interested in the case of

those spaces based on the Lorentz space Λ(w). We first give the definition of atoms:
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definition 3.3.8. Suppose 0 < p < q ≤ ∞ and w is a positive weight in R+ such

that

(9) 0 <

(∫ t

0

(w(s))pq/(q−p) dt

)(q−p)/pq

<∞, for all t > 0·

We say that a measurable function a : Rn+1
+ −→ C is a (w, q, p)-atom if:

(10) There exists an open set Ω ⊂ Rn such that supp a ⊂ T (Ω)·

(11)

 ∫
T (Ω)

|a(x, t)|q dxdt

t


1/q

≤
(∫ |Ω|

0

(w(t))pq/(q−p)dt

)(p−q)/pq

·

If q =∞, (11) has to be understood as

sup
(x,t)∈T (Ω)

|a(x, t)| ≤
(∫ |Ω|

0

(w(t))p dt

)−1/p

·

remark 3.3.9: Suppose ϕ ∈ BΨ, 1/(1− βϕ) < q and w(t) = t1−1/p/ϕ(t). Then

the condition (11) is independent of p; i.e., a is a (w, q, p)-atom if and only if a is a

(w, q, 1)-atom, up to a multiplicative constant. In fact:

(∫ r

0

(w(t))pq/(q−p)dt

)(q−p)/pq

=
(∫ r

0

tq(p−1)/(q−p)

ϕpq/(q−p)(t)
dt

)(q−p)/pq

=
(∫ r

0

(
t

ϕq(t)

)s
dt

t

)(q−p)/pq

where s = p(q − 1)/(q − p) and ϕq(t) = ϕq/(q−1)(t). Since 1/(1− βϕ) < q then

ϕq ∈ BΨ and, hence, by Theorem 1.1.8-(13),

(∫ r

0

(
t

ϕq(t)

)s
dt

t

)(q−p)/pq

≈ r1/(q−1)ϕ(r)

which is independent of p· In this case, we shall say that a is a (w, q)-atom, with

no reference to the p parameter.
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definition 3.3.10. (See [CO-ME-ST 2]). Let Ω be an open set with finite mea-

sure, F = cΩ and 0 < γ < 1. We say that x ∈ Rn is a point of global γ-density

with respect to F if
|F ∩B(x)|
|B(x)| ≥ γ

for all balls B(x) centered at x.

We define F ∗ to be the set of all points of global γ-density with respect to F and

Ω∗ = cF ∗.

remark 3.3.11: Notice that Ω∗ = {x : M(χΩ)(x) > 1− γ}. In fact

x ∈ Ω∗ ⇐⇒ there exist a ball B(x) such that
|F ∩B(x)|
|B(x)| < γ

⇐⇒ |Ω ∩B(x)|
|B(x)| > 1− γ ⇐⇒M(χΩ)(x) > 1− γ·

Also, since F is closed F ∗ ⊂ F , hence Ω ⊂ Ω∗ and

|Ω∗| ≤ c

1− γ
‖χΩ‖1 = Cγ |Ω|·

Clearly, Ω∗ is open, and thus, F ∗ is a closed set.

We shall also need the following estimate.

lemma 3.3.12. (See Lemma 2, [CO-ME-ST 2]). Suppose F is a closed set whose

complement has finite measure and φ is a non-negative function. Then there exists

a γ, 0 < γ < 1 sufficiently close to 1 such that

(12)
∫
R(F∗)

φ(y, t)tn dydt ≤ Cγ

∫
F

(∫
Γ(x)

φ(y, t) dydt

)
dx

where F ∗ is the set of points of global γ-density with respect to F .

We now give the atomic decomposition for the spaces Tq(Λp(w)).

theorem 3.3.13. Suppose ϕ ∈ BΨ, 0 < p ≤ 1 < q < ∞, and q > 1/(1− βϕ)· Set

w(t) = t1−1/p/ϕ(t)· Then

(13) Tq(Λp(w)) =
{
f : f ≡

∑
j

rjaj

}
,
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where aj is a (w, q)−atom and
∑
j

|rj |p <∞· Moreover,

‖f‖Tq(Λp(w)) ≈ inf(
∑

j

|rj |p)1/p,

where the infimum is taken over all sequences {rj} satisfying (13).

If q =∞ then for all f ∈ T∞(Λp(w)) there exist a sequence {aj}j of (w,∞)-atoms

and a sequence {rj}j such that

f ≡
∑

j

rjaj and (
∑

j

|rj |p)1/p ≤ C‖f‖T∞(Λp(w))·

proof: Let a be a (w, q) − atom, that is, there exists an open set Ω ⊂ Rn such

that supp a ⊂ T (Ω) and(∫
T (Ω)

|a(y, t)|q dydt

t

)1/q

≤
(∫ |Ω|

0

(w(t))q′
dt

)−1/q′

·

Since supp Aq(a) ⊂ Ω and using Hölder’s inequality (with exponent q/p > 1):

‖a‖pTq(Λp(w)) =
∫ ∞

0

((Aq(a))∗(t)w(t))pdt =
∫ |Ω|

0

((Aq(a))∗(t)w(t))pdt

≤
(∫ |Ω|

0

((Aq(a))∗(t))qdt

)p/q (∫ |Ω|

0

(w(t))pq/(q−p)dt

)(q−p)/q

= C

(∫
Ω

((Aq(a)(x))qdx

)p/q
(∫ |Ω|

0

(w(t))pq/(q−p)dt

)(q−p)/q

≤ C

(∫
Ω

((Aq(a)(x))qdx

)p/q
(∫ |Ω|

0

(w(t))q′
dt

)p/q′

by Remark 3.3.9. But∫
Ω

((Aq(a)(x))qdx =
∫

Ω

(∫
Γ(x)

|a(y, t)|q dydt

tn+1

)
dx

=
∫
R(Ω)

(∫
B(y,t)∩Ω

dx

)
|a(y, t)|q dydt

tn+1
=

∫
T (Ω)

|B(y, t) ∩ Ω| |a(y, t)|q dydt

tn+1

= C

∫
T (Ω)

|a(y, t)|q dydt

t
≤ C

(∫ |Ω|

0

(w(t))q′
dt

)q/q′

·
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Therefore, ‖a‖Tq(Λp(w)) ≤ C and so, if f ≡∑
j

rjaj then

‖f‖Tq(Λp(w)) ≤ C
∑

j

|rj | ≤ C(
∑

j

|rj |p)1/p·

Conversely, let f ∈ Tq(Λp(w)). We want to find an atomic decomposition in

terms of tents over open sets.

Let k ∈ Z and set

Ok =
{
x ∈ Rn : Aq(f)(x) > 2k

}
·

Fix 0 < γ < 1 and consider the set O∗
k as in Definition 3.3.10. It is clear that

supp f ⊂ ∪kT (O∗
k), |O∗

k| ≤ Cγ |Ok|·

Define

rk = c1/q |O∗
k|

ϕ(|O∗
k|)

2k+1,

c will be chosen later, and

ak(y, t) = r−1
k

χT (O∗
k
)\T (O∗

k+1)
(y, t)f(y, t)·

Clearly, f ≡
∑

k

rkak, and also supp ak ⊂ T (O∗
k). Thus it only remains to show

(10) and the equivalence of norms:

Set F = cOk+1, F ∗ = cO∗
k+1, so that R(F ∗) = cT (O∗

k+1) and set

φ(y, t) = |f(y, t)|qχT (O∗
k
)(y, t)t−1−n·

Using Lemma 3.3.12, we get∫
T (O∗

k
)

|ak(y, t)|q dydt

t
= r−q

k

∫
T (O∗

k
)\T (O∗

k+1)

|f(y, t)|q dydt

t

=r−q
k

∫
R(F∗)

φ(y, t)tndydt

≤cγr−q
k

∫
cOk+1

(∫
Γ(x)

|f(y, t)|qχT (O∗
k
)(y, t)

dydt

tn+1

)
dx
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≤ cγϕq(|O∗
k|)

c2q(k+1)|O∗
k|q

∫
O∗

k
∩ cOk+1

(∫
Γ(x)

|f(y, t)|q dydt

tn+1

)
dx

=
cγϕq(|O∗

k|)
c2q(k+1)|O∗

k|q
∫

O∗
k
∩ cOk+1

(Aq(f)(x))q
dx

≤ cγϕq(|O∗
k|)

c2q(k+1)|O∗
k|q
|O∗

k|2q(k+1) =
cγ

c
|O∗

k|1−qϕq(|O∗
k|)·

As we proved in Remark 3.3.9, we have

(14)
∫ |O∗

k|

0

(w(t))q′
dt ≈ |O∗

k|
ϕq′(|O∗

k|)
·

Thus (∫
T (O∗

k
)

|ak(y, t)|q dydt

t

)1/q

≤ (
cγ

c
)1/q

( |O∗
k|1−1/q

ϕ(|O∗
k|)

)−1

≤ (
Aγ

c
)1/q

(∫ |O∗
k|

0

(w(t))q′
dt

)−1/q′

·

Hence, if we choose c = Aγ , then a satisfies (11); i.e., a is a (w, q)-atom. Finally,

∑
k

|rk|p =C
∑

k

(
2k+1 |O∗

k|
ϕ(|O∗

k|)

)p

≤ C
∑

k

(
2k

λAq(f)(2k)
ϕ(λAq(f)(2k))

)p

=C
∑

k

(
2kw(λAq(f)(2k))

)p
λAq(f)(2k) (by Theorem 3.3.6)

≤C‖Aq(f)‖pΛp(w) = C‖f‖pTq(Λp(w))·

For the case q =∞ we define rk and ak as above, with

Ok =
{
x ∈ Rn : A∞(f)(x) > 2k

}
·

Now we can easily get the norm estimate for ak since

sup
(x,t)∈T (O∗

k
)

|ak(x, t)| ≤ r−1
k sup

(x,t)/∈T (Ok+1)

|f(x, t)| ≤ ϕ(|O∗
k|)

|O∗
k|
≈

(∫ |Ok|

0

w(t) dt

)−1

and hence ak is a (w,∞)-atom. To get the norm estimate for {rj}j one now argues

as before.
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remark 3.3.14:

(i) We see from the proof of the theorem that for any (w, q, p)-atom a, where w only

satisfies condition (10) and any 0 < p ≤ 1 < q we get

‖a‖Tq(Λp(w)) ≤ C

uniformly on a·
(ii) From the proof of the second part we can also obtain an atomic decomposition

of the space Tq(Λp(w)) for all 0 < p < q·
(iii) If p = 1, r ≥ 1 and w(t) = t1/r−1 then Tq(Λp(w)) = T r,1

q and the theorem gives

the atomic decomposition proved in [BO-JO].

(§4) Duality and Carleson measures.

The duality results for the Tent spaces T p
q , 1 ≤ p < ∞, 1 < q ≤ ∞ and T p,1

q ,

1 ≤ p < q < ∞, have been proved in [CO-ME-ST 2], [AL-MI 1] and also in

[BO - JO]. The most interesting case is given when q = ∞, since then we get

a family of measures that extend the definition of a Carleson measure given in

[CAR]. This turns out to be extremely useful to obtain different pointwise and

norm estimates for certain operators.

We find now the dual spaces of the weighted Tent spaces Tq(Λp(w)) and for the

case q =∞ we introduce a new class of Carleson-type measures.

theorem 3.4.1. Suppose ϕ ∈ BΨ, 1 ≤ p, q < ∞, and w(t) = t1−1/p/ϕ(t). Then

the pairing

〈f, g〉 =
∫
Rn+1

+

f(x, t)g(x, t)
dxdt

t
, f ∈ Tq(Λp(w)), g ∈ Tq′(Λp′

(1/w))

shows Tq′(Λp′
(1/w)) to be equivalent to the Banach space dual of Tq(Λp(w)).
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proof: First, by Corollary 2.1.9 implies (Λp(w))∗ = Λp′
(1/w). Let f ∈ Tq(Λp(w))

and g ∈ Tq′(Λp′
(1/w)). Then

∫
Rn+1

+

|f(y, t)g(y, t)|dydt

t

= C

∫
Rn

(∫
|x−y|<t

|f(y, t)g(y, t)|dydt

tn+1

)
dx (Hölder’s)

≤ C

∫
Rn

Aq(f)(x)Aq′(g)(x) dx (Theorem 2.1.7)

≤ C‖Aq(f)‖Λp(w)‖Aq′(g)‖Λp′ (1/w) = C‖f‖Tq(Λp(w))‖g‖Tq′ (Λ
p′ (1/w))·

For the converse, we only give the proof for the cases where p and 1/(1− βϕ) are

less than q. The other cases follow by showing that Tq(Λp(w)) is a reflexive space

(see [CO-ME-ST 2] for more details).

Let l be a bounded linear functional on Tq(Λp(w)), K a compact subset of Rn+1
+ ,

and let f be a function with supp f ⊂ K. Then there exists K̃ ⊂ Rn, (K̃ depends

only on K), compact, such that supp Aq(f) ⊂ K̃. Hence if rε = 1 + ε and rε
′ is its

conjugate exponent, we have

‖f‖pTq(Λp(w)) = ‖Aq(f)‖pΛp(w) ≤
∫ |K̃|

0

(
(Aq(f))∗ (t)w(t)

)p
dt

≤
(∫ |K̃|

0

(w(t))prε dt

)1/rε
(∫ |K̃|

0

(
(Aq(f))∗ (t)

)prε
′
dt

)1/rε
′

·

Now choose ε so that:

(15)
prε

prε − ε
βϕ < 1, (notice that

prε

prε − ε
−→ 1 as ε −→ 0) and

(16) rε
′ p

q
> 1, (rε

′ −→∞ as ε −→ 0).

