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Resumen de la tesis

El contenido de esta tesis se enmarca dentro del Análisis Real. En particular, trata

del estudio de ciertos problemas de la teoŕıa de pesos, (una referencia clásica sobre

esta teoŕıa es el libro de J. Garćıa-Cuerva y J.L. Rubio de Francia [GR]).

Nosotros consideramos, por este orden, tres problemas clásicos diferentes, que

abarcan buena parte de la teoŕıa de pesos:

(i) Estudio de las inclusiones para espacios con pesos y acotación de operadores

integrales entre estos espacios.

(ii) Estudio de propiedades funcionales de espacios con pesos asociados a una reor-

denada decreciente de funciones.

(iii) Estudio de la acotación de operadores maximales asociados a regiones de aproxi-

mación entre espacios con pesos.

Todos estos problemas han sido tratados extensamente en la literatura. Nuestro

enfoque ha sido el de extender estos resultados a espacios con la mı́nima estructura

necesaria. Concretamente, hemos trabajado respectivamente en cada caṕıtulo en los

siguientes contextos:

(i) Espacios de medida arbitrarios.

(ii) Árboles.

(iii) Espacios de tipo homogéneo.

Puesto que un árbol puede ser a su vez un espacio de medida, o puesto que su frontera

puede ser un espacio de tipo homogéneo, algunos resultados para espacios de medida

y espacios de tipo homogéneo han sido aplicados a los árboles (véanse los caṕıtulos

primero y tercero). En cambio, en el caṕıtulo segundo trabajamos exclusivamente en

árboles.
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x Resumen de la tesis

Los espacios donde hemos desarrollado nuestra teoŕıa no poseen, en general,

ningún tipo de estructura algebraica. Por tanto, todos los resultados persiguen un

objetivo común: la extensión de la teoŕıa de pesos a espacios no euclidianos.

Detallemos el contenido de cada caṕıtulo.

1. Inclusiones y operadores en espacios con pesos de funciones monó-

tonas. En este caṕıtulo tratamos básicamente tres problemas clásicos:

(1.1) Inclusiones de espacios de Lebesgue con pesos de funciones monótonas. Sea

un espacio de medida arbitrario (X, µ). Llamamos peso a toda función positiva

u : X −→ R+ que sea localmente integrable. Para cierto 0 < p < ∞, el espacio de

Lebesgue con peso Lp(u) es el conjunto de funciones f tales que el funcional

‖f‖Lp(u) =

( ∫

X

|f(x)|p u(x) dµ(x)

)1/p

es finito. Con esta notación, en el caso u(x) = 1, se tiene Lp(1) = Lp(X,µ). Por

tanto, los espacios con pesos suponen una primera generalización de los espacios de

Lebesgue.

Uno de los problemas resueltos en la literatura es la caracterización de las inclu-

siones entre espacios de Lebesgue con pesos: ¿bajo qué condiciones sobre los pesos

u, v y los ı́ndice p, q se obtiene la inclusión Lp(u) ↪→ Lq(v)? Es decir, ¿qué condiciones

en u, v, p y q se requieren para asegurar la existencia de una constante positiva C tal

que la desigualdad

(∫

X

f(x)q v(x) dµ(x)

)1/q

≤ C

(∫

X

f(x)p u(x) dµ(x)

)1/p

, (1)

sea satisfecha para cualquier función positiva f ∈ Lp(u)?

En nuestro estudio, damos respuesta a esta pregunta cuando nos restringimos a las

funciones monótonas, es decir, funciones crecientes o bien decrecientes. Para poder

considerar el concepto de función monótona, será necesario que nuestro espacio X

esté ordenado. No obstante, no se requiere que el orden adoptado sea total, siendo

suficiente que sea un orden parcial. La caracterización de la desigualdad (1) para

funciones monótonas en espacios euclidianos como R+ o Rn
+ ha despertado gran interés

últimamente. Por ejemplo, se ha visto que dicha desigualdad es necesaria para la

acotación de ciertos operadores integrales en la semirrecta ([S2]), o se ha usado para la

caracterización de las inclusiones entre espacios de Lorentz definidos por reordenadas

decrecientes en Rn
+, para n ≥ 1 ([S2] y [BPSo2]).
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De esta manera, nuestro primer objetivo es caracterizar la desigualdad (1) para el

conjunto de funciones decrecientes del espacio de Lebesgue, que denotamos Lp
dec(u),

en el contexto del espacio de medida arbitrario (X,µ), donde X es un conjunto orde-

nado. Como se ha explicado anteriormente, esta desigualdad equivale a la inclusión

Lp
dec(u) ↪→ Lq

dec(v).

Para nuestra demostración, utilizamos un argumento de discretización. Conse-

cuentemente, nos es necesario conocer previamente la caracterización de la desigual-

dad (1) para el caso discreto X = Z y µ la medida contadora, que tiene interés por

śı sola. Debemos caracterizar los pesos discretos {uk : k ∈ Z} y {vk : k ∈ Z} y los

ı́ndices p y q tales que

( ∞∑

k=−∞
aq

k vk

)1/q

≤ C

( ∞∑

k=−∞
ap

k uk

)1/p

.

En el caso 0 < p ≤ q < ∞ era ya conocida ([R], [CRSo]), y la podemos ver en el

Teorema 1.1.4. En el rango 0 < q < p < ∞, no se encuentra en la literatura, y queda

resuelta en el Teorema 1.1.6. La demostración se basa en la Proposición 1.1.5, que

manifiesta que la desigualdad discreta para X = Z con pesos u y v es equivalente a

otra desigualdad no discreta del mismo tipo para X = R+ y para ciertos pesos ũ y ṽ

que se construyen en función de u y v. Esta última desigualdad en R+ se caracteriza

gracias al conocido resultado sobre dualidad debido a E. Sawyer ([S2]) que citamos

en el Teorema 1.1.1.

Una vez conocido el resultado para Z, discretizamos el espacio X en términos

de sucesiones de conjuntos decrecientes que lo recubren (véase la Definición 1.1.7),

y obtenemos la caracterización pretendida en el Teorema 1.1.10, nuestro principal

resultado en esta sección, gracias al resultado anterior en el ámbito discreto. Poste-

riormente, demostramos en el Teorema 1.1.13 la equivalencia con otro resultado ya

conocido para el caso X = Rn
+ ([BPSte]).

(1.2) Pesos en la clase Bp y el operador de Hardy discreto. La clase de pesos Bp fue

introducida por M.A. Ariño y B. Muckenhoupt ([AM]). Son los pesos en la semirrecta

u : R+ −→ R+ para los que el operador de Hardy

Af(x) =
1

x

∫ x

0

f(t) dt, x > 0,

satisface la acotación A : Lp
dec(u) −→ Lp

dec(u). En [R], J.A. Raposo estudió la clase

u ∈ Bp(N) de pesos discretos, es decir, de sucesiones positivas indexadas en N, para
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los que se tiene la acotación AN : `p
dec(u) −→ `p

dec(u), donde

ANf(n) =
1

n + 1

n∑
j=0

fj n = 0, 1, 2, . . . ,

es el operador de Hardy discreto definido sobre sucesiones {fn : n ∈ N}, y `p
dec(u) es

el espacio de Lebesgue con peso de sucesiones decrecientes indexadas en N. El citado

autor demostró que, en cierto sentido, se tiene

Bp(N) ⊂ Bp ∩ {f : R+ −→ R+ : ∀n ∈ N,∃ an ≥ 0 tal quef(x) = an si x ∈ [n, n + 1)} .

Nosotros vemos que, de hecho, se tiene la igualdad (Lema 1.2.3), es decir, los

pesos discretos son restricción de pesos continuos. Nos interesa estudiar si existe un

resultado a la inversa: ¿podemos reconstruir la clase Bp a partir de pesos discretos?

Vemos que la respuesta es negativa. Sin embargo, observaremos que es afirmativa

si en vez de considerar pesos discretos sobre N consideramos pesos discretos sobre

Z. Esto nos lleva a estudiar las acotaciones AZ : `p
dec(u) −→ `p

dec(u), donde ahora el

operador de Hardy es

AZf(k) =
1

2k+1

k∑
j=−∞

2jfj, k ∈ Z,

para sucesiones {fj : j ∈ Z} con ı́ndices en Z, y el espacio `p
dec(u) es el espacio de

Lebesgue de sucesiones decrecientes sobre Z. En los Teoremas 1.2.4, 1.2.6, 1.2.8,

1.2.9 y 1.2.10, se dan las caracterizaciones de la acotación de tipo fuerte y débil del

operador AZ en todo el rango de ı́ndices, que sirven para establecer las relaciones entre

las clases Bp y Bp(Z), y también entre las clases Bp,∞ y Bp,∞(Z). Como corolario,

podemos afirmar que efectivamente es posible reconstruir la clase Bp, para 0 < p < ∞,

a partir de la clase Bp(Z), es decir

Bp = {u ≥ 0 : (uk)k ∈ Bp(Z)} ,

donde hemos definido

uk =

∫ 2k+1

2k

u(x) dx,

para todo k ∈ Z (véase Corolario 1.2.5). Con la misma notación, se obtiene análoga-

mente (Corolario 1.2.7)

Bp,∞ = {u ≥ 0 : (uk)k ∈ Bp,∞(Z)} .
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(1.3) Operadores sobre funciones monótonas. El operador de Hardy Af antes citado

y el operador de Hardy-Volterra definido para una función f : R+ −→ R por la

expresión

V f(x) =

∫ x

0

f(t) dt,

son ejemplos de operadores que poseen propiedades monótonas: V f es una función

creciente para toda función f positiva y Af es una función decreciente, si f es positiva

y decreciente. Es posible establecer acotaciones para estos operadores usando estas

propiedades monótonas (véase por ejemplo [R], caṕıtulo primero).

Nosotros obtenemos acotaciones de tipo débil para operadores con ciertas propie-

dades monótonas definidos sobre funciones en espacios de medida (X, µ), donde X

es un conjunto ordenado. Para ello, necesitamos en primer lugar una definición de la

norma débil que dependa en mayor grado de la geometŕıa del espacio X (Lema 1.3.1

y Corolario 1.3.2):

‖f‖Lq,∞(v) = sup
E⊂X

V (E)1/q

(
inf
x∈E

|f(x)|
)

,

donde denotamos U(E) =
∫

E
u(x) dµ(x). Si f es decreciente, podemos restringir el

supremo a conjuntos decrecientes

‖f‖Lq,∞(v) = sup
D↓

V (D)1/q

(
inf
x∈D

f(x)

)
.

Esto permite obtener el resultado general que caracteriza la mencionada acotación

débil para esta clase de operadores: los Teoremas 1.3.3 y 1.3.4 son los principales

resultados en esta sección. En ellos se demuestra la equivalencia de la acotación

débil del operador con cierta condición capacitaria sobre los conjuntos crecientes o

decrecientes en X. En las posteriores subsecciones, se aplica esta caracterización a

espacios y operadores concretos y se obtienen de esta manera nuevos resultados aśı

como otros ya conocidos:

(1.3.1) Operadores integrales en R+. La aplicación de los Teoremas 1.3.3 y 1.3.4 al

caso de operadores integrales monótonos en X = R+ da una nueva demostración

de ciertos resultados debidos a J.A. Raposo ([R], [CRSo]), que demostramos en los

Teoremas 1.3.5, 1.3.6 y 1.3.7.

(1.3.2) Operadores integrales en árboles métricos. El Teorema 1.3.8 es la aplicación

del Teorema 1.3.4 al caso de los operadores integrales del tipo Hardy para árboles

métricos. Este resultado, junto con la técnica de discretización usada en la Sección
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1.1, dan una extensión de ciertos resultados en [EHP], que demostramos en el Teorema

1.3.10.

(1.3.3) Operadores de Hardy-Volterra en árboles. De nuevo, el Teorema 1.3.12 es la

aplicación del Teorema 1.3.4 al caso del operador de Hardy-Volterra para árboles.

Siguiendo con el estudio de las relaciones entre lo discreto y lo continuo, establecemos

en el Teorema 1.3.14 la equivalencia de las acotaciones de los operadores de Hardy-

Volterra en árboles regulares y en árboles métricos, y posteriormente caracteriza-

mos en los Teoremas 1.3.15 y 1.3.16 la acotación del operador de Hardy-Volterra en

árboles para un rango parcial de ı́ndices. Utilizamos estos resultados para obtener

caracterizaciones de la acotación de este operador definido en N (Teorema 1.3.19 y

Corolario 1.3.20).

(1.3.4) Operador de Hardy en R2
+. La aplicación del Teorema 1.3.3 en este contexto,

nos establece la acotación débil del operador de Hardy definido para funciones en R2
+,

enunciado en el Teorema 1.3.21.

2. Reordenadas no lineales en árboles. Para un espacio de medida (X, µ),

la reordenada decreciente de una función f : X −→ C es la función

f ?(t) = inf {λ : µ({x ∈ X : |f(x)| > λ}) ≤ t} , t > 0.

La reordenada decreciente conserva, por ejemplo, la p-norma de Lebesgue de la

función original y, en consecuencia, es posible describir el espacio de funciones Lp(µ)

en términos de la p-norma de las reordenadas decrecientes con respecto a la medida

de Lebesgue en R+. También es posible considerar extensiones de estos espacios fun-

cionales: si u es un peso definido en X y 0 < p < ∞ es un ı́ndice, el espacio de

Lorentz Λp
X(u) consta de aquellas funciones f tales que el funcional

‖f‖Λp
X(u) =

( ∫ ∞

0

(f ?(t))pu(t) dt

)1/p

, (2)

es finito. Tenemos, por ejemplo, que Λp(1) = Lp(µ).

Sin embargo, esta reordenada no capta ninguna caracteŕıstica de la geometŕıa del

espacio X. Existen otras reordenadas, también llamadas simetrizaciones, que śı de-

penden en cierta manera de propiedades geométricas del espacio (véase [B]). Nuestra

intención es definir una nueva reordenada decreciente en cierto espacio X que śı tenga

en cuenta estas propiedades, y estudiar posteriormente la normabilidad de los espacios

de Lorentz asociados a esta reordenada. Si queremos hablar de funciones decrecientes,

nuestro espacio X debe estar ordenado, y debe poseer una geometŕıa particular que lo
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haga interesante. Nuestra elección es la del árbol homogéneo. La estructura discreta

del árbol conlleva que las técnicas utilizadas para las demostraciones sean de tipo

combinatorio. Establecemos de esta manera un nuevo puente entre combinatoria y

análisis.

Destacamos algunos de los contenidos de las secciones del caṕıtulo:

(2.1) Definiciones. Esta sección está dedicada a dar las nociones básicas sobre árboles

que utilizamos posteriormente. Como ejemplos importantes, se definen el orden en el

árbol y la frontera de éste.

(2.2) Reordenando conjuntos finitos. El paso previo a la definición de la reordenada

decreciente de funciones es describir la reordenada decreciente de conjuntos finitos,

puesto que, si sabemos reordenar conjuntos, sabemos reordenar funciones gracias a

la fórmula del “pastel de milhojas”:

f(x) =

∫ ∞

0

χ{t∈To:f(t)>λ}(x) dλ.

Esta igualdad permite reconstruir una función en términos de sus conjuntos de nivel.

La Sección 2.2 se dedica a dar la definición de reordenada decreciente de conjuntos fini-

tos (Definición 2.2.7) y estudiar algunas propiedades básicas. Para dicha definición,

es necesario dotar a la frontera del árbol de un orden. Para ello, vemos que la frontera

del árbol está en biyección con un intervalo de la recta real, y consideramos entonces

en la frontera el orden heredado de R (Definición 2.2.4). Nuestra reordenada depende

del llamado origen de árbol y del orden en la frontera. El Teorema 2.2.15 es im-

portante puesto que establece la canonicidad de la definición de la reordenada. En

concreto, muestra que si se sabe reordenar respecto a un origen y a un orden de-

terminado, entonces se sabe reordenar respecto a cualquier elección del origen o del

orden.

Finalmente, demostramos en la Proposición 2.2.20 la monotońıa de nuestra re-

ordenada respecto a la inclusión de conjuntos. Cabe destacar que en el caso de la

reordenada decreciente clásica, esta importante propiedad tiene una demostración

trivial. En cambio, en nuestro contexto su demostración requiere de un fino análisis

combinatorio previo.

(2.3) La reordenada decreciente de funciones. En la Definición 2.3.2 de la Sección

2.3 definimos la reordenada decreciente para funciones con conjuntos de nivel finitos

a partir de la fórmula del “pastel de milhojas” antes mencionada:

f ∗(x) =

∫ ∞

0

χ{y∈T :|f(y)|>λ}∗(x) dλ,
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donde denotamos E∗ el conjunto reordenado decreciente de E.

Esta definición depende de nuevo del origen y del orden elegidos en el árbol, pero

vemos en la Proposición 2.3.3 que esta reordenada es también canónica en el sentido

antes comentado. El Lema 2.3.4 es una nueva expresión de la reordenada de la función

en términos de los valores que ésta toma: si

f(x) =
∞∑

n=1

anχEn(x),

con

|a1| > |a2| > |a3| > . . . > |an| > |an+1| > . . . ↘ 0,

y En son conjuntos disjuntos de vértices, entonces la reordenada de f es

f ∗(x) =
∞∑

n=1

anχF ∗n\F ∗n−1
(x), (3)

donde Fn =
n⋃

k=1

Ek y F0 = ∅.

Esta expresión nos facilita la demostración la Proposición 2.3.6, que recoge todas

las propiedades de la reordenada que serán usadas posteriormente. La Definición 2.3.7

es importante porque nos permite extender la reordenada a funciones con conjuntos

de nivel arbitrarios: la reordenada de una función con conjuntos de nivel no finitos se

define por paso al ĺımite de la reordenada de la función truncada con soporte finito,

es decir

f ∗(x) = lim
n

(
|f(·)| · χ{y∈T :|y|≤n}(·)

)∗
(x).

A su vez, nos permite restringir la totalidad de nuestro posterior estudio a funciones

con soporte finito.

Ni la definición de la reordenada ni su expresión equivalente (3) facilitan en la

práctica la comprensión del proceso de reordenamiento. Necesitamos una nueva ex-

presión equivalente más manejable e intuitiva; esta expresión viene dada en (2.7) y

(2.8), y la equivalencia se demuestra en el Teorema 2.3.10. La demostración se basa

de nuevo en un minucioso análisis combinatorio sobre el proceso inductivo de reor-

denamiento. A partir de ella, observamos que reordenar una función en el árbol es

equivalente a reordenarla por diferentes geodésicas consecutivamente. Este proceso

es mucho más intuitivo y será de vital importancia para el desarrollo del caṕıtulo.
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(2.4) La desigualdad de Hardy-Littlewood. La Sección 2.4 está dedicada al estudio

de la desigualdad de Hardy-Littlewood y cuestiones relacionadas. La desigualdad de

Hardy-Littlewood se demuestra en el Teorema 2.4.2:

∑
x∈T

|f(x)g(x)| ≤
∑
x∈T

f ∗(x)g∗(x),

para todas las funciones f y g. La Proposición 2.4.3 y el Corolario 2.4.4 establecen

las relaciones entre nuestra reordenada (f ∗) y la reordenada clásica (f ?)

(|f |∗)?(t) = f ?(t), t > 0,

y entre la desigualdad clásica de Hardy-Littlewood y la nuestra.

En el resto de la sección, el posterior estudio persigue conocer bajo qué condiciones

se tiene la saturación de la desigualdad de Hardy-Littlewood. Es decir, ¿cuándo se

tiene ∑
x∈T

f ∗(x)g∗(x) = sup
∑
x∈T

|f(x)h(x)| , (4)

donde el supremo se toma sobre todas las funciones h tales que h∗ = g∗? Veremos

en la siguiente sección que esta igualdad está estrechamente relacionada con la nor-

mabilidad de los espacios de Lorentz. En el contexto de la reordenada decreciente

clásica, la igualdad se obtiene si y sólo si la función g es decreciente. No ocurre aśı

con nuestra reordenada en el árbol, como vemos en el Ejemplo 2.4.6.

Con el objetivo citado de obtener condiciones sobre la función g que aseguren la

igualdad (4), vemos que es fundamental conocer las que llamamos transformaciones

reordenantes (véase Definición 2.4.8). Se trata de las biyecciones ϕf entre los soportes

de una función f y su reordenada f ∗ que nos permiten relacionar los valores de una

y otra mediante la expresión

f(x) = f ∗(ϕf (x)),

para todo x en el soporte de f . En el caso clásico, como apuntamos antes, para

obtener la saturación de la desigualdad de Hardy-Littlewood es necesario y suficiente

que g sea decreciente, y esto equivale a que g sea invariante respecto a todas las

transformaciones reordenantes, en el sentido que se satisface que

g(ϕf (.))
∗ = g,

para toda función f .
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En el caso de árboles, como hemos dicho, no es suficiente que g sea decreciente,

aunque śı es necesario. Sin embargo, y al igual que en el caso clásico, se demuestra en

el principal resultado de esta sección (Teorema 2.4.17) que, para obtener (4), debe-

mos pedir que g sea invariante respecto a todas las transformaciones reordenantes.

Veremos en la siguiente sección que la implicación inversa es cierta, completando aśı

este resultado, y ligándolo con la normabilidad del espacio de Lorentz.

Previamente, en el Teorema 2.4.15 vemos que si g es linealmente decreciente,

entonces es invariante respecto a transformaciones reordenantes. Debemos explicar

que una función es linealmente decreciente si es decreciente respecto a un nuevo orden

total en el árbol introducido en la Definición 2.4.10 que, a su vez, depende del orden

en su frontera. Es sencillo comprobar que toda función linealmente decreciente es

decreciente. A modo de resumen, el Corolario 2.4.18 dice que si la función g es

linealmente decreciente, entonces se obtiene la saturación (4).

(2.5) Los espacios de Lorentz. En la Sección 2.5 definimos el espacio de Lorentz

asociado a nuestra reordenada. Para un peso u en el árbol, ∆p
T (u) es el conjunto de

funciones f tales que el funcional

‖f‖∆p
T (u) =

(∑
x∈T

(f ∗(x))pu(x)

)1/p

(5)

es finito.

Pretendemos saber cuándo este funcional es una cuasi-norma o una norma, pero

antes vemos otras propiedades funcionales. Demostramos en la Proposición 2.5.5 que

este espacio es completo y en la Proposición 2.5.6 que son una generalización de los

espacios de Lebesgue, puesto que si u ≡ 1, tenemos que

∆p
T (1) = Lp(T, |.|),

donde |.| es la medida contadora. Estos espacios no pueden ser invariantes por reor-

denación salvo en el caso trivial que u sea constante, como vemos en la Proposición

2.5.7.

Volviendo a nuestro interés principal, el estudio de la normabilidad, se caracterizan

en el Teorema 2.5.9 los pesos u para los cuales el funcional (5) es una cuasi-norma.

Es más dif́ıcil saber cuándo ∆p
T (u) equipado con el funcional (5) es un espacio de

Banach, es decir, cuándo (5) es una norma, puesto que hemos comentado que ∆p
T (u)

es completo. En el contexto del espacio X = (0, l) y de la reordenada clásica y
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para p ≥ 1, G.G. Lorentz ([Lo]) probó que es necesario y suficiente que el peso u

(definido en la semirecta) sea decreciente para que el espacio Λp
(0,l)(u) sea de Banach,

o equivalentemente, el funcional (2) es una norma; J.A. Raposo ([R], [CRSo]) obtuvo

el mismo resultado para Λp
X(u) con espacios de medida X más generales. Este último

autor, en los citados trabajos, da una respuesta también para el rango 0 < p < 1.

Nuestra primera aproximación a la solución es en este sentido: en el Lema 2.5.10

demostramos que el peso u debe ser decreciente en el árbol para que (5) sea una norma.

Pero un simple ejemplo muestra que no es condición suficiente (Ejemplo 2.5.11).

Se repite aśı el esquema anterior cuando estudiamos la saturación de la desigualdad

de Hardy-Littlewood: es necesario que el peso sea decreciente pero no suficiente.

Vimos entonces que si el peso u es linealmente decreciente, śı se garantiza la igualdad

∑
x∈T

f ∗(x)u(x) = sup
∑
x∈T

|f(x)h(x)| , (6)

donde el supremo se toma sobre todas las funciones h tales que h∗ = u. La pregunta

que surge es: ¿si el peso u es linealmente decreciente, es entonces el funcional (5)

una norma? Damos respuesta afirmativa en el Teorema 2.5.12; pero aún mejor, se

demuestra que esta condición en u también es necesaria, y que equivale a su vez

a la igualdad (6), y que equivale a que u sea invariante con respecto a todas las

transformaciones reordenantes. Este teorema es el más importante en la Sección 2.5.

Por último, usando los resultados del primer caṕıtulo, nos es posible caracterizar

las inclusiones

∆p
T (u) ↪→ ∆q

T (v)

en términos de u, v, p y q, en el Teorema 2.5.15.

(2.6) Árboles finitos y árboles regulares. Es posible extender nuestros resultados en

árboles homogéneos a una clase más amplia como son los árboles regulares. También

es posible adaptar los resultados para el caso de árboles finitos. En ambos casos, la

idea principal es la de encajar los árboles regulares o finitos en un árbol homogéneo

adecuado, donde ya sabemos reordenar. Para el caso finito, vemos en el ejemplo final

que podemos enumerar los vértices en la frontera del árbol, y utilizar este orden para

obtener la reordenada de un conjunto cualquiera (y por tanto, de cualquier función),

en vez de usar el orden en la frontera del árbol de la Definición 2.2.4. Parece más

natural elegir este orden sencillo, pero para nuestra sorpresa, con este nuevo orden el

Teorema 2.5.12 es falso, como demostramos.
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3. Desigualdades con pesos y la forma de las regiones de aproximación.

En la historia del Análisis, se han estudiado muchos problemas relacionados con la

existencia de valores en la frontera de un dominio para cierta clase de funciones. Uno

de ellos es determinar el tipo de regiones contenidas en el dominio para las que existe

el ĺımite en la frontera de funciones pertenecientes a cierto espacio funcional. Estas

regiones se denominan regiones de aproximación. Por ejemplo, si el dominio es el

disco unidad

D = {z ∈ C : |z| < 1} ,

su frontera es ∂D = {z ∈ C : |z| = 1}, y las regiones son conos definidos por

Γ(ω) = {z ∈ D : |z − ω| < 2(1− |z|)} ,

para ω ∈ ∂D, es conocido que el ĺımite

lim
z→ω

z∈Γ(ω)

f(z)

existe (a.e. ω) para toda función armónica en D. En cambio, si la región contiene

curvas que se acercan tangencialmente a ω, el ĺımite no existe en general. Digamos

que la forma geométrica de la región influye en la existencia o no del ĺımite.

En 1930, Hardy y Littlewood ([HL]) introdujeron la idea de estudiar la conver-

gencia de una sucesión de funciones a partir de la acotación de una función maximal.

Más tarde, A. Nagel and E.M. Stein ([NS]) caracterizan las regions de aproximación

Ω ⊂ Rn+1
+ :=

{
(x, t) ∈ Rn+1 : x ∈ Rn, t > 0

}

para las que se tiene convergencia hacia la frontera para la integral de Poisson de

funciones en Lp de la frontera, es decir, Lp(Rn). Definen el operador maximal asociado

a la región de aproximación al origen 0, que denotamos Ω(0),

MΩf(x) = sup
(y,r)∈Ω(0)

1

|B(y, r)|
∫

B(y,r)

|f(x + z)| dz,

y estudian las acotaciones

MΩ : Lp −→ Lp, p > 1,

MΩ : L1 −→ L1,∞.

Nosotros nos planteamos estudiar la acotación con pesos

MΩ : Lp(u) −→ Lp,∞(v), p ≥ 1,
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para un operador MΩ asociado a una familia de aproximación (i.e., una familia de

regiones de aproximación) en un contexto más general. Luego estudiamos bajo qué

condiciones en la familia Ω se obtiene la estimación

MΩf(x) ≤ CMf(x),

para todo x y toda f , donde Mf es el operador maximal de Hardy-Littlewood. Esta

desigualdad se traduce en una inclusión entre ciertas clases de pesos que serán también

estudiadas. Estas cuestiones son introducidas por A. Sánchez-Colomer y J. Soria en

[SS2] para el espacio eucĺıdeo Rn+1
+ , y nosotros pretendemos extender el estudio a

espacios más generales.

Hemos estructurado el caṕıtulo siguiendo el orden cronológico en que efectuamos

la investigación. Empezamos por estudiar en la Sección 3.2 las cuestiones antes men-

cionadas para familias de aproximación

Ω ⊂ X+ := X × (0,∞),

donde (X,µ, d) es un espacio de tipo homogéneo no simétrico, que denotamos por

ns-espacio de tipo homogéneo, y que es una extensión de la noción del espacio de tipo

homogéneo (véanse las Definiciones 3.2.1 y 3.2.2). En la Subsección 3.2.3 aplicamos los

resultados obtenidos al caso (más sencillo) en que X es un grupo, puesto que existen

muchos ejemplos con esta caracteŕıstica. Posteriormente, el estudio se extiende a un

contexto abstracto en la Sección 3.3, dado que muchos ejemplos de dominios donde

se pueden aplicar los resultados no poseen una estructura cartesiana como la de X+.

Para ilustrar este salto al caso abstracto, hacemos un estudio previo en la Subsección

3.3.1 del caso de los árboles homogéneos.

Debido a esta estructura, aparecen resultados semejantes a lo largo del caṕıtulo,

que corresponden a las mismas ideas aplicadas a cada contexto. Hemos créıdo opor-

tuno incluirlos puesto que aśı se ve cuáles son las dificultades que debemos salvar en

cada caso. Además, se facilita el seguimiento del estudio de esta manera.

Detallamos el contenido de cada sección:

(3.1) Resultados preliminares en Rn+1
+ . Con el fin de centrarnos en nuestro objeto de

investigación, recogemos en esta sección todos aquellos resultados conocidos hasta el

momento que nos son útiles. Algunos de ellos serán generalizados y completados en

secciones posteriores.
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(3.2) El semiepacio X × (0,∞) para un espacio de tipo homogéneo X. Dedicamos

esta sección al caso del producto cartesiano X+ := X×(0,∞), donde X es un espacio

de tipo homogéneo. Hemos dividido la sección en tres partes:

(3.2.1) Definiciones y resultados previos. Empezamos por incluir las definiciones de

los espacios de tipo homogéneo y los espacios de tipo homogéneo no simétrico, que

llamamos ns-espacios de tipo homogéneo (Definiciones 3.2.1 y 3.2.2). Proseguimos

con algunos resultados clásicos adaptados a los ns-espacios: lema de recubrimiento de

tipo Vitali (Lema 3.2.5), estimaciones para el operador maximal de Hardy-Littlewood

(Teorema 3.2.6), descomposición de tipo Whitney (Teorema 3.2.7) y extensión del

concepto de par de Carleson a abiertos arbitrarios (Proposición 3.2.9). Introducimos

entonces en la Definición 3.2.10 los conceptos básicos asociados a una familia de

aproximación

Ω = {Ω(x) : x ∈ X} ,

donde cada Ω(x) es un conjunto medible en X+. Asimismo, definimos para una

función f el operador maximal asociado a la familia Ω como

MΩf(x) = sup
(y,t)∈Ω(x)

1

µ(B(y, t))

∫

B(y,t)

|f(z)| dµ(z).

El Teorema 3.2.13 es importante: se caracteriza la acotación

MΩ : Lp(ν) −→ Lp,∞(ρ),

para dos medidas ν y ρ, en términos de una condición de tipo Carleson, que es

equivalente a una desigualdad entre las funciones de distribución de MΩf y Mf , para

toda f .

La clase de pesos Ap fue introducida por B. Muckenhoupt ([M]). Es el conjunto de

pesos u para los que se tiene la acotación del operador maximal de Hardy-Littlewood

M : Lp(u) −→ Lp,∞(u).

Análogamente, definimos la clase de pesos AΩ
p como los pesos u tales que se tiene la

acotación

MΩ : Lp(u) −→ Lp,∞(u).

Finalmente, se define la clase de pesos W (Ω) asociados a la familia Ω (Definición

3.2.16). Una consecuencia del Teorema 3.2.13 es el Teorema 3.2.17, también impor-

tante, donde se da la relación existente entre estas clases de pesos. Concretamente,

obtenemos que

AΩ
p = Ap ∩W (Ω). (7)



Resumen de la tesis xxiii

(3.2.2) La forma de las regiones de aproximación. En esta subsección respondemos a

una pregunta natural en vista de la igualdad (7): ¿cuándo se tiene Ap = AΩ
p ? Para

ello, necesitamos cierta propiedad de invariancia sobre el espacio de tipo homogéneo

(X,µ, d): existe C > 0 tal que

1

C
µ(B(x, r)) ≤ µ(B(y, r)) ≤ C µ(B(x, r)),

para todo x, y y r > 0, donde B(x, r) es la bola de centro x y radio r > 0. Con

este fin, requerimos al espacio (X, µ, d) que cumpla la siguiente condición: existe una

constante M > 0 tal que

B(x,Mr) \B(x, r) 6= φ, (8)

para todo x y r > 0.

Si el espacio de tipo homogéneo (X, µ, d) satisface esta última condición, entonces

podemos reemplazar la cuasi-distancia d por otra cuasi-distancia no simétrica δ, de

tal manera que (X, µ, δ) es un ns-espacio de tipo homogéneo. Con este cambio, ni

la topoloǵıa ni las clases de pesos Ap y AΩ
p vaŕıan, y se consigue que µ(B(x, r)) sea

comparable a r, con lo que obtenemos la invariancia deseada. Estos resultados se

recogen en el Teorema 3.2.21 y el Corolario 3.2.25.

Antes de dar nuestro principal teorema, necesitamos que la familia de aproxi-

mación satisfaga cierta condición de regularidad descrita en la Definición 3.2.28. Con

los ejemplos de familias de aproximación regulares que se presentan después, pode-

mos ver que esta regularidad requerida no es demasiado restrictiva en el sentido que

existen familias regulares, en R2
+ por ejemplo, no generadas por traslación.

Finalmente, probamos el principal teorema (Teorema 3.2.30) donde se dan dife-

rentes caracterizaciones para la obtención de la igualdad Ap = AΩ
p . Una de ellas es la

inclusión

Ω(x) ⊂ Γθ(x),

para cierta θ > 0, donde Γθ(x) es el cono de vértice x y apertura θ. Aśı, vemos que

condiciones anaĺıticas en la clase de pesos se traducen en condiciones geométricas en

la familia de regiones.

(3.2.3) El caso de la estructura de grupo: algunos ejemplos. En esta sección, damos

algunos ejemplos de espacios de tipo homogéneo que poseen la estructura de grupo,

y a los que se aplica nuestro resultado. Aprovechamos para obtener una nueva de-

mostración del Teorema 3.2.30 más sencilla en este contexto.

Los ejemplos tratados son:
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(i) X = Rn con la medida de Lebesgue y la distancia no isotrópica

d(x, y) =
n∑

k=1

|xk − yk|1/ak ,

es un espacio de tipo homogéneo.

(ii) X = Hn el grupo de Heisenberg dotado de la distancia

d(x, y) = ||y−1 · x||,

donde

||[ζ, t]|| = max(|ζ|2, |t|),
es la pseudo-norma en Hn, y de la medida de Lebesgue en Cn×R, es un espacio

de tipo homogéneo.

(iii) X es el conjunto de las matrices reales triangulares superior 3× 3 con unos en

la diagonal. La ley multiplicativa de grupo es el producto usual de matrices.

La cuasi-distancia es d′(x, y) = (d(x, y) + d(y, x))/2, donde d(x, y) = ||y−1 · x||
y ||x|| = max{|a|, |b|1/2, |c|}. La medida es la medida de Lebesgue en R3.

(iv) Todo grupo de Lie nilpotente y unimodular, con la métrica Riemaniana y la

medida inducida es un espacio de tipo homogéneo.

(3.3) El caso general. Muchos ejemplos interesantes de dominios donde se ha es-

tudiado el fenómeno de la convergencia hacia la frontera no poseen una estructura

de producto cartesiano como la estudiada en la sección anterior. Por este motivo,

resolvemos aqúı las mismas cuestiones, pero en el contexto más abstracto.

(3.3.1) Regiones de aproximación en un árbol homogéneo isotrópico. Desarrollamos

la teoŕıa en este nuevo marco. Ahora el árbol juega el papel del semiespacio X+ y su

frontera es un espacio de tipo homogéneo que juega el papel de X. En este caso, se

tiene que la medida de todas las bolas en la frontera con el mismo radio coincide. El

Teorema 3.3.8 es el resultado análogo al Teorema 3.2.30.

(3.3.2) Regiones de aproximación en el contexto abstracto. Usamos las técnicas in-

troducidas por F. Di Biase ([DiB]) para la última extensión de nuestros resultados.

Definimos la estructura general en la Definición 3.3.9, y suplimos la noción de cono por

la de región supernatural (Definición 3.3.10). Básicamente, una familia supernatural

Γ satisface que la sombra de ζ,

Γ↓(ζ) = {x ∈ X : ζ ∈ Γ(x)} ,
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es comparable a una bola, y que para cada bola, existe una sombra comparable.

Definimos el operador maximal asociado a una familia de aproximación Ω en

función de la familia de aproximación supernatural fijada Γ como sigue:

MΩf(x) = sup
ζ∈Ω(x)

1

µ(Γ↓(ζ))

∫

Γ↓(ζ)

|f(y)| dµ(y).

Obtenemos también la igualdad AΩ
p = Ap ∩ W (Ω) en el Teorema 3.3.15, con las

definiciones pertinentes para cada clase de pesos.

Como hicimos anteriormente, podemos reemplazar el espacio de tipo homogéneo

(X,µ, d) por el ns-espacio de tipo homogéneo (X,µ, δ) sin pérdida de generalidad

(Teorema 3.3.16), siempre que (X, µ, d) cumpla la condición (8).

El análogo al Teorema 3.2.30 es el Teorema 3.3.18, que supone el mayor grado de

generalización de nuestros resultados.

(3.4) Vuelta a espacios eucĺıdeos: dos aplicaciones. En esta última sección, apli-

camos las técnicas utilizadas en este caṕıtulo para completar algunos resultados en

Rn aparecidos en [FJR] y [RS].

(3.4.1) Operadores integrales singulares. En este apartado estudiamos la acotación

del operador

NΩf(x) = sup
(y,t)∈Ω(x)

|(Kt ∗ f)(y)| ,

definido para una familia de aproximación Ω ⊂ Rn+1
+ y un núcleo de Calderón-

Zygmund. Obtenemos la caracterización completa de la acotación

NΩ : Lp(m) −→ Lp,∞(ρ),

si p ≥ 1, m la medida de Lebesgue y ρ una medida arbitraria, cuando Kj(x) =

ωj(x)/ |x|n con ωj(x) = xj/ |xj|, para cierto 1 ≤ j ≤ n, es el núcleo de Riesz (Teo-

rema 3.4.2). En el caso de un núcleo general de Calderón-Zygmund, obtenemos un

resultado parcial en el Teorema 3.4.4.

(3.4.2) Espacios potenciales. Aqúı damos estimaciones para el operador

NΩf(x) = sup
(y,t)∈Ω(x)

|(Pt ∗ f)(y)| ,

donde P es el núcleo de Poisson y Ω es una familia de aproximación en Rn+1
+ . Con-

cretamente, se caracteriza la acotación

NΩ : Lp
k(m) −→ Lp,∞(ρ),
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donde

Lp
k(m) = {f : f = F ∗ k, para alguna F ∈ Lp(m)}

es el espacio potencial. El principal resultado es el Teorema 3.4.6.
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Introduction

The main contents of this thesis belong to the area of Real Analysis. In particular, we

deal with the study of certain problems in the theory of weights, (a classical reference

for this theory is the book of J. Garćıa-Cuerva and J.L. Rubio de Francia [GR]).

We consider, in this order, three different classical problems, that cover a big part

of the theory of weights:

(i) Study of embeddings of weighted spaces and boundedness of integral operators

between weighted spaces.

(ii) Study of functional properties of weighted spaces related to a decreasing rear-

rangement of functions.

(iii) Study of the boundedness of maximal operators related to approach regions

between weighted spaces.

All these problems have been intensively studied in the literature. Our point of

view has been to extend these results to spaces with the minimum necessary structure.

To be precise, to obtain our results, we have worked respectively in each chapter in:

(i) Arbitrary measure spaces.

(ii) Trees.

(iii) Spaces of homogeneous type.

Since a tree can also be seen as a measure space, and since its boundary can be a space

of homogeneous type, some results about measure spaces and spaces of homogeneous

type have been applied to trees (see the first and the third chapters). On the other

hand, in the second chapter we work exclusively in trees.

The spaces where we work do not enjoy, in general, any type of algebraic structure.

Therefore, our results go in one direction: the extension of the theory of weights to

non-Euclidean spaces.

1



2 Introduction

We detail the content of each chapter:

1. Embeddings and operators on weighted spaces of monotone func-

tions. In this chapter, we deal basically with three classical problems:

(1.1) Embeddings of weighted spaces of monotone functions. Let (X,µ) be a measure

space. A positive locally integrable function u : X −→ R+ is called a weight. For

0 < p < ∞, the weighted Lebesgue space Lp(u) is the set of functions f such that

the functional

‖f‖Lp(u) =

( ∫

X

|f(x)|p u(x) dµ(x)

)1/p

is finite. With this notation, we trivially have that if u(x) = 1, then Lp(1) = Lp(X, µ).

Then, these weighted spaces are a generalization of the Lebesgue spaces.

We consider the case of monotone functions. The space Lp
dec(u) stands as the set

of decreasing functions in Lp(u). In our work, we characterize the embedding

Lp
dec(u) ↪→ Lq

dec(v),

or equivalently, we find conditions on u, v, p and q such that there exists a constant

C > 0 such that the inequality

(∫

X

f(x)q v(x) dµ(x)

)1/q

≤ C

(∫

X

f(x)p u(x) dµ(x)

)1/p

, (9)

holds for all decreasing functions f ∈ Lp(u).

To be able to consider this question, our space X has to be ordered, but we just

need a partial order. The characterization of inequality (9) for the Euclidean cases

X = R+ with the usual order, or X = Rn
+ with the order

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn)

if and only if ai ≤ bi for i = 1, . . . , n, have been of great interest in the recent years.

For example, it has been proved that this inequality is necessary for the boundedness

of certain integral operators defined in R+ ([S2]), or it has been used to characterize

the embeddings of Lorentz spaces related to decreasing rearrangements in Rn
+, n ≥ 1

([S2] and [BPSo2]).

To obtain the characterization of inequality (9), we use a discretization argument.

Thus, we previously need to know the characterization of this inequality for the

discrete case X = Z and µ the counting measure, which is of interest by itself. We
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have to give conditions on the discrete weights {uk : k ∈ Z} and {vk : k ∈ Z} and the

indices p and q such that

( ∞∑

k=−∞
aq

k vk

)1/q

≤ C

( ∞∑

k=−∞
ap

k uk

)1/p

.

In the range 0 < p ≤ q < ∞ this is known ([R], [CRSo]). In the range 0 < q < p < ∞,

it seems to be an open problem, and we solve it in Theorem 1.1.6. The proof is based

in Proposition 1.1.5, that shows that the discrete inequality for X = Z and weights u

and v is equivalent to the same non-discrete inequality in X = R+, for certain weights

ũ and ṽ that depend on u and v. This last inequality in R+ is characterized by using

the well-known duality result due to E. Sawyer ([S2]), introduced in Theorem 1.1.1.

Once the result for Z is obtained, we discretize the space X in terms of covering

sequences of decreasing sets (see Definition 1.1.7), and we obtain Theorem 1.1.10, our

main result in this section, thanks to the discrete case. Then, we prove in Theorem

1.1.13 that our result is equivalent to the previously known case X = Rn
+ ([BPSte]).

(1.2) Bp weights and the discrete Hardy operator. The Bp class of weights was

introduced by M.A. Ariño and B. Muckenhoupt ([AM]). These are the weights u :

R+ −→ R+ such that the Hardy operator

Af(x) =
1

x

∫ x

0

f(t) dt, x > 0,

satisfies the boundedness A : Lp
dec(u) −→ Lp

dec(u). In [R], J.A. Raposo studied the

class u ∈ Bp(N) of discrete weights, that is, of positive sequences indexed over N,

such that we have the boundedness AN : `p
dec(u) −→ `p

dec(u), where

ANf(n) =
1

n + 1

n∑
j=0

fj n = 0, 1, 2, . . . ,

is the discrete Hardy operator defined on sequences {fn : n ∈ N}, and `p
dec(u) is the

weighted Lebesgue space of sequences over N. This author proved that, in some sense,

we have

Bp(N) ⊂ Bp∩{f : R+ −→ R+ : ∀n ∈ N,∃ an ≥ 0 such thatf(x) = an if x ∈ [n, n + 1)} .

We prove that the equality is true (Lemma 1.2.3), that is, the discrete weights

come from the restriction of continuos weights. We are interested in the converse

result: can we build the Bp class in terms of the discrete weights? The answer is
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negative, as a simple example shows. But we prove that the answer is affirmative if,

instead of Bp(N), we consider discrete weights indexed over Z. This leads us to prove

estimates AZ : `p
dec(u) −→ `p

dec(u), where now the Hardy operator is

AZf(k) =
1

2k+1

k∑
j=−∞

2jfj, k ∈ Z,

defined for sequences {fj : j ∈ Z} with indices in Z, and `p
dec(u) is the Lebesgue space

of decreasing sequences over Z. In Theorems 1.2.4, 1.2.6, 1.2.8, 1.2.9 and 1.2.10, we

give several characterizations of the boundedness and the weak-boundedness of AZ in

all the range of indices 0 < p < ∞. They are used to obtain relations between Bp

and Bp(Z), and also between Bp,∞ and Bp,∞(Z). We mention, as a summary, that

for 0 < p < ∞,

Bp = {u ≥ 0 : (uk)k ∈ Bp(Z)} ,

where

uk =

∫ 2k+1

2k

u(x) dx,

for all k ∈ Z (see Corollary 1.2.5). With the same notation (Corollary 1.2.7)

Bp,∞ = {u ≥ 0 : (uk)k ∈ Bp,∞(Z)} .

(1.3) Operators on monotone functions. We obtain estimates for the weak-bounded-

ness of operators with certain monotone properties in measure spaces (X,µ), where

X is an ordered set. For this, we need a more geometrical definition of the weak norm

of a function (Lemma 1.3.1 and Corollary 1.3.2):

‖f‖Lq,∞(v) = sup
E⊂X

V (E)1/q

(
inf
x∈E

|f(x)|
)

,

where U(E) =
∫

E
u(x) dµ(x). If f is decreasing, then

‖f‖Lq,∞(v) = sup
D↓

V (D)1/q

(
inf
x∈D

f(x)

)
.

This allows us to obtain the general result for the mentioned weak-boundedness

of this class of operators: Theorems 1.3.3 and 1.3.4 are our main result in this sec-

tion. In the forthcoming subsections, we apply it to different spaces and operators,

obtaining new and known results:

(1.3.1) Integral operators in R+. The application of Theorems 1.3.3 and 1.3.4 to the
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case of monotone integral operators in X = R+ give new proofs of certain results due

to J.A. Raposo ([R], [CRSo]), that we prove in Theorems 1.3.5, 1.3.6 and 1.3.7.

(1.3.2) Integral operators in metric trees. Theorem 1.3.8 is the application of Theorem

1.3.4 to the case of Hardy type operators in metric trees. This result, with the use

of the discretization technique of Section 1.1, gives an extension of certain results in

[EHP], that we prove in Theorem 1.3.10.

(1.3.3) Hardy-Volterra operators in trees. Once more, Theorem 1.3.12 is the applica-

tion of Theorem 1.3.4 to the Hardy-Volterra operator on trees. Following the study

of the relations between discrete and continuous, we establish in Theorem 1.3.14 the

equivalency of the boundedness of the Hardy-Volterra operators in regular trees and

metric trees, and later we give the boundedness of the Hardy-Volterra operator in

trees for a partial range of indices in Theorems 1.3.15 and 1.3.16. We use these re-

sults to obtain characterizations of this operator defined in N (Theorem 1.3.19 and

Corollary 1.3.20).

(1.3.4) Hardy operator in R2
+. The application of Theorem 1.3.3 in this context, es-

tablishes the weak-boundedness of the Hardy operator defined for functions in R2
+,

announced in Theorem 1.3.21.

2. Non-linear rearrangement on trees The classical decreasing rearrangement

of a function f : X −→ C in a measure space (X, µ) is

f ?(t) = inf {λ : µ({x ∈ X : |f(x)| > λ}) ≤ t} , t > 0.

If u is a weight in X and 0 < p < ∞, the Lorentz space Λp
X(u) contains the functions

f such that the functional

‖f‖Λp
X(u) =

( ∫ ∞

0

(f ?(t))pu(t) dt

)1/p

,

is finite.

The classical rearrangement does not distinguish any geometric characteristic of

X. There exist other rearrangements or symetrizations that depend on these charac-

teristics of the space (see [B]). Our intention is to define a new decreasing rearrange-

ment in certain space X that strongly depends on its geometric properties, and to

study the normability of the related Lorentz spaces. Our space X has to be ordered,

and must have an interesting geometry. We choose a homogeneous tree. Its discrete

topology forces us to prove our results by using combinatorial techniques. Thus, we

establish a new interplay between analysis and combinatorics.
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Some of the contents of the chapter are:

(2.1) Definitions. We give the basic notions about trees. Two important examples

are the order in the tree and its boundary.

(2.2) Rearranging finite sets. By using the “Layer-cake” formula

f(x) =

∫ ∞

0

χ{t∈To:f(t)>λ}(x) dλ,

to rearrange a function it is enough to rearrange its level sets. Section 2.2 is devoted

to give the definition of the decreasing rearrangement for finite sets (Definition 2.2.7)

and to study some basic properties. To this end, we need to adopt an order in the

boundary of the tree. We do it by establishing a bijection between the boundary and

an interval in R, and then we transfer the usual order of the real numbers (Definition

2.2.4).

Our rearrangement depends on the so-called origin of the tree and the order in

the boundary. Theorem 2.2.15 is important because it shows the canonicity of the

definition.

Finally, Proposition 2.2.20 shows that our rearrangement is monotone with respect

to the inclusion of sets. It turns out that, contrary to the classical rearrangement,

the proof is not trivial and requires a sharp combinatorial analysis.

(2.3) The decreasing rearrangement of functions. Definition 2.3.2 in Section 2.3 is

the decreasing rearrangement of functions with finite level sets:

f ∗(x) =

∫ ∞

0

χ{y∈T :|f(y)|>λ}∗(x) dλ,

where E∗ is the rearranged of E.

Proposition 2.3.3 shows its canonicity, and Proposition 2.3.6 collects all the main

properties. Definition 2.3.7 is important because it allows us to extend the notion of

the rearrangement to general functions. The idea is to cut the function in a sequence

of functions with finite support, to rearrange them, and to define the rearrangement

pointwise as the limit of the sequence of rearranged functions:

f ∗(x) = lim
n

(
|f(·)| · χ{y∈T :|y|≤n}(·)

)∗
(x).

Therefore, we can restrict the study to finitely supported functions.

The definition of the decreasing rearrangement is elegant but not handy. So, we

look for a more intuitive equivalent way of rearranging; this way is given in expressions
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(2.7) and (2.8), and the equivalency is shown in Theorem 2.3.10. The proof is based

in a detailed combinatorial analysis of the inductive process of rearrangement.

(2.4) The Hardy-Littlewood inequality. Section 2.4 is devoted to the Hardy-Little-

wood inequality (Theorem 2.4.2) and related topics. Proposition 2.4.3 and Corollary

2.4.4 establish the relations between our rearrangement (f ∗) and the classical one

(f ?),

(|f |∗)?(t) = f ?(t), t > 0,

and between the Hardy-Littlewood classical inequality and ours.