Hence,

(∫ |K̃|

0

(w(t))prε dt

)1/rε

=

(∫ |K̃|

0

(
t

ϕprε/(prε−ε)(t)

)prε−ε
dt

t

)1/rε

= CK

since ϕprε/(prε−ε) ∈ BΨ by (15) and using Proposition 1.1.8-(13).
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On the other hand∫ |K̃|

0

(
(Aq(f))∗ (t)

)prε
′
dt =

∫
K̃

(Aq(f)(x))prε
′
dx

=
∫

K̃

(∫
Γ(x)∩K

|f(y, t)|q dydt

tn+1

)prε
′/q

dx

(by (16) and Jensen’s inequality)

≤ CK

∫
K̃

∫
Γ(x)∩K

|f(y, t)|prε
′ dydt

tn+1
dx

≤ CK

∫
K

(∫
B(y,t)

dx

)
|f(y, t)|prε

′ dydt

tn+1

≤ CK

∫
K

|f(y, t)|prε
′ dydt

t
= CK‖f‖prε

′

Lprε′ (K)
·

Therefore,

‖f‖Tq(Λp(w)) ≤ CK‖f‖Lprε′ (K)·

Thus, if we set a = prε
′, then l induces a bounded linear functional on La(K) and

is thus representable by a g = gK ∈ La′
(K). Taking an increasing family of such

K which exhaust Rn+1
+ produces a function g in Rn+1

+ which is locally in La′
and

such that

l(f) =
∫
Rn+1

+

f(x, t)g(x, t)
dxdt

t
,

whenever f ∈ Tq(Λp(w)) and f has compact support.

For K an arbitrary compact subset of Rn+1
+ set gK = gχK . Then it suffices to

show that

(17) ‖gK‖Tq′ (Λ
p′ (1/w)) = ‖Aq′(gK)‖Λp′ (1/w) ≤ C‖l‖,

where C is independent of K. Set r = p(q − 1)/(q − p) and u = wq′
. Without loss

of generality let us assume that g is non-negative. Then

‖Aq′(gK)‖q
′

Λp′ (1/w)
= sup

φ

∫
Rn

Aq′

q′(gK)(x)φ(x) dx
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where the supremum is taken over all functions satisfying ‖φ‖Λr(u) ≤ 1, (this holds

since (Λr(u))∗ = Λp′/q′
(1/wq′

)). Set

Mt(φ)(x) = sup
|s|≤t

1
sn

∫
|y|≤s

φ(x− y) dy·

Then ∫
Rn

Aq′

q′(gK)(x)φ(x) dx =
∫
Rn

∫
|x−y|<t

|gK(y, t)|q′ dydt

tn+1
φ(x) dx

=
∫
Rn+1

+

|gK(y, t)|q′
Mt(φ)(y)

dydt

t
= 〈fφ, g〉,

where

fφ(y, t) = |gK(y, t)|q′−1Mt(φ)(y)·

Therefore,

‖Aq′(gK)‖q
′

Λp′ (1/w)
≤ sup

φ
〈fφ, g〉 ≤ sup

φ
C‖fφ‖Tq(Λp(w))‖l‖

with fφ as above. But,

Aq(fφ)(x) =

(∫
Γ(x)

|gK(y, t)|q(q′−1) (Mt(φ)(y))q dydt

tn+1

)1/q

≤ CM(φ)(x) (Aq′(gK)(x))q′/q
,

where M is the Hardy-Littlewood maximal operator.

We now recall the following result (see [KR-PE-SE] p. 67): Let F, G be two

measurable functions. Then

(FG)∗ (t1 + t2) ≤ F ∗(t1)G∗(t2), t1, t2 > 0·

In particular, if t1 = t2 =
t

2
then

(18) (FG)∗ (t) ≤ F ∗(t/2)G∗(t/2)·

We also recall that w satisfies the ∆2-condition; that is, there exists a C > 1 such

that

(19)
1
C

w(t) ≤ w(2t) ≤ Cw(t), for all t > 0·
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Now

‖fφ‖Tq(Λp(w)) = ‖Aq(fφ)‖Λq(w)

≤C‖M(φ) (Aq′(gK))q′/q ‖Λp(w)

=C

(∫ ∞

0

((
M(φ) (Aq′(gK))q′/q

)∗
(t)w(t)

)p

dt

)1/p

(by (18))

≤C

(∫ ∞

0

(
(M(φ))∗ (t/2)wq′

(t)
)p ((

(Aq′(gK))q′/q
)∗

(t/2)w1−q′
(t)

)p

dt

)1/p

(Hölder’s with index q−1
q−p and (19))

≤C‖M(φ)‖Λr(u)‖Aq′(gk)‖q
′−1

Λp′ (1/w)
·

Since q > 1/(1− βϕ) then q′βϕ < 1 and hence M is a bounded operator on Λr(u)

(see [AR-MU]). Therefore,

‖fφ‖Tq(Λp(w)) ≤ C‖φ‖Λr(u)‖Aq′(gK)‖q
′−1

Λp′ (1/w)
≤ C‖Aq′(gK)‖q

′−1

Λp′ (1/w)
·

Thus,

‖Aq′(gk)‖Λp′ (1/w) ≤ C‖l‖ ·

We now consider the duality of the Tent spaces when q = ∞. As in the case of

L∞, the dual spaces consist of measures defined on measurable subsets of Rn+1
+ .

definition 3.4.2. Suppose w is a weight on R+ that is locally in L(R+), and µ

is a Borel measure on Rn+1
+ . We say that µ is a w-Carleson measure, and write

µ ∈ V w, if

(20) ‖µ‖V w = sup
Ω

|µ|(Ω̂)∫ |Ω|

0

w(t) dt

<∞,

where the supremum is taken over all open and bounded Ω ⊂ Rn and Ω̂ is the tent

over Ω.

examples 3.4.3:

(i) If w(t) = tα−1, α > 0, condition (20) gives

|µ|(Ω̂) ≤ C|Ω|α
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which coincides with the definition of a Carleson measure of order α given, for

example, in [AL - MI 1]. In particular for α = 1, these are the measures defined

originally by Carleson (see [CAR]). In this case we will denote V α by V tα−1
.

(ii) If δ(x0,t0) is the Dirac mass at (x0, t0) ∈ Rn+1
+ then for any Ω ⊂ Rn we have

δ(x0,t0)(Ω̂) =
{

1 if B(x0, t0) ⊂ Ω
0 otherwise

·

Hence |Ω| ≥ cntn0 if B(x0, t0) ⊂ Ω, and so

1 ≤
(∫ cntn

0

0

w(t) dt

)−1 (∫ |Ω|

0

w(t) dt

)
·

Therefore,

δ(x0,t0)(Ω̂) ≤
(∫ cntn

0

0

w(t) dt

)−1 (∫ |Ω|

0

w(t) dt

)
that is

‖δ(x0,t0)‖V w ≤
(∫ cntn

0

0

w(t) dt

)−1

·

(iii) Let W ∈ Lp(Rn), W ≥ 0, 1 ≤ p ≤ ∞ and σ a positive finite measure in R+.

Let w(t) = W ∗(t) be the non-increasing rearrangement of W and set

dµ(x, t) = W (x) dxdσ(t)·

Then µ ∈ V w and ‖µ‖V w ≤ ‖σ‖. In fact, since W ∈ Lp(Rn), then w ∈ Lp(R+)

and, hence, w ∈ L1
loc(R

+). Now if Ω ⊂ Rn then∫
Ω̂

dµ(x, t) =
∫

Ω

(∫
{0<t<d(x, cΩ)}

dσ(t)

)
W (x) dx

≤‖σ‖
∫

Ω

W (x) dx ≤ ‖σ‖
∫ |Ω|

0

w(t) dt·

remark 3.4.4:

(i) If α ≥ 1 then ‖µ‖V α is equivalent to taking the supremum in (20) over all cubes

Q ⊂ Rn. In fact, given Ω ⊂ Rn we can find a Whitney decomposition {Qk}k of

Ω; that is, Qk is a cube contained in Ω, Qk ∩ Ql = ∅ if k �= l, Ω = ∪kQk and
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d(Qk,cΩ) ≤ Clk, where lk is the length of Qk. Set Q̃k to be the cube centered at

xk (the center of Qk) and whose side-length equals (C + 3)lk. Then

Ω̂ ⊂
⋃
k

̂̃
Qk·

In fact, let (x, t) ∈ Ω̂. Then B(x, t) ⊂ Ω. Let Qk be such that x ∈ Qk. If

z ∈ B(x, t), then

|z − xk| ≤ |z − x|+ |x− xk| ≤ t + lk·

Since B(x, t) ⊂ Ω we have t ≤ 2lk + Clk. Therefore, |z − xk| ≤ (C + 3)lk and

B(x, t) ⊂ Q̃k; that is, (x, t) ∈ ̂̃
Qk. We see that

|µ|(Ω̂) ≤ |µ|
(⋃

k

̂̃
Qk

)
≤

∑
k

|µ|(̂̃
Qk) ≤

∑
k

Cµ|Q̃k|α ≤ Cµ

∑
k

|Qk|α (α ≥ 1)

≤Cµ

(∑
k

|Qk|
)α

= Cµ|Ω|α·

(ii) Let ϕ ∈ BΨ and w(t) =
1

ϕ(t)
. Then condition (20) is equivalent to

|µ|(Ω̂) ≤ C‖µ‖V w

|Ω|
ϕ(|Ω|) ,

since by Theorem 1.1.8-(13)

∫ |Ω|

0

w(t) dt =
∫ |Ω|

0

t

ϕ(t)
dt

t
≤ C

|Ω|
ϕ(|Ω|) ·

(iii) If we consider Λ(w) as a rearrangement invariant space, then the quantity in

the denominator in (20), ∫ s

0

w(t) dt,

is the Fundamental function of Λ(w); that is, the norm of the characteristic function

of any set whose measure equals s (see [KR-PE-SE] for more details).
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theorem 3.4.5. Suppose w is a weight in R+ that is locally in L(R+). Then

(T∞(Λ(w)))∗ = V w·

proof: Let µ ∈ V w and f ∈ T∞(Λ(w)). We want to show that∣∣∣∣ ∫
Rn+1

+

f(x, t) dµ(x, t)
∣∣∣∣ ≤ C‖µ‖V w‖f‖T∞(Λ(w))·

Let us assume that µ is a positive measure and f ≥ 0. Then∣∣∣∣ ∫
Rn+1

+

f(x, t) dµ(x, t)
∣∣∣∣ =

∫ ∞

0

f∗
µ(s) ds,

where f∗
µ is the rearrangement of f with respect to µ; that is, if

µf (s) = µ({(x, t) : f(x, t) > s})

then

f∗
µ = inf{r : µf (r) ≤ s}·

But

(21) {(x, t) : f(x, t) > s} ⊂ T ({y : A∞(f)(y) > s})·

In fact, if f(x, t) > s and z ∈ B(x, t) then

A∞(f)(z) = sup
|x′−z|<t′

f(x′, t′) ≥ f(x, t) > s,

and so z ∈ {y : A∞(f)(y) > s}; thus, B(x, t) ⊂ {y : A∞(f)(y) > s}, which is

equivalent to (21). Since f is a continuous function {y : A∞(f)(y) > s} is an open

set. Now

µf (s) ≤ µ(T ({y : A∞(f)(y) > s})) (by (20))

≤‖µ‖V w

∫ |{y : A∞(f)(y)>s}|

0

w(r) dr = ‖µ‖V w

∫ mA∞(f)(s)

0

w(r) dr

where m is the Lebesgue measure in Rn. Since A∞(f) is a continuous function then

(A∞(f))∗ (s) =
(
mA∞(f)

)−1 (s)
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(if g is an invertible function, we will denote by g−1 the inverse function of g). Set

W (t) =
∫ t

0

w(r) dr

and

H(t) = W
(
mA∞(f)(t)

)
·

Then

H−1(s) = (A∞(f))∗
(
W−1(s)

)
·

Now,

f∗
µ(s) = inf{r : µf (r) ≤ s} ≤ inf{r : ‖µ‖V wH(r) ≤ s} = H−1

(
s

‖µ‖V w

)
·

Thus,∫ ∞

0

f∗
µ(s) ds ≤

∫ ∞

0

H−1

(
s

‖µ‖V w

)
ds

=
∫ ∞

0

(A∞(f))∗
(

W−1

(
s

‖µ‖V w

))
ds


t = W−1

(
s

‖µ‖V w

)
dt =

1
W ′(t)

ds

‖µ‖V w

=
1

‖µ‖V ww(t)
ds

=
∫ ∞

0

‖µ‖V w (A∞(f))∗ (t)w(t) dt = ‖µ‖V w‖f‖T∞(Λ(w))·

Conversely, if l ∈ (T∞(Λ(w)))∗ by exhausting Rn+1
+ with an increasing sequence

of compact sets Kn, we obtain a measure µ on Rn+1
+ . If f is a continuous function

with compact support, then

l(f) =
∫
Rn+1

+

f(x, t) dµ(x, t)·

Without loss of generality, we may assume that µ ≥ 0. Let Ω be any open and

bounded set in Rn. If {fm} is a sequence of continuous functions with compact

support such that fm ↑ χ
Ω̂
. Then∣∣∣∣ ∫

Rn+1
+

fm(x, t) dµ(x, t)
∣∣∣∣ ≤ ‖l‖ ‖fm‖T∞(Λ(w)),
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hence, ∣∣∣∣ ∫
Ω̂

dµ(x, t)
∣∣∣∣ = µ(Ω̂) ≤ ‖l‖ ‖A∞(χ

Ω̂
)‖Λ(w)·

But

A∞(χ
Ω̂
)(x) = χΩ(x),

thus

‖A∞(χ
Ω̂
)‖Λ(w) =

∫ ∞

0

(χΩ)∗ (s)w(s) ds =
∫ ∞

0

χ(0,|Ω|)(s)w(s) ds =
∫ |Ω|

0

w(s) ds·

That is,

µ(Ω̂) ≤ ‖l‖
∫ |Ω|

0

w(s) ds ·

corollary 3.4.6. If 0 < p <∞, then

(
T p,1
∞

)∗
= V 1/p·

proof: Set w(t) = t1/p−1. Then w ∈ L1
loc(R

+) and T∞(Λ(w)) = T p,1
∞ , since

Λ(w) = Lp,1. Thus, by the theorem and Example 3.4.3-(i)

(
T p,1
∞

)∗
= (T∞(Λ(w)))∗ = V w = V 1/p ·

remark 3.4.7: The previous corollary gives a generalization of Theorem (5.1) in

[AL - MI 1], where 1 ≤ p < ∞. Our proof differs from theirs in the fact that we

consider norms in terms of rearrangement of functions instead of the distribution

function.