The last part is devoted to study conditions on the function g such that we get

the saturation of the Hardy-Littlewood inequality, that is: when do we have

∑
x∈T

f ∗(x)g∗(x) = sup
∑
x∈T

|f(x)h(x)| , (10)

where the supremum is taken over all h such that h∗ = g∗? We will see in the next

section that this equality is linked with normablility properties of the Lorentz spaces.

In the context of the classical rearrangement, the equality is true if and only if g is

decreasing. This is not the case in the tree, as Example 2.4.6 shows.

It turns out that to obtain the saturation, it is fundamental to know what we call

the rearranging transformations (see Definition 2.4.8). They are the bijections ϕf

between the supports of f and f ∗ that relate the values of the two functions, that is,

f(x) = f ∗(ϕf (x)),

for all x in the support of f . In the classical context, a function g is decreasing if and

only if it is invariant under the action of the rearranging transformations in the sense

that

g(ϕf (.))
∗ = g,

for all functions f .

As in the classical context, we prove in Theorem 2.4.17, one of our main results in

the section, that if g is invariant with respect to all the rearranging transformations,

then (10) holds. We will see in the next section that the converse is also true.

Previously, we see in Theorem 2.4.15 that if g is linearly decreasing, then it is

invariant with respect to all rearranging transformations. We shall explain that a

function is linearly decreasing if it is decreasing with respect to a new total order,

introduced in Definition 2.4.10, that depends also on the order of the boundary of
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the tree. It is trivial to prove that every linearly decreasing function is also a de-

creasing function in the tree. As a summary, Corollary 2.4.18 says that if g is linearly

decreasing, then we obtain the saturation (10).

(2.5) The Lorentz spaces. For a weight in the tree u, the Lorentz space ∆p
T (u) is the

set of functions f such that the functional

‖f‖∆p
T (u) =

(∑
x∈T

(f ∗(x))pu(x)

)1/p

(11)

is finite.

We prove in Proposition 2.5.5 its completeness, and in Proposition 2.5.6 that they

are a generalization of the Lebesgue spaces, since if u ≡ 1 then ∆p
T (1) = Lp(T, |.|),

where |.| is the counting measure. These spaces cannot be rearrangement invariant

spaces in the classical sense except for the trivial case that u is constant (Proposition

2.5.7).

Our main interest are the normability properties. Theorem 2.5.9 gives the weights

u for which the functional (11) is a quasi-norm. It is more difficult to know when

∆p
T (u) equipped with the functional (11) is a Banach space, that is, when (11) is a

norm. We show in Lemma 2.5.10 that the weight u must be decreasing in order to

get this. But a simple example shows that it is not enough (Example 2.5.11).

Finally, we find in Theorem 2.5.12 that the saturation (10), with g = u, is equiv-

alent to saying that (11) is a norm, also to the condition u is linearly decreasing and

finally, to have that u is invariant with respect to all the rearranging transformations.

This theorem completes the previous results and is the most important in this section.

In the last result, we characterize the embedding

∆p
T (u) ↪→ ∆q

T (v)

in terms of u, v, p and q in Theorem 2.5.15, by using some results of the first chapter.

(2.6) Finite trees and regular trees. It is possible to extend our results to a wider

class of trees: the regular trees. It is also possible to adapt them to the finite trees.

In both cases, the main idea is to embed the regular tree and the finite tree into a

homogeneous tree. In the finite case, we see in the final example that we can list the

vertices in the boundary of the tree and use it to rearrange, instead of using the order

of Definition 2.2.4. Surprisingly, Theorem 2.5.12 is false with this order.
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3. Weighted inequalities and the shape of approach regions. We study

the weighted boundedness

MΩ : Lp(u) −→ Lp,∞(v), p ≥ 1,

for a maximal operator MΩ related to a family of approach regions in a general

context, and the relations of this boundedness with the shape of the approach family.

These are questions introduced by A. Sánchez-Colomer and J. Soria in [SS2] for the

Euclidean space Rn+1
+ , and we want to extend them to more general spaces.

We have structured the chapter following the chronological order of our research.

We start by studying in Section 3.2 the above questions for approach families

Ω ⊂ X+ := X × (0,∞),

where (X,µ, d) is a non symmetric space of homogeneous type, denoted by ns-space

of homogeneous type (see Definitions 3.2.1 and 3.2.2). In Subsection 3.2.3 we apply

the results to the (easier) case of a group structure in X. Later, the study extends

to an abstract context in Section 3.3, since many examples of domains do not have

a Cartesian structure as X+. In order to illustrate the way of extension, we make a

previous study in Subsection 3.3.1 for the case of the homogeneous trees.

Due to this structure, we obtain similar results, that correspond to the same ideas

applied to the different contexts. We think that by writing things this way it is

much easier to understand what are the main difficulties we have to overcome in each

setting.

We detail the content of each section:

(3.1) Preliminary results in Rn+1
+ . We collect some known results in the Euclidean

space. Some of them will be completed and generalized.

(3.2) The half-space X × (0,∞) for a space of homogeneous type X. This section is

devoted to the case X+ := X × (0,∞), where X is a space of homogeneous type. We

have divided the section in three parts:

(3.2.1) Definitions and previous results. We begin by describing the spaces of homo-

geneous type and the non-symmetric spaces (ns-spaces) of homogeneous type (Defi-

nitions 3.2.1 and 3.2.2). We follow with some classic results adapted to the ns-spaces:

covering lemma of Vitali type (Lemma 3.2.5), estimates for the Hardy-Littlewood

maximal operator (Theorem 3.2.6), decomposition of Whitney type (Theorem 3.2.7)

and extension to arbitrary open sets of the Carleson pair condition (Proposition 3.2.9).
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We then introduce in Definition 3.2.10 the basic concepts related to a family of ap-

proach regions

Ω = {Ω(x) : x ∈ X} ,

where Ω(x) is a measurable set in X+ for all x. We define the maximal operator

related to Ω:

MΩf(x) = sup
(y,t)∈Ω(x)

1

µ(B(y, t))

∫

B(y,t)

|f(z)| dµ(z).

Theorem 3.2.13 is important: it determines the boundedness

MΩ : Lp(ν) −→ Lp,∞(ρ),

for two measures ν and ρ, in terms of a condition of Carleson type.

The Ap class of weights was introduced by B. Muckenhoupt ([M]). It is the set of

weights u such that the boundedness

M : Lp(u) −→ Lp,∞(u),

is satisfied for the Hardy-Littlewood maximal operator. We define AΩ
p as the set of

weights u such that we have the boundedness

MΩ : Lp(u) −→ Lp,∞(u).

Finally, W (Ω) is a set of weights also related to Ω (Definition 3.2.16). A consequence

of Theorem 3.2.13 is Theorem 3.2.17, also important, where the equality

AΩ
p = Ap ∩W (Ω), (12)

is proved.

(3.2.2) The shape of approach regions. We answer a natural question in view of (12):

when do we have Ap = AΩ
p ? To answer it, we need an invariancy property on the

space (X, µ, d): there exists C > 0 such that

1

C
µ(B(x, r)) ≤ µ(B(y, r)) ≤ C µ(B(x, r)),

for all x, y and r > 0, where B(x, r) is the ball of center x and radius r > 0. To this

end, we require an extra condition on (X, µ, d): there exists M > 0 such that

B(x,Mr) \B(x, r) 6= φ, (13)

for all x and r > 0.
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If the space (X, µ, d) satisfies this condition, then we can replace the quasi-distance

d by another non-symmetric quasi-distance δ, so that (X,µ, δ) is a ns-space of ho-

mogeneous type. The topology and the classes Ap and AΩ
p are invariant under this

change, and we get that µ(B(x, r)) is comparable to r. These results are shown in

Theorem 3.2.21 and Corollary 3.2.25.

Before giving our main result, we need that the approach family satisfies certain

regularity condition described in Definition 3.2.28. This condition is not so restrictive

as the given examples show.

Finally, we prove the main theorem (Theorem 3.2.30) where we give several char-

acterizations so that equality Ap = AΩ
p holds. One of them is that

Ω(x) ⊂ Γθ(x),

for certain θ > 0, where Γθ(x) is the cone of vertex x and width θ. Thus, analytic

conditions on the weights are equivalent to geometric properties of the regions.

(3.2.3) The case of a group structure: some examples. In this section we give some

examples of spaces of homogeneous type that have a group structure, and we apply

Theorem 3.2.30 to each case.

The examples are:

(i) X = Rn with the Lebesgue measure and the non-isotropic distance

d(x, y) =
n∑

k=1

|xk − yk|1/ak .

(ii) X = Hn is the Heisenberg group, with the Lebesgue measure in Cn × R, with

the distance d(x, y) = ||y−1 · x||, where ||[ζ, t]|| = max(|ζ|2, |t|).

(iii) X is the set of real upper triangular 3×3 matrices with ones along the diagonal.

The quasi-distance is d′(x, y) = (d(x, y) + d(y, x))/2, where d(x, y) = ||y−1 · x||
and ||x|| = max{|a|, |b|1/2, |c|}. The measure is the Lebesgue measure in R3.

(iv) A nilpotent unimodular group, with the Riemannian metric and the induced

measure.

(3.3) The general case. Many interesting examples of domains do not occur as the

product space X+. We solve here the same type of questions but in an abstract

context.
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(3.3.1) Approach regions in an isotropic homogeneous tree. We develop the theory

in this new setting. Now, the tree plays the role of X+ and its boundary the one of

X. In this case, all the balls in the boundary with the same radius have the same

measure. Theorem 3.3.8 is the analog of Theorem 3.2.30.

(3.3.2) Approach regions in the abstract context. We use the techniques introduced

by F. Di Biase [DiB]. We first define the general structure in Definition 3.3.9, and

we substitute the notion of a cone by the one of a supernatural family (Definition

3.3.10). Basically, Γ is supernatural if its shadow for ζ,

Γ↓(ζ) = {x ∈ X : ζ ∈ Γ(x)} ,

is comparable to a ball, and for every ball there exists a comparable shadow.

We define the maximal operator for an approach family Ω and a fixed supernatural

family Γ:

MΩf(x) = sup
ζ∈Ω(x)

1

µ(Γ↓(ζ))

∫

Γ↓(ζ)

|f(y)| dµ(y).

We also obtain that AΩ
p = Ap∩W (Ω) in Theorem 3.3.15, with the adapted definitions

for this case.

As we did before, we can replace the homogeneous type space (X, µ, d) by the

ns-space of homogeneous type (X, µ, δ), without loss of generality (Theorem 3.3.16),

under condition (13) on (X, µ, d).

The analog of Theorem 3.2.30 is Theorem 3.3.18, which is the most general result

on this subject.

(3.4) Back to Euclidean spaces: two applications. In this last section, we apply the

techniques used in this chapter to complete some results in Rn appeared in [FJR] and

[RS].

(3.4.1) Singular integral operators. We study the boundedness of the operator

NΩf(x) = sup
(y,t)∈Ω(x)

|(Kt ∗ f)(y)| ,

defined for an approach family Ω ⊂ Rn+1
+ and a Calderón-Zygmund kernel. We obtain

the complete characterization of

NΩ : Lp(m) −→ Lp,∞(ρ),

if p ≥ 1, m is the Lebesgue measure and ρ is an arbitrary measure, when Kj(x) =

ωj(x)/ |x|n, with ωj(x) = xj/ |xj|, for 1 ≤ j ≤ n, the Riesz kernel (Theorem 3.4.2).
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For the case of a general Calderón-Zygmund operator, we find a partial result in

Theorem 3.4.4.

(3.4.2) Potential spaces. Here, we give estimates for the operator

NΩf(x) = sup
(y,t)∈Ω(x)

|(Pt ∗ f)(y)| ,

where P is the Poisson kernel and Ω is an approach family in Rn+1
+ . In particular, we

characterize the boundedness

NΩ : Lp
k(m) −→ Lp,∞(ρ),

where

Lp
k(m) = {f : f = F ∗ k, for some F ∈ Lp(m)}

is a potential space. The main result is Theorem 3.4.6.





Chapter 1

Embeddings and operators on
weighted spaces of monotone
functions

Let u and v be two weights in a measure space (X, µ), where X is an ordered set,

non-necessarily totally ordered. We denote the order in X by x ≤ y for x, y ∈ X.

A positive function f : X −→ [0,∞) is said to be decreasing (increasing) if

f(x) ≤ f(y) whenever x ≥ y (x ≤ y). Recently, there is an incoming interest in

obtaining necessary and sufficient conditions on the weights u and v so that there

exists a constant C > 0 such that the inequality

(∫

X

f(x)q v(x) dµ(x)

)1/q

≤ C

(∫

X

f(x)p u(x) dµ(x)

)1/p

, (1.1)

holds for all decreasing (increasing) functions f in X, for 0 < p, q < ∞. If we denote

by Lp
dec(u) the set of positive decreasing functions in the weighted Lebesgue space

Lp(u), inequality (1.1) is equivalent to the embedding

Lp
dec(u) ↪→ Lq

dec(v).

If X = [0,∞) and µ is the Lebesgue measure, the embedding of decreasing functions

is closely related to the boundedness of the Hardy operator as well as to the corre-

sponding embeddings for Lorentz spaces. Some results on these questions are due to

E. Sawyer ([S2]) and M.J. Carro, L. Pick, J. Soria and V.D. Stepanov ([CPSoSte]).

Other results for monotone functions in this setting are in [CSo2] (0 < p ≤ q < ∞)

and [Ste] (0 < p, q < ∞). If X = Rn
+ := R+× (n). . . ×R+ equipped with the order

defined in (1.7) and µ is the Lebesgue measure, further results can be found in the

work of S. Barza, L.E. Persson and J. Soria ([BPSo1], 0 < p ≤ q < ∞) and S. Barza,

15
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L.E. Persson and V.D. Stepanov ([BPSte], 0 < p, q < ∞). For the discrete case

X = Z and µ the counting measure, see the paper of H.P. Heinig and A. Kufner

([HK]). For results in a general setting (X, µ) and 0 < p ≤ q < ∞, see the work of

J.A. Raposo ([R]) and of M.J. Carro, J.A. Raposo and J. Soria ([CRSo]).

Section 1.1 will be devoted to the study of inequality (1.1) in the general setting

of a measure space (X, µ), and in all the range 0 < p, q < ∞. Our main idea is to

begin with the characteritzation of this inequality for the particular case X = Z and

µ the counting measure (which is done in Theorems 1.1.4 and 1.1.6), and to use it to

give an answer in the general setting (see Theorem 1.1.10), by using a discretization

technique. We finally apply our main result to get a new characterization in the case

X = Rn
+, equivalent to the ones given in [BPSte], but with a simpler proof (this is

Theorem 1.1.13).

The Hardy operator is defined for any measurable function f on [0,∞) by

Af(x) =
1

x

∫ x

0

f(t) dt, x > 0.

The boundedness of the Hardy operator

A : Lp
dec(u) −→ Lq(v), (1.2)

is equivalent to the boundedness of the Hardy-Littlewood maximal operator

M : Λp(u) −→ Λq(v),

where Λp(u) is the Lorentz space (see Chapter 2 for the definition of this space). In

1990, M.A. Ariño and B. Muckenhoupt ([AM]) characterized the weights for which

(1.2) holds in the case u = v and 1 < p = q. These weights are called the Bp weights.

For further results on this question, see [A], [S2], [CSo1], [CSo2], [CSo3], [HLa], [N],

[Ste], [HK], [R] and [CRSo]. In [R], the author studied the boundedness (1.2) of the

discrete Hardy operator defined for positive sequences indexed over N and showed

that the discrete weights for which this holds form, in some sense, a subclass of the

classical Bp weights (see Theorem 1.2.2). In Section 1.2, we will show that we can

reverse this process, that is, we can construct a discrete weight for which (1.2) holds

for the discrete Hardy operator, for every classical Bp weight (see Lemma 1.2.3).

However, we will give an example to see that this correspondence between discrete

and non-discrete weights is not one to one. Finally, we will consider the case of the

discrete Hardy operator defined for sequences indexed in Z. We will give results in
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two directions: Theorems 1.2.4 and 1.2.6 say that, for every Bp (or Bp,∞) weight,

we can construct a discrete weight satisfying the boundedness (1.2) (or the weak

boundedness); Theorems 1.2.8 and 1.2.9 say that, for every discrete weight satisfying

(1.2) (or the weak boudedness), we can give a classical Bp (or Bp,∞) weight. As a

consequence, we prove that in that case, Bp can be viewed as the set of weights for

which the discretized weights satisfy (1.2) (see Corollary 1.2.5).

We use in Section 1.2 some results of embeddings of `p
dec spaces given in the first

section.

The Hardy operator is an example of operator that preserves the monotonicity of

the function, in the sense that if f is a positive decreasing function, then Af is also

decreasing. On the other hand, the Hardy-Volterra operator (also called Hardy or

Volterra operator) defined by

V f(x) =

∫ x

0

f(t) dt, (1.3)

for a measurable function f , satisfies that V f is an increasing function whenever f

is positive. We are interested in studying the weak boundedness of general operators

T : Lp(u) −→ Lq,∞(v),

that satisfy some growth properties of the type described above, defined in a general

measure space (X, µ). Here, Lq,∞(v) is the weak-Lq(v) space, that is, the set of

µ-measurable functions for which the functional

‖f‖Lq,∞(v) = sup
t>0

t

(∫

{|f |>t}
v(x) dµ(x)

)q

, (1.4)

is finite. This is the aim of Section 3. In order to obtain our results, we begin by

giving a more geometrical expression of the Lq,∞-‘norm’ of a measurable function

(Lemma 1.3.1), and a simple consequence of this is the characterization of the weak

boundedness of general operators satisfying some growth conditions (Theorems 1.3.3

and 1.3.4). We then introduce some applications of this theorems to concrete settings

like trees, metric trees, R+ and R2
+. In the case of trees and metric trees, we exploit

the same ideas from Sections 1.1 and 1.2, giving results on equivalences between the

discrete and the non-discrete context (see Theorems 1.3.14 and 1.3.15).

We will denote f ↓ (f ↑) whenever f is a decreasing (increasing) function defined

in a ordered space X, and D ↓ (D ↑) for a set D ⊂ X if χD is decreasing (increasing).
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For a weight u : X −→ R+, we denote

U(E) =

∫

E

u(x) dµ(x),

where µ is the ambient measure. In the case of R+, for a weight u : R+ −→ R+, we

use the notation

U(x) =

∫ x

0

u(t) dt.

We will always write r = pq/(p − q) in the case 0 < q < p < ∞. Two positive

quantities A and B are said to be equivalent (A ≈ B) if there exists a constant C > 1

such that C−1A ≤ B ≤ CA. If only B ≤ CA, we write B . A. The undetermined

cases 0 · ∞, ∞∞ , 0
0
, will always be taken equal to 0.

1.1 Embeddings of weighted spaces of monotone

functions

We will first characterize the inequality (1.1) in the case X = Z and µ the counting

measure, for all 0 < p, q < ∞. We then call a powerful and useful idea to get the

characterization of the same inequality in the general case of a measure space (X, µ):

we take an appropriate discretization of the set X, and we reduce the problem to the

discrete setting of Z, where we have given an answer yet. We begin with some known

results about the inequality.

In 1990, E. Sawyer characterizes the inequality (1.1) in the case X = [0,∞), µ

the Lebesgue measure, and 0 < q < p < ∞. The next theorem states his result.

Theorem 1.1.1 (Sawyer) If 0 < q < p < ∞, then:

sup
0≤f↓

(∫ ∞

0

f(x)q v(x) dx

)1/q

(∫ ∞

0

f(x)p u(x) dx

)1/p
≈

(∫ ∞

0

V (x)r/pU(x)−r/pv(x) dx

)1/r

≈
(∫ ∞

0

V (x)r/qU(x)−r/qu(x) dx

)1/r

+
V (∞)1/q

U(∞)1/p
,

where U(∞) =

∫ ∞

0

u(x) dx, and analogously for V (∞).

For the range 0 < p ≤ q < ∞, the solution is due to M.J. Carro and J. Soria

([CSo1]) or V. Stepanov ([Ste]). In this case, the result is sharp.
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Theorem 1.1.2 (Carro-Soria, Stepanov) If 0 < p ≤ q < ∞, then:

sup
0≤f↓

(∫ ∞

0

f(x)q v(x) dx

)1/q

(∫ ∞

0

f(x)p u(x) dx

)1/p
= sup

t>0

V (t)1/q

U(t)1/p
.

We mention a more general result in this range, due to J.A. Raposo ([R]). A

set L of measurable functions in a σ-finite measure space (X, µ) is a regular class of

functions if for all f ∈ L, we have:

(i) |kf | ∈ L, if k ∈ R.

(ii) χ{|f |>λ} ∈ L, for all λ > 0.

(iii) There exists a sequence of simple functions {fn : n ∈ N} ⊂ L such that 0 ≤
fn(x) ≤ fn+1(x) −→ |f(x)| µ−a.e. x ∈ X.

The set of decreasing (increasing) functions in X is a regular class.

Theorem 1.1.3 (Raposo) If 0 < p ≤ q < ∞ and L is a regular class of functions,

then

sup
0≤f∈L

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p
= sup

χB∈L

(∫

B

v(x) dµ(x)

)1/q

(∫

B

u(x) dµ(x)

)1/p
.

Our first goal is to consider the inequality (1.1) for decreasing sequences in X = Z,

that is, ( ∞∑

k=−∞
aq

k vk

)1/q

≤ C

( ∞∑

k=−∞
ap

k uk

)1/p

,

for all decreasing sequences {ak : k ∈ Z}, where {uk : k ∈ Z} and {vk : k ∈ Z} are

positive sequences in Z.

We use the notation (ak)k ↓ for a decreasing sequence {ak : k ∈ Z}, and

Uk =
k∑

j=−∞
uj,

for a weight {uk : k ∈ Z}. The preceding theorem of J.A. Raposo solves the problem

in the range 0 < p ≤ q < ∞. We observe that χB is a decreasing function if and only

if B = (. . . , 1, 1, 1, 0, 0, 0, . . .).
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Theorem 1.1.4 If 0 < p ≤ q < ∞, then

sup
0≤(ak)↓

(∑

k∈Z
aq

k vk

)1/q

(∑

k∈Z
ap

k uk

)1/p
= sup

k∈Z
V

1/q
k

U
1/p
k

.

In the range 0 < q < p < ∞, the case of decreasing sequences in Z does not seem

to be known in the literature, except for the result of H.P. Heinig and A. Kufner

([HK]), where extra hypothesis on the weights are needed. To solve the problem in

its full generality, we consider the next proposition. We see that the required discrete

embedding is equivalent to a continuous embedding.

Proposition 1.1.5 If 0 < q < p < ∞, then

A = sup
0≤(ak)↓

( ∞∑

k=−∞
aq

k vk

)1/q

( ∞∑

k=−∞
ap

k uk

)1/p
≈ sup

0≤f↓

(∫ ∞

0

f(x)q ṽ(x) dx

)1/q

(∫ ∞

0

f(x)p ũ(x) dx

)1/p
= B,

where ṽ(x) =
∞∑

k=−∞

vk

2k
χ[2k,2k+1)(x) and ũ(x) =

∞∑

k=−∞

uk

2k
χ[2k,2k+1)(x). Moreover,

A ≤ B ≤
(

2r/q − 1

r/q

)q/r

A.

Proof. For a given positive decreasing sequence (ak)k, we define the decreasing func-

tion

f(x) =
∑

k∈Z
akχ[2k,2k+1)(x).

Then we have:

∫ ∞

0

f(x)q ṽ(x) dx =
∑

k∈Z

vk

2k

∫ 2k+1

2k

f(x)q dx =
∑

k∈Z
aq

k vk,

and analogously ∫ ∞

0

f(x)p ũ(x) dx =
∑

k∈Z
ap

k uk,

and thus, A ≤ B.
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For a positive decreasing function f , we define the positive and decreasing sequence

ak =

(∫ 2k+1

2k

f(x)p dx

x

)1/p

.

Therefore,

∑

k∈Z
ap

k uk =
∑

k∈Z
uk

(∫ 2k+1

2k

f(x)p dx

x

)

≤
∑

k∈Z

uk

2k

(∫ 2k+1

2k

f(x)p dx

)
=

∫ ∞

0

f(x)p ũ(x) dx,

and applying Hölder’s inequality with p/q > 1 and since r = pq/(p− q),

∫ ∞

0

f(x)q ṽ(x) dx =
∑

k∈Z

vk

2k

(∫ 2k+1

2k

f(x)q dx

)

≤
∑

k∈Z

vk

2k

(∫ 2k+1

2k

f(x)p dx

x

)q/p(∫ 2k+1

2k

xr/q−1 dx

)q/r

=

(
2r/q − 1

r/q

)q/r(∑

k∈Z
aq

k vk

)
,

and this is B ≤
(

2r/q−1
r/q

)q/r

A.

2

We now use this proposition and Theorem 1.1.1 to characterize the embedding in

the desired range.

Theorem 1.1.6 If 0 < q < p < ∞, then

sup
0≤(ak)↓

(∑

k∈Z
aq

k vk

)1/q

(∑

k∈Z
ap

k uk

)1/p
≈

(∫ 1

0

[∑

k∈Z

(
Vk−1 + vkt

Uk−1 + ukt

)r/p

vk

]
dt

)1/r

≈
(∫ 1

0

[∑

k∈Z

(
Vk−1 + vkt

Uk−1 + ukt

)r/q

uk

]
dt

)1/r

+
V

1/q
∞

U
1/p
∞

,

where U∞ =
∞∑

k=−∞
uk, and analogously for V∞.



22 1. Embeddings and operators on weighted spaces of monotone functions

Proof. By the previous proposition and Theorem 1.1.1, we know that

sup
0≤(ak)↓

(∑

k∈Z
aq

k vk

)1/q

(∑

k∈Z
ap

k uk

)1/p
≈

(∫ ∞

0

Ṽ (x)r/p Ũ(x)−r/p ṽ(x) dx

)1/r

≈
(∫ ∞

0

Ṽ (x)r/q Ũ(x)−r/q ũ(x) dx

)1/r

+
Ṽ (∞)1/q

Ũ(∞)1/p
,

where ṽ(x) =
∞∑

k=−∞

vk

2k
χ[2k,2k+1)(x) and ũ(x) =

∞∑

k=−∞

uk

2k
χ[2k,2k+1)(x). First, observe

that if 2k ≤ x < 2k+1 then

Ṽ (x) =
k−1∑

j=−∞

∫ 2j+1

2j

ṽ(t) dt +

∫ x

2k

ṽ(t) dt =
k−1∑

j=−∞

vj

2j

∫ 2j+1

2j

dt +
vk

2k

∫ x

2k

dt

=
k−1∑

j=−∞
vj + vk

x− 2k

2k
= Vk−1 + vk

x− 2k

2k
,

and the same for Ũ . Now, splitting the integral into dyadic intervals, we get:

∫ ∞

0

Ṽ (x)r/p Ũ(x)−r/p ṽ(x) dx

=
∑

k∈Z

∫ 2k+1

2k

Ṽ (x)r/p Ũ(x)−r/p ṽ(x) dx

=
∑

k∈Z

vk

2k

∫ 2k+1

2k

(
Vk−1 + vk

x− 2k

2k

)r/p(
Uk−1 + uk

x− 2k

2k

)−r/p

dx

=

∫ 1

0

(∑

k∈Z
(Vk−1 + vkt)

r/p (Uk−1 + ukt)
−r/p vk

)
dt,

where the last equality follows by the change of variable t = x−2k

2k in each integral.

The other equivalence is analogous.

2

We now deal with the problem in the general setting of a measure space (X, µ),

where X is an ordered set.

Our results are based on a discretization technique which shows that the embed-

ding (1.1) is equivalent to a collection of embeddings of sequences in Z. This technique
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was pointed out by E. Sawyer in [S1], and has been also used in [BP], [BPSte], [HLa]

and [L]. In our case, the results are given in terms of covering sequences of decreasing

sets in X. We say that set D ⊂ X is decreasing if and only if the function χD is

decreasing. In what follows, we will assume that every decreasing set is µ-measurable.

Definition 1.1.7 A collection of sets {Dk : k ∈ Z} is a covering family of de-

creasing sets for the set X if:

• Dk ⊂ Dk+1 for all k ∈ Z.

•
⋃

k∈Z
Dk = X.

The set of all covering families of decreasing sets in X is denoted by D(X) or simply

D if there is no possible confusion. For a fixed family {Dk : k ∈ Z} in D(X), we

denote

∆k = Dk+1 \Dk.

We now present a lemma that can be found in a slightly different version in [HLa]

for the case X = [0,∞) and in [BP] for X = Rn
+. In our case, we do not require

any additional condition neither on the covering family of decreasing sets nor in the

modular functions. Recall that a modular function P is a positive and increasing

function P : [0,∞) −→ [0,∞) such that P (0) = 0 and P (∞) = ∞. We will use the

subsequent corollary for our purpose.

Lemma 1.1.8 Let (X, µ) be a measure space, where X is an ordered set. Let Q and

P be two modular functions. Let A be the infimum of the constants C > 0 such that

the inequality

Q−1

(∫

X

Q(f(x)) v(x) dµ(x)

)
≤ P−1

(∫

X

P (Cf(x)) u(x) dµ(x)

)
,

holds for all 0 ≤ f ↓, and let B be the infimum of the constants C > 0 such that the

inequality

Q−1

(∑

k∈Z
Q(δk)

∫

∆k

v(x) dµ(x)

)
≤ P−1

(∑

k∈Z
P (Cδk)

∫

∆k

u(x) dµ(x)

)
,

holds for all 0 ≤ (δk)k ↓ and for all {Dk} ⊂ D. Then A=B.
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Proof. For every positive decreasing sequence (δk)k and every family {Dk : k ∈ Z}, if

we consider the decreasing function

f(x) =
∑

k∈Z
δkχ∆k

(x),

we easily get that A ≤ B.

Take a positive decreasing function f such that

Q−1

(∫

X

Q(f(x)) v(x) dµ(x)

)
≤ P−1

(∫

X

P ((A + ε)f(x)) u(x) dµ(x)

)
,

for a fixed ε > 0. Take c > 1 and define δk = c−k and

∆k =
{
x ∈ X : c−k−1 < f(x) ≤ c−k

}
,

for all k ∈ Z. Now, by using that P, Q, P−1 and Q−1 are increasing functions and our

hypothesis, we have

Q−1

(∑

k

Q(c−k−1)

∫

∆k

v(x) dµ(x)

)
≤ Q−1

(∫

X

Q(f(x)) v(x) dµ(x)

)

≤ P−1

(∑

k

∫

∆k

P ((A + ε)f(x)) u(x) dµ(x)

)

≤ P−1

(∑

k

P ((A + ε)c−k)

∫

∆k

u(x) dµ(x)

)
,

and this is B ≤ c(A + ε). Letting ε → 0+ and c → 1+, we obtain B ≤ A.

2

Corollary 1.1.9 If P (t) = tp and Q(t) = tq, then the previous lemma reads as

sup
0≤f↓

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p
= sup

{Dk}⊂D
sup

0≤(δk)↓

(∑

k∈Z
δq
k vk

)1/q

(∑

k∈Z
δp
k uk

)1/p
, (1.5)

where we are using the notation

uk :=

∫

∆k

u(x) dµ(x) = U(∆k),

vk :=

∫

∆k

v(x) dµ(x) = V (∆k).
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We are ready to prove our main result of this section.

Theorem 1.1.10 Let (X, µ) be a measure space, where X is an ordered set. For

0 < p, q < ∞, we have:

(a) If 0 < p ≤ q < ∞, then

sup
0≤f↓

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p
= sup

D↓

V (D)1/q

U(D)1/p
.

(b) If 0 < q < p < ∞, then the following conditions are equivalent:

(i) There exists C > 0 such that

(∫

X

f(x)q v(x) dµ(x)

)1/q

≤ C

(∫

X

f(x)p u(x) dµ(x)

)1/p

,

for all positive decreasing functions f .

(ii) There exists C > 0 such that

(∫ 1

0

[∑

k∈Z

(
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

)r/p

V (∆k)

]
dt

)1/r

≤ C,

for all {Dk} ⊂ D.

(iii) There exists C > 0 such that

(∫ 1

0

[∑

k∈Z

(
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

)r/q

U(∆k)

]
dt

)1/r

+
V (X)1/q

U(X)1/p
≤ C,

for all {Dk} ⊂ D.

Proof. We first observe that, in the case (a), we can apply Theorem 1.1.4 and (1.5)

to characterize the embedding for sequences in Z, and thus we get

sup
0≤f↓

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p
= sup

{Dk}⊂D
sup
k∈Z

V
1/q
k

U
1/p
k

.

Now, we observe that

Uk =
k∑

j=−∞
uj =

k∑
j=−∞

U(∆j) = U(Dk+1), (1.6)
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and similarly for Vk, and therefore we get

sup
0≤f↓

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p
= sup

{Dk}⊂D
sup
k∈Z

V (Dk)
1/q

U(Dk)1/p
,

and the right hand side of this equality is trivially equal to

sup
D↓

V (D)1/q

U(D)1/p
.

For the case (b), we return to (1.5) and we apply Theorem 1.1.6 getting

sup
0≤f↓

(∫

X

f(x)q v(x) dµ(x)

)1/q

(∫

X

f(x)p u(x) dµ(x)

)1/p

≈ sup
{Dk}⊂D

(∫ 1

0

[∑

k∈Z

(
Vk−1 + vkt

Uk−1 + ukt

)r/p

vk

]
dt

)1/r

≈ sup
{Dk}⊂D

((∫ 1

0

[∑

k∈Z

(
Vk−1 + vkt

Uk−1 + ukt

)r/q

uk

]
dt

)1/r

+
V

1/q
∞

U
1/p
∞

)
,

and we finally get the characterizations (ii) and (iii) if we observe that Uk−1 = U(Dk)

and Vk−1 = V (Dk) by considering (1.6).

2

Remark 1.1.11 Part (a) was already proved by J.A. Raposo (see Theorem 1.1.3).

Consider the particular case X = Rn
+ equipped with the order defined by

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) (1.7)

if and only if ai ≤ bi for i = 1, . . . , n. Let µ be the Lebesgue measure. The following

result is the characterization of the inequality (1.1) for 0 < q < p < ∞ in this setting,

due to S. Barza, L.E. Persson and V.D. Stepanov ([BPSte]) (we observe that our

notation is different from the one used in that paper):

Theorem 1.1.12 (Barza-Persson-Stepanov) For 0 < q < p < ∞, the following

conditions are equivalent:
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(i) There exists a constant C ≥ 0 such that

(∫

Rn
+

f(x)q v(x) dx

)1/q

≤ C

(∫

Rn
+

f(x)p u(x) dx

)1/p

,

for all 0 ≤ f ↓.

(ii) There exists a constant C ≥ 0 such that

(∫ ∞

0

U(Df,t)
−r/p d

[
−V (Df,t)

r/q

])1/r

≤ C,

for all 0 ≤ f ↓, where Df,t = {x : f(x) > t}.

(iii) There exists a constant C ≥ 0 such that

(∑

k∈Z
V (∆k)

r/q U(Dk+1)
−r/p

)1/r

≤ C,

for all families {Dk : k ∈ Z} in D(Rn
+).

We now relate our characterization with this theorem. We point out that our

proof is simpler than the one in [BPSte].

Theorem 1.1.13 For 0 < q < p < ∞, the following conditions are equivalent:

(i) There exists a constant C > 0 such that

(∫

Rn
+

f(x)q v(x) dx

)1/q

≤ C

(∫

Rn
+

f(x)p u(x) dx

)1/p

,

for all 0 ≤ f ↓.

(ii) There exists a constant C > 0 such that

(∫ 1

0

∑

k∈Z

[
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

]r/p

V (∆k) dt

)1/r

≤ C,

for all families {Dk : k ∈ Z} in D(Rn
+).

(iii) There exists a constant C > 0 such that

(∫ ∞

0

U(Df,t)
−r/p d

[
−V (Df,t)

r/q

])1/r

≤ C,

for all 0 ≤ f ↓, where Df,t = {x : f(x) > t}.
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(iv) There exists a constant C > 0 such that

(∑

k∈Z
V (∆k)

r/q U(Dk+1)
−r/p

)1/r

≤ C,

for all families {Dk : k ∈ Z} in D(Rn
+).

Proof. The equivalence between (i) and (ii) is Theorem 1.1.6. Let us see that (ii)

implies (iii). Given a function 0 ≤ f ↓, we assume that U(Df,t) is continuous and

strictly decreasing in t. The general case follows by a standard limiting argument.

We define a positive decreasing sequence (tk)k as follows: fix t0 = 1 and

tk = sup
{
t : U(Df,t) = 2 U(Df,tk−1

)
}

if k ≥ 1,

tk = inf
{
t : 2 U(Df,t) = U(Df,tk+1

)
}

if k ≤ −1.

We denote Dk = Df,tk and we observe that this is a decreasing set for all k ∈ Z.

Using that U(Dk) + U(∆k)t ≤ U(Dk+1), if 0 ≤ t ≤ 1 we have:

∫ 1

0

∑

k∈Z

[
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

]r/p

V (∆k) dt

≥
∑

k∈Z
V (∆k) U(Dk+1)

−r/p

∫ 1

0

(V (Dk) + V (∆k)t)
r/p dt

= (q/r)
∑

k∈Z
V (∆k) U(Dk+1)

−r/p

(
(V (Dk) + V (∆k)t)

r/q

V (∆k)

)]1

0

= (q/r)
∑

k

U(Dk+1)
−r/p (V (Dk+1)

r/q − V (Dk)
r/q)

= 2−r/p(q/r)
∑

k

U(Dk)
−r/p (V (Dk+1)

r/q − V (Dk)
r/q).

Last equality follows from the definition of the sequence (tk)k. It is now enough to

see that the expression in (iii) is smaller than this last quantity. This is done using

that Dk ⊂ Df,t ⊂ Dk+1, if tk+1 ≤ t ≤ tk:

∫ ∞

0

U(Df,t)
−r/p d

[
−V (Df,t)

r/q

]
=

∑

k∈Z

∫ tk

tk+1

U(Df,t)
−r/p d

[
−V (Df,t)

r/q

]

≤
∑

k∈Z
U(Dk)

−r/p

∫ tk

tk+1

d

[
−V (Df,t)

r/q

]

=
∑

k∈Z
U(Dk)

−r/p (V (Dk+1)
r/q − V (Dk)

r/q).
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Let us see that (iii) implies (iv). For a fixed family {Dk : k ∈ Z}, define a decreasing

function f(x) =
∑

k∈Z 2−kχ∆k
(x). Then Dk =

{
x : f(x) > 2−k

}
and Df,t = Dk+1 if

2−k−1 < t ≤ 2−k and thus, we have:

∫ ∞

0

U(Df,t)
−r/p d

[
−V (Df,t)

r/q

]
=

∫ ∞

0

U(Df,t)
−r/p V (Df,t)

r/p d

[
−V (Df,t)

]

=
∑

k∈Z

∫ 2−k

2−k−1

U(Df,t)
−r/p V (Df,t)

r/p d

[
−V (Df,t)

]

=
∑

k∈Z
U(Dk+1)

−r/p V (Dk+1)
r/p

∫ 2−k

2−k−1

d

[
−V (Df,t)

]

=
∑

k∈Z
U(Dk+1)

−r/p V (Dk+1)
r/p (V (Dk+1)− V (Dk))

=
∑

k∈Z
U(Dk+1)

−r/p V (Dk+1)
r/p V (∆k)

≥
∑

k∈Z
U(Dk+1)

−r/p V (∆k)
r/p V (∆k)

=
∑

k∈Z
U(Dk+1)

−r/p V (∆k)
r/q.

Finally we prove that (iv) implies (i). For a fixed decreasing function f , let (tk)k be

a decreasing sequence constructed in the same way as in the implication (ii) ⇒ (iii).

Also denote Dk = Df,tk and ∆k = Dk+1 \ Dk = {x : tk+1 < t ≤ tk}. Then, applying

Hölder’s inequality, we have:

(∫

Rn
+

f(x)q v(x) dx

)1/q

=

(∑

k∈Z

∫

∆k

f(x)q v(x) dx

)1/q

≤
(∑

k∈Z
tqk V (∆k)

)1/q

≤
(∑

k∈Z
tpk U(Dk+1)

)1/p(∑

k∈Z
V (∆k)

r/q U(Dk+1)
−r/p

)1/r

.

By construction, we have

U(∆k) = U(Dk+1)− U(Dk) = U(Dk+1)− 1

2
U(Dk+1) =

1

2
U(Dk+1),
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and thus U(∆k−1) = 1
4
U(Dk+1). Now, the hypothesis and this equality give:

(∫

Rn
+

f(x)q v(x) dx

)1/q

≤ C

(∑

k∈Z
tpk U(Dk+1)

)1/p

= C41/p

(∑

k∈Z
tpk U(∆k−1)

)1/p

≤ C41/p

(∑

k∈Z

∫

∆k−1

f(x)p u(x) dx

)1/p

= C41/p

(∫

Rn
+

f(x)p u(x) dx

)1/p

.

2

Remark 1.1.14 We observe that the preceding theorem is also true in every space

X where we can assume that the function h(t) = U(Df,t) is continuous and strictly

decreasing for a decreasing function f . If X = N, this is not true in general.

1.2 Bp weights and the discrete Hardy operator

We present a new characterization for a weight to be in the Bp class in terms of the

boundedness of the discrete Hardy operator defined for sequences indexed in Z.

We recall that the Hardy operator is defined for any measurable function f on

[0,∞) by

Af(x) =
1

x

∫ x

0

f(t) dt, x > 0.

The set of weights u for which the boundedness

A : Lp
dec(u) −→ Lp(u), (1.8)

holds, is called the Bp class, and the set of weights for which the boundedness

A : Lp
dec(u) −→ Lp,∞(u), (1.9)

holds, is called the Bp,∞ class. Since Lp(v) ⊂ Lp,∞(v), we always have Bp ⊂ Bp,∞. It

is proved in [N], that Bp = Bp,∞ if 1 < p < ∞. This is not true if 0 < p ≤ 1; for

example, the weight u(x) = xp−1 is a Bp,∞ weight not in Bp.

Further characterizations of these classes are known, and we collect some of them

in the next theorem, that will be used later.
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Theorem 1.2.1 (Ariño-Muckenhoupt [AM], Soria [So], Carro-Soria [CSo2])

(a) For 0 < p < ∞, the following conditions are equivalent:

(i) u ∈ Bp.

(ii) There exists a constant C > 0 such that

∫ ∞

r

u(x)

xp
dx ≤ C

1

rp

∫ r

0

u(x) dx, ∀ r > 0. (1.10)

(iii) There exists a constant C > 0 such that

∫ r

0

1

U(x)1/p
dx ≤ C

r

U(r)1/p
, ∀ r > 0. (1.11)

(b) For 0 < p ≤ 1, the following conditions are equivalent:

(i) u ∈ Bp,∞.

(ii) There exists a constant C > 0 such that

U(r)1/p

r
≤ C

U(s)1/p

s
, ∀ 0 < s < r. (1.12)

In [R], J.A. Raposo studied a discrete Hardy operator defined for sequences in-

dexed in N, namely

ANf(n) =
1

n + 1

n∑
j=0

fj n = 0, 1, 2, . . . ,

where (fn)n∈N ⊂ C. For a weight (un)n∈N, that is, a positive sequence, `p
dec((un)n)

is the set of positive decreasing sequences in `p((un)n), and `p,∞((un)n) is the set of

sequences (fn)n∈N such that

‖(fn)n‖`p,∞((un)n) = sup
n∈N

n1/pf ?
n < ∞, (1.13)

where (f ?
n)n∈N is the decreasing rearrangement of (fn)n∈N. The result proved in [R] is

the following:

Theorem 1.2.2 (Raposo) For 1 < p < ∞, the following conditions are equivalent

for a weight (un)n :

(i) AN : `p
dec((un)n) −→ `p,∞((un)n).
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(ii) AN : `p,∞
dec ((un)n) −→ `p,∞((un)n).

(iii) AN : `p
dec((un)n) −→ `p((un)n).

(iv) ũ(x) =
∞∑

n=0

un χ[n,n+1)(x) ∈ Bp.

(v)
n∑

k=0

1

U
1/p
k

≤ C
n + 1

U
1/p
n

, ∀n ≥ 0.

We see that the boundedness AN : `p
dec((un)n) −→ `p((un)n) for a discrete weight

(un)n is equivalent to ũ ∈ Bp for an extended weight ũ : R+ −→ R+. Can this process

be reversed in some sense? That is, if u ∈ Bp, is there a discrete weight (un)n∈N
related to u such that AN is bounded from `p

dec((un)n) to `p((un)n)? The answer is

affirmative, as next lemma shows. We denote Bp(N) the class of discrete weights

(un)n∈N such that AN : `p
dec((un)n) −→ `p((un)n) is bounded.

Lemma 1.2.3 If u : R+ −→ R+ is a Bp weight, then (un)n∈N defined by

un =

∫ n+1

n

u(x) dx,

is a Bp(N) weight.

Proof. For a given positive decreasing sequence (fn)n∈N, we consider the extended

decreasing function

f̃(x) =
∞∑

n=0

fn χ[n,n+1)(x).

We then have that

n∑

l=0

fl =

∫ n+1

0

f̃(x) dx.
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Using this equality and that Af̃ is a decreasing function, we get:

∞∑
n=0

(
1

n + 1

n∑
j=0

fj

)p

un =
∞∑

n=0

(
1

n + 1

∫ n+1

0

f̃(x) dx

)p

un

=
∞∑

n=0

(
1

n + 1

∫ n+1

0

f̃(x) dx

)p(∫ n+1

n

u(x) dx

)

≤
∞∑

n=0

∫ n+1

n

(
1

x

∫ x

0

f̃(y) dy

)p

u(x) dx

≤ C

∫ ∞

0

f̃p(x) u(x) dx

=
∞∑

n=0

f p
n un.

2

Theorem 1.2.2 says that Bp(N) can be viewed as a subset of the Bp weights that

are constant at each interval [n, n + 1), and Lemma 1.2.3 says that every Bp weight

which is constant at each interval [n, n + 1) can be viewed as a Bp(N) weight. In

other words,

Bp(N) ≡ {u ∈ Bp : u(x) = cn ∀x ∈ [n, n + 1), for some positive (cn)n} .

Now, another question arises. Can we characterize Bp as the class of weights

such that the boundedness of AN holds for the discretized weights? That is, can we

characterize Bp in terms of Bp(N)? Now the answer is negative. There are weights

which are not in Bp but their discretized ones are in Bp(N). For example, take the

weight

u(x) =





0, 0 < x < 1/2
2, 1/2 ≤ x < 1
1, x ≥ 1,

which is not a Bp weight because it equals zero in a neighborhood of 0, and this

contradicts condition (1.10). But,

un =

∫ n+1

n

u(x) dx = 1,

for all n ≥ 0, and thus, if

ũ(x) =
∞∑

n=0

un χ[n,n+1)(x) = 1,
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then ũ is a Bp weight for all 1 < p < ∞, and therefore AN is bounded from `p
dec((un)n)

to `p((un)n), by Theorem 1.2.2, that is, (un)n∈N is a Bp(N) weight.

In order to get complete results in both directions (extension and discretization

of weights), we work with discrete weights indexed in Z rather than in N. The Hardy

operator, defined for sequences (fj)j∈Z over Z, is defined by

AZf(k) =
1

2k+1

k∑
j=−∞

2jfj, k ∈ Z.

The function AZf is decreasing if (fk)k∈Z is decreasing.

A weight (uk)k∈Z is in the Bp(Z) class if and only if

AZ : `p
dec((uk)k) −→ `p((uk)k),

and it belongs to the Bp,∞(Z) class if and only if

AZ : `p
dec((uk)k) −→ `p,∞((uk)k).

We will use another expression for the functional defined in (1.13), which is a partic-

ular case of (1.4). In the case of a positive decreasing sequence (fk)k∈Z, it is easy to

see that we can write

‖(fk)k‖`p,∞((uk)k) = sup
k∈Z

U
1/p
k fk, (1.14)

and in the case of a positive decreasing function f we also have

‖f‖Lp,∞(u) = sup
t>0

U(t)1/pf(t). (1.15)

See Corollary 1.3.2 for a general proof of these expressions.

We first present the case of the discretization of a weight u : R+ −→ R+. For

such a weight, we denote

uk =

∫ 2k+1

2k

u(x) dx

and

ũ(x) =
∞∑

k=−∞

uk

2k
χ[2k,2k+1)(x).

Theorem 1.2.4 If 0 < p < ∞, for a weight u : R+ −→ R+, the following conditions

are equivalent :

(i) u ∈ Bp.
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(ii) (uk)k ∈ Bp(Z).

(iii)
∞∑

j=k+1

uj

(2j+1)p
≤ C

Uk

(2k+1)p
, ∀ k ∈ Z.

(iv) ũ ∈ Bp.

Proof. Suppose that (i) holds. For a positive decreasing sequence (fk)k, consider the

decreasing function f̃(x) =
∑

k∈Z
fkχ[2k,2k+1)(x). Using that

∫ 2n+1

0

f̃(x) dx =
∑

k≤n

∫ 2k+1

2k

f̃(x) dx =
∑

k≤n

2kfk,

and that 1
x

∫ x

0
f̃(y) dy is decreasing, we have:

∑

k∈Z
AZf(k)p uk =

∑

k∈Z

(
1

2k+1

∫ 2k+1

0

f̃(x) dx

)p(∫ 2k+1

2k

u(x) dx

)

≤
∑

k∈Z

∫ 2k+1

2k

(
1

x

∫ x

0

f̃(y) dy

)p

u(x) dx

≤ C
∑

k∈Z

∫ 2k+1

2k

f̃(x)p ũ(x) dx

= C
∑

k∈Z
fp

k uk,

and this is condition (ii). To see that (ii) implies (iii), it is enough to consider the

boundedness of the operator on the functions f(l) = χ{j:j≤k}(l), for all k ∈ Z. Let us

see that (iii) implies condition (1.10) for the weight ũ, which is (iv). For r > 0, take

2k ≤ r < 2k+1. Using that
∫ 2j+1

2j ũ(x) dx = uj, we have:

∫ ∞

r

ũ(x)

xp
dx ≤

∞∑

j=k

∫ 2j+1

2j

ũ(x)

xp
dx ≤

∞∑

j=k

1

2jp

∫ 2j+1

2j

ũ(x) dx

=
∞∑

j=k

uj

2jp
≤ 2p C

Uk−1

2kp
= 2p C

1

2kp

∫ 2k

0

ũ(x) dx

≤ 4p C
1

r

∫ r

0

u(x) dx.

Finally, that (iv) implies (i) is easy, if we use the characterization (1.10) of the Bp

weights, and observe that for all k

∫ 2k+1

2k

u(x)

xp
dx ≈

∫ 2k+1

2k

ũ(x)

xp
dx,
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and
∫ 2k

0
u(x) dx =

∫ 2k

0
ũ(x) dx.

2

Corollary 1.2.5 If 0 < p < ∞ and uk =

∫ 2k+1

2k

u(x) dx for a weight u in R+, we

have

Bp = {u ≥ 0 : (uk)k ∈ Bp(Z)} .

In the following theorem, we complete the results by considering the case of the

Bp,∞ weights.

Theorem 1.2.6 For a weight u : R+ −→ R+, we have:

(a) If 0 < p ≤ 1, the following conditions are equivalent:

(i) u ∈ Bp,∞.

(ii) (uk)k ∈ Bp,∞(Z).

(iii)
U

1/p
n

2n+1
≤ C

U
1/p
k

2k+1
, ∀ k ≤ n.

(iv) ũ ∈ Bp,∞.

(b) If 1 < p < ∞ the following conditions are equivalent:

(i) u ∈ Bp.

(ii) (uk)k ∈ Bp(Z).

(iii)
∞∑

j=k+1

uj

(2j+1)p
≤ C

Uk

(2k+1)p
, ∀ k ∈ Z.

(iv) (uk)k ∈ Bp,∞(Z).

(v) ũ ∈ Bp.