We want to also mention another duality result closely related to the above the-

orem, (see [CO-ME-ST 2] and [AL-MI 1]).

theorem 3.4.8. (T p
∞)∗ = V 1/p, 0 < p ≤ 1.
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(§5) Maximal functions over general domains.

Several authors have studied of the boundedness of maximal operators defined

by means of general subsets. For example, in [NA-ST], a Hardy-Littlewood type

operator is associated with a collection of subsets Ω(x) ⊂ Rn+1
+ , x ∈ Rn. The

natural way to define the balls for these sets is to take the subset of Ω(x) at level t,

that is the set of points z ∈ Rn so that (z, t) ∈ Ω(x). Our idea is to also replace the

sets Γ(x) in the definition of the Tent spaces by a more general family of subsets of

Rn+1
+ . We will restrict ourselves to finding the dual space for a particular case and

make some comments related to radial maximal functions and to the announcement

of some negative results.

definition 3.5.1. Let Ω = {Ω(x)}x∈Rn be a collection of measurable subsets,

Ω(x) ⊂ Rn+1
+ . For a measurable function f in Rn+1

+ we define the maximal function

of f with respect to Ω as

AΩ
∞(f)(x) = sup

(y,t)∈Ω(x)

|f(y, t)|·

We will always assume that Ω is chosen so that AΩ
∞(f) is a measurable function.

We also define

TΩ = T 1
∞,Ω =

{
f : AΩ

∞(f) ∈ L1(Rn)
}

,

where f satisfies the conditions of Definition 3.2.3 for the case q =∞, and

‖f‖TΩ = ‖AΩ
∞(f)‖L1(Rn)·

remark 3.5.2: It is clear that if Ω(x) = Γ(x) then TΩ is precisely the Tent space

T 1
∞. If Ω(x) = {(x, t) : t > 0} then AΩ

∞(f) is the radial maximal function of f .

definition 3.5.3. Suppose Ω = {Ω(x)}x∈Rn is as above and F is any subset of

Rn. We define the tent over F , with respect to Ω, as

F̂Ω = Rn+1
+ \

⋃
x/∈F

Ω(x)·
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For a measure µ in Rn+1
+ we say that µ is an Ω-Carleson measure and write

µ ∈ VΩ if

‖µ‖VΩ = sup
O

|µ|
(
ÔΩ

)
|O| <∞,

where the supremum is taken over all open and bounded O ⊂ Rn.

remark 3.5.4: If Ω(x) = Γ(x) then F̂Ω = F̂ , the usual tent over F . If we choose

Ω(x) = {(x, t) : t > 0} then F̂Ω = F ×R+ and it is denoted by C(F ).

lemma 3.5.5. Suppose F ⊂ Rn and Ω = {Ω(x)}x∈Rn are as above. Then

(i) AΩ
∞

(
χ

F̂Ω

)
(x) ≤ χF (x) for all x ∈ Rn.

(ii) AΩ
∞

(
χ

F̂Ω

)
(x) = χF (x) if and only if Ω(x) ∩ F̂Ω �= ∅ for all x ∈ F .

proof:

(i) Observe that

(22) χ
F̂Ω

(y, t) =
{

1, if (y, t) /∈ Ω(z), for all z /∈ F

0, otherwise
·

Suppose x /∈ F . Then if (y, t) ∈ Ω(x) we have that χ
F̂Ω

(y, t) = 0 (by (22)), and

this shows (i).

(ii) AΩ
∞

(
χ

F̂Ω

)
(x) = χF (x) if and only if for all x ∈ F, AΩ

∞

(
χ

F̂Ω

)
(x) = 1 if and

only if there exists (y, t) ∈ Ω(x) such that (y, t) ∈ F̂Ω if and only if Ω(x)∩F̂Ω �= ∅·

theorem 3.5.6. Let Ω = {Ω(x)}x∈Rn be as above. Then

(TΩ)∗ = VΩ·

proof: As in the proof of Theorem 3.4.5 it is easy to see that if l ∈ (TΩ)∗ then there

exists a measure µ on Rn+1
+ that represents l over functions in TΩ with compact

support. Thus, if O ⊂ Rn is open and bounded (by the lemma)

|µ|
(
ÔΩ

)
=

∫
Rn+1

+

χ
ÔΩ

(x, t) d|µ|(x, t) ≤ Cµ‖χÔΩ
‖TΩ

≤Cµ‖χO‖L1 = Cµ|O|·
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Conversely, if f ∈ TΩ and if we set Fλ = {y ∈ Rn : AΩ
∞(f)(y) > λ}, then

(23) {(x, t) ∈ Rn+1
+ : |f(x, t)| > λ} ⊂ F̂λ

Ω ·

In fact, if |f(x, t)| > λ, AΩ
∞(f)(z) ≤ λ, implies that (x, t) /∈ Ω(z) and, hence,

(x, t) ∈ Rn+1
+ \

 ⋃
z/∈F λ

Ω(z)

 = F̂λ
Ω ·

Therefore, for µ ∈ VΩ, we have∣∣∣∣ ∫
Rn+1

+

f(x, t) dµ(x, t)
∣∣∣∣

≤
∫ ∞

0

|µ|({(x, t) ∈ Rn+1
+ : |f(x, t)| > λ}) dλ (by (23))

≤
∫ ∞

0

|µ|(F̂λ
Ω) dλ ≤ ‖µ‖VΩ

∫ ∞

0

|Fλ| dλ = ‖µ‖VΩ‖f‖TΩ ·

As was proved in [FE-ST] the non-tangential maximal function and the radial

maximal function of Poisson integrals of functions (distributions) in the Hardy space

Hp(Rn) have an equivalent Lp-“norm”, p > 0. This leads us to consider how this

result could be extended for all functions in the Tent spaces T p
∞ relative to both

cones Γ(x) and lines {(x, t) : t > 0}. From the point of view of the dual spaces we

see that the latter is a much bigger space than the former. We give the details in

what follows.

example 3.5.7: As in Example 3.4.3-(i), given a family of sets Ω = {Ω(x)}x∈Rn

and α > 0, we can introduce the definition of (α,Ω)-Carleson measure; that is, a

measure µ satisfying

(24) |µ|
(
ÔΩ

)
≤ C|O|α (µ ∈ V α

Ω )

for all open and bounded O ⊂ Rn. In particular, if Ω(x) = {(x, t) : t > O} then

ÔΩ = C(O) = O ×R+ and condition (24), for α ≥ 1, is equivalent to checking the

inequality only for cubes Q ⊂ Rn. Let us denote V α
rad = V α

Ω , where Ω(x) is the

vertical line above x.
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First suppose that 0 < α ≤ 1, f ∈ L1/(1−α)(Rn) and σ is a positive finite measure

in R+. Then

dµ(x, t) = f(x) dx dσ(t) ∈ V α
rad·

In fact, if O ⊂ Rn then∣∣∣∣ ∫
C(O)

dµ(x, t)
∣∣∣∣ ≤ (∫

O

|f(x, t)| dx

) (∫ ∞

0

dσ(t)
)
≤ ‖σ‖ ‖f‖L1/(1−α) |O|α·

An example of a measure that is in V α but not in V α
rad is the Dirac mass at the

point (x0, t0) ∈ Rn+1
+ . This follows by considering a collection of cubes converging

to x0.

For the case α > 1 we get the remarkable fact that

V α
rad = {0}·

To show this fix a cube Q ⊂ Rn and N ∈ Z+. Decompose Q in 2nN subcubes Qi

such that
◦

Qi ∩
◦

Qj = ∅, i �= j, Q = ∪iQi and |Qi| =
|Q|
2nN

. Now, if µ ∈ V α
rad we have

|µ|(C(Q)) ≤ |µ| (∪iC(Qi)) ≤
∑

i

|µ|(C(Qi)) ≤ Cµ

∑
i

|Qi|α

=Cµ

2nN∑
i=1

|Q|α
2αnN

= Cµ|Q|α2nN(1−α) −→ 0, as N −→∞·

Hence µ ≡ 0.

(§6) Interpolation of Tent spaces and Carleson measures.

As we did for the weighted Lorentz spaces, we will now study the interpolation

results of Tent spaces for the real method with a function parameter and the complex

method for families, and hence also for the method of Calderón. We first extend the

results of [CO-ME-ST 2] to parameters in the class BΨ and then, by reiteration,

we get the result for a general Tent space. Once the intermediate spaces for this
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method are known, we can apply our reiteration theorem, to families of Tent spaces

parameterized by the unit circle (see Theorem 2.3.7), to find the interpolated spaces

for the method in [CCRSW 1]. As is indicated in the previous chapter, one

can easily get the interpolation results for the method of Calderón. Finally, by

a duality argument, we can also interpolate the spaces of w-Carleson measures in

some particular cases. We now give the proof of the main theorem.

theorem 3.6.1.

(i) If 1 < p0 < p1 <∞, 1 < q, r <∞, and ϕ ∈ BΨ, then

(
T p0

q , T p1
q

)
ϕ,r

= Tq(Λr(w)),

where

w(t) =
t1/p0−1/r

ϕ(t1/p0−1/p1)
·

(ii) If 1 < p0 < p1 <∞, 1 ≤ r <∞ and ϕ ∈ BΨ, then

(T p0
∞ , T p1

∞ )ϕ,r = T∞(Λr(w)),

with w as before.

proof:

(i) We first notice that, by definition, we have

Aq : T pi
q −→ Lpi i = 0, 1

is a bounded, positive, sublinear operator. Since Lpi is a lattice space, then Aq

satisfies the interpolation property (see [ME 2]); that is,

Aq :
(
T p0

q , T p1
q

)
ϕ,r
−→ (Lp0 , Lp1)ϕ,r

for all ϕ ∈ BΨ and 0 < r ≤ ∞. Thus, by Theorem 2.3.13 and the observation made

in the proof of Theorem 2.4.3, we have

Aq :
(
T p0

q , T p1
q

)
ϕ,r
−→ Λr(w),
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boundedly, with

w(t) =
t1/p0−1/r

ϕ(t1/p0−1/p1)
·

Thus,

(25)
(
T p0

q , T p1
q

)
ϕ,r

↪→ Tq(Λr(w))·

For the converse, we make use of (25), for the conjugate indices; that is, if φ ∈ BΨ

then (
T p0

′

q′ , T p1
′

q′

)
φ,r′

↪→ Tq′(Λr′
(w̃)),

where

w̃(t) =
t1/p0

′−1/r′

φ(t1/p0′−1/p1′)
·

By duality, we have

(26)
((

T p0
′

q′ , T p1
′

q′

)
φ,r′

)∗
←↩

(
Tq′(Λr′

(w̃))
)∗
·

Using Theorem 2.4 in [PER], we obtain

(27)
((

T p0
′

q′ , T p1
′

q′

)
φ,r′

)∗
=

(
T p0

q , T p1
q

)
ψ,r

,

where ψ(t) = 1/φ(1/t) and, by Theorem 3.4.1, we also have that

(28)
(
Tq′(Λr′

(w̃))
)∗

= Tq(Λr(1/w̃))·

If we choose φ(t) = 1/ϕ(1/t), which is easily seen to be in BΨ, we obtain ψ(t) = ϕ(t)

and
1

w̃(t)
=

1
ϕ(t−(1/p0′−1/p1′))

/t1/p0
′−1/r′

=
t1/p0−1/r

ϕ(t1/p0−1/p1)
= w(t)·

Therefore, by (26), (27) and (28)(
T p0

q , T p1
q

)
ϕ,r
←↩ Tq(Λr(w))·

(ii) Assume now that q = ∞, 1 ≤ r < ∞. A first step is to interpolate

(T p
∞, L∞)φ,s. To do this we use the following equivalence for the Peetre K- func-

tional (see [AL-MI 1])

K (t, f ;T p
∞, L∞) ≈ K (t, A∞(f);Lp, L∞) ·
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Hence,

‖f‖(T p
∞,L∞)φ,s

=
(∫ ∞

0

(
1

φ(t)
K (t, f ;T p

∞, L∞)
)s

dt

t

)1/s

≈
(∫ ∞

0

(
1

φ(t)
K (t, A∞(f);Lp, L∞)

)s
dt

t

)1/s

= ‖A∞(f)‖(Lp,L∞)φ,s
= ‖f‖T∞(Λs(v)),

where,

(29) v(t) =
t1/p−1/s

φ(t1/p)

since (Lp, L∞)φ,s = Λs(v). In particular, if φ(t) = tθ, 0 < θ < 1, we obtain

(T p
∞, L∞)θ,pθ

= T pθ
∞ ,

with 1/pθ = (1− θ)/p. Thus,

T pi
∞ =

(
T 1
∞, L∞)

1
pi

′ ,pi
, i = 0, 1·

By the reiteration theorem in [PER]

(T p0
∞ , T p1

∞ )ϕ,r =
((

T 1
∞, L∞)

1
p0′ ,p0

,
(
T 1
∞, L∞)

1
p1′ ,p1

)
ϕ,r

=
(
T 1
∞, L∞)

φ,r
(where φ(t) = t1/p0

′
ϕ(t1/p1

′−1/p0
′
))