Proof. (a) Let us see that condition (ii) holds if and only if (iii) holds. The bound-

edness of AZ is equivalent, by (1.14), to

U
1/p
n

2n+1

∑
j≤n

2jfj ≤ C

(∑

k∈Z
fp

k uk

)1/p

,
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for all decreasing sequences (fk)k, and therefore also to

U
1/p
n

2n+1
sup

0≤(fk)↓

∑
j≤n

2jfj

(∑

k∈Z
f p

k uk

)1/p
≤ C.

Using Theorem 1.1.4 with vk = 2k, if k ≤ n, and 0 otherwise, and q = 1, the last

expression is equivalent to

U
1/p
n

2n+1

2k+1

U
1/p
k

≤ C, ∀ k ≤ n, (1.16)

which is (iii). Let us see that (iii) holds if and only if (iv) holds. Using that

Ũ(2n+1) =

∫ 2n+1

0

ũ(x) dx =
∑

k≤n

uk = Un,

it is not difficult to see that (1.16) is equivalent to

Ũ(r)1/p

r
≤ C

Ũ(s)1/p

s
, ∀ 0 < s < r,

and this condition is actually equivalent to (iv) by (1.12). Finally, let us see that (i)

is equivalent to (iii). As before, using that U(2n+1) =
∫ 2n+1

0
u(x) dx = Un, it is easy

to see that condition (1.16) is equivalent to

U(r)1/p

r
≤ C

U(s)1/p

s
, ∀ 0 < s < r,

which is in fact equivalent to (i) by (1.12).

(b) The equivalence between (i), (ii), (iii) and (v) is already proved in the previous

theorem. That (ii) implies (iv) is well-known. Let us see that (iv) implies (v). As is

shown in the proof of (a), (iv) is equivalent to

U
1/p
n

2n+1
sup

0≤(fk)↓

∑
j≤n

2jfj

(∑

k∈Z
f p

k uk

)1/p
≤ C.

We use Proposition 1.1.5 with weights vk = 2k, if k ≤ n, and 0 otherwise, and uk to

obtain that the boundedness of AZ is equivalent to

U
1/p
n

2n+1
sup
0≤f↓

∫ 2n+1

0

f

(∫ ∞

0

f(x)p ũ(x) dx

)1/p
≤ C,
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and using Ũ(2n+1) =

∫ 2n+1

0

ũ(x) dx =
∑

k≤n

uk = Un, this is

Ũ(2n+1)1/pAf(2n+1) ≤ C

(∫ ∞

0

f(x)p ũ(x) dx

)1/p

,

for all positive decreasing f . We claim that this condition also holds for all t > 0

instead of 2n+1. Observe that the hypothesis on AZ implies the necessity of condition

(1.16) (simply by taking f = χ{j:j≤k} for every k ∈ Z), and therefore

Ũ(2n+1)1/p = U1/p
n ≤ CU

1/p
n−1 = CŨ(2n)1/p.

Then, if 2n < t ≤ 2n+1 we have

Ũ(t)1/pAf(t) ≤ Ũ(2n+1)1/pAf(2n)

≤ CŨ(2n)1/pAf(2n)

≤ C

(∫ ∞

0

f(x)pũ(x)dx

)1/p

.

This last condition is equivalent to A : Lp
dec(ũ) → Lp,∞(ũ) by (1.15), and this is

equivalent to ũ ∈ Bp, since Bp = Bp,∞ if 1 < p < ∞.

2

Corollary 1.2.7 If 0 < p < ∞ and uk =

∫ 2k+1

2k

u(x) dx for a weight u in R+, we

have

Bp,∞ = {u ≥ 0 : (uk)k ∈ Bp,∞(Z)} .

We now present the result in the other direction, that is, the extension result.

For a discrete weight (uk)k∈Z, we denote

ũ(x) =
∑

k∈Z

uk

2k
χ[2k,2k+1)(x).

Theorem 1.2.8 If 0 < p < ∞, for a weight (uk)k, the following conditions are

equivalent :

(i) (uk)k ∈ Bp(Z).

(ii)
∞∑

j=k+1

uj

(2j+1)p
≤ C

Uk

(2k+1)p
, ∀ k ∈ Z.

(iii) ũ ∈ Bp.
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Proof. That (i) implies (ii) is easy if we consider the boundedness of AZ on the

functions f(l) = χ{j:j≤k}(l), for all k ∈ Z. Let us see that (ii) implies condition

(1.10) for the weight ũ, which is (iii). For r > 0, take 2k ≤ r < 2k+1. Using that∫ 2j+1

2j ũ(x) dx = uj, we have:

∫ ∞

r

ũ(x)

xp
dx ≤

∞∑

j=k

∫ 2j+1

2j

ũ(x)

xp
dx ≤

∞∑

j=k

1

2jp

∫ 2j+1

2j

ũ(x) dx

=
∞∑

j=k

uj

2jp
≤ 2p C

Uk−1

2kp
= 2p C

1

2kp

∫ 2k

0

ũ(x) dx

≤ 4p C
1

r

∫ r

0

ũ(x) dx.

Let us see that (iii) implies (i). For a positive decreasing sequence (fk)k, consider

the decreasing function f̃(x) =
∑

k∈Z
fkχ[2k,2k+1)(x). Using that

∫ 2n+1

0

f̃(x) dx =
∑

k≤n

∫ 2k+1

2k

f̃(x) dx =
∑

k≤n

2kfk,

the equality
∫ 2k+1

2k ũ(x) dx = uk and the fact that 1
x

∫ x

0
f̃(y) dy is decreasing, we have:

∑

k∈Z
AZf(k)p uk =

∑

k∈Z

(
1

2k+1

∫ 2k+1

0

f̃(x) dx

)p(∫ 2k+1

2k

ũ(x) dx

)

≤
∑

k∈Z

∫ 2k+1

2k

(
1

x

∫ x

0

f̃(y) dy

)p

ũ(x) dx

≤ C
∑

k∈Z

∫ 2k+1

2k

f̃(x)p ũ(x) dx = C
∑

k∈Z
f p

k uk,

and this is condition (i).

2

In the case of the Bp,∞ weights, we have:

Theorem 1.2.9 For a weight (uk)k, we have:

(a) If 0 < p ≤ 1, the following conditions are equivalent:

(i) (uk)k ∈ Bp,∞(Z).

(ii)
U

1/p
n

2n+1
≤ C

U
1/p
k

2k+1
, ∀ k ≤ n.
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(iii) ũ ∈ Bp,∞.

(b) If 1 < p < ∞, the following conditions are equivalent:

(i) (uk)k ∈ Bp,∞(Z).

(ii) ũ ∈ Bp.

(iii)
∑

j≤k

2j+1

U
1/p
j

≤ C
2k+1

U
1/p
k

, ∀ k ∈ Z.

Proof. (a) The equivalence between (i) and (ii) has been proved in (a) of Theo-

rem 1.2.6. To prove that (ii) and (iii) are equivalent, we proceed as in Theorem 1.2.6:

using that

Ũ(2n+1) =

∫ 2n+1

0

ũ(x) dx =
∑

k≤n

uk = Un,

it is not difficult to see that (ii) is equivalent to

Ũ(r)1/p

r
≤ C

Ũ(s)1/p

s
, ∀ 0 < s < r,

and this condition is actually equivalent to (iii) by (1.12).

(b) The equivalence between (i) and (ii) is already proved in Theorem 1.2.6, when

proving the equivalence between conditions (iv) and (v) in the case (b) (we observe

that in that proof, we are not using the ‘continuous’ weight u). The equivalence with

(iii) is an easy consequence of the characterization (1.11) of ũ ∈ Bp, once we show

that for all k ∈ Z, ∫ 2k+1

2k

1

Ũ(x)1/p
dx ≈ 2k+1

U
1/p
k

.

In one direction we have:

2k+1

U
1/p
k

=
2

Ũ(2k+1)1/p

∫ 2k+1

2k

dx ≤ 2

∫ 2k+1

2k

1

Ũ(x)1/p
dx.

In the other direction, we use again that U
1/p
n+1 ≤ CU

1/p
n , and thus:

∫ 2k+1

2k

1

Ũ(x)1/p
dx ≤ 2k

Ũ(2k)1/p
=

2k

U
1/p
k−1

≤ C
2k+1

U
1/p
k

.

2
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Theorem 1.2.10 For 0 < p < ∞, we have

AZ : `p,∞
dec ((uk)k) −→ `p,∞((uk)k)

if and only if
∑

j≤k

2j+1

U
1/p
j

≤ C
2k+1

U
1/p
k

, ∀ k ∈ Z.

Proof. The boundedness of AZ is equivalent to

‖AZf‖`p,∞((uk)k) ≤ C ‖f‖`p,∞((uk)k) ,

for all decreasing f = (fk)k∈Z. We observe that the sequence fk = U
−1/p
k is decreasing,

and that ‖f‖`p,∞((uk)k) = 1, by using (1.14), and therefore the boundedness of AZ
implies

‖AZf‖`p,∞((uk)k) ≤ C. (1.17)

On the other hand, we observe that for every (fk)k ∈ `p,∞((uk)k), we have that

fk ≤ CU
−1/p
k for all k ∈ Z, and this implies that AZf(k) ≤ AZ(U−1/p)(k) for all

k ∈ Z, and thus, (1.17) is also sufficient for the boundedness of AZ. Now, if we write

condition (1.17) by using (1.14), we find the desired condition.

2

By considering Theorems 1.2.8, 1.2.9 and 1.2.10, we can state the following result:

Corollary 1.2.11 If 1 < p < ∞, the following conditions are equivalent for a weight

(uk)k:

(i) ũ(x) =
∑

k∈Z

uk

2k
χ[2k,2k+1)(x) ∈ Bp.

(ii)
∑

j≤k

2j+1

U
1/p
j

≤ C
2k+1

U
1/p
k

, ∀ k ∈ Z.

(iii) (uk)k ∈ Bp,∞(Z).

(iv) AZ : `p,∞
dec ((uk)k) −→ `p,∞((uk)k).

(v) (uk)k ∈ Bp(Z).
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1.3 Operators on monotone functions

In this section, we study the boundedness of operators with some growth properties.

The classical example is the Hardy operator Af defined in (1.2), which is a decreasing

function whenever f is decreasing, or the Hardy-Volterra operator V f defined in (1.3),

which is always an increasing function if f is positive. The purpose of this section is to

consider general operators defined on functions in a general measure space. The key

idea is that it is possible to characterize the boundedness of the operator in terms of

capacity conditions on the level sets of the operator, that are increasing or decreasing

sets.

So, we go back to the general case of a measure space (X,µ), where X is an

ordered set. Recall that we assume that every decreasing set is µ-measurable, and

that we denote the order by x ≤ y. In some occasions, we will need to consider

the case where X is a topological connected space. The connectedness guarantees

that every non-empty open set has non-empty boundary. In that case, we avoid, for

example, the spaces with the discrete topology.

For a weight v, the weak Lq(v)-‘norm’ of a measurable function f is given in (1.4).

We need to express this quantity in a more geometrical way.

Lemma 1.3.1 For every measurable function f in (X,µ), we have that

‖f‖Lq,∞(v) = sup
E⊂X

V (E)1/q

(
inf
x∈E

|f(x)|
)

,

where the supremum is taken over all measurable sets E in X.

Proof. By a density argument, it is enough to prove it for a simple positive function

f(x) =
∑n

k=1 akχEk
(x), where 0 < a1 < a2 < . . . < an. In this case, we know that

‖f‖Lq,∞(v) = max
k=1,...,n

ak V (Fk)
1/q,

where Fk = ∪n
i=kEi. Now take E ⊂ X such that E ⊂ ∪n

k=1Ek (if not, infx∈E |f(x)| = 0

and it has no contribution in the supremum). If i = min{k : 1 ≤ k ≤ n, E ⊂ Fk},
then infx∈E |f(x)| = ai and so

sup
E⊂X

V (E)1/q

(
inf
x∈E

|f(x)|
)

= max
k=1,...,n

sup
E⊂Fk

ak V (E)1/q = max
k=1,...,n

ak V (Fk)
1/q.

2
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The next result shows that if the function is monotone, we can restrict the supre-

mum in the weak norm to monotone sets.

Corollary 1.3.2 For a positive measurable function f , we have:

(a) ‖f‖Lq,∞(v) = sup
D↓

V (D)1/q

(
inf
x∈D

f(x)

)
, if f is decreasing.

(b) ‖f‖Lq,∞(v) = sup
I↑

V (I)1/q

(
inf
x∈I

f(x)

)
, if f is increasing.

Proof. (a) We trivially have that

sup
D↓

V (D)1/q

(
inf
x∈D

f(x)

)
≤ ‖f‖Lq,∞(v) ,

for every positive decreasing f in view of the previous lemma. Let us see the reverse

inequality for a fixed decreasing f ≥ 0. For a measurable set E, set

Ed =
⋂

D⊃E,D↓
D,

which is a decreasing set, and hence, measurable. It is clear that

V (E) ≤ V (Ed). (1.18)

We claim that

inf
x∈E

f(x) = inf
x∈Ed

f(x).

Thus, using (1.18) and the claim, we get

‖f‖Lq,∞(v) = sup
E⊂X

V (E)1/q

(
inf
x∈E

f(x)

)
≤ sup

D↓
V (D)1/q

(
inf
x∈D

f(x)

)
.

It is now enough to prove the inequality

inf
x∈E

f(x) ≤ inf
x∈Ed

f(x),

because the reverse inequality is trivially true. Suppose that

inf
x∈E

f(x) > inf
x∈Ed

f(x).

Then, there exists y ∈ Ed such that f(y) < inf
x∈E

f(x) and thus, since f is decreasing,

we have

F (y) ∩ E = ∅, (1.19)
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where F (y) = {x ∈ X : x ≥ y}. For every decreasing D ⊃ E, define D′ = D \ F (y),

which is also a decreasing set. By (1.19), E ⊂ D′ for all decreasing D ⊃ E. But

observe that y /∈ D′, getting a contradiction with the fact that y ∈ Ed.

(b) The proof is analogous, but considering

Ei =
⋂

I⊃E,I↑
D,

instead of Ed.

2

Let L be a subclass of the set M(X) of all the measurable functions in (X, µ).

We will consider operators

S : M(X) −→M(X),

that are (positively) homogeneous, that is,

|S(λf)(x)| = |λ| |Sf(x)| ,

for all λ > 0, all measurable f and all x ∈ X.

For such L and S : M(X) −→M(X), the Lp(u)-capacity of a measurable set E

is defined as

Capp,u,L,S(E) = inf
{
‖f‖Lp(u) : f ∈ L, |Sf(x)| ≥ 1 ∀x ∈ E

}
.

If L = Lp(u), we will simply write Capp,u,S(E).

Theorem 1.3.3 Let S : M(X) −→ M(X) be a homogeneous operator such that

|Sf | is a decreasing function for every f ∈ L. Then,

A := sup
f∈L

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
D↓

V (D)1/q

Capp,u,L,S(D)
:= B.

Moreover, if X is a topological connected space, and Sf is a continuous function for

every f ∈ L, then

A = B = sup
D↓

V (D)1/q

Cap′p,u,L,S(D)
:= C,

where

Cap′p,u,L,S(E) = inf
{
‖f‖Lp(u) : f ∈ L, |Sf(x)| = 1 ∀x ∈ ∂E

}
,

for every measurable set E.
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Proof. We first prove that A = B. For a decreasing set D, take f ∈ L such that

|Sf(x)| ≥ 1, if x ∈ D. Then,

D ⊂ {x ∈ X : |Sf(x)| ≥ 1} ,

and therefore

V (D)1/q ≤ V ({x ∈ X : |Sf(x)| ≥ 1})1/q ≤ A ‖f‖Lp(u) .

Taking the infimum, we get

V (D)1/q ≤ A Capp,u,L,S(D),

for all decreasing sets D, which shows B ≤ A. Now, for a function f ∈ L, and for a

decreasing set D, set λD = inf
x∈D

|Sf(x)|. We can assume that λD > 0, and then, by

the homogeneity

|S(f/λD)(x)| ≥ 1,

for all x ∈ D. By definition, we have

Capp,u,L,S(D) ≤ ‖f‖Lp(u)

λD

.

Using this last inequality and Corollary 1.3.2, we get

‖Sf‖Lq,∞(v) = sup
D↓

V (D)1/q λD

≤ B sup
D↓

Capp,u,L,S(D) λD

≤ B ‖f‖Lp(u) ,

and this is A ≤ B.

We now prove A = B = C, if Sf is a continuous function for every f ∈ L. If |Sf | is

a decreasing function such that |Sf(x)| = 1 for all x ∈ ∂D, where D is a decreasing

set, then |Sf(x)| ≥ 1 for all x ∈ D, and therefore

Capp,u,L,S(D) ≤ Cap′p,u,L,S(D),

for all decreasing D, and that is B ≥ C. For a fixed f ∈ L, set as before λD =

inf
x∈D

|Sf(x)|. We can assume that λD > 0. We have

D ⊂ D′ := {x ∈ X : |Sf(x)| ≥ λD} ,
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and thus,

V (D)1/q ≤ V (D′)1/q ≤ C Cap′p,u,L,S(D′). (1.20)

By continuity we have that |Sf(x)| = λD for all x ∈ ∂D′, and using the homogeneity

of S, we get

Cap′p,u,L,S(D′) ≤ ‖f/λD‖Lp(u) =
‖f‖Lp(u)

λD

.

By using this inequality, Corollary 1.3.2 and (1.20), we finally get

‖Sf‖Lq,∞(v) = sup
D↓

V (D)1/q λD

≤ C sup
D↓

Capp,u,L,S(D′) λD

≤ C ‖f‖Lp(u) ,

which gives A ≤ C, and thus A = B = C.

2

Analogously, we have the next result.

Theorem 1.3.4 Let S : M(X) −→ M(X) be a homogeneous operator such that

|Sf | is an increasing function for every f ∈ L. Then,

A := sup
f∈L

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
I↑

V (I)1/q

Capp,u,L,S(I)
:= B.

Moreover, if X is a topological space, and Sf is a continuous function for every f ∈ L,

then

A = B = sup
I↑

V (I)1/q

Cap′p,u,L,S(I)
:= C.

We give some examples of application of our results. We collect known results

and new ones.

1.3.1 Integral operators in R+

Let X be R+ with the usual topology, and µ the Lebesgue measure. A decreasing set

is an interval [0, x) or [0, x], and the increasing sets are intervals of the form (x,∞)

or [x,∞).

If S is a homogeneous operator, it is easy to see in this context that

Cap′p,u,L,S([0, x]) =

(
sup
f∈L

|Sf(x)|
‖f‖Lp(u)

)−1

= inf
f∈L

‖f‖Lp(u)

|Sf(x)| . (1.21)
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In fact, the inequality

Cap′p,u,L,S([0, x]) ≥ inf
f∈L

‖f‖Lp(u)

|Sf(x)| ,

is trivial. Take f ∈ L such that |Sf(x)| > 0, and consider g(y) = f(y)/ |Sf(x)|. We

then have |S(g)(x)| = 1 and ‖g‖Lp(u) = ‖f‖Lp(u) / |Sf(x)|, and hence we have the

reverse inequality.

We consider integral operators of the form

Sf(x) =

∫ ∞

0

K(x, y) f(y) dy, (1.22)

where K(x, y) is a measurable function.

By using our previous results, we can prove the following theorems due to J.A.

Raposo (see [R]):

Theorem 1.3.5 Suppose that the operator defined in (1.22) satisfies that |Sf | is a

decreasing function for all positive measurable f . Then,

(i) If 0 < p < 1, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= ∞.

(ii) If p = 1, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

sup
y>0

V ([0, x])1/qK(x, y)

u(y)
.

(iii) If 1 < p < ∞, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q

(∫∞
0

K(x, s)p′u(s)1−p′ds

)−1/p′ .

Proof. We apply Theorem 1.3.3 and observation (1.21) to our operator and to the

class L = {f : f ≥ 0}, and we have

sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q sup
f≥0

|Sf(x)|
‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q sup
f≥0

‖K(x, .)f(.)u(.)−1‖L1(u)

‖f‖Lp(u)

.

By duality we have

sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

=
∥∥K(x, .)u(.)−1

∥∥
(Lp(u))′ ,
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and then, the result is obtained if we use the well-known identities

(Lp(u))′ =





{0} if 0 < p < 1,
L∞(u) if p = 1,
Lp′(u) if p > 1.

2

The conjugate Hardy operator

Qf(x) =

∫ ∞

x

f(y)
dy

y

is an example of an operator satisfying the requirements of the previous theorem.

Analogously, using Theorem 1.3.4, we have:

Theorem 1.3.6 Suppose that the operator defined in (1.22) satisfies that |Sf | is an

increasing function for all positive measurable f . Then,

(i) If 0 < p < 1, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= ∞.

(ii) If p = 1, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

sup
y>0

V ([x,∞])1/qK(x, y)

u(y)
.

(iii) If 1 < p < ∞, sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

V ([x,∞])1/q

(∫∞
0

K(x, s)p′u(s)1−p′ds

)−1/p′ .

Some examples of operators satisfying the conditions in the last theorem are the

Hardy-type operators . These are operators of the form

Sf(x) =

∫ x

0

K(x, y) f(y) dy,

where the kernel K(x, y) satisfies

(i) K(x, y) > 0, for all x > y > 0, and K is increasing in x and decreasing in y.

(ii) There exists a constant C > 0 such that K(x, y) ≤ C(K(x, z) + K(z, y)) if

0 < y < z < x.

Theorem 1.3.7 Suppose that the operator defined in (1.22) satisfies that |Sf | is a

decreasing function for all positive and decreasing measurable f . Then,
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(i) If 0 < p ≤ 1, sup
0≤f↓

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q sup
y>0

∫ y

0
K(x, s) ds

U([0, y])1/p
.

(ii) If 1 < p < ∞,

sup
0≤f↓

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

≈ sup
x>0

V ([0, x])1/q ×
(∫ ∞

0

(∫ y

0

K(x, s) ds

)r/p

U(y)−r/pK(x, y) dy

)1/r

≈ sup
x>0

V ([0, x])1/q ×
(∫ ∞

0

(∫ y

0

K(x, s) ds

)r/q

U(y)−r/qu(y) dy

)1/r

+

( ∫∞
0

K(x, s) ds

)1/q

U(∞)1/p
.

Proof. If we apply Theorem 1.3.3 and observation (1.21) to our operator and to the

class L = {f : 0 ≤ f ↓}, we have

sup
0≤f↓

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q sup
0≤f↓

|Sf(x)|
‖f‖Lp(u)

= sup
x>0

V ([0, x])1/q sup
0≤f↓

‖f‖L1(K(x,.))

‖f‖Lp(u)

.

If 0 < p ≤ 1, by Theorem 1.1.3 we know that

sup
0≤f↓

‖f‖L1(K(x,.))

‖f‖Lp(u)

= sup
y>0

∫ y

0
K(x, s) ds

U([0, y])1/p
,

and thus obtaining the result. For p > 1, we apply Theorem 1.1.1 getting

sup
0≤f↓

‖f‖L1(K(x,.))

‖f‖Lp(u)

≈
(∫ ∞

0

(∫ y

0

K(x, s) ds

)r/p

U(y)−r/pK(x, y) dy

)1/r

≈
(∫ ∞

0

(∫ y

0

K(x, s) ds

)r/q

U(y)−r/qu(y) dy

)1/r

+

( ∫∞
0

K(x, s) ds

)1/q

U(∞)1/p
.

2
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If the kernel K(x, y) takes the special form

K(x, y) =
1

x
a(y/x),

for a positive measurable function a, we obtain in last theorem the results of K.

Andersen ([A]).

1.3.2 Integral operators on metric trees

A metric tree T̃ is a connected graph without loops or cycles, where the edges are

non-degenerate closed line segments whose endpoints are vertices that meet a finite

number of edges. For every pair of points x and y in T̃ , there is a unique polygonal

path in T̃ joining x and y denoted [x, y]. If we fix a point o in T̃ , we can define the

partial order x ≤ y if and only if x ∈ [o, y].

T̃ is endowed with the metric topology generated by the distance d between x and

y, that is, the length of [x, y], and with the one-dimensional Lebesgue measure.

If we parameterize [x, y] by s(t) = d(x, t), we define

∫ y

x

f(t) dt =

∫ d(x,y)

0

f(t(s)) ds,

for every f ∈ L1
loc(T̃ ).

We consider integral operators of the form

Sf(x) =

∫ x

o

K(x, y) f(y) dy, (1.23)

where K : T̃ × T̃ −→ C is a measurable function.

Assume that the operator S is of Hardy-type, that is, the kernel K satisfies:

(i) K(x, y) > 0, for all x > y > o in T̃ and K is increasing in x and decreasing in

y.

(ii) There exists a constant C > 0 such that K(x, y) ≤ C(K(x, z) + K(z, y)), if

0 < y < z < x.

In this context, Theorem 1.3.4 applies:

Theorem 1.3.8 For a Hardy-type operator (1.23), we have:

sup
f≥0

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
I↑

V (I)1/q

Cap′p,u,L,S(I)
.
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We introduce now a theorem about the Hardy-Volterra operator on metric trees

that extends a result of W.D. Evans, D.J. Harris and L. Pick ([EHP]). Our proof is

somehow easier and follows the discretization technique used in Section 1. We need

a proposition as a first step.

We recall that D(T̃ ) stands as the set of all covering families of decreasing sets in

T̃ , and we set

∆k = Dk+1 \Dk.

For such a family {Dk : k ∈ Z}, we denote

αk := inf

{
‖f‖Lp(u) : supp(f) ⊂ ∆k−1,

∫ t

o

f(x) dx = 1 ∀t ∈ ∂Dk

}
.

Proposition 1.3.9 Consider the Hardy-Volterra operator

Sf(x) =

∫ x

o

f(y) dy, (1.24)

defined for a function f in the metric tree T̃ . For 0 < p, q < ∞, we have:

A := sup
f≥0

‖Sf‖Lq(v)

‖f‖Lp(u)

≈ sup
0≤{ak}

sup
{Dk}⊂D(eT )

(∑

k∈Z
aq

k V (∆k)

)1/q

(∑

k∈Z
ap

k αp
k

)1/p
:= B.