= T∞(Λr(w)),

where, by (29),

w(t) =
t1−1/r

t1/p0′ϕ(t1/p1′−1/p0′)
=

t1/p0−1/r

ϕ(t1/p0−1/p1)
·

corollary 3.6.2. Suppose ϕ0, ϕ1 ∈ BΨ and if we set τ(t) = ϕ1(t)/ϕ0(t), then

(30)
∣∣∣∣ tτ ′(t)

τ(t)

∣∣∣∣ ≥ ε > 0,

for all t > 0· If 1 < r0, r1, r, q <∞, ϕ ∈ BΨ and wi(t) = t1−1/ri/ϕi(t), then

(Tq (Λr0(w0)) , Tq (Λr1(w1)))ϕ,r = Tq (Λr(w)) ,
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where

w(t) =
t1−1/r

ϕo(t)ϕ(τ(t))
·

A similar result holds if q =∞ and 1 ≤ ri <∞, i = 0, 1·

proof: This is a simple consequence of the theorem. We first find 1 < p0, p1 <∞
and φi ∈ BΨ such that

(31)
(
T p0

q , T p1
q

)
φi,ri

= Tq (Λri(wi)) ·

Fix p0 sufficiently close to 1 and p1 close to ∞ and set φi(t) = t
1
α ( 1

p0
−1)ϕi(t1/α),

where α = 1/p0 − 1/p1· Then (31) is given by the theorem. Therefore, by (30) and

reiteration, and by Theorem 3.6.1,

(Tq (Λr0(w0)) , Tq (Λr1(w1)))ϕ,r =
(
T p0

q , T p1
q

)
φ0ϕ

(
φ1
φ0

)
,r

= Tq(Λr(w)),

where,

w(t) =
t1/p0−1/r

φ0(tα)ϕ(φ1(tα)/φ0(tα))
=

t1−1/r

ϕ0(t)ϕ(ϕ1(t)/ϕ0(t))
·

corollary 3.6.3. Suppose ϕ0, ϕ1 ∈ BΨ satisfy condition (30), 1 < r0, r1, q < ∞
and 0 < θ < 1. Set 1/rθ = (1− θ)/r0 + θ/r1 and wi = t1−1/ri/ϕi(t)· Then

(Tq (Λr0(w0)) , Tq (Λr1(w1)))θ,rθ
= Tq

(
Λrθ

(
w1−θ

0 wθ
1

))
·

proof: Set ϕ(t) = tθ and apply the previous corollary. Observe that

w(t) =
t1−1/rθ

ϕ0(t)
ϕθ

1(t)
ϕθ

0(t)

=
t(1−1/r0)(1−θ)

ϕ1−θ
0 (t)

t(1−1/r1)θ

ϕθ
1(t)

= w1−θ
0 (t)wθ

1(t) ·

corollary 3.6.4. Suppose ϕ0, ϕ1 ∈ BΨ satisfy condition (30) and wi = 1/ϕi(t),

for i = 0, 1· If ϕ ∈ BΨ, then

(V w0 , V w1)ϕ,∞ = V w,

where w(t) = w0(t)ϕ(w1(t)/w0(t))· For the particular case, ϕ(t) = tθ, we obtain

(V w0 , V w1)θ,∞ = V w1−θ
0 wθ

1 ·
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proof: We know, by Theorem 3.4.5, that

V wi = (T∞ (Λ(wi)))
∗
, i = 0, 1·

By the duality theorem in [PER],

(V w0 , V w1)ϕ,∞ =
(
(T∞ (Λ(w0)) , T∞ (Λ(w1)))φ,1

)∗

where φ(t) = 1/ϕ(1/t)· By Corollary 3.6.2,

(T∞ (Λ(w0)) , T∞ (Λ(w1)))φ,1 = T∞ (Λ(w)) ,

where,

w(t) =
1

ϕ0(t)φ(ϕ1(t)/ϕ0(t))
=

ϕ(ϕ0(t)/ϕ1(t))
ϕ0(t)

= w0(t)ϕ(w1(t)/w0(t))·

Again, by Theorem 3.4.5,

(T∞ (Λ(w)))∗ = V w ·

We move now to complex interpolation. The main tool we use is Theorem 2.3.7.

First, we parameterize a family of Tent spaces, according to the index set T. As

in Theorem 2.3.14, we fix two measurable functions r : T −→ (p0, p1), where

1 < p0 < p1 <∞, and w : T×R+ −→ R+ such that the function

ϕθ(t) =
t1−1/r(θ)

w(θ, t)

belongs to BΨ, for every θ ∈ T. We will also need to assume that the auxiliary

function φθ(t) = t(1/p0−1)/αϕθ(t1/α), α = 1/p0 − 1/p1 satisfies condition (A) of

Definition 2.3.6. Fix 1 < q <∞. Our family of spaces is then defined by

(32) T =
{

Tq

(
Λr(θ)(w(θ, ·))

)}
θ∈T
·

Recall that [
Tq

(
Λr(θ)(w(θ, ·))

)]
z
, |z| < 1

denotes the intermediate space given by the complex interpolation method for fam-

ilies, as in [CCRSW 1].
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theorem 3.6.5. Let T be defined as in (32). Then T is an interpolation family of

Banach spaces and [
Tq

(
Λr(θ)(w(θ, ·))

)]
z

= Tq

(
Λr(z)(w(z, ·))

)
with equivalent norms, where

1
r(z)

=
∫
T

1
r(θ)

Pz(θ) dθ

and

w(z, t) = exp
(∫

T

(log w(θ, t))Pz(θ) dθ

)
·

proof: By Theorem 3.6.1 we have

Tq

(
Λr(θ)(w(θ, ·))

)
=

(
T p0

q , T p1
q

)
φθ,r(θ)

and, hence, Theorem 2.3.7 shows that T is an interpolation family. Again, using

this theorem we get (by Theorem 3.6.1)[
Tq

(
Λr(θ)(w(θ, ·))

)]
z

=
(
T p0

q , T p1
q

)
φz,r(z)

=Tq

(
Λr(z)(w(z, ·))

)
,

where

w(z, t) =
t1/p0−1/r(z)

φz(t1/p0−1/p1)
,

1
r(z)

=
∫
T

1
r(θ)

Pz(θ) dθ

and

φz(t) = exp
(∫

T

(log φ(θ, t))Pz(θ) dθ

)
·

Finally,

w(z, t) =
t1/p0−1/r(z)

φz(t1/p0−1/p1)
= t1/p0

exp
(∫

T

−1
r(θ)

(log t)Pz(θ) dθ

)
exp

(∫
T

log(t1/p0−1ϕθ(t))Pz(θ) dθ

)

= exp
(∫

T

((
1− 1

r(θ)

)
log t− log ϕθ(t)

)
Pz(θ) dθ

)

= exp
(∫

T

log
(

t1−1/r(θ)

ϕθ(t)

)
Pz(θ) dθ

)
= exp

(∫
T

log w(θ, t)Pz(θ) dθ

)
·

82



corollary 3.6.6. Suppose ϕ0, ϕ1 ∈ BΨ, 1 < r0 < r1 < ∞ and 1 < q < ∞. Fix

0 < θ < 1 and set wi(t) = t1−1/ri/ϕi(t), i = 0, 1. Then,

[Tq (Λr0(w0)) , Tq (Λr1(w1))]θ = Tq

(
Λrθ (w1−θ

0 wθ
1)

)
,

where 1/rθ = (1− θ)/r0 + θ/r1·

proof: We use the same argument given in the proof of Corollary 2.3.11. Fix

two numbers 1 < p0 < r0 < r1 < p1 < ∞ and set φi(t) = t(1/p0−1)/αϕi(t1/α),

1/α = 1/p0 − 1/p1· Then,

Tq (Λri(wi)) =
(
T p0

q , T p1
q

)
φi,ri
·

Hence,

[Tq (Λr0(w0)) , Tq (Λr1(w1))]θ =
[(

T p0
q , T p1

q

)
φ0,r0

,
(
T p0

q , T p1
q

)
φ1,r1

]
θ

=
(
T p0

q , T p1
q

)
φθ,rθ

= Tq (Λrθ (w)) ,

where,

φθ(t) = (φ0(t))
1−θ (φ1(t))

θ
,

1
rθ

=
1− θ

r0
+

θ

r1

and w(t) = t1/p0−1/rθ/φθ(tα). It only remains to show that w ≡ w1−θ
0 wθ

1. But

φθ(tα) = t(1/p0−1)(1−θ)ϕ1−θ
0 (t)tθ(1/p0−1)ϕθ

1(t),

and so,

w(t) =
t1/p0−(1−θ)/r0−θ/r1

t(1/p0−1)(1−θ)ϕ1−θ
0 (t)tθ(1/p0−1)ϕθ

1(t)

=
t(1−1/r0)(1−θ)

ϕ1−θ
0 (t)

t(1−1/r1)θ

ϕθ
1(t)

= w1−θ
0 (t)wθ

1(t) ·
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Chapter IV

Applications to the theory of Hardy
spaces and weighted inequalities

In this final chapter, we will present a variety of results, dealing with the Hardy

spaces, that are closely related to the theory developed in the previous chapters.

These spaces have been studied intensively from different points of view, (see, for

example, [FE-ST]). We will be concerned with their definition in terms of maximal

functions, specially those given by a not necessarily smooth kernel. The main tools

are the properties that the Tent spaces T∞(Λ(w)) satisfy.

(§1) The maximal Hardy spaces.

In [WE], G. Weiss proposed the consideration of the following spaces:

For a function ϕ ∈ L1∩L∞ with
∫
Rn

ϕ(x) dx �= 0 we can define the non-tangential

maximal function, with respect to ϕ, of a function f as

(1) mϕ(f)(x) = sup
|x−y|<t

|(f ∗ ϕt)(y)|

where ϕt(x) = t−nϕ(x/t) is the usual dilation of ϕ. Observe that in our previous

notation

(2) mϕ(f) ≡ A∞(f ∗ ϕt)·
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The Hardy space is defined as

H1
ϕ =

{
f ∈ L1(Rn) : mϕ(f) ∈ L1(Rn)

}
with

‖f‖H1
ϕ

= ‖mϕ(f)‖L1(Rn)

(
= ‖f ∗ ϕt(·)‖T 1

∞

)
·

In [FE-ST] the authors showed that if ϕ satisfies certain smoothness conditions;

e.g., ϕ has compact support and satisfies the Dini condition, then H1
ϕ coincides

with the space real-H1. That not every ϕ satisfies this equality is easily proved by

choosing ϕ to be the characteristic function of the unit ball in Rn. It turns out that

the space H1
ϕ consists only of the zero function.

The question raised in [WE] was whether there exists a function ϕ for which

H1
ϕ is neither the trivial space nor H1. A complete answer, for n = 1, was given

in [UC-WI] where the authors showed that it is possible to find such a function.

Moreover they proved that if we know that H1
ϕ �= {0}, then H1

ϕ contains the so

called special atom function

a(x) =


1, if 0 < x < 1

−1, if −1 < x < 0
0, otherwise

which is equivalent to saying that H1
ϕ contains the space of special atoms of O’Neil

and de Souza, which coincides with the Besov space Ḃ0,1
1 , (see [SO]). Another

treatment of this fact can be also found in [HA].

We generalize this result to higher dimensions, for which we use the discrete

characterization of the Besov spaces given in [FR-JA 1]. We also show how the

minimality property of the space Ḃ0,1
1 can be related to some other embeddings

between the Besov spaces and the Lorentz spaces Lp,q. We now define the maximal

Hardy spaces with respect to Λ(w).

definition 4.1.1. Suppose ϕ ∈ L1 ∩ L∞ satisfies

∫
Rn

ϕ(x) dx �= 0, and w is a

non-negative weight in L1
loc(R

+). We define

Hϕ,w =
{
f ∈ Λ(w) : mϕ(f) ∈ Λ(w)

}
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and

‖f‖Hϕ,w
= ‖mϕ(f)‖Λ(w)·

remark 4.1.2:

(i) It is clear that if w ≡ 1 then Hϕ,w = H1
ϕ. Also, if ϕ is the characteristic function

of the unit ball then

(3) mϕ(f)(x) ≤ Mf(x)·

Thus, if w is a weight for which the Hardy-Littlewood maximal operator is bounded

on Λ(w), then

‖mϕ(f)‖Λ(w) ≤ ‖M(f)‖Λ(w) ≤ C‖f‖Λ(w),

which shows that Hϕ,w = Λ(w). An example of such a weight is given by

(4) w(t) =
1

φ(t)
, φ ∈ BΨ,

(see Theorem 1.2.7). In particular (4) holds for w(t) = t−θ, 0 < θ < 1. Another

way to show this equivalence is given by the fact that

(5) ‖M(f)‖Λq(w) ≈ ‖f‖Λq(w), w(t) =
t1−1/q

φ(t)
·

To see this, recall that

(M(f))∗ (t) ≈ t S(f∗)(t) =
∫ t

0

f∗(s) ds,

and hence,

‖f‖q
Λq(w) =

∫ ∞

0

(f∗(t)w(t))q
dt ≤

∫ ∞

0

(tS(f∗)(t)w(t))q
dt

≤ C

∫ ∞

0

(
(M(f))∗ (t)w(t)

)q
dt = C‖M(f)‖q

Λq(w) ≤ C‖f‖q
Λq(w)·

For the case w(t) = t1/p−1/q, we have ‖M(f)‖Lp,q ≈ ‖f‖Lp,q , if 1 < p < ∞ and

1 ≤ q ≤ ∞· As a side remark, we notice that (5) has an L1-version (see [SJ]),

namely

‖f‖L1 ≈ ‖M(f)‖L1,∞ ·
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In fact, fix a cube Q ⊂ Rn and set iQ = inf
x∈Q

Mf(x). Then iQ > 0, if f �≡ 0, and∫
Q

|f(x)| dx ≤ |Q|iQ ≤ |{x ∈ Rn : Mf(x) ≥ iQ}|iQ ≤ ‖Mf‖L1,∞ ·

Thus, if we let Q increase to Rn,

‖f‖L1 ≤ ‖Mf‖L1,∞ ≤ C‖f‖L1 ·

(ii) If Λ(w) is a Banach space (e.g, if 1/w(t) ∈ BΨ), it is easy to show that Hϕ,w

is also a Banach space (see [HA]). Also, as in the case of H1
ϕ, one can show the

following property:

proposition 4.1.3. Suppose φ ∈ BΨ and w(t) = 1/φ(t). Then the convolution

with an L1 function is a bounded operator in Hϕ,w.

proof: Let g ∈ L1(Rn) and set Cg(f) ≡ f ∗ g. Then we trivially have that

Cg : L1 −→ L1 and Cg : L∞ −→ L∞, boundedly. Hence, by real interpolation

((L1, L∞)φ,1 = Λ(w)) we get that Cg : Λ(w) −→ Λ(w). Now, if f ∈ Hϕ,w, it is

easy to show that

mϕ(f ∗ g)(x) ≤ (|g| ∗ mϕ(f))(x),

and hence,

‖f ∗ g‖Hϕ,w
= ‖mϕ(f ∗ g)‖Λ(w) ≤‖ |g| ∗ mϕ(f)‖Λ(w)

≤C‖g‖1‖mϕ(f)‖Λ(w) = C‖g‖1‖f‖Hϕ,w ·

We now introduce briefly the (homogeneous) Besov spaces Ḃα,q
p . Instead of given

their rather complicated definition, we will directly assume as our starting point

the discrete characterization provided by the work of M. Fraizer and B. Jawerth

(see [FR-JA 1]). We will restrict ourselves to those cases that will be needed in

the proofs of the results. For a good reference about the Besov spaces see [PE 2].

Fix α ≥ 0, 1 ≤ p, q ≤ ∞. Let ψ ∈ S satisfy

(6)


supp ψ̂(ξ) ⊂

{
ξ ∈ Rn :

1
π

≤ |ξ| ≤ π
}

ψ̂(ξ) ≥ c > 0, if
1
2
≤ |ξ| ≤ 2

·
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We parameterize the family of all dyadic cubes Q ⊂ Rn as follows

Qν,k = {x ∈ Rn : ki2−ν ≤ xi < (ki + 1)2−ν , i = 1, · · · , n}

for each ν ∈ Z and k ∈ Zn and we set

ψQ(x) = |Q|−1/2ψ(2νx − k), Q = Qν,k·

Then, a function f belongs to the (homogeneous) Besov space Ḃα,q
p if it admits a

representation of the form

(7) f ≡
∑
Q

sQψQ,

and

‖f‖Ḃα,q
p

= inf


∑

ν∈Z

 ∑
l(Q)=2−ν

(
|Q|−α/n+1/p−1/2|sQ|

)p

q/p


1/q
 < ∞,

where the infimum is taken over all possible sequences {sQ}Q satisfying (7). Observe

that if p = q then

‖f‖Ḃα,p
p

= inf


∑

Q

(
|Q|−α/n+1/p−1/2|sQ|

)p

1/p
 ·

The following lemmas are the key arguments to understand the proof of the mini-

mality theorem.

lemma 4.1.4. (Wiener, see Theorem 7.2.4 in [RU])

Suppose f, g ∈ L1(Rn) satisfy that supp f̂ is compact and ĝ(ξ) �= 0 for all

ξ ∈ supp f̂ . Then there exists a function h ∈ L1(Rn) such that g ∗ h ≡ f .

lemma 4.1.5. Suppose ϕ ∈ L1 ∩L∞ is a radial and real-valued function satisfying∫
Rn

ϕ(x) dx �= 0. Then the space H1
ϕ is invariant under orthogonal transformations;

that is, if f ∈ H1
ϕ and σ ∈ O(n) and if we set fσ(x) = f(σ(x)) then,

fσ ∈ H1
ϕ and ‖fσ‖H1

ϕ
= ‖f‖H1

ϕ
·
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proof: Suppose f ∈ H1
ϕ and σ ∈ O(n). Then, since ϕ is radial

ϕt ∗ fσ = (ϕt ∗ f)σ·

Hence,
mϕ(fσ)(x) = sup

|x−y|<t

|(ϕt ∗ fσ)(y)| = sup
|x−y|<t

|(ϕt ∗ f)(σ(y))|

= sup
|σ(x)−y|<t

|(ϕt ∗ f)(y)| = mϕ(f)(σ(x)),

and so,

‖fσ‖H1
ϕ

= ‖mϕ(fσ)‖L1 = ‖mϕ(f)(σ(·))‖L1 = ‖f‖H1
ϕ
·

theorem 4.1.6. Suppose ϕ ∈ L1 ∩ L∞ is a radial and real-valued function and∫
Rn

ϕ(x) dx �= 0. If H1
ϕ contains a non-zero function, then

Ḃ0,1
1 ↪→ H1

ϕ·

proof: We first observe that since Ḃ0,1
1 ⊂ H1 ⊂ L1(Rn), we only need to show

the norm estimate. Let f ∈ H1
ϕ such that f �≡ 0. Our main goal is to construct

another function g ∈ H1
ϕ satisfying the condition ĝ(ξ) �= 0 if 1/π ≤ |ξ| ≤ π. We will

achieve this by rotating and dilating the function f and then pasting together all

the pieces we get. Recall that for r > 0 we denote fr(x) = r−nf(x/r) and hence,

f̂r(ξ) = f̂(rξ)· Also recall that if σ ∈ O(n) then f̂σ(ξ) = f̂(σ(ξ))· Since f �≡ 0 then

there are ξ0 ∈ Rn and r0 > 0 such that for some C0 > 0,

(8) |f̂(ξ)| ≥ C0 > 0 if |ξ − ξ0| ≤ r0

(we may assume that 0 /∈ B(ξ0, r0)). We can choose r0 small enough so that for all

N ∈ Z+ and all ξ1, · · · , ξN ∈ B(ξ0, r0) we have

(9) |f̂(ξ1) + · · · + f̂(ξN )| ≥ C0 > 0

with the same constant C0 as in (8). Choose ε > 0 sufficiently small and a bump

function η ∈ S such that

0 ≤ η̂ ≤ 1, η̂(ξ) = 1 if |ξ − ξ0| ≤ r0 − ε and η̂(ξ) = 0 if and only if |ξ − ξ0| ≥ r0·
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Since the space H1
ϕ is invariant under convolution with L1 functions we have that

h ≡ f ∗ η ∈ H1
ϕ,

ĥ(ξ) =
{

f̂(ξ), if |ξ − ξ0| ≤ r0 − ε

0, if |ξ − ξ0| ≥ r0

,

and

(10) |ĥ(ξ1) + · · · + ĥ(ξN )| > 0 for all ξ1, · · · , ξN ∈ B(ξ0, r0)·

This follows immediately from (9). Set s0 = r0 − ε. Suppose first that we have the

following condition:

A =
{

ξ :
1
π

≤ |ξ| ≤ π

}
⊂

⋃
σ∈O(n)

B(σ(ξ0), s0)·

Since A is compact we could find a finite number of those σ ∈ O(n), say σ1, · · · , σM

such that

(11)
{

ξ :
1
π

≤ |ξ| ≤ π

}
⊂

M⋃
i=1

B(σi(ξ0), s0)·

Consider now the function

g ≡ hσ−1
1

+ · · · + hσ−1
M

·

We know, by the last lemma, that g ∈ H1
ϕ and if 1/π ≤ |ξ| ≤ π then

ĝ(ξ) = ĥ(σ−1
1 (ξ)) + · · · + ĥ(σ−1

M (ξ))·

Clearly ĥ(σ−1
i (ξ)) �= 0 if and only if σ−1

i (ξ) ∈ B(ξ0, r0)· Since, by (11), there exists

at least one i0 ∈ {1, · · · , M} for which this happens then, by (10) we have that

ĝ(ξ) �= 0.

Suppose now that (11) does not hold. Then we have to dilate h on both directions;

(i.e., for r > 1 and also r < 1) until we find a set that will satisfy (11), in place of

B(ξ0, r0). Here are the details.

First observe that if r > 0 then

supp ĥr = B

(
ξ0

r
,
r0

r

)
·
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In fact, since ĥr(ξ) = ĥ(rξ) then

ξ ∈ supp ĥr ⇐⇒ |ξ0 − rξ| ≤ r0 ⇐⇒ ξ ∈ B

(
ξ0

r
,
r0

r

)
·

Secondly, we choose a finite sequence of numbers

0 < aM < aM−1 < · · · < a1 < a0 = 1 = b0 < b1 < b2 < · · · < bJ < ∞,

such that the following properties are satisfied:

(12)

B

(
ξ0

aj
,
r0

aj

) ⋂
B

(
ξ0

aj−1
,

r0

aj−1

)
�= ∅ j = 1, · · · , M

B

(
ξ0

bj
,
r0

bj

) ⋂
B

(
ξ0

bj−1
,

r0

bj−1

)
�= ∅ j = 1, · · · , J

(13)
∣∣∣∣ ξ0

bJ

∣∣∣∣ <
1
π

and
∣∣∣∣ ξ0

aM

∣∣∣∣ >
1
π
·

To show that one can find this family of balls, we observe that if 1 > aj−1 > aj ,

then

B

(
ξ0

aj
,
r0

aj

) ⋂
B

(
ξ0

aj−1
,

r0

aj−1

)
�= ∅ ⇐⇒ |ξ0| + r0

aj−1
>

|ξ0| − r0

aj

⇐⇒ aj > aj−1
|ξ0| − r0

|ξ0| + r0
·

Thus if we take

a1 =
|ξ0| − r0

|ξ0| + r0
+ δ < 1

a2 = a1
|ξ0| − r0

|ξ0| + r0
+ δ =

( |ξ0| − r0

|ξ0| + r0

)2

+ P2(δ)

...

aj = aj−1
|ξ0| − r0

|ξ0| + r0
+ δ =

( |ξ0| − r0

|ξ0| + r0

)j

+ Pj(δ)

(where Pj(δ) −→ 0 as δ −→ 0+), we see that for j big enough and δ small, these

numbers satisfy conditions (12) and (13). Similarly one can find the sequence of

bj ’s.
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Now define the function

l(x) =
M∑

j=0

haj (x) +
J∑

j=1

hbj (x)

and set

U =
M⋃

j=0

B

(
ξ0

aj
,
r0

aj

)
∪

J⋃
j=1

B

(
ξ0

bj
,
r0

bj

)
·

Then l ∈ H1
ϕ and l̂(ξ) �= 0 for all ξ ∈ U :

That l ∈ H1
ϕ is clear, since it is the sum of dilations of functions in H1

ϕ. Now if

ξ ∈ U then

ĥaj
(ξ) �= 0,

(
ĥbj

(ξ) �= 0
)

if and only if ajξ ∈ B(ξ0, r0), (bjξ ∈ B(ξ0, r0)) ·

Thus, by (10)

l̂(ξ) =
M∑

j=0

ĥ(ajξ) +
J∑

j=1

ĥ(bjξ) �= 0·

Notice that l also satisfies property (10), namely

(14) l̂(ξ1) + · · · + l̂(ξN ) �= 0 for all ξ1, · · · , ξN ∈ U ·

By (12) and (13) and by a similar argument as in the previous case, we can find a

finite sequence σ1, · · · , σN ∈ O(n) such that{
ξ :

1
π

≤ |ξ| ≤ π

}
⊂

N⋃
j=1

σj(U)·

Hence, if we set

g ≡ lσ−1
1

+ · · · + lσ−1
N

,

we have that g ∈ H1
ϕ and so if 1/π ≤ |ξ| ≤ π,

ĝ(ξ) = l̂(σ−1
1 (ξ)) + · · · + l(σ−1

N (ξ)) �= 0,

by (14). If we choose the functions ψ as in (6) and g as above then we are under

the hypotheses of our Lemma 4.1.4 and we can find a function K ∈ L1(Rn) so that

g ∗ K ≡ ψ, and hence, applying Lemma 4.1.5 we have that ψ ∈ H1
ϕ.
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We want now to estimate the maximal function, with respect to ϕ, of a function

in Ḃ0,1
1 , (recall that if f ≡ ∑

Q sQψQ then ‖f‖Ḃ0,1
1

= inf{∑Q |sQ| |Q|−1/2}). We

start with the function ψQ, Q = Qν,k:

(ϕt ∗ ψQ)(y) =
∫
Rn

1
tn

2νn/2ϕ(u/t)ψ(2ν(y − u) − k) du

{
v = 2νu

dv = 2nνdu

=
∫
Rn

2−nν/2

tn
ϕ(v/(2νt))ψ(2νy − k − v) dv = 2nν/2(ϕ2νt ∗ ψ)(2νy − k)·

Thus,

mϕ(ψQ)(x) = sup
|x−y|<t

|(ϕt ∗ ψQ)(y)|

= sup
|x−y|<t

2nν/2|(ϕ2νt ∗ ψ)(2νy − k)| = sup
|x−u+k

2ν |<2−νs

2nν/2|(ϕs ∗ ψ)(u)|

= sup
|(2νx−k)−u|<s

2nν/2|(ϕs ∗ ψ)(u)| = 2nν/2mϕ(ψ)(2νx − k)·

Therefore,

‖ψQ‖H1
ϕ

= ‖mϕ(ψQ)‖L1 = 2nν/2

∫
Rn

mϕ(ψ)(2νx − k) dx

= 2−nν/2

∫
Rn

mϕ(ψ)(x) dx = 2−nν/2‖ψ‖H1
ϕ
·

Hence, if f ∈ Ḃ0,1
1 , f ≡ ∑

Q sQψQ we have

‖f‖H1
ϕ
≤

∑
Q

|sQ| ‖ψQ‖H1
ϕ

= ‖ψ‖H1
ϕ

∑
Q

|sQ| |Q|−1/2·

Thus, taking the infimum over all possible decompositions we get

‖f‖H1
ϕ
≤ ‖ψ‖H1

ϕ
‖f‖Ḃ0,1

1
·

remark 4.1.7: As we mentioned in the introduction we can relate this result to

some embeddings between the Besov spaces and the Lorentz spaces Lp,q. With more

generality we can consider the Besov spaces with a function parameter φ ∈ BΨ. See