Proof. For a fixed positive sequence {ak : k ∈ Z} and a family {Dk} ⊂ D(T̃ ), consider

a sequence of positive functions {fk : k ∈ Z} such that:

•
∫ t

o

fk(x) dx = 1 for all t ∈ ∂Dk,

• supp fk ⊂ ∆k−1.

Define f(x) =
∑

k∈Z
akfk(x). Then

||f ||Lp(u) =

(∑

k∈Z
ap

k ||fk||pLp(u)

)1/p

, (1.25)

and by construction

‖Sf‖q
Lq(v) =

∫
eT
(∫ x

o

f(y) dy

)q

v(x) dx

=
∑

k∈Z

∫

∆k

(∫ x

o

f(y) dy

)q

v(x) dx

≥
∑

k∈Z
aq

k

∫

∆k

(∫ x

o

fk(y) dy

)q

v(x) dx ≥
∑

k∈Z
aq

k V (∆k).
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Combining this inequality and (1.25), we get

(∑

k∈Z
aq

k V (∆k)

)1/q

≤ A

(∑

k∈Z
ap

k ||fk||pLp(u)

)1/p

,

and taking the infimum in the right hand side of this expression over all positive

sequences {fk : k ∈ Z} satisfying our requirements, we have

(∑

k∈Z
aq

k V (∆k)

)1/q

≤ A

(∑

k∈Z
ap

k αp
k

)1/p

,

and this is B ≤ A if we take supremum. Let us see that A . B. For a given positive

f , consider the decreasing sets Dk =
{

x ∈ T̃ :
∫ x

o
f(y) dy < 2k

}
. Then:

‖Sf‖Lq(v) =

(∫
eT
(∫ x

o

f(y) dy

)q

v(x) dx

)1/q

=

(∑

k∈Z

∫

∆k

(∫ x

o

f(y) dy

)q

v(x) dx

)1/q

≤
(∑

k∈Z
2(k+1)q V (∆k)

)1/q

≤ B

(∑

k∈Z
2(k+1)p αp

k

)1/p

.

Now, if t ∈ ∂Dk, then

∫ t

o

f(y) dy = 2k and there is t′ ∈ ∂Dk−1 such that

∫ t

o

f(y)χ∆k−1
(y) dy =

∫ t

t′
f(y) dy =

∫ t

o

f(y) dy −
∫ t′

o

f(y) dy = 2k−1,

which implies that

αk ≤ 21−k||fχ∆k−1
||Lp(u).

Then,

‖Sf‖Lq(v) ≤ 4B

(∑

k

||fχ∆k−1
||pLp(u)

)1/p

= 4B

(∫
eT f(x)pu(x) dx

)1/p

,

and taking the supremum over all positive functions, we have that A ≤ 4B.

2
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As a direct consequence, we have:

Theorem 1.3.10 For the Hardy-Volterra operator

Sf(x) =

∫ x

o

f(y) dy,

defined in the metric tree T̃ , and for 0 < p, q < ∞, we have:

(a) If 0 < p ≤ q < ∞, the following conditions are equivalent:

(i) S : Lp(u) −→ Lq(v).

(ii) There exists a constant C > 0 such that

V (∆k)
1/q ≤ Cαk,

for all k ∈ Z and all {Dk} ⊂ D(T̃ ).

(iii) There exists a constant C > 0 such that

V (I)1/q ≤ C Cap′p,u,S(I),

for all increasing set I ⊂ T̃ .

(iv) S : Lp(u) −→ Lq,∞(v).

(b) If 0 < q < p < ∞, the following conditions are equivalent:

(i) S : Lp(u) −→ Lq(v).

(ii) There exists a constant C > 0 such that

(∑

k∈Z
V (∆k)

r/qα−r
k

)1/r

≤ C,

for all {Dk} ⊂ D(T̃ ).

Proof. For two positive sequences {uk : k ∈ Z} and {vk : k ∈ Z}, the well-known em-

bedding characterization between `q({vk}) and `p({uk}) is

sup
(ak)≥0

(∑

k∈Z
aq

k vk

)1/q

(∑

k∈Z
ap

k uk

)1/p
=





sup
k∈Z

v
1/q
k

u
1/p
k

if 0 < p ≤ q < ∞,

(∑

k∈Z
v

r/q
k u

−r/p
k

)1/r

if 0 < q < p < ∞.
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Now, we use these embeddings, with uk = αp
k and vk = V (∆k), and the previous

proposition to get

sup
f≥0

‖Sf‖Lq(v)

‖f‖Lp(u)

≈





sup
{Dk}⊂D(eT )

sup
k∈Z

V (∆k)
1/q

αk

if 0 < p ≤ q < ∞,

sup
{Dk}⊂D(eT )

(∑

k∈Z
V (∆k)

r/qα−r
k

)1/r

if 0 < q < p < ∞,

and this proves part (b), and also the equivalence between (i) and (ii) in part (a).

By Theorem 1.3.8 with K(x, y) = 1, (iii) and (iv) are equivalent. It is trivial that (i)

implies (iv). It is now enough to see that (iii) implies (ii). Take a family {Dk : k ∈ Z}
in D(T̃ ), and for each k ∈ Z, consider an increasing set Ik = T̃ \ Dk. Observe that

we trivially have that

Cap′p,u,S(Ik) ≤ αk.

Using this and (iii), we have

V (∆k) ≤ V (Ik) ≤ C Cap′p,u,S(Ik) ≤ Cαk.

2

Remarks 1.3.11

(i) Part (b) and (i), (ii) of (a) of the preceding theorem are contained in [EHP],

and the family of decreasing sets D(T̃ ) can be replaced by a smaller family of

decreasing sets (called maximal subtrees there).

(ii) In the case T̃ = R+ and the range 0 < p < 1, it is proved in Theorem 1.3.6 that

the boundedness S : Lp(u) −→ Lq(v) of the Hardy operator is not possible.

1.3.3 Hardy-Volterra operators on trees

A tree T = (G,A) is a connected graph without circuits or cycles, consisting of a set

of vertices G and a family A of two-elements subsets of G called edges. We identify a

tree with the set of its vertices. We are interested in locally finite trees, that is, trees

such that every vertex belongs to a finite number of edges.

A path in the tree T = (G,A) is a finite sequence x0, x1, . . . , xn of vertices such

that {xi, xi+1} ∈ A. In a tree, there exists a unique path x0, x1, . . . , xn joining two

vertices x and y, that is, with x0 = x and xn = y, and such that xi 6= xi+2 for all

0 ≤ i ≤ n − 2. We call this path a geodesic and we denote it by [x, y] (or [y, x]).
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Then the tree becomes a geodesic space, and also a metric space if we define the

distance between x and y as the number of edges in the path [x, y], that is, the length

of [x, y]. As usual, we denote it by d(x, y). Now, the vertices x and y are neighbors if

d(x, y) = 1.

For a vertex x, we denote by deg(x) the number of its neighbor vertices. A tree

is called regular if there exists M ≥ 1 such that

2 ≤ deg(x) ≤ M + 1, (1.26)

for all x ∈ T .

We consider rooted trees, that is, trees with a fixed reference vertex o called origin

of the tree. In a rooted tree, we can define a partial order structure: the vertex x is

grater than or equal to the vertex y if y belongs to [o, x]. We denote it by y ≤ x.

A function defined on a tree is a discrete function evaluated on each vertex and,

if we endow T with the counting measure, a function is measurable if it is finite at

each vertex. We refer to Chapter 2 for a complete introduction to trees.

The Hardy-Volterra operator in a tree is defined by

Sdf(x) =
∑

y∈[o,x]

f(y), (1.27)

for a function f .

In this new setting, Theorem 1.3.4 applies.

Theorem 1.3.12 For the Hardy-Volterra operator (1.27), we have:

sup
f≥0

‖Sdf‖Lq,∞(v)

‖f‖Lp(u)

= sup
I↑

V (I)1/q

Capp,u,S(I)
.

We introduce now some results in the spirit of Section 1.2 of this chapter. We will

prove in Theorem 1.3.14 that the boundedness of the discrete Hardy-Volterra operator

(1.27) in a tree T is equivalent to the boundedness of the continuous Hardy-Volterra

operator (1.24) in a metric tree T̃ .

For a tree T , we consider a metric tree T̃ such that there exists an embedding

i : T ↪→ T̃ ,

satisfying:
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(i) x is a vertex in T if and only if i(x) is a vertex in T̃ .

(ii) i is an isometry, that is, for two vertices x, y in T

d(x, y) = d̃(x, y),

where d̃ is the metric in T̃ . As a consequence, the length of all the non-

degenerate edges in T̃ equals 1.

We can transfer the partial order from T to T̃ so that if o ∈ T is the origin in the

tree, then i(o) ∈ T̃ is the origin in the metric tree. We write the order in T̃ also by

ξ ≤ ζ. For a point ξ ∈ T̃ \ i(T ), there exist two unique vertices up(ξ) and down(ξ) in

i(T ) such that

ξ ∈ [up(ξ), down(ξ)].

Choose up(ξ) to be the first vertex in the geodesic path from ξ to i(o) (in this order,

see Figure 1).

i(o)

ξup(ξ)

down(ξ)

Figure 1: The vertices up(ξ) and down(ξ).

We then can define for ξ, ζ ∈ T̃ :

(i) If ξ, ζ are vertices of T̃ , ξ ≤ ζ in T̃ if and only if i−1(ξ) ≤ i−1(ζ).

(ii) If ξ is a vertex of T̃ but ζ is not, ξ ≤ ζ in T̃ if and only if i−1(ξ) ≤ i−1(up(ζ)).

(iii) If neither ξ nor ζ are vertices of T̃ , then (see Figure 2):

(a) If up(ξ) = up(ζ), ξ ≤ ζ in T̃ if and only if i−1(down(ξ)) = i−1(down(ζ))

and d̃(i(o), ξ) ≤ d̃(i(o), ζ).
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(b) If up(ξ) 6= up(ζ), ξ ≤ ζ in T̃ if and only if i−1(down(ξ)) ≤ i−1(up(ζ)).

i(o)

up(ξ) = up(ζ)

down(ξ) = down(ζ)

ξ

ζ

up(ξ)

down(ξ)

up(ζ)

down(ζ)

ξ

ζ

i(o)

(a) (b)

Figure 2: The two cases in (iii).

A simple example is T = N ∪ {0} and T̃ = R+.

We set for every vertex x ∈ T ,

Ω(x) =
{

ξ ∈ T̃ : d̃(i(x), ξ) < 1, i(x) ≤ ξ
}

.

We can extend every function f defined in T to a function f̃ in T̃ by using the

expression

f̃(ξ) =
∑
x∈T

f(x) χΩ(x)(ξ),

i.e, f is constant on edges [x, y), with d(o, y) = d(o, x) + 1. Analogously, ũ and ṽ are

the extended weights of u and v. In order to prove the result of the equivalence of

the boundedness, we need a lemma:

Lemma 1.3.13 Let T be a regular tree. Suppose that S : Lp(ũ) −→ Lq(ṽ) for 0 <

p, q < ∞. Then we have:

(i) If 0 < p ≤ q < ∞, there exists a constant C > 0 such that

v(x)1/q ≤ Cu(x)1/p,

for all x ∈ T .
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(ii) If 0 < q < p < ∞, there exists a constant such that

(∑
x∈T

v(x)r/q u(x)−r/p

)1/r

≤ C.

Proof. (i) For a fixed x ∈ T , we consider the function g(ξ) = χ[i(x),i(x′)](ξ), where x′ is

a neighbor vertex of x and such that x′ ≥ x (it exists by the assumption of regularity

of the tree). Then, with Cq =

∫ x′

x

(∫ ξ

x

dζ

)q

dξ, using the hypothesis, we have:

Cq v(x) =

∫ x′

x

(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ

≤
∫
eT
(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ

≤ C

(∫
eT g(ξ)p ũ(ξ) dξ

)q/p

= C u(x)q/p.

(ii) Consider the positive function g(ξ) =
∑
x∈T

(v(x)r/q u(x)−r/q)1/pχΩ(x)(ξ). We obtain

a lower bound for its Lp(u)-norm:

∫
eT g(ξ)p ũ(ξ) dξ =

∑
x∈T

∫

Ω(x)

g(ξ)p ũ(ξ) dξ (1.28)

=
∑
x∈T

u(x) v(x)r/q u(x)−r/q

∫

Ω(x)

dξ

≥
∑
x∈T

v(x)r/q u(x)−r/p,

where we have used that, by the regularity of the tree (1.26),

1 ≤ |Ω(x)|` ≤ M,

where |E|` is the one-dimensional Lebesgue measure of a set E in T̃ . On the other

hand,

∫
eT
(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ =
∑
x∈T

∫

Ω(x)

(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ

=
∑
x∈T

v(x)

∫

Ω(x)

(∫ ξ

o

g(ζ) dζ

)q

dξ

≥
∑
x∈T

v(x)

∫

Ω′(x)

(∫ ξ

o

g(ζ) dζ

)q

dξ, (1.29)
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where we have denoted Ω′(x) =
{

ξ ∈ Ω(x) : d̃(i(x), ξ) ≥ 1
2

}
. Now, for ξ ∈ Ω(x), we

have
∫ ξ

o

g(ζ) dζ =

∫ x

o

g(ζ) dζ +

∫ ξ

x

g(ζ) dζ

≥
∫ ξ

x

g(ζ) dζ

=

(
v(x)r/q u(x)−r/q

)1/p

d̃(x, ξ).

We use this inequality in (1.29):

∫
eT
(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ ≥
∑
x∈T

v(x)

(
v(x)r/q u(x)−r/q

)q/p ∫

Ω′(x)

d̃(x, ξ) dξ

≥
∑
x∈T

v(x)1+r/p u(x)−r/p 1

4
|Ω(x)|

≥ 1

4

∑
x∈T

v(x)r/q u(x)−r/p.

Finally, this last inequality, (1.29) and the boundedness of the operator imply

(∑
x∈T

v(x)r/q u(x)−r/p

)1/q

≤ C

(∑
x∈T

v(x)r/q u(x)−r/p

)1/p

,

that is (∑
x∈T

v(x)r/q u(x)−r/p

)1/r

≤ C.

2

We are ready to prove the theorem. Recall that S is defined in (1.24) and Sd in

(1.27).

Theorem 1.3.14 Let T be a regular tree. If 1 ≤ p < ∞ and 0 < q < ∞, for two

weights u and v in T , the following conditions are equivalent:

(i) Sd : Lp(u) −→ Lq(v).

(ii) S : Lp(ũ) −→ Lq(ṽ).

Proof. Suppose that Sd is bounded. For a positive g : T̃ −→ R+ in Lp(ũ), consider

the discrete function

f(x) := max
{y∈T : ed(i(x),i(y))=1, y≥x}

∫ y

x

g(ξ) dξ.
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It is not difficult to see, by Jensen’s inequality, that

f(x)p = max
{y∈T : ed(i(x),i(y))=1, y≥x}

(∫ y

x

g(ξ) dξ

)p

≤ max
{y∈T : ed(i(x),i(y))=1, y≥x}

∫ y

x

g(ξ)p dξ

≤
∫

Ω(x)

g(ξ)p dξ, (1.30)

and this easily implies f ∈ Lp(u). By definition,

Sg(ξ) =

∫ ξ

o

g(ζ) dζ ≤
∑

y∈[o,x]

f(y) = Sdf(x), (1.31)

if ξ ∈ Ω(x). This fact, the regularity and the hypothesis give:

‖Sg‖q
Lq(ev) =

∑
x∈T

∫

Ω(x)

(∫ ξ

o

g(ζ) dζ

)q

ṽ(ξ) dξ

≤
∑
x∈T

(Sdf(x))q v(x) |Ω(x)|

≤ M
∑
x∈T

(Sdf(x))q v(x)

≤ MC

(∑
x∈T

f(x)p u(x)

)q/p

≤ MC

(∑
x∈T

u(x)

(∫

Ω(x)

g(ξ)p dξ

))q/p

= MC

(∫
eT g(ξ)p ũ(ξ) dξ

)q/p

= MC ‖g‖Lp(eu) ,

where in the last inequality, (1.30) is used.

Suppose now that S is bounded. For a positive f : T −→ R+, consider the

extended function f̃ in T̃ . For a vertex x ∈ T , let us denote x− the unique neighbor

vertex of x such that x− ∈ [o, x]. Therefore,

‖Sdf‖q
Lq(v) =

∑
x∈T

( ∑

y∈[o,x]

f(y)

)q

v(x)

≤ Cq

(∑
x∈T

( ∑

y∈[o,x−]

f(y)

)q

v(x) +
∑
x∈T

f(x)q v(x)

)

= Cq(I + II).
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We study I and II separately. By definition, we have that

∑

y∈[o,x−]

f(y) =

∫ x

o

f̃(ζ) dζ.

This equality, the regularity and the hypothesis give the desired bound for I:

I =
∑
x∈T

( ∑

y∈[o,x−]

f(y)

)q

v(x) =
∑
x∈T

(∫ x

o

f̃(ζ) dζ

)
v(x)

≤ 1

2

∑
x∈T

(∫ x

o

f̃(ζ) dζ

)(∫

Ω(x)

ṽ(ξ) dξ

)

≤ 1

2

∑
x∈T

∫

Ω(x)

(∫ ξ

o

f̃(ζ) dζ

) ∫

Ω(x)

ṽ(ξ) dξ

≤ C

2

( ∑
x∈T

∫

Ω(x)

f̃(ξ)p ũ(ξ) dξ

)q/p

=
C

2

(∑
x∈T

f(x)p u(x) |Ω(x)|`
)q/p

≤ C

2
M q/p ‖f‖q

Lp(u) .

To proceed with II, we need to consider two cases:

(i) If 0 < p ≤ q < ∞, we apply part (i) of Lemma 1.3.13 and the fact that q/p ≥ 1,

to get:

II =
∑
x∈T

f(x)q v(x) ≤ C
∑
x∈T

f(x)q u(x)q/p

≤ C

(∑
x∈T

f(x)p u(x)

)q/p

= C ‖f‖q
Lp(u) .

(ii) If 0 < q < p < ∞, we apply Hölder inequality for p/q > 1 and part (ii) of

Lemma 1.3.13, obtaining:

II =
∑
x∈T

f(x)q v(x) ≤
(∑

x∈T

f(x)p u(x)

)q/p(∑
x∈T

v(x)r/q u(x)−r/p

)1−q/p

≤ C1−q/p

(∑
x∈T

f(x)p u(x)

)q/p

= C1−q/p ‖f‖q
Lp(u) .

2
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As a consequence of this result we can characterize the boundedness of Sd in the

range 1 ≤ p ≤ q < ∞.

Theorem 1.3.15 Let T be a regular tree. If 1 ≤ p ≤ q < ∞, the following conditions

are equivalent:

(i) Sd : Lp(u) −→ Lq,∞(v).

(ii) There exists a constant C > 0 such that

V (I)1/q ≤ C Capp,u,Sd
(I),

for all increasing sets of vertices I ⊂ T .

(iii) Sd : Lp(u) −→ Lq(v).

(iv) S : Lp(ũ) −→ Lq(ṽ).

Proof. That (i) and (ii) are equivalent is proved in Theorem 1.3.4. The equivalence

between (iii) and (iv) is stated in the previous theorem. It is trivial that (iii) implies

(i). So, it is enough to see the implication (ii) ⇒ (iv).

By Theorem 1.3.10, this is equivalent to showing that (ii) implies the following

condition: there exists a constant C > 0 such that

Ṽ (Ĩ)1/q ≤ C Capp,eu,S(Ĩ),

for all increasing sets Ĩ ⊂ T̃ . Fix an increasing set Ĩ ⊂ T̃ , and define

I =
{

x ∈ T : d̃(i(x), Ĩ) < 1
}

,

which is an increasing set of vertices in T (see Figure 3). We define

∂I = {x ∈ I : [o, x] ∩ I = {x}} .

Take g : T̃ −→ R+ such that Sg(ξ) = 1 for all ξ ∈ ∂Ĩ. As we did in Theorem 1.3.14,

we consider the discrete function

f(x) := max
{y∈T : ed(i(x),i(y))=1, y≥x}

∫ y

x

g(ξ) dξ.
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Ĩ

i(o)

Figure 3: The sets Ĩ and I. The thick dots are the vertices of I.

By construction, for all x ∈ ∂I, there exists ξ ∈ ∂Ĩ such that ξ ∈ Ω(x) and this

observation and inequality (1.31) lead to

1 = Sg(ξ) ≤ Sdf(x)

for all x ∈ ∂I, and since Sdf is an increasing function, we have

Sdf(x) ≥ 1,

for all x ∈ I. But also, by using (1.30), we have:

‖f‖p
Lp(u) =

∑
x∈T

f(x)p u(x)

≤
∑
x∈T

(∫

Ω(x)

g(ξ)p dξ

)
u(x)

=
∑
x∈T

∫

Ω(x)

g(ξ)p ũ(ξ) dξ = ‖g‖p
Lp(eu) .

Consequently,

Capp,u,Sd
(I) = inf

{
‖f‖Lp(u) : Sdf(x) ≥ 1∀x ∈ I

}
≤ ‖g‖Lp(eu) ,
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for all g with Sg(ξ) = 1 if ξ ∈ ∂Ĩ. Taking infimum on the right hand side, we arrive

at

Capp,u,Sd
(I) ≤ Cap′p,eu,S(Ĩ).

Finally, this last inequality and the hypothesis give the desired implication:

Ṽ (Ĩ)1/q ≤
(∑

x∈I

Ṽ (Ω(x))

)1/q

=

(∑
x∈I

v(x) |Ω(x)|`
)1/q

≤ M1/qV (I)1/q

≤ M1/qC Capp,u,Sd
(I) ≤ M1/qC Cap′p,eu,S(Ĩ).

2

We can easily complete this result for the range 0 < p ≤ 1 and p ≤ q < ∞.

Theorem 1.3.16 Let T be a tree. If 0 < p ≤ 1 and p ≤ q < ∞, we have

A := sup
f≥0

‖Sdf‖Lq(v)

‖f‖Lp(u)

= sup
x∈T

V (T (x))1/q

u(x)1/p
:= B,

where T (x) = {y ∈ T : y ≥ x}.

Proof. Inequality A ≥ B is obtained by evaluating A for the function f(y) = χ{x}(y),

for x ∈ T . We observe that

Sd(χ{x})(y) = χT (x)(y).

A function in the tree can be expressed in the following way

f(x) =
∑
y∈T

f(y) χ{y}(x),

and by linearity of Sd, we obtain:

Sdf(x) =
∑
y∈T

f(y) χT (y)(x).

Thus, if 0 < p ≤ 1,

Sdf(x)p ≤
∑
y∈T

f(y)p χT (y)(x),
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and therefore, by Fubini’s theorem and the hypothesis,

‖Sdf‖p
Lq(v) =

(∑
x∈T

Sdf(x)q v(x)

)p/q

≤
(∑

x∈T

(∑
y∈T

f(y)pχT (y)(x)

)
v(x)

)p/q

≤
∑
y∈T

f(y)p

(∑
x∈T

χT (y)(x) v(x)

)p/q

=
∑
y∈T

f(y)p V (T (y))p/q

≤ B
∑
y∈T

f(y)p u(y) = B ‖f‖p
Lp(u) ,

and this leads to A ≤ B.

2

Corollary 1.3.17 Let T be a tree. If 0 < p ≤ 1 and p ≤ q < ∞, the following

conditions are equivalent:

(i) Sd : Lp(u) −→ Lq,∞(v).

(ii) Sd : Lp(u) −→ Lq(v).

(iii) There exists a constant C > 0 such that V (T (x))1/q ≤ C u(x)1/p, for all x ∈ T .

Proof. The equivalence between (ii) and (iii) is the previous theorem. It is enough to

see that (i) implies (iii). By Lemma 1.3.2, the boundedness (i) is equivalent to the

existence of a constant C > 0 such that

sup
I↑

V (I)1/q

(
inf
y∈I

Sdf(y)

)
≤ C

(∑
y∈T

f(y)p u(y)

)1/p

,

for all positive f . For x ∈ T , take I = T (x) and f(y) = χ{x}(y). Then

inf
y∈T (x)

Sdf(y) = Sd(χ{x})(x) = χT (x)(x) = 1,

and the last inequality becomes

V (T (x))1/q ≤ C u(x)1/p.

2
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Example 1.3.18 Set Tk = {x ∈ T : d(x, o) = k} and let |Tk| be its cardinal. The

weights v(x) = (2k |Tk|)−1, if x ∈ Tk, and u(x) = (21−k)p/q, if x ∈ Tk, satisfy condition

(iii) in the last corollary.

We can apply our results to the special case of T = N ∪ {0} and T̃ = R+. Now

the Hardy-Volterra operator is

Sdf(n) =
n∑

j=0

fj,

for the sequence {fj : j ≥ 0}. We restrict our attention to the diagonal case u = v

and p = q, although our last results give an answer to more general cases. See [BSte]

and [HK] for some results about the discrete Hardy-Volterra operator.

Theorem 1.3.19 If 0 < p < ∞, and u := {uk : k ≥ 0} is a positive sequence, we

have:

(a) If 0 < p ≤ 1, the following conditions are equivalent:

(i) Sd : `p(u) −→ `p(u).

(ii) Sd : `p(u) −→ `p,∞(u).

(iii) There exists a constant C > 0 such that
∞∑

j=n

uj ≤ Cun for all n ≥ 0.

(b) If 1 < p ≤ ∞, the following conditions are equivalent:

(i) Sd : `p(u) −→ `p(u).

(ii) Sd : `p(u) −→ `p,∞(u).

(iii) There exists a constant C > 0 such that

( ∞∑
j=n

uj

)1/p

≤ C

( n∑
j=0

u1−p′
j

)−1/p′

.