[CO-DF] for a detailed study of these spaces. Set

w(t) =
1

φ(t)
and w(t) = sup

s>0

w(st)
w(s)

= φ(
1
t
)·

93



We say that a function f ∈ Ḃw if f ≡ ∑
Q sQψQ and

‖f‖Ḃw
= inf

∑
Q

2−nν/2w(2−nν)|sQ|

 < ∞

where ψ is chosen as in (6). Observe that if φ(t) = tθ, 0 < θ < 1, then w(t) = t−θ

and hence,

‖f‖Ḃw
= inf

∑
Q

2−nν/22θnν |sQ|


= inf

∑
Q

|Q|1/2−θ|sQ|

 = ‖f‖Ḃθn,1
1

·

By Remark 4.1.2 we know that if ϕ is the characteristic function of the unit ball

then Hϕ,w = Λ(w) and, in particular, we obtain directly that ψ ∈ Hϕ,w, since

ψ ∈ L1 ∩ L∞ ⊂ (L1, L∞)φ,1 = Λ(w)·

Using the last estimate of the proof of the theorem, but with Λ(w) in place of

L1, we get that

‖f‖Hϕ,w ≤ ‖ψ‖Hϕ,w‖f‖Ḃw
;

i.e., Ḃw ↪→ Λ(w)· In particular, for w(t) = t−θ, 0 < θ < 1 this gives

(15) Ḃθn,1
1 ↪→ L

1
1−θ ,1·

Much more can be said about this inclusion. We will use the techniques already

described of [FR-JA 1] plus the following interpolation result to get (15) for a

bigger class of spaces, (see [JO] for another proof).

theorem 4.1.8. (See [PE 2])

If 0 ≤ α0 < α1 < ∞, 0 < θ < 1, 1 ≤ p < ∞ and 1 ≤ q0, q1, q ≤ ∞, then

(Ḃα0,q0
p , Ḃα1,q1

p )θ,q = Ḃα,q
p ,
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where α = (1 − θ)α0 + θα1.

theorem 4.1.9. If 0 < θ < 1 and 1 ≤ q ≤ ∞, then

Ḃθn,q
1 ↪→ L

1
1−θ ,q·

proof: We first prove that Ḃ0,1
1 ↪→ L1 and Ḃn,1

1 ↪→ L∞· That Ḃ0,1
1 ↪→ L1 was

already mentioned in the proof of Theorem 4.1.6. If f ∈ Ḃn,1
1 , then as in (7),

f ≡ ∑
Q sQψQ and so

|f(x)| ≤
∑
Q

|sQ||ψQ(x)| ≤
∑
Q

|sQ| |Q|−1/2·

Taking the infimum over all decompositions and then the supremum with respect

to x we obtain

‖f‖∞ ≤ ‖f‖Ḃn,1
1

·

By the previous result with α0 = 0, α1 = n and p = q0 = q1 = 1 we get

Ḃθn,q
1 = (Ḃ0,1

1 , Ḃn,1
1 )θ,q ↪→ (L1, L∞)θ,q = L

1
1−θ ,q ·

We consider now some properties of the dual space of H1
ϕ, using the duality results

for the Tent spaces T 1
∞. The idea is not new and goes back to the work in [HA].

There, it is proved that a new representation of functions in BMO, is given by the

action of a Carleson measure on a modified version of the function ϕt(· − y), for

(y, t) ∈ Rn+1
+ , (see Theorem (2.27) in [HA] for details). The starting point is the

isometric identification of H1
ϕ with a closed subspace of T 1

∞. In fact, if ϕ ∈ L1∩L∞,∫
Rn

ϕ(x) dx �= 0, ϕ ≥ 0 and continuous then the mapping

H1
ϕ

Φ−→ T 1
∞

f −→ (f ∗ ϕt)(x)

is clearly an isometry onto its image. Notice that since {ϕt}t>0 is an approximation

of the identity, we have that

Φ−1(g)(x) = lim
t→0

g(x, t),
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for all g ∈ Φ(H1
ϕ)· Thus, the dual of the space H1

ϕ, can be identified as a quotient

space of V 1 = (T 1
∞)∗. In more detail, if we denote by

Nϕ =

{
µ ∈ V 1 :

∫
Rn+1

+

(f ∗ ϕt)(x) dµ(x, t) = 0, for all f ∈ H1
ϕ

}
then we have that

(H1
ϕ)∗ ≈

(
Φ(H1

ϕ)
)∗

= V 1/Nϕ·

For the particular case where n = 1 and ϕ is smooth enough so that H1
ϕ = H1, it

was proved in [HA] that if one considers the function

ϕ̃(x, t) =
{

ϕt(x) if |x| > 1 or t > 1
0 otherwise

then we have that the function

ϕt(x − y) − ϕ̃(x, t)

is µ-integrable (µ ∈ V 1), in the variables (x, t), for almost every y ∈ Rn. So, by

Fubini’s theorem and the fact that
∫
R

f(x) dx = 0 for all f ∈ H1, one gets, for

µ ∈ Nϕ:∫
R2

+

(f ∗ ϕt)(x) dµ(x, t) =
∫
R2

+

(∫
R

f(y)(ϕt(x − y) − ϕ̃(x, t)) dy

)
dµ(x, t)

=
∫
R

f(y)

(∫
R2

+

(ϕt(x − y) − ϕ̃(x, t)) dµ(x, t)

)
dy = 0·

Thus, we conclude that ∫
R2

+

(ϕt(x − y) − ϕ̃(x, t)) dµ(x, t)

must be constant, for a.e. y ∈ R.

We will find a class of Carleson measures N that is contained in all of the above

Nϕ. Thus, if we now take the quotient V 1/N , we find that it satisfies a maximality

condition; namely, the dual of H1
ϕ can be identified as a closed subspace of V 1/N .

Notice that a similar result holds if we recall that if ϕ is radial and H1
ϕ is not trivial

then Ḃ0,1
1 ↪→ H1

ϕ, and therefore, since the dual of Ḃ0,1
1 is the Bloch space Ḃ0,∞

∞ (see

[PE 2]), we also have that (H1
ϕ)∗ ↪→ Ḃ0,∞

∞ . We give now the definition of a class

of measures that contains the class N .
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definition 4.1.10. Suppose µ is a Borel measure in Rn+1
+ . We say that µ is

invariant under horizontal translations if for all measurable sets E ⊂ Rn+1
+ and all

x ∈ Rn, if we denote by

x + E = {(x + y, t) : (y, t) ∈ E} ,

we then have that µ(x + E) = µ(E). For α ≥ 1 we define

Nα =
{
µ ∈ V α : µ is invariant under horizontal translations

}
·

Our goal is to completely characterize the class Nα. For this, we need the fol-

lowing definition.

definition 4.1.11. Suppose σ is a Borel measure in R+. We say that σ is a

measure of order β, with β ≥ 0, if there exists a constant C > 0 such that

(16)
∫ t

0

d|σ| ≤ Ctβ , for all t > 0·

In this case, we write σ ∈ Mβ and also

‖σ‖Mβ = inf{C : C satisfies (16)}·

Note that if β = 0 then M0 is the space of finite measures in R+. Also if

β > 0, 1 ≤ p ≤ ∞, γ = β − 1/p′ and f ∈ Lp(R+, dt) then, by Hölder’s inequality

we have that dσ(t) = tγf(t) dt ∈ Mβ and ‖σ‖Mβ ≤ Cβ,p‖f‖p. We now give the

characterization of Nα.

theorem 4.1.12. Suppose α ≥ 1 and µ is a Borel measure in Rn+1
+ . Then µ ∈ Nα

if and only if µ is a product measure of the form dxdσ(t), for some σ ∈ Mn(α−1).

In this case we have that ‖µ‖V α ≈ ‖σ‖Mn(α−1) ·

proof: Suppose first that dµ(x, t) = dxdσ(t) for some σ ∈ Mn(α−1). Then, it is

clear that µ is invariant under horizontal translations. By Remark 3.4.4-(i), since

α ≥ 1 we need only consider cubes Q ⊂ Rn. Now, Q̂ ⊂ Q × (0, l(Q)) and hence,

|µ|(Q̂) ≤
(∫

Q

dx

) (∫ l(Q)

0

d|σ|
)

≤ |Q| ‖σ‖Mn(α−1)(l(Q))n(α−1) ≤ Cn‖σ‖Mn(α−1) |Q|α;
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that is, ‖µ‖V α ≤ Cn‖σ‖Mn(α−1) .

Conversely, if µ ∈ Nα we want to show that for all measurable sets A ⊂ Rn and

B ⊂ R+ we have that

µ(A × B) = |A|σ(B),

where σ ∈ Mn(α−1)· Without loss of generality we may assume that µ ≥ 0. Fix

B ⊂ R+ measurable, and define

νB(A) = µ(A × B), A ⊂ Rn·

Then, it is obvious that νB is a positive Borel measure in Rn and νB is invariant

under translations, since

νB(y + A) = µ((y + A) × B) = µ(y + (A × B)) = µ(A × B) = νB(A)·

Hence, by the uniqueness of the Haar measure in Rn (see [RU]), there exists a

constant CB ≥ 0 so that

(17) νB(A) = CB |A|·

Thus, if we fix A ⊂ Rn, with 0 < |A| < ∞, we find that

(18) CB =
µ(A × B)

|A| (independently of A)·

Define σ(B) = CB , so that µ(A × B) = |A|σ(B). Then by (18), it is also obvious

that σ is a positive Borel measure in R+. Thus, it only remains to show that

σ ∈ Mn(α−1). Fix t > 0 and choose a cube Q ⊂ Rn such that l(Q) = t. Then, by

(18) with A = Q and the fact that µ ∈ Nα we have that∫ t

0

d|σ| = |σ|(0, t) =
|µ|(Q × (0, t))

|Q| ≤ |µ|(Q̂∗)
|Q|

≤ cn‖µ‖V α |Q|α−1 = Cn‖µ‖V αtn(α−1);

that is, ‖σ‖Mn(α−1) ≤ Cn‖µ‖V α .

Finally, if we set N = N1 we find the following minimality property.
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corollary 4.1.13. Suppose ϕ ∈ L1 ∩ L∞,

∫
Rn

ϕ(x) dx �= 0, ϕ ≥ 0 and ϕ has

compact support. Then N ⊂ Nϕ.

proof: Let µ ∈ N , that is, dµ(x, t) = dxdσ(t) with σ a finite measure in R+ (by

the above theorem). Let f ∈ H1
ϕ. Then by Fubini’s theorem,∫

Rn+1
+

(f ∗ ϕt)(x) dx dσ(t) =
∫
Rn+1

+

(∫
Rn

f(y)ϕt(x − y) dy

)
dx dσ(t)

=
∫
Rn+1

+

(∫
Rn

ϕt(x − y) dx

)
f(y) dy dσ(t) = ‖ϕ‖1

∫
R+

(∫
Rn

f(y) dy

)
dσ(t) = 0

since, as we pointed out earlier if ϕ has compact support then H1
ϕ ⊂ H1 and hence∫

Rn

f(y) dy = 0.

We now continue the study of embedding properties for the spaces H1
ϕ. We will

first give a brief description of the (homogeneous) Triebel-Lizorkin spaces Ḟα,q
p along

the same lines as our comments about the Besov spaces. As in that case, we will

take as the definition the characterization obtained now in [FR-JA 2]. Fix ψ ∈ S
satisfying (6) and the additional condition

(19)
∑
ν∈Z

|ψ̂(2νξ)|2 = 1 if ξ �= 0·

For α ≥ 0, 1 ≤ p, q ≤ ∞ we say that a sequence s = {sQ}Q, (where Q runs over

all dyadic cubes Q = Qν,k ⊂ Rn), belongs to the space ḟα,q
p if

‖s‖ḟα,q
p

=

∥∥∥∥∥∥∥
∑

Q

(
|Q|−α/n|sQ|χ̃Q

)q

1/q
∥∥∥∥∥∥∥

Lp

< ∞, (p �= ∞)

where χ̃Q ≡ |Q|−1/2χQ, and for p = ∞,

‖s‖ḟα,q
∞

= sup
P dyadic

 1
|P |

∫
P

∑
Q⊂P

(
|Q|−α/n|sQ|χ̃Q(x)

)q

dx

1/q

< ∞·

Notice, that if 1 ≤ q < ∞ then ‖s‖q

ḟα,q
∞

is equivalent to the V 1 norm of the measure

(20)
∑
Q

(
|Q|−α/n−1/2|sQ|

)q

|Q| δ(2−νk,2−ν),
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where δ is the Dirac mass. We say that a function f belongs to the (homogeneous)

Triebel-Lizorkin space Ḟα,q
p if f admits a decomposition of the form

(21) f ≡
∑
Q

sQψQ, ‖f‖Ḟ α,q
p

= inf
{
‖{sQ}‖ḟα,q

p

}
,

where the infimum is taken over all sequences satisfying (21). It is easy to show,

just by looking at the definitions, that Ḃ0,1
1 = Ḟ 0,1

1 . Also in [FR-JA 2] it is proved

that Ḟ 0,2
1 = H1. On the one hand we know that under some conditions on ϕ, H1

ϕ

is non-trivial if and only if it contains Ḃ0,1
1 = Ḟ 0,1

1 . On the other hand, if ϕ has

compact support, we always have that H1
ϕ ⊂ H1 = Ḟ 0,2

1 . Thus, we see that the

spaces Ḟ 0,1
1 and Ḟ 0,2

1 play an important end-point condition for the Hardy spaces

H1
ϕ. We address now the following question: under which conditions on the kernel

ϕ can one get that Ḟ 0,q
1 ⊂ H1

ϕ where 1 ≤ q ≤ 2. This is the right scale of spaces to

consider, since

Ḟ 0,1
1 ⊂ Ḟ 0,q

1 ⊂ Ḟ 0,2
1 1 ≤ q ≤ 2·

We will need to use the following duality result (see [FR-JA 2]).

lemma 4.1.14. If 1 ≤ p, q < ∞, then(
ḟ0,q

p

)∗
= ḟ0,q′

p′ ·

For a kernel ϕ and ψ as above, and for each dyadic cube Q ⊂ Rn, we define the

linear functional, TQ
ϕ , acting on the space of Carleson measures:

(22) TQ
ϕ (µ) =

∫
Rn+1

+

(ϕt ∗ ψQ)(x) dµ(x, t)·

We notice that TQ
ϕ is well defined if H1

ϕ �= {0} and ϕ is radial, since then ψQ ∈ H1
ϕ

and hence |TQ
ϕ (µ)| ≤ ‖ψQ‖H1

ϕ
‖µ‖V 1 ·

We now give the characterization:

theorem 4.1.15. Suppose ϕ ∈ L1 ∩ L∞,

∫
Rn

ϕ(x) dx �= 0, supp ϕ compact and

TQ
ϕ is as in (22). Fix 1 ≤ p ≤ 2. Then the following are equivalent:

(i) Ḟ 0,p
1 ↪→ H1

ϕ.

100



(ii)
{
TQ

ϕ (µ)
}

Q
is uniformly bounded in ḟ0,p′

∞ ; i.e, there exists a C > O such that

‖{TQ
ϕ (µ)}Q‖ḟ0,p′

∞
≤ C‖µ‖V 1 ·

(iii) (If 1 < p ≤ 2). The mapping

µ
Tϕ−→

∑
Q

(
2nν/2TQ

ϕ (µ)
)p′

2−nν δ(2−νk,2−ν)

is “bounded” on V 1; i.e, there exists a constant C > 0 such that

‖Tϕ(µ)‖V 1 ≤ C‖µ‖p′

V 1 ·

proof: That (ii) and (iii) are equivalent, for 1 < p ≤ 2 is a consequence of (20),

since |Q| = 2−nν , α = 0 and p′ < ∞ we have

‖Tϕ(µ)‖V 1 =

∥∥∥∥∥∥
∑
Q

(
2nν/2TQ

ϕ (µ)
)p′

2−nν δ(2−νk,2−ν)

∥∥∥∥∥∥
V 1

=

∥∥∥∥∥∥
∑
Q

(
|Q|−1/2|TQ

ϕ (µ)|
)p′

|Q| δ(2−νk,2−ν)

∥∥∥∥∥∥
V 1

≤ C‖{TQ
ϕ (µ)}Q‖p′

ḟ0,p′
∞

≤ C‖µ‖p′

V 1 ·

To prove that (i) is equivalent to (ii) we choose f ∈ Ḟ 0,p
1 , with f ≡ ∑

Q

sQψQ and

s = {sQ}Q ∈ ḟ0,p
1 . Then

‖f‖H1
ϕ

= ‖f ∗ ϕt‖T 1
∞

= sup
‖µ‖V 1≤1

∣∣∣∣ ∫
Rn+1

+

(ϕt ∗ f)(x) dµ(x, t)
∣∣∣∣·

But

(23)
∫
Rn+1

+

(ϕt ∗ f)(x) dµ(x, t) =
∑
Q

sQTQ
ϕ (µ)·

Hence, if (i) holds we have that

sup
‖µ‖V 1≤1

∣∣ ∑
Q

sQTQ
ϕ (µ)

∣∣ ≤ C‖f‖Ḟ 0,p
1

≤ C‖s‖ḟ0,p
1
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and, so {TQ
ϕ (µ)}Q ∈

(
ḟ0,p
1

)∗
= ḟ0,p′

∞ , with ‖{TQ
ϕ (µ)}Q‖ḟ0,p′

∞
≤ C, if ‖µ‖V 1 ≤ 1,

from which (ii) holds.

Conversely, if (ii) is satisfied, then by (23) we have that

‖f‖H1
ϕ
≤ sup

‖µ‖V 1≤1

∣∣ ∑
Q

sQTQ
ϕ (µ)

∣∣
≤ sup

‖µ‖V 1≤1

‖s‖ḟ0,p
1

‖{TQ
ϕ (µ)}Q‖ḟ0,p′

∞
≤ C‖s‖ḟ0,p

1
·

Taking the infimum over all such s = {sQ}Q, we get (i).

Notice that for p = 2, the above theorem characterizes those functions ϕ, with

compact support, for which H1
ϕ = H1.

(§2) Carleson measures and pointwise estimates.

We are going to consider now the study of pointwise estimates for a class of op-

erators, using the properties we have shown for certain types of Carleson measures.

In particular, as a consequence of this argument we can get the boundedness for a

family of bilinear operators defined on the product of Lq and some space of mea-

sures, into a Lipschitz space, we give yet another proof of the pointwise boundedness

for the Fourier transform of distributions in Hp and we improve and generalize the

Féjer-Riesz inequality for harmonic extensions of Hp functions.

We begin with a simple but very useful observation.

lemma 4.2.1. Let f ∈ Lq(Rn), 1 ≤ q ≤ ∞, σ ∈ Mα, with β =
1
q′

+
α

n
≥ 1 and set

dµ(x, t) = f(x)dxdσ(t). Then

µ ∈ V β and ‖µ‖V β ≤ ‖σ‖Mα‖f‖Lq ·

proof: Since β ≥ 1, we only need to consider cubes Q ⊂ Rn to show that µ ∈ V β .

Now,

|µ|(Q̂) ≤
(∫

Q

|f(x)| dx

) (∫ |Q|1/n

0

d|σ|(t)
)

≤ ‖f‖Lq |Q|1/q′‖σ‖Mα |Q|α/n = ‖f‖Lq‖σ‖Mα |Q|β
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and so, ‖µ‖V β ≤ ‖f‖Lq‖σ‖Mα ·

For our next result, we need to introduce a densely defined bilinear functional. We

will restrict the action of this operator, when considering distributions in Hp(Rn),

to the dense subspace S0 of those functions in S with mean zero.

definition 4.2.2. Fix 1 ≤ q ≤ ∞. Suppose F : Rn × Rn −→ C is a measurable

function such that if we set Fz(x) = F (z, x), z, x ∈ Rn then Fz ∈ Lq(Rn). Let

α ≥ 0. For g ∈ S0, set

(RF (g))(x, z) =
∫
Rn

g(y)F (z, y + x) dy·

We define, for σ ∈ Mα,

TF (g, σ)(z) =
∫ ∞

0

((RF (g))(·, z) ∗ Pt) (0) dσ(t)

where P is the Poisson kernel in Rn·

example 4.2.3: Suppose q = ∞ and F (z, x) = e−ixz. Then ‖F‖∞ = 1 and if

g ∈ S0 we have that

(RF (g)) (x, z) =
∫
Rn

g(y)e−i(x+y)z dy = e−ixz ĝ(z)·

Hence,

(RF (g)(·, z) ∗ Pt) (0) =
∫
Rn

e−ixz ĝ(z)Pt(x) dx = ĝ(z)P̂t(z)·

If 0 < p < 1 and we consider the measure dσ(t) = tn( 1
p−1)−1 dt, then σ ∈ Mn( 1

p−1),

since ∫ t

0

d|σ|(t) =
1

n( 1
p − 1)

tn( 1
p−1),

and so,

‖σ‖
M

n( 1
p
−1) =

1
n( 1

p − 1)
·

Therefore,

TF (g, σ)(z) =
∫ ∞

0

ĝ(z)P̂t(z)tn( 1
p−1)−1 dt = cnĝ(z)

∫ ∞

0

e−2πt|z|tn( 1
p−1)−1 dt

and the integral is finite since n( 1
p − 1) > 0.
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theorem 4.2.4. Suppose 1 ≤ q ≤ ∞, α ≥ n/q and 1/p = α/n + 1/q′, so that

0 < p ≤ 1. Then

|TF (g, σ)(z)| ≤ cn‖σ‖Mα‖Fz‖Lq(Rn)‖g‖Hp(Rn),

for all σ ∈ Mα and g ∈ S0·

proof: The proof is a simple consequence of the previous lemma and the fact that

‖g‖Hp(Rn) ≈ ‖PI(g)‖T p
∞ , where PI(g)(x, t) = (Pt ∗ g)(x)· To estimate this quantity

we use Theorem 3.4.8: (T p
∞)∗ = V 1/p, 0 < p ≤ 1· First notice that, since P is an

even function,

TF (g, σ)(z) =
∫ ∞

0

(∫
Rn

Pt(u)(RF (g))(u, z) du

)
dσ(t)

=
∫
Rn+1

+

g(y)
(∫

Rn

Pt(u)F (z, y + u) du

)
dx dσ(t)

=
∫
Rn+1

+

g(y)
(∫

Rn

Pt(v − y)F (z, v) dv

)
dx dσ(t)

=
∫
Rn+1

+

PI(g)(v, t)F (z, v) dv dσ(t)·

For a fixed z, consider the measure

dµ(v, t) = Fz(v) dv dσ(t)·

Then, by the lemma, we have that µ ∈ V 1/p and ‖µ‖V 1/p ≤ ‖σ‖Mα‖Fz‖Lq · Thus

|TF (g, σ)(z)| ≤
∫
Rn+1

+

|PI(g)(v, t)| d|µ|(v, t)

≤ ‖PI(g)‖T p
∞‖µ‖V 1/p ≤ cn‖σ‖Mα‖Fz‖Lq‖g‖Hp ·

corollary 4.2.5. If 0 < p ≤ 1 and g ∈ S0(Rn), then

|ĝ(z)| ≤ Cn,p|z|n( 1
p−1)‖g‖Hp ,

for all z ∈ Rn·

proof: It suffices to consider the case 0 < p < 1 and z �= 0. We recall that by

Example 4.2.3 we have

TF (g, σ)(z) = cnĝ(z)
∫ ∞

0

e−2πt|z|tn( 1
p−1)−1 dt·
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But,∫ ∞

0

e−2πt|z|tn( 1
p−1)−1 dt = C|z|−n( 1

p−1)

∫ ∞

0

e−2πuun( 1
p−1)−1 du = Cn,p|z|−n( 1

p−1)·

Hence, by the theorem,

|TF (g, σ)(z)| ≤ cn‖σ‖Mα‖Fz‖∞‖g‖Hp(Rn);

that is,

Cn,p|ĝ(z)| |z|−n( 1
p−1) ≤ cn

n( 1
p − 1)

‖g‖Hp ,

which gives the result.

remark 4.2.6: Corollary 4.2.5 was first proved in [FE-ST], using a different ap-

proach. Later in [TA-WE], it was also proved using the atomic characterization

of Hp. We want to yet give another simple proof using now the duality of the Hp

spaces. In [DU-RO-SH] it is shown that (Hp(Rn))∗ = Ḃ
n( 1

p−1),∞
∞ , 0 < p < 1,

where the norm on this Besov space coincides with the Lipschitz norm of order

n(1/p − 1), (see [ST]); namely,

‖f‖
Ḃ

n( 1
p
−1),∞

∞
= sup

x∈Rn

h∈Rn\{0}

|(∆k
hf)(x)|

|h|n( 1
p−1)

,

where, k ∈ N, k > α and

(∆k
hf)(x) =

k∑
r=0

(
k

r

)
(−1)rf(x + rh)·

Now, we have the following

lemma 4.2.7. Fix y ∈ Rn, α > 0. Then

‖e−iy·‖Ḃα,∞
∞

≈ |y|α·

proof: Let k ∈ N, k > α and suppose y ∈ Rn \ {0}. Then, for h ∈ Rn

(∆k
he−iy·)(x) =

k∑
r=0

(
k

r

)
(−1)re−iy(x+rh)

= e−iyx
k∑

r=0

(
k

r

)
(−1)re−iryh = e−iyx(1 − e−iyh)k·
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Hence,

|(∆k
he−iy·)(x)|2 = (2 − 2 cos(yh))k·

Thus,

sup
x∈Rn

h∈Rn\{0}

|(∆k
he−iy·)(x)|
|h|α = sup

h∈Rn\{0}
2k/2 (1 − cos(yh))k/2

|h|α

≤ Ck|y|α sup
u∈R+

(1 − cos u)k/2

uα
≤ Ck sup

u∈R+

(1 − cos u)α/2

uα
(1 − cos u)

k−α
2 |y|α

≤ Ck,α|y|α,

since k > α. Conversely, we want to show that for any y ∈ Rn \ {0}, there exists

an h ∈ Rn \ {0} such that |y| = |h|−1 and 1 − cos(yh) = 1 − cos(1) > 0· In fact, if

h = y/|y|2 then trivially |y| = |h|−1 and y · h = 1. Hence

‖e−iy·‖Ḃα,∞
∞

≥ 2k/2(1 − cos 1)k/2|y|α ·

Thus, by the duality between Hp and Ḃ
n( 1

p−1),∞
∞ , 0 < p < 1, and using this

lemma, we find that if g ∈ S0

|ĝ(y)| =
∣∣∣∣ ∫

Rn

g(x)e−iyx dx

∣∣∣∣ ≤ ‖g‖Hp‖e−iy·‖
Ḃ

n( 1
p
−1),∞

∞
≤ Cn,p|y|n( 1

p−1)‖g‖Hp ·

As a curiosity, and from the proof of Corollary 4.2.5, we see that

‖e−iy·‖Ḃα,∞
∞

≈
(∫ ∞

0

P̂t(y)tα−1 dt

)−1

, α > 0·

One can also get very easily that, for s > 0, 1 < q ≤ ∞ we have

‖e−iy·‖Ḃs,q
∞

≈ |y|s·

Hence (see [TR]), since

(Ḃs,q
p )∗ = Ḃ

−s+n( 1
p−1),q′

∞ 0 < p ≤ 1, 0 < q < ∞, 0 < s < n(
1
p
− 1),
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and