Proof. Part (a) is directly obtained from the last corollary observing that in this case

U(T (n)) =
∞∑

j=n

uj. In case (b), by Theorem 1.3.15, it is enough to see the equality

Capp,u,Sd
(In) =

( n∑
j=0

u1−p′
j

)−1/p′

,
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where we have denoted, for each n ≥ 0, the increasing set In = {n, n + 1, n + 2, . . .}.
The sequence f := {fj : j ≥ 0} with

fj =
1

n∑

k=0

u1−p′
k

u1−p′
j

satisfies that Sdf(k) ≥ 1, for all k ≥ n, and thus

Capp,u,Sd
(In) ≤ ‖f‖`p(u) =

( n∑
j=0

u1−p′
j

)−1/p′

.

If g := {gj : j ≥ 0} is a positive sequence such that Sd(g)(k) ≥ 1 for all k ≥ n, we

then have
( n∑

j=0

u1−p′
j

)−1/p′

≤
( n∑

j=0

u1−p′
j

)−1/p′( n∑
j=0

gj

)

≤
( ∞∑

j=0

gp
j uj

)1/p

= ‖g‖`p(u) ,

where the last inequality follows from Hölder’s inequality. Taking the infimum in g,

we finally obtain that
( n∑

j=0

u1−p′
j

)−1/p′

≤ Capp,u,Sd
(In).

2

Corollary 1.3.20 If uj > 0 for all j ≥ 0, then for all 0 < p < ∞, the following

conditions are equivalent:

(i) Sd : `p(u) −→ `p(u).

(ii) Sd : `p(u) −→ `p,∞(u).

(iii) There exists a constant C > 0 such that
∞∑

j=n

uj ≤ Cun for all n ≥ 0.

Proof. By the preceding theorem, we only have to prove the result for the case 1 <

p < ∞, and, in fact, it is enough to prove the equivalence between:

(1)
∞∑

j=n

uj ≤ Cun for all n ≥ 0.

(2)

( ∞∑
j=n

uj

)1/p

≤ C

( n∑
j=0

u1−p′
j

)−1/p′

.
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One implication is trivial because clearly

( n∑
j=0

u1−p′
j

)−1/p′

≤ u1/p
n .

Conversely, we write 0 < Sn =
∑∞

j=n uj. Then (1) reads as

Sn ≤ C(Sn − Sn+1),

or equivalently

Sn+1 ≤ κSn, (1.32)

where 0 < κ < 1. With β = p′ − 1, (2) reads as

Sn

( n∑
j=0

(Sj − Sj+1)
−β

)1/β

≤ C.

Using (1.32), this is equivalent to

Sn

( n∑
j=0

S−β
j

)1/β

≤ C,

and this expression is also equivalent to

Sn

(n−1∑
j=0

S−β
j

)1/β

≤ C.

If we write Tn = Sβ
n , this inequality is

Tn

(n−1∑
j=0

1

Tj

)
≤ C.

We know, by (1.32), that Tn+1 ≤ ρ Tn with 0 < ρ < 1, which implies that Tn ≤ ρn−j Tj

for all 0 ≤ j ≤ n− 1. Thus,

Tn

(n−1∑
j=0

1

Tj

)
≤ Tn

(n−1∑
j=0

ρn−j

Tn

)

= ρn 1− ρ−n

1− ρ−1

= ρ
ρn − 1

ρ− 1

n→∞−→ ρ

1− ρ
< ∞.

2
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1.3.4 Hardy operator in R2
+

Consider the case X = R2
+ equipped with the order defined by

(a1, a2) ≤ (b1, b2)

if and only if ai ≤ bi for i = 1, 2. Let µ be the Lebesgue measure.

The Hardy operator is defined for a positive function f : R2
+ −→ [0,∞) by

Sf(x, y) =
1

xy

∫ x

0

∫ y

0

f(s, t) dtds,

for (x, y) ∈ R2
+. It is easy to see that Sf is decreasing if f is decreasing. In this new

context, Theorem 1.3.3 applies with L being the class of decreasing functions.

Theorem 1.3.21 For 0 < p, q < ∞ we have

sup
0≤f↓

‖Sf‖Lq,∞(v)

‖f‖Lp(u)

= sup
D↓

V (D)1/q

Cap′p,u,L,S(D)
.

It is possible to give a similar expression to (1.21) in this context. However, the

computation of the capacity is not easy.

Lemma 1.3.22 If D ⊂ R2
+ is a decreasing set, then

A := Cap′p,u,L,S(D) =

(
sup

‖f‖Lp(u)=1,f↓

(
inf

(x,y)∈∂D
|Sf(x, y)|

))−1

:= B.

Proof. We take ε > 0 and a decreasing f such that Sf(x, y) = 1 for all (x, y) ∈ ∂D

and such that A− ε ≥ ‖f‖Lp(u). Thus,

1

A− ε
≤

inf
(x,y)∈∂D

Sf(x, y)

‖f‖Lp(u)

= inf
(x,y)∈∂D

S(f/ ‖f‖Lp(u))(x, y)

≤ B.

On the other hand, for a ε > 0, take a decreasing f such that ‖f‖Lp(u) = 1 and

inf
(x,y)∈∂D

Sf(x, y) ≥ B−ε. Consider a decreasing g such that 0 ≤ g ≤ f and Sg(x, y) =

B − ε for all (x, y) ∈ ∂D. Therefore,

A ≤ ‖g‖Lp(u)

B − ε
,
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and finally

B − ε ≤ ‖g‖Lp(u)

A
≤ 1

A
,

using that ‖g‖Lp(u) ≤ ‖f‖Lp(u) = 1.

2



Chapter 2

Non-linear rearrangement on trees

The classical decreasing rearrangement of a function f defined on a measure space

(X,µ) is the function

f ?(t) = inf {λ : µ({x ∈ X : |f(x)| > λ}) ≤ t} , t > 0.

It appears in the literature in the final part of the XIXth Century, in works of,

for example, H.A. Schwarz ([Sc2]). The first systematic treatment is done by G.H.

Hardy, J.E. Littlewood and G. Pólya in their book Inequalities ([HLP]). The paper

[HL] by G.H. Hardy and J.E. Littlewood on the maximal function is an example of

an important result where the decreasing rearrangement plays a fundamental role.

Let (X, µ) be a measure space. For every 0 < p < ∞ and every weight in the

positive real line, the Lorentz space Λp
X(u) is defined as the set of µ-measurable

functions f such that the functional

‖f‖Λp
X(u) =

( ∫ ∞

0

(f ?(t))pu(t) dt

)1/p

(2.1)

is finite. The Lorentz spaces were introduced in 1951 by G.G. Lorentz in [Lo] in

the case X = (0, l) and µ the Lebesgue measure, and they are generalitzations of

the Lp and Lp,q spaces. In this paper, G.G. Lorentz proved that in the case p ≥ 1,

the functional defined in (2.1) is a norm if and only if the weight u is decreasing. A.

Haaker ([H]) studied these spaces in the case X = R+ with the Lebesgue measure and

characterized the normability of the weak version of these spaces for all 0 < p < ∞.

In 1990, E. Sawyer proved that, in the case X = Rn, the Lebesgue measure and

p > 1, the Lorentz space Λp
X(u) is normable if and only if the Hardy-Littlewood

maximal operator is bounded from Λp
X(u) to Λp

X(u), which, in turn, is equivalent

to the Bp condition on u found by M.A. Ariño and B. Muckenhoupt ([AM]). In

71
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1993, M.J. Carro and J. Soria studied in [CSo1] the embedding of the Lorentz spaces

with X = Rn, as well as the characteritzation of their quasi-normability in terms

of a doubling condition on the primitive of the weight. Later, these authors and A.

Garćıa del Amo ([CGSo]) solved the normability for the case p = 1 and X = Rn. In

1998, J. Soria studied the normability of the weak version of the Lorentz spaces in

[So]. Recently, J.A. Raposo ([R] or the book [CRSo]) has studied the Lorentz spaces

in the general context of a resonant measure space (see Definition 2.3 in Chapter 2

of [BS]). The discrete context of X = N∗ has been studied by many different authors

(see [R] or [CRSo] and the references therein).

The classical decreasing rearrangement of functions can be seen as a particular

case of the theory of symmetrization, which has applications in potential theory or in

PDE’s, as the comparison theorems for solutions of PDE’s. We refer to the work of

A. Baernstein [B] for an introduction. Recently, S. Barza, L.E. Persson and J. Soria

have introduced a decreasing rearrangement for functions defined in R2
+ ([BPSo2]).

This new decreasing rearrangement is strongly linked with the geometry of R2
+, while

the classical decreasing rearrangement introduced above does not take into account

the geometry of the space X.

In the recent years, the study of trees has had a wide development. The study of

Harmonic Analysis in trees begun in 1972 with the work of P. Cartier ([C]), and follows

with M.H. Taibleson ([T]). A tree is an example of a discrete domain with a very rich

geometric structure. In some occasions, it is taken as model for other non-discrete

spaces where we are not able to solve a problem (see for example [FPR]). Sometimes,

we can use results on trees to solve problems in other non-discrete contexts (see

[DiB]). Examples of references about real and harmonic analysis on trees are [RT],

[KP], [BCPT], [PW], [KPT], [ADiBU], [CP], [EHL], [NaS1], [NaS2] and [Le].

Our intention is to give a new decreasing rearrangement of functions defined in

a homogeneous tree, which takes strongly into account the geometric structure of

the tree. Then, we introduce the weighted Lorentz space related to our decreasing

rearrangement and we characterize some normability properties of these spaces in

terms of the weight. It is important to remark that the classical techniques do not

work in our context due to the lack of algebraic structure, and trivial facts for the

classical rearrangement of functions become difficult in the tree (see for example the

monotonic condition proved in Proposition 2.2.20). Instead, we use combinatorial

techniques.

In this context, we mention the works of A.R. Pruss [Pr1] and [Pr2], where a
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decreasing rearrangement on homogeneous trees is given by means of a ‘spiral-like’

ordering. We point out that this rearrangement is not useful for our purpose because

it does no satisfy point (iii) of Definition 2.2.1.

The chapter is organized as follows: the first section is devoted to introduce the

general facts about trees that will be useful; in the second section, we give the de-

creasing rearrangement for finite sets of vertices, and we prove that this definition

is canonical (see Theorem 2.2.15) and that we have a monotonic property on this

rearrangement (Proposition 2.2.20); in the third section, we introduce the decreas-

ing rearrangement of functions defined in the homogeneous tree, we see some related

properties, and we give an easier alternative way for rearranging a function (Theo-

rem 2.3.10); in the fourth section, we study the Hardy-Littlewood inequality for our

decreasing rearrangement and we find conditions on the functions in order to get the

saturation of this inequality (Theorems 2.4.15 and 2.4.17); in section five, we intro-

duce the Lorentz spaces related to our decreasing rearrangement and we characterize

when these spaces become Banach spaces (Theorem 2.5.12); in section six, we apply

ours results to finite trees and regular trees.

In order to illustrate the results, we include some figures. In all the figures, the

thick vertices are the vertices of a set or of the support of a function that we are

considering. The hollow vertices are the vertices out of the set or the support of the

function.

2.1 Definitions

We give the basic definitions and facts about trees that we will need.

Many different definitions of trees have been given. We will use the one in [FTN],

as well as some notation from there.

A graph is a pair (G,A) consisting of a set of vertices G and a family A of

two-elements subsets of G called edges. When for a given two vertices x and y in

G, we have that {x, y} ∈ A, we say that x and y are adjacent vertices or simply

neighbor vertices.

A path in the graph (G,A) is a finite sequence x0, x1, . . . , xn of vertices such

that {xi, xi+1} ∈ A. A graph is connected if for every two vertices x and y in G,

there exists a path joining x and y, that is, there exists a path x0, x1, . . . , xn with
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x0 = x and xn = y. A chain is a path x0, x1, . . . , xn such that xi 6= xi+2, and a chain

x0, x1, . . . , xn with x0 = xn is a circuit or a cycle.

A tree T = (G,A) is a connected graph without circuits or cycles. In the sequel,

we will identify a tree with the set of its vertices. We are interested in nonfinite

and locally finite trees, that is trees with an infinite family of vertices, but such

that every vertex belongs to a finite number of edges. A tree may be graphically

represented as shown in Figure 4.

The degree of a vertex is the number of edges to which it belongs or equivalently,

is the number of neighbors it has. A tree is called homogeneous if the degree is

independent of the choice of the vertex. Then the tree is called homogeneous of degree

q + 1 if the number of neighbors is q + 1, q ≥ 1. An example of a homogeneous tree

of degree q + 1 = 3 is shown in Figure 4 (b).

(a) (b)

Figure 4: Examples of trees.

In a tree, there exists a unique chain joining two vertices x and y. We call this

chain a geodesic and we denote it by [x, y] (or [y, x]). Then the tree becomes a

geodesic space, and also a metric space if we define the distance between x and y

as the number of edges in the path [x, y], that is, the length of [x, y]. As usual, we

denote it by d(x, y). Now, the vertices x and y are neighbors if d(x, y) = 1.

An infinite chain is an infinite sequence x0, x1, x2, . . . of vertices such that xi and

xi+1 are neighbors and xi 6= xi+2 for all i ≥ 0. We define an equivalent relation on

the set of infinite chains: x0, x1, x2, . . . and y0, y1, y2, . . . are equivalent if they share

infinite vertices (see Figure 5). This means that there is an integer n ∈ Z+ such

that xk = yn+k for every k large enough. The boundary of the tree ∂T is the set of

equivalent classes of infinite chains.
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A rooted tree is a tree with a fixed reference vertex o called origin of the tree. In

the sequel, every tree will be a rooted tree. The boundary of a rooted tree is the set

of all infinite chains starting at o. The boundary can be viewed as the set of points

at infinity. We can represent it graphically as shown in Figure 6. Every point of the

boundary is an infinite chain starting at o, in other words, the boundary is the set of

end points.

x0

y0

x1
x2

y1

y2y3

y4

y5

x3 = y6
x4 = y7

x5 = y8

x6 = y9

Figure 5: Two equivalent infinite chains.

If x is a vertex and ω is a point at the boundary of the tree, there exists a unique

infinite chain in the equivalent class of ω starting at x. Then we say that this infinite

chain is the infinite geodesic joining x and ω. We denote it by [x, ω). A doubly infi-

nite chain is a sequence of vertices indexed by the integers . . . , x−2, x−1, x0, x1, x2, . . .

such that xi and xi+1 are neighbors and xi 6= xi+2 for all i ∈ Z. A doubly infinite

chain identifies two boundary points, and we call it the infinite geodesic joining these

points. If ω and ν are boundary points, we denote it by (ω, ν).



76 2. Non-linear rearrangement on trees

o

∂T

Figure 6: A rooted homogeneous tree of degree 3 and its boundary.

ω
∂T

..........

o

x

Figure 7: The infinite geodesic between x and ω.

For every x in T , we write the geodesic joining o to x by

{x(0) = o, x(1), . . . , x(n) = x} := [o, x],

where k = d(o, x(k)) and n = d(o, x). Analogously, for a point ω in the boundary, we

write the geodesic joining o to ω by

{ω(0) = o, ω(1), . . . , ω(n), . . .} := [o, ω).

The confluent vertex of the vertices x and y is the unique vertex c(x, y) such

that the geodesics [o, c(x, y)], [c(x, y), x] and [c(x, y), y] meet only at c(x, y). If ω and

ν are two boundary points, we can also define their confluent vertex c(ω, ν) as the

unique vertex c(ω, ν) such that the geodesics [o, c(ω, ν)], [c(ω, ν), ω) and [c(ω, ν), ν)

meet only at c(ω, ν) (see next figure).
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ω
∂T

ν

c(ω, ν)

o

..........

.......
x

y

c(x, y)

Figure 8: Confluent vertices.

The tent of x, T (x), is the set of vertices such that x belongs to the geodesic

between o and those vertices and the shadow of x, I(x), is the set of end points in

∂T such that x belongs to the geodesic between o and these boundary points (see

Figure 9). We can write it as:

T (x) = {y ∈ T : x ∈ [o, y]} ,

I(x) = {ω ∈ ∂T : x ∈ [o, ω)} .

.............

.............
∂T

[ ]

I(x)

T (x)

x

o

︸ ︷︷ ︸

Figure 9: The tent T (x) and the shadow I(x) of x.

Finally, we can define a partial order structure: the vertex x is grater than or

equal to the vertex y if y belongs to [o, x]. We denote it by y ≤o x. In other words:

y ≤o x ⇔ y ∈ [o, x] ⇔ x ∈ T (y).
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o

(a) (b)

o

-

Figure 10: A decreasing set (a) and a non-decreasing set (b).

A function defined on a tree is a discrete function evaluated on each vertex. We are

interested in monotone functions. A function is decreasing if f(x) ≤ f(y) whenever

y ≤o x. A set of vertices E in T is a decreasing set if whenever x ∈ E, then we

have that y ∈ E for all y such that y ≤o x, that is, χE is a decreasing function.

2.2 Rearranging finite sets

We will define the decreasing rearrangement for finite sets of vertices, which is the

first step to introduce a decreasing rearrangement of functions. Then, we show the

canonicity of this definition in the sense that it is mostly independent on the choice

of the parameters.

In the sequel, T will be a homogeneous tree of degree q+1. We choose a reference

vertex o as its origin, and we then write the tree as To. The underlying measure is the

counting measure and if E is a finite set of vertices in To, we note by |E| its cardinal.

The so-called “Layer cake” formula allows us to reconstruct a positive measurable

function by means of its level sets (see [LL]). That is:

f(x) =

∫ ∞

0

χ{t∈To:f(t)>λ}(x) dλ.

In order to introduce a decreasing rearrangement of functions, it is enough to

define a rearrangement for finite sets and then use this formula to get a decreasing

rearrangement of any function with finite level sets.
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Definition 2.2.1 A map between finite sets of vertices in To

E −→ E∗,

is a decreasing rearrangement of finite sets if the following conditions are satis-

fied:

(i) E∗ is decreasing.

(ii) |E| = |E∗|.

(iii) If E is decreasing, then E∗ = E.

(iv) If D ⊂ E, then D∗ ⊂ E∗.

To this aim, it will be necessary to introduce an order structure in the boundary

of the tree.

Let Tk be the set of vertices at distance k from o. Observe that {Tk : k ≥ 0} is a

disjoint partition of To and that

|T0| = 1

|Tk| = (q + 1)qk−1, k ≥ 1.

The tree To is then a countable union of vertices. On the other hand, the boundary

of the tree is uncountable, as we will see later.

Let F0 be the interval [0, (q+1)q−1]. For every k ≥ 1, let Fk be the set of all q-adic

intervals of the form (j q−k, (j + 1)q−k), with j ∈ Z+ and 0 ≤ j ≤ (q + 1)qk−1 − 1,

contained in the interval [0, (q + 1)q−1]. Set F =
⋃

k Fk.

Definition 2.2.2 An admissible map σ is a bijection between the tree To and F
satisfying :

(a) σ(Tk) = Fk,
(b) σ(x) ⊂ σ(y) if y ≤o x.

Using an admissible map σ, we can define another bijection between ∂To and

a subset of the interval [0, (q + 1)q−1] as follows: with the exception of the q-adic

numbers, every point λ in the interval [0, (q + 1)q−1] is uniquely identified with the

sequence {Ik(λ) : k ≥ 0} of q-adic intervals with length q−k containing it. Then by

the definition of σ,
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{
σ−1(Ik(λ)) : k ≥ 0

}

is an infinite geodesic in To starting at o, that is, it is a point ω(λ) in ∂To. Conversely,

a point ω in the boundary of To can be viewed as an infinite geodesic

[o, ω) = {ω(0) = o, ω(1), ω(2), . . .} .

Then {σ(ω(k)) : k ≥ 0} is a sequence of q-adic intervals satisfying that for every k ≥ 0

that

σ(ω(k + 1)) ⊂ σ(ω(k)),

and therefore it determines a unique point λ(ω) in [0, (q + 1)q−1].

It is natural to also denote by σ this new bijection, and we also call it an admis-

sible map. We have that

σ : ∂To −→ [0, (q + 1)q−1] \N(q) (2.2)

is a one-to-one correspondence between ∂To onto the interval [0, (q+1)q−1] minus the

set of q-adic numbers N(q), and hence ∂To is uncountable.

Examples 2.2.3 We give two examples of possible admissible maps that will be used

in what follows. Suppose that To is a homogeneous tree of degree q +1 = 3. We need

first to label the vertices. Recall that Tk is the set of vertices at distance k from o.

Then denote

Tk = {x0,k, x2,k, . . . , xnk,k} ,

where nk + 1 = 3·2k−1 is the total number of edges in Tk, and hence, for all k and

j, the vertices x2j,k+1 and x2j+1,k+1 are the adjacent vertices of xj,k in Tk+1. Denote

I0,0 = [0, 3·2−1] and

Ij,k = (j·2−k, (j + 1)·2−k),

for k ≥ 1 and 0 ≤ j ≤ 3·2k−1 − 1. Observe that I2j,k+1 and I2j+1,k+1 are the dyadic

intervals contained in Ij,k. Then define two admissible maps σ and σ′ as follows:

(i) σ(xj,k) = Ij,k for all j and k.

(ii) σ′(x0,0) = I0,0.

For T1, set σ′(x0,1) = I1,1, σ′(x1,1) = I0,1 and σ′(x2,1) = I2,1.

For T2 set σ′(x0,2) = I2,2, σ′(x1,2) = I3,2, σ′(x2,2) = I0,2, σ′(x3,2) = I1,2,
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σ′(x4,2) = I5,2 and σ′(x5,2) = I4,2.

Now, we can proceed by choosing the dyadic intervals so that if we have

σ′(x2j,k+1) = I2i,k+1, then σ′(x2j+1,k+1) = I2i+1,k+1.

We give now our two examples graphically. We draw the tree in an ordered way

following the labels, from left to right. Then we draw the images of the vertices in

the same way.

x0,0 = o

∂T

x0,1 x1,1 x2,1

x0,2 x5,2

1
4

( )

(

(

( (
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) ) )

) ) ) ) ) )
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1
2 1 3
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x0,1 x1,1 x2,1
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0 3
2
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2
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σ′

11
2

1
4

. . .

5
4

3
4

1
2 1

. . .

Figure 11: The two maps σ and σ′.

Now, we can introduce an order relation in ∂To by using an admissible map.
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Definition 2.2.4 Let σ be an admissible map as in (2.2). Given ω and ω′ in ∂To,

we define

ω ≤σ ω′

if and only if

σ(ω) ≤ σ(ω′).

In the sequel, every admissible map σ will be called an order in ∂To. Observe

that for both maps in Examples 2.2.3, the largest points at the boundary are those

in I(x2,1). In the case of σ, the smallest are in I(x0,1), but for σ′, they are in I(x1,1).

For two given disjoint sets A and B in [0, (q+1)q−1], we will write A < B, if x < y

for all x ∈ A and all y ∈ B. Analogously, for two given disjoint sets A and B in ∂To,

we will write A <σ B, if x <σ y for all x ∈ A and all y ∈ B.

Lemma 2.2.5 Let σ be an order in ∂To and x a vertex in To. Then the shadow of

x, I(x), is an interval of the boundary, in the sense that if ω, ω′ ∈ I(x) with ω <σ ω′,

then for all ν ∈ ∂To satisfying

ω <σ ν <σ ω′,

we have ν ∈ I(x).

Proof. Set n = d(o, x). Take ω, ω′ ∈ I(x) and ν ∈ ∂To satisfying ω <σ ν <σ ω′.

We write

[o, ω) = {ω(0), ω(1), ω(2), . . .} ,

[o, ω′) = {ω′(0), ω′(1), ω′(2), . . .} ,

[o, ν) = {ν(0), ν(1), ν(2), . . .} ,

where ω(k), ω′(k), ν(k) ∈ Tk, and by hypothesis ω(n) = ω′(n) = x. We want to see

that ν(n) = x or equivalently, that there exists an integer k ≥ n such that x ≤o ν(k).

Take

k = min {j : ω(j) 6= ω′(j), ω(j) 6= ν(j), ω′(j) 6= ν(j)} .

The fact that ω, ω′ ∈ I(x) implies that k ≥ n. By the definition of σ, there exist

three different q-adic intervals Jk(ω), Jk(ω
′) and Jk(ν) in Fk such that

σ(ω(k)) = Jk(ω),

σ(ω′(k)) = Jk(ω
′),

σ(ν(k)) = Jk(ν),
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and by hypothesis Jk(ω) < Jk(ν) < Jk(ω
′). By the properties of σ, we know that

I(ω) and I(ω′) are subintervals of σ(x), and then we also have that I(ν) ⊂ σ(x), that

is, x ≤o ν(k).

2

We need to define some new concepts:

Definition 2.2.6 For a finite set of vertices E, the boundary of E, ∂E, is the set

of vertices x of E such that no bigger vertices than x belong to E. Explicitly,

∂E = {x ∈ E : T (x) ∩ E = {x}} .

Observe that by this definition, if x and y are different boundary points in ∂E,

then I(x) ∩ I(y) = ∅. See Figure 12.

o

︸ ︷︷ ︸
¸ 3

M
k

∂E

Figure 12: The boundary of a finite set E, ∂E.
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o

e2

e3 e4 e5

e1 e6

∂E = {e1, . . . , e6}σ′

o

e1

e2 e5 e6

e3 e4

∂E = {e1, . . . , e6}σ

Figure 13: The set E and its boundary ordered by σ and σ′.

In view of the previous lemma, using an order σ in ∂To, it makes sense to introduce

the following notation on the boundary of every finite set E. We write:

∂E = {e1, e2, · · · , en}σ , (2.3)

if n = n(E) = |∂E|, and for all 1 ≤ k ≤ n, ek ∈ ∂E and I(ek) <σ I(ek+1) if k 6= n.

See Figure 13, where the boundary of the set E of the previous figure is ordered by

using the two maps of Examples 2.2.3, supposing the tree is drawn with the labels

from left to right.