(Ḟ s,q
p )∗ = Ḃ

−s+n( 1
p−1),∞

∞ 0 < p < 1, 0 < q < ∞, 0 < s < n(
1
p
− 1),

where q′ = ∞ if 0 < q ≤ 1, then, by a similar argument as above, we obtain

|f̂(y)| ≤ C|y|−s+n( 1
p−1)‖f‖Ḃs,q

p
, 0 < p ≤ 1, 0 < q < ∞, 0 < s < n(

1
p
− 1),

and

|f̂(y)| ≤ C|y|−s+n( 1
p−1)‖f‖Ḟ s,q

p
, 0 < p < 1, 0 < q < ∞, 0 < s < n(

1
p
− 1)·

corollary 4.2.8. Suppose 1 ≤ q ≤ ∞, α ≥ n/q and 1/p = α/n + 1/q′. For

f ∈ Lq(Rn) and σ ∈ Mα define

K(f, σ)(y) =
∫ ∞

0

(Pt ∗ f)(y) dσ(t)·

(i) If 0 < p < 1 then

K : Lq(Rn) × Mα −→ Ḃ
n( 1

p−1),∞
∞ ,

and

‖K(f, σ)‖
Ḃ

n( 1
p
−1),∞

∞
≤ Cn‖σ‖Mα‖f‖Lq(Rn)·

(ii) If p = 1 then

K : Lq(Rn) × Mα −→ BMO,

and

‖K(f, σ)‖BMO ≤ Cn‖σ‖Mα‖f‖Lq(Rn)·

proof: We will only show (i), because the proof of (ii) follows similarly. Since

(Hp(Rn))∗ = Ḃ
n( 1

p−1),∞
∞ , then to show that K(f, σ) ∈ Ḃ

n( 1
p−1),∞

∞ we only need to

see that ∣∣∣∣ ∫
Rn

g(y)K(f, σ)(y) dy

∣∣∣∣ ≤ Cn‖σ‖Mα‖f‖Lq‖g‖Hp ,
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for all g ∈ S0. Set F (z, x) = f(x), for all z ∈ Rn. Then,∫
Rn

g(y)K(f, σ)(y) dy =
∫
Rn

g(y)
∫ ∞

0

(Pt ∗ Fz)(y) dσ(t)dy = TF (g, σ)(z),

for all z ∈ Rn. Hence, by the last theorem,∣∣∣∣ ∫
Rn

g(y)K(f, σ)(y) dy

∣∣∣∣ ≤ Cn‖σ‖Mα‖f‖Lq‖g‖Hp ·

We give now another application of our duality techniques to estimate harmonic

extensions to Rn+1
+ of functions in Hp. The next theorem gives, as a particular case

a generalization to higher dimensions of the Féjer-Riesz inequality (see [GA-RU]

Theorems I-4.5 and III-7.57, for the case p = 1), and shows that it can be also

proved in all cases 0 < p ≤ 1. Moreover, in the previous theorems, the authors

work with the atomic characterization of H1 and some extra conditions on the

kernel are required, that will not be needed in our proof. This inequality gives the

behavior in the vertical t-direction for the extension ϕt ∗f(x), relative to a kernel ϕ,

with f ∈ S0, instead of the well known growth on the x-direction for the harmonic

extension u ≡ PI(f); namely,

sup
t>0

∫
Rn

|u(x, t)|p dx ≤ C‖f‖p
Hp ·

The proof is based in finding the right pairing for an appropriate Carleson measure.

theorem 4.2.9. If 0 < p ≤ 1, F ∈ T p
∞ and σ ∈ Mn/p, then

sup
x∈Rn

∫ ∞

0

|F (x, t)| d|σ|(t) ≤ ‖σ‖Mn/p‖F‖T p
∞ ·

proof: Fix x ∈ Rn and set dµ(y, t) = δx(y)dσ(t), where δx is the Dirac mass in

Rn at the point x. Then µ ∈ V 1/p and ‖µ‖V 1/p ≤ ‖σ‖Mn/p · In fact, since p ≤ 1,

then if Q is a cube in Rn we have that

|µ|(Q̂) ≤
(∫

Q

δx(y)
) (∫ |Q|1/n

0

d|σ|(t)
)

≤ |Q|1/p‖σ‖Mn/p ·
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Therefore, since (T p
∞)∗ = V 1/p, we get that∫ ∞

0

|F (x, t)| d|σ|(t) ≤
∫
Rn+1

+

|F (y, t)| d|µ|(y, t)

≤ ‖F‖T p
∞‖µ‖V 1/p ≤ ‖σ‖Mn/p‖F‖T p

∞ ·

For the next result we introduce the following notation: if f ∈ S0, 0 < p ≤ 1

and we choose ϕ ∈ L1 ∩ L∞,

∫
Rn

ϕ(x) dx �= 0 then we say that f ∈ Hp
ϕ if

‖f‖Hp
ϕ

= ‖ϕt ∗ f‖T p
∞ < ∞·

corollary 4.2.10. Let ϕ be as above, 0 < p ≤ 1.

(i) (Féjer-Riesz inequality, if ϕ is the Poisson kernel).

If f ∈ Hp
ϕ, then

sup
x∈Rn

∫ ∞

0

|(ϕt ∗ f)(x)|tn
p −1 dt ≤ Cn,p‖f‖Hp

ϕ
·

(ii) With more generality, if p ≤ q ≤ 1, then for f ∈ Hp
ϕ we have

sup
x∈Rn

∫ ∞

0

|(ϕt ∗ f)(x)|q t
qn
p −1 dt ≤ Cn,p‖f‖q

Hp
ϕ
·

proof:

(i) Consider the function F (x, t) = (ϕt ∗ f)(x) and the measure dσ(t) = t
n
p −1 dt.

Then F ∈ T p
∞ and σ ∈ Mn/p. Hence, by the theorem,

sup
x∈Rn

∫ ∞

0

|(ϕt ∗ f)(x)|tn
p −1 dt = sup

x∈Rn

∫ ∞

0

|F (x, t)| d|σ|(t) ≤ Cn,p‖f‖Hp
ϕ
·

(ii) Let p ≤ q ≤ 1 and consider now the function F (x, t) = |(ϕt ∗ f)(x)|q. Then

F ∈ T
p/q
∞ with ‖F‖

T
p/q
∞

= ‖f‖q
Hp

ϕ
. Also, if we set dσ(t) = t

qn
p −1 dt then σ ∈ Mqn/p

and hence, since p/q ≤ 1,

sup
x∈Rn

∫ ∞

0

|(ϕt ∗ f)(x)|q t
qn
p −1 dt ≤ Cn,p‖F‖

T
p/q
∞

= Cn,p‖f‖q
Hp

ϕ
·
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(§3) Weighted inequalities for maximal functions.

We will present an application of the atomic decomposition of the Tent spaces to

get some weighted estimates for a maximal operator that generalizes the fractional

maximal function.

definition 4.3.1. Suppose ϕ ∈ BΨ. We define the fractional maximal function

with respect to ϕ as

Mϕf(x) = sup
x∈Q

1
ϕ(|Q|)

∫
Q

|f(y)| dy·

For our main result we need to introduce the following notation. If ϕ ∈ BΨ then,

by Proposition 1.1.12-(20) we have that if ρϕ(t) = t/ϕ(t), then, ρϕ ∈ BΨ. Hence,

the function σϕ ≡ (ρϕ)−1 is well defined and it is an increasing convex function.

theorem 4.3.2. Suppose ϕ, ϕ0, ϕ1 ∈ BΨ and let 1 ≤ p < ∞ be chosen such that

ϕp
0/tp−1 ∈ BΨ. Let wi(t) = t1−1/p/ϕi(t), i = 0, 1. Suppose µ is a measure in Rn

and let Λp(w1, µ) be the weighted Lorentz space, with respect to the measure µ.

Suppose finally that µ satisfies the following property

(24) µ(Ω) ≤ Cσ1

(
ϕ(|Ω|)
ϕ0(|Ω|)

)
for all open and bounded Ω ⊂ Rn, where σ1(t) = σϕ1(t). Then

(25) Mϕ : Λp(w0) −→ Λp(w1, µ)

as a bounded sublinear operator.

proof: Suppose f ∈ Λp(w0), f ≥ 0 and set

f(x, t) =
1
tn

∫
|x−y|<t

f(y) dy, F (x, t) = fp(x, t)·

Then A∞F (x) ≤ C (Mf(x))p and also

(Mϕf(x))p ≤ C sup
t>0

((
tn

ϕ(tn)

)p

F (x, t)
)
·
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By Theorem 1.2.7 we have that M is bounded on Λp(w0) and so,

‖F‖T∞(Λ1(wp
0 )) ≤ C‖(Mf)p‖Λ1(wp

0 ) = C‖Mf‖p
Λp(w0)

≤ C‖f‖p
Λp(w0)

< ∞·

Therefore F ∈ T∞(Λ1(wp
0)) and by hypothesis and Theorem 3.3.13 we can find a

decomposition F ≡ ∑
j λjbj where,

supp bj ⊂ T (Ωj), ‖bj‖∞ ≤ C
1

|Ωj |wp
0(|Ωj |)

, and
∑

j

|λj | ≤ C‖F‖T∞(Λ1(wp
0 ))·

Therefore,

|Mϕf(x)|p ≤ C
∑

j

|λj | sup
t>0

{(
tn

ϕ(tn)

)p

|bj(x, t)|
}
·

Set

Aj(x) = sup
t>0

{(
tn

ϕ(tn)

)p

|bj(x, t)|
}
·

Then, supp Aj ⊂ Ωj and

(26) ‖Aj‖∞ ≤ C

( |Ωj |
ϕ(|Ωj |)

)p (
ϕ0(|Ωj |)
|Ωj |

)p

= C

(
ϕ0(|Ωj |)
ϕ(|Ωj |)

)p

·

Using (24) we also get

(27)
∫ µ(Ωj)

0

wp
1(t) dt ≈ µp(Ωj)

ϕp
1(µ(Ωj))

≤ C

(
ϕ(|Ωj |)
ϕ0(|Ωj |)

)p

·

These estimates allow us to show the following uniform bound for the functions Aj ;

namely,

‖Aj‖Λ1(wp
1 ,µ) ≤ ‖Aj‖∞

∫ µ(Ωj)

0

wp
1(t) dt ≤ C·

Thus

‖Mϕf‖Λp(w1,µ) = ‖(Mϕf)p‖1/p

Λ1(wp
1 ,µ)

≤ C
( ∑

j

|λj |
)1/p ≤ C‖F‖1/p

T∞(Λ1(wp
0 ))

≤ C‖f‖Λp(w0) ·

remarks 4.3.3:

(i) If we choose ϕ(t) = t1−α/n with 0 < α < n, then Mϕf = Mαf , is the fractional

111



maximal operator of order α. If we set ϕ0(t) = t1−1/r, ϕ1(t) = t1−1/q and p = 1 in

the conditions of the theorem, we get, that if

µ(Ω) ≤ C|Ω|q(1/r−α/n),

then Mα is a bounded operator from Lr,1 into Lq,1. This result is a weaker version

of Proposition 3.10 in [BO-JO].

(ii) Another interesting example is given by the following choice of the function

parameters: Suppose 0 < θ < 1 and 0 ≤ γ < min(2θ, 2(1 − θ)) and set

f (θ,γ)(t) = tθ(1 + (log t)2)−γ/2·

Then f (θ,γ) ∈ BΨ and in fact

0 < αf(θ,γ) = θ − γ

2
≤ θ +

γ

2
= βf(θ,γ) < 1·

Since the function f (θ,γ) is pointwise equivalent to tθ(1+| log t|)−γ and by the exam-

ple given after Definition 2.1.3 we have that if 1 ≤ q ≤ ∞ and w(t) = t1−1/q/f (θ,γ)(t)

then Λq(w) = Lp,q(log L)γ , where p = 1/(1−θ)· We choose numbers 0 < θ, θ0, θ1 < 1

and

0 ≤ γ < min(2θ, 2(1 − θ))

0 ≤ γ0 < min(2θ0, 2(1 − θ0))

0 ≤ γ1 < min(2θ1, 2(1 − θ1)),

and we define the functions:

ϕ = f (θ,γ), ϕ0 = f (θ0,γ0), ϕ1 = f (θ1,γ1).

As in the theorem, we define the maximal function Mθ,γf ≡ Mϕf and if 1 ≤ p < ∞
we also define the weights wi(t) = t1−1/p/ϕi(t), i = 0, 1. Since we need to assume

the condition ϕp
0(t)/tp−1 ∈ BΨ we easily find that this is equivalent to also assuming

that p < 2/(2 − 2θ0 + γ0)· Now, condition (24) is equivalent to

(28) µ(Ω)1−θ1(1 + (log µ(Ω))2)γ1/2 ≤ C|Ω|θ−θ0(1 + (log |Ω|)2)(γ0−γ)/2·
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Thus, under the above conditions, if µ satisfies (28), we have that

Mθ,γ : Lp0,p(log L)γ0 −→ Lp1,p
µ (log L)γ1 ·

It is clear that if

µ(Ω) ≤ C|Ω|(θ−θ0)/(1−θ1),

with θ0 ≤ θ and γ1 ≤ γ0 − γ, then µ satisfies (28).
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