Recall that for a vertex e in To, we write [o, e] = {e(0) = o, e(1), . . . , e(n)} with

n = d(o, e) and k = d(o, e(k)). Now we are able to define the rearrangement of

finite sets:

Definition 2.2.7 Let σ be an order in ∂To, and let E be a finite set of vertices in To

with boundary ∂E = {e1, e2, · · · , en}σ. Set

R(o,σ,0)(E) := E,

and then recursively define, for every 0 ≤ k ≤ n− 1, the sets

R(o,σ,k+1)(E) :=
(R(o,σ,k)(E) \ [o, ek+1]

) ∪ [o, ek+1(s)],

where s + 1 = s(k) + 1 =
∣∣R(o,σ,k)(E) ∩ [o, ek+1]

∣∣. Finally, the decreasing rear-

rangement of E is

R(o,σ)(E) := R(o,σ,n)(E).
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This definition needs a practical explanation. What do we do in every step of the

construction of the rearranged set? We count the number of vertices we have in a

fixed geodesic from o to a boundary point ek, then we erase them, and finally we fill

in the same geodesic with the same number of vertices we had, but we now impose

they are adjacent vertices starting from o.

We can give another easy explanation of the rearrangement by using marbles:

think that every vertex in E is a marble and only those. Then suppose that we can

lift up one by one every geodesic leaving o at the bottom, following a fixed order, so

that marbles can go down until they fill up the empty vertices near o. The process

stops when we have proceeded with all the geodesics. We observe that what we get

is a decreasing set. See Figures 14 and 15 for more details.

We now want to study the dependence of the defined decreasing rearrangement

in terms of the origin o and the order σ chosen in T .

An automorphism of the tree is a bijective map of the set of vertices onto itself

which preserves the edges. In fact, a map is an automorphism if and only if it is

an isometry of the tree, with respect to the natural metric defined in the previous

section, and then we trivially have the following lemma.

Lemma 2.2.8 If % is an automorphism of the tree, then

%([x, y]) = [%(x), %(y)],

for all x and y in T .

As a consequence, we have that:

(i) Every automorphism % takes the rooted tree To into the rooted tree T%(o), and

we can extend the automorphism to the boundary in a natural way: if

ω = {ω(0) = o, ω(1), . . . , ω(n), . . .} ∈ ∂To,

then define

%(ω) := {%(ω(0)) = %(o), %(ω(1)), . . . , %(ω(n)), . . .} ∈ ∂T%(o).

(ii) For all x and y in T , x ≤o y if and only if %(x) ≤%(o) %(y).

(iii) For all x ∈ To, %(T (x)) = T (%(x)), where T (%(x)) is taken with respect to the

induced order in T%(o).
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(iv) For all x ∈ To, %(I(x)) = I(%(x)), where I(%(x)) is taken with respect to the

induced order in T%(o).

Let us see the effect of an automorphism over an order in ∂To:

Lemma 2.2.9 Let σ be an order in ∂To and % an automorphism of the tree. Then

there exists a unique admissible map σ′ in T%(o) such that

ω ≤σ′ ν ⇐⇒ %−1(ω) ≤σ %−1(ν),

for all ν and ω of ∂T .

Proof. Take σ′ = σ · %−1, which satisfies the required condition. By Definition 2.2.2,

we need to prove that

(a) σ′(Tk) = Fk,
(b) σ′(y) ⊂ σ′(x) if x ≤%(o) y,

where now

Tk = {x ∈ T : d(x, %(o)) = k} .

Since % is an isometry, we have that

%({x ∈ T : d(x, o) = k}) = {x ∈ T : d(x, %(o)) = k} ,

and then (a) is easily derived. By the previous lemma, we have that if x and y are

vertices in T , then,

x ≤%(o) y ⇐⇒ %−1(x) ≤o %−1(y),

and by definition, σ(%−1(y)) ⊂ σ(%−1(x)), that is, σ′(y) ⊂ σ′(x), which is (b). To see

the uniqueness, suppose there exists an admissible map µ satisfying

ω ≤µ ν ⇐⇒ %−1(ω) ≤σ %−1(ν).

Fix k ≥ 0 and consider as before Tk the set of vertices at distance k from %(o). Using

the notation introduced in (2.3), we denote

Tk =
{
x1, x2, . . . , xn(k)

}
σ′ ,

where n(k) = (q+1)qk−1 and I(xi) <σ′ I(xi+1) for all 1 ≤ i ≤ n(k)−1. By hypothesis,

we have that

Tk =
{
x1, x2, . . . , xn(k)

}
σ′ =

{
%−1(x1), %

−1(x2), . . . , %
−1(xn(k))

}
σ
,
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o
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e3 e4 e5

e1 e6

e3 e4 e5

R(o,σ,5)(E) R(o,σ)(E)

R(o,σ,4)(E)

R(o,σ,1)(E)
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e1 e6
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o

e2e1e6 e6

Figure 14: Rearranging the set E of Figure 13, using the order σ.
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o

e1

e2 e5 e6

e3 e4

e2 e5 e6

R(o,σ′,5)(E) R(o,σ′)(E)

R(o,σ′,4)(E)

R(o,σ′,1)(E)

o

e1

R(o,σ′,3)(E)

e3 e4

R(o,σ′,2)(E)

o

e1

e2 e5 e6

e3 e4
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e1

e2 e5 e6

e3 e4

o

e1

e2 e5 e6

e3

e2 e5 e6

o

e1e3e4 e4

Figure 15: Rearranging the set E of Figure 13, using the order σ′.
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and therefore we have

Tk =
{
x1, x2, . . . , xn(k)

}
σ′ =

{
x1, x2, . . . , xn(k)

}
µ
,

and this is only possible if for all 1 ≤ i ≤ n(k)− 1

σ′(xi) = µ(xi),

that is σ′ ≡ µ.

2

We describe the action of an automorphism over the boundary of a finite set in

the tree:

Lemma 2.2.10 Let E be a finite set of vertices and % an automorphism of the tree.

If σ is an order in ∂To and ∂E = {e1, e2, . . . , en}σ then

∂(%(E)) = {%(e1), %(e2), . . . , %(en)}σ′ ,

where σ′ = σ · %−1 is an order in ∂T%(o).

Proof. Let us see first that %(∂E) = ∂(%(E)) by using the consequences of Lemma

2.2.8:

e ∈ ∂E ⇔ E ∩ T (e) = {e}
⇔ %(E) ∩ %(T (e)) = {%(e)}
⇔ %(E) ∩ T (%(e)) = {%(e)}
⇔ %(e) ∈ ∂(%(E)).

Finally, by using the previous lemma and the consequences of Lemma 2.2.8, we get

for all 1 ≤ i ≤ n− 1:

I(ei) <σ I(ei+1) ⇔ %(I(ei)) <σ′ %(I(ei+1))

⇔ I(%(ei)) <σ′ I(%(ei+1)).

2

This lemma says that it is equivalent to order the boundary of any finite set

with respect to σ and to order the boundary of the image of the set given by the

automorphism % by means of the order σ′ = σ · %−1. We can now explain the action

of an automorphism over the decreasing rearrangement of a set:
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Theorem 2.2.11 Let σ be an order in ∂To and % an automorphism of the tree. Then

%(R(o,σ)(E)) = R(%(o),σ·%−1)(%(E)).

Proof. Set σ′ = σ · %−1. It is enough to see that

%(R(o,σ,k)(E)) = R(%(o),σ′,k)(%(E)),

for all 0 ≤ k ≤ n, where n = |∂E| = |∂(%(E))|. Let us show it by induction. If k = 0

it follows because

%(E) = %(R(o,σ,0)(E)) = R(%(o),σ′,0)(%(E)).

Suppose it is true for k ≥ 1. By definition we have

%(R(o,σ,k+1)(E)) = %
(R(o,σ,k)(E) \ [o, ek+1])

) ∪ %([o, ek+1(s)]),

where s+1 = s(k)+1 =
∣∣R(o,σ,k)(E) ∩ [o, ek+1]

∣∣. Using the consequences of Lemma 2.2.8,

we have

%(R(o,σ,k+1)(E)) =
(
%(R(o,σ,k)(E)) \ [%(o), %(ek+1)]

) ∪ [%(o), %(ek+1(s))].

By the hypothesis of induction, we then have that

%(R(o,σ,k+1)(E)) =
(R(%(o),σ′,k)(%(E)) \ [%(o), %(ek+1)]

) ∪ [%(o), %(ek+1(s))],

and we also observe that

s + 1 = s(k) + 1 =
∣∣R(o,σ,k)(E) ∩ [o, ek+1]

∣∣ =
∣∣%(R(o,σ,k)(E)) ∩ [%(o), %(ek+1)]

∣∣
=

∣∣R(%(o),σ′,k)(%(E)) ∩ [%(o), %(ek+1)]
∣∣ .

Now, using this equality and Lemma 2.2.10 which says, roughly speaking, that both

rearrangements are compatible in some sense, we then have by recalling the definition

of the decreasing rearrangement that

%(R(o,σ,k+1)(E)) =
(R(%(o),σ′,k)(%(E)) \ [%(o), %(ek+1)]

) ∪ [%(o), %(ek+1(s))]

= R(%(o),σ′,k+1)(%(E)).

2

In [FTN], it is shown that in a homogeneous tree, there are only three kind of

isometries:
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• An isometry % is a rotation, if there exists a vertex x such that %(x) = x.

• An isometry % is an inversion, if there exist two neighbor vertices x and y such

that %(x) = y and %(y) = x.

• An isometry % is a translation, if there exist a doubly infinite chain

. . . , x−2, x−1, x0, x1, x2, . . .

and an integer k such that %(xj) = xj+k for all j ∈ Z.

Corollary 2.2.12 Let σ and σ′ be two orders in To. Then, there exists a unique

rotation % of center o such that

ω ≤σ′ ν ⇐⇒ %−1(ω) ≤σ %−1(ν),

for all ω and ν in ∂To.

Proof. Define %−1 = σ−1 · σ′ : T −→ T , which is clearly a bijection. Trivially we have

that %(o) = o. Let us see that it preserves the edges. Take x ∈ Tn and y ∈ Tn+1 with

d(x, y) = 1. Then,

x ∈ Tn, y ∈ Tn+1, d(x, y) = 1 ⇔ σ′(x) ∈ Fn, σ′(y) ∈ Fn+1, σ′(y) ⊂ σ′(x)

⇔ σ−1(σ′(x)) ∈ Tn, σ−1(σ′(y)) ∈ Tn+1,

d(σ−1(σ′(x)), σ−1(σ′(y)) = 1

⇔ %(x) ∈ Tn, %(y) ∈ Tn+1, d(%(x), %(y)) = 1.

The rest of the result is a consequence of Lemma 2.2.9.

2

Corollary 2.2.13 Let o and o′ be two vertices in T . Then, there exists a translation

τ in the tree such that

τ(To) = To′ .

Proof. Simply take a doubly infinite chain passing through o and o′, and consider the

translation τ along this infinite chain such that τ(o) = o′.

2

Corollary 2.2.14 Let o and o′ be two vertices, and σ and σ′ be two orders in ∂To

and ∂To′ respectively. Then there exists an automorphism % such that:
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• %(To) = To′ ,

• ω ≤σ′ ν ⇐⇒ %−1(ω) ≤σ %−1(ν), for all ν and ω in ∂T .

Proof. By Lemma 2.2.9 and Corollary 2.2.13, there exists a translation τ such that:

• τ(To) = To′ ,

• ω ≤η ν ⇐⇒ τ−1(ω) ≤σ τ−1(ν), for all ν and ω in ∂T ,

where η = σ · τ−1. By Corollary 2.2.12, there exists a unique rotation δ of center o′

such that

ω ≤σ′ ν ⇐⇒ δ−1(ω) ≤η δ−1(ν),

for all ω and ν in ∂T . Then, the automorphism % = δ−1 · τ , satisfies:

• %(To) = δ−1(τ(To)) = δ−1(To′) = To′ ,

• For all ν and ω in ∂T :

ω ≤σ′ ν ⇐⇒ δ−1(ω) ≤η δ−1(ν)

⇐⇒ τ−1(δ(ω)) ≤σ τ−1(δ(ν))

⇐⇒ %−1(ω) ≤σ %−1(ν).

2

As a final consequence of this corollary and Theorem 2.2.11, we have the following

theorem, which says that our rearrangement is canonical in the sense that if we know

how to rearrange a set with respect to an origin o and an order σ, then we

know how to rearrange it with respect to any origin and any order.

Theorem 2.2.15 Let o and o′ be two vertices, and σ and σ′ be two orders in ∂To

and ∂To′ respectively. Then, there exists an automorphism % such that:

%(R(o,σ)(E)) = R(o′,σ′)(%(E)).

Remark 2.2.16 From now on, and as a consequence of this theorem, we will not

need to specify the origin and the order that we are using to rearrange a set. So,

we will always assume that we have chosen an origin o and an order σ, and we will

denote the decreasing rearrangement of any set E as E∗, that is

E∗ := R(o,σ)(E). (2.4)
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We will also use the notation

Rk(E) = R(o,σ,k)(E),

for all k ≥ 0. Moreover, we denote

x ≤ y ⇐⇒ x ∈ [o, y],

for x, y ∈ T , and also

ω ≤ ν ⇐⇒ σ(ω) ≤ σ(ν),

for ω, ν ∈ ∂T . But we will keep the notation of the boundary of a finite set given in

(2.3), in order not to forget the meaning of this notation. Furthermore, in all figures

that we will draw, we will always use the order σ given in (i) of Examples 2.2.3, that

is, we will always order the boundary of any set from left to right, and all the trees

will be homogeneous of degree 3 for simplicity.

It is easy to see that conditions (i), (ii) and (iii) of Definition 2.2.1 are trivially

satisfied by our transformation. To see condition (iv), we need some new facts. First,

as we are working with finite sets, it is enough to see this condition with D and

E = D ∪ {x}, where x is a vertex in T \ D. Now, we need to understand how the

boundary of the set D can change when we add a new vertex (see Figure 16).

Lemma 2.2.17 Let D be a finite set of vertices and x ∈ T\D. Consider E = D∪{x}.
Then we have one of the following situations:

(i) ∂E = ∂D if and only if T (x) ∩D 6= ∅.

(ii) There exists a unique y ∈ ∂D such that ∂E = (∂D \ {y}) ∪ {x} if and only if

there exists a unique y ∈ ∂D such that x ∈ T (y).

(iii) ∂E = ∂D ∪ {x} if and only if T (x) ∩D = ∅ and x /∈ T (y) for all y ∈ ∂D.

Proof. (i) If ∂E = ∂D, then x /∈ ∂D and by definition T (x) ∩D 6= ∅.
Conversely, if T (x) ∩D 6= ∅, there exists z ∈ D, with z 6= x because x /∈ D, such

that z ∈ T (x)∩D, and then x /∈ ∂E. Now, if y ∈ ∂D, then T (y)∩E = {y} and hence

∂D ⊂ ∂E (if T (y) ∩ E 6= {y}, then T (y) ∩ E = {y, x} and we get a contradiction

because z ∈ T (x) ∩ D ⊂ T (y) ∩ E = {y, x}). We also have that if y ∈ ∂E, then

T (y)∩E = {y} and y 6= x by hypothesis. Therefore T (y)∩D = {y} and thus y ∈ ∂D,

in other words, ∂E ⊂ ∂D.
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(ii) If x ∈ ∂E and there exists a unique y ∈ ∂D with T (y) ∩ E = {y, x}, then

x ∈ T (y).

Conversely, if there exists (a necessarily unique) y ∈ ∂D with x ∈ T (y), then

by definition y /∈ ∂E and also T (x) ∩ D = ∅, that is, x ∈ ∂E. If z ∈ ∂D \ {y},
then T (z) ∩ D = {z} and z 6= y. Therefore T (z) ∩ E = {z}, that is z ∈ ∂E (if

T (z) ∩ E = {z, x}, then x ∈ T (z) and hence z = y getting a contradiction). On the

other hand, if z ∈ ∂E and z 6= x and z 6= y, then T (z) ∩ E = {z} and consequently

T (z) ∩D = {z}, that is z ∈ ∂D.

(iii) If ∂E = ∂D∪{x}, then clearly T (x)∩D = ∅ and if there exists y ∈ ∂D such

that x ∈ T (y), then y /∈ ∂E contradicting the fact that ∂D ⊂ ∂E.

Conversely, if y ∈ ∂D with y 6= x, then T (y)∩E = {y} ,that is y ∈ ∂E (if T (y)∩E =

{y, x}, then x ∈ T (y) getting into a contradiction). We have also that if T (x)∩D = ∅,
then T (x) ∩ E = {x} and therefore x ∈ ∂E.

2

Next lemma will be crucial to prove the monotonic condition on the rearrange-

ment.

Lemma 2.2.18 Let D and E be two finite sets in T . Write ∂D = {d1, d2, . . . , dn}σ

and ∂E = {e1, e2, . . . , em}σ. Suppose that there exist 0 ≤ k < n and 0 ≤ l < m such

that:

• Rk(D) ⊂ Rl(E),

• el+1 ∈ T (dm+1).

Then

Rk+1(D) ⊂ Rl+1(E).

Proof. By hypothesis we have that

s + 1 := |Rk(D) ∩ [o, dk+1]| ≤ |Rl(E) ∩ [o, el+1]| =: t + 1,

and therefore

[o, dk+1(s)] ⊂ [o, el+1(t)].



2.2. Rearranging finite sets 95

Then we have:

Rk+1(D) = (Rk(D) \ [o, dk+1]) ∪ [o, dk+1(s)]

= (Rk(D) \ [o, el+1]) ∪ [o, dk+1(s)]

⊂ (Rl(E) \ [o, el+1]) ∪ [o, el+1(t)]

= Rl+1(E).

2

o

∂E = ∂D ∪ {x}∂E = (∂D \ {y}) ∪ {x}

o

∂E = ∂D

o

x

x x

o

The set D.

y

Figure 16: The three cases of Lemma 2.2.17, where E = D ∪ {x}.

Finally, we need a technical lemma of the decomposition at each step of the

rearrangement. The set Ek is the part of the set Rk(E) that is not rearranged at step

k, meanwhile E ′
k is the part that is rearranged at this step. See Figure 17 for details.
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Lemma 2.2.19 Let E be a finite set of vertices. For each k ≥ 0, define

Ek := E \
( k⋃

j=1

[o, ej]

)
, E ′

k := Rk(E) ∩
( k⋃

j=1

[o, ej]

)
,

where we denote ∂E = {e1, e2, . . . , en}σ. Then we have:

(i) Rk(E) = E ′
k ∪ Ek for all k ≥ 0, and Ek and E ′

k are disjoint sets.

(ii) E ′
k+1 = (E ′

k \ [o, ek+1]) ∪ [o, ek+1(s)] for all k, where s + 1 = |Rk(E) ∩ [o, ek+1]|.

(iii) E ′
k ⊂ E ′

k+1 for all k ≥ 0, and E∗ = E ′
n.

Proof. (i) The disjointness follows by definition. It is enough to prove that

Rk(E) \
( k⋃

j=1

[o, ej]

)
= E \

( k⋃
j=1

[o, ej]

)
.

We prove it by induction. If k = 0, it is true since R0(E) = E. Suppose it is true for

k > 0. Then, by the definition of the rearrangement, the fact that

[o, ek+1(s)] ⊂ [o, ek+1],

and using the hypothesis of induction, we have that:

Rk+1(E) \
(k+1⋃

j=1

[o, ej]

)
=

((
Rk(E) \ [o, ek+1]

)
∪ [o, ek+1(s)]

)
\

(k+1⋃
j=1

[o, ej]

)

= Rk(E) \
(k+1⋃

j=1

[o, ej]

)

=

(
Rk(E) \

( k⋃
j=1

[o, ej]

))
\ [o, ek+1]

=

(
E \

( k⋃
j=1

[o, ej]

))
\ [o, ek+1]

= E \
(k+1⋃

j=1

[o, ej]

)
.
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(ii) By the definition of the rearrangement and the definition of E ′
k, we have:

E ′
k+1 = Rk+1(E) ∩

(k+1⋃
j=1

[o, ej]

)

=

((
Rk(E) \ [o, ek+1]

)
∪ [o, ek+1(s)]

)
∩

(k+1⋃
j=1

[o, ej]

)

=

((
Rk(E) \ [o, ek+1]

)
∩

(k+1⋃
j=1

[o, ej]

))
∪ [o, ek+1(s)]

=

((
Rk(E) ∩

( k⋃
j=1

[o, ej]

))
\ [o, ek+1]

)
∪ [o, ek+1(s)]

= (E ′
k \ [o, ek+1]) ∪ [o, ek+1(s)].

(iii) It is clear that En = ∅ and

E ′
n = Rn(E) ∩

( n⋃
j=1

[o, ej]

)
= E∗.

To see the inclusion, it is enough to observe that

E ′
k ∩ [o, ek+1] ⊂ [o, ek+1(s)],

and this is a consequence of s + 1 = |Rk(E) ∩ [o, ek+1]| ≥ |E ′
k ∩ [o, ek+1]| .

2

Proposition 2.2.20 Let D and E be finite sets of vertices such that D ⊂ E. Then

D∗ ⊂ E∗.

Proof. It is enough to prove it when E = D ∪{x}, where x /∈ D. We distinguish the

three cases of Lemma 2.2.17:

(i) ∂E = ∂D. Since we have

D = R0(D) ⊂ R0(E) = E,

we can apply Lemma 2.2.18 recursively to obtain the result.

(ii) ∂E = (∂D\{y})∪{x}. Write ∂D = {d1, d2, . . . , dn}σ and ∂E = {e1, e2, . . . , en}σ.

There exists 0 ≤ k ≤ n such that dj = ej for all j 6= k, and dk = y and ek = x.

Applying Lemma 2.2.18 recursively we get

Rk−1(D) ⊂ Rk−1(E).
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But now, Lemma 2.2.17 gives

ek = x ∈ T (y) = T (dk),

so applying Lemma 2.2.18 recursively, we get the result.

R4(E)

o

e2

e3 e4 e5

e1 e6

o

e2

e3 e4 e5

e1 e6

E4 E ′
4

o

e2

e3 e4 e5

e1 e6

Figure 17: The sets E4 and E ′
4 of Figure 14, at step 4.

(iii) ∂E = ∂D∪{x}. Write ∂E = {d1, d2, · · · , dk, x, dk+1, · · · , dn}. By Lemma 2.2.18,

we have that

Rk(D) ⊂ Rk(E). (2.5)

Using the notation of Lemma 2.2.19, we claim that

D′
k ⊂ E ′

k and Dk ⊂ Ek \ [o, x].
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Therefore, using Lemma 2.2.19, we get

D′
k ⊂ E ′

k ⊂ E ′
k+1

Dk ⊂ Ek \ [o, x] = Ek+1,

(where here s+1 = |Rk(E) ∩ [o, x]|) and as a consequence, using (i) of Lemma 2.2.19,

we get:

Rk(D) = D′
k ∪Dk ⊂ E ′

k+1 ∪ Ek+1 = Rk+1(E).

To finish, we call recursively Lemma 2.2.18 to obtain the result.

We now prove the claim. Take y ∈ D′
k. By (2.5), we know that y ∈ E ′

k ∪ Ek.

Suppose that y ∈ Ek. Then by the Lemma 2.2.19,

y ∈ E \
( k⋃

j=1

[o, dj]

)
⊂ E \D′

k,

getting a contradiction. Take now y ∈ Dk. Then

y ∈ D \
( k⋃

j=1

[o, dj]

)
,

and y /∈ [o, x] (if y ∈ [o, x], there exists z ∈ ∂D such that x ∈ T (z), and this

contradicts the hypothesis (iii)) and therefore

y ∈
(

D \
k⋃

j=1

[o, dj]

)
\ [o, x] = Ek \ [o, x].

2

2.3 The decreasing rearrangement of functions

We will define the decreasing rearrangement for functions in the tree and we will see

useful properties of this rearrangement.

Let M0 be the set of functions f defined on the tree such that the level sets

{x ∈ T : |f(x)| > λ}

are finite for all λ > 0.
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Lemma 2.3.1 If f ∈M0, then

lim
n→∞

|f(xn)| = 0,

for all infinite sequences {xn : n ∈ N} of different vertices (being not necessarily an

infinite chain) in the tree.

Proof. Suppose that there exists an infinite sequence of vertices {xn : n ∈ N} such

that

lim
n→∞

|f(xn)| 6= 0.

There exists ε > 0 such that for all n ≥ 1, there exists m(n) ≥ n satisfying

∣∣f(xm(n))
∣∣ ≥ ε.

Thus, we have that

{
xm(n) : n ∈ N} ⊂ {x ∈ T : |f(x)| > ε/2} ,

contradicting the fact that f ∈M0.

2

As a consequence of this lemma, if f ∈M0 we have that

lim
n→∞

|f(ω(n))| = 0,

for all ω ∈ ∂T . We have also that, if {an : n ∈ N} is the set of images of all the

vertices by f , we then can assume that

|a1| > |a2| > |a3| > . . . > |an| > |an+1| > . . . ↘ 0.

Consider the rooted tree To and an order σ in ∂To. Recall that we denote

E∗ = R(o,σ)(E)

as the decreasing rearrangement of the set E. We define the decreasing rearrange-

ment of functions in M0:

Definition 2.3.2 For every f ∈ M0, the decreasing rearrangement of f is the

function

f ∗(x) =

∫ ∞

0

χ{y∈T :|f(y)|>λ}∗(x) dλ,

defined for all x ∈ T .
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Observe that this definition strongly depends on the choice of o and σ, and it would

be more correct to write this dependence by denoting f ∗(o,σ), but we will avoid it by

simplicity. However, we recall that we have shown in Theorem 2.2.15 the canonicity

of the rearrangement, and as a consequence we have the following proposition. We

keep for a moment the long notation f ∗(o,σ).

Proposition 2.3.3 Let o and o′ be two vertices in T , and σ and σ′ be two orders in

∂To and ∂To′ respectively. Then, there exists an automorphism % such that

(f ◦ %)∗(o,σ)(x) = f ∗(o′,σ′)(%(x)),

for all x ∈ T and all f ∈M0.

Proof. By Theorem 2.2.15, there exists an automorphism % such that

%(R(o,σ)(E)) = R(o′,σ′)(%(E)),

for all finite set E. Taking E = {x ∈ T : |f(x)| > λ} for λ > 0, it is easy to see that

x ∈ R(o,σ)(E) ⇐⇒ %(x) ∈ R(o′,σ′)

({
y :

∣∣f(%−1(y))
∣∣ > λ

})
,

and that is

χR(o,σ)(E)(x) = χR(o′,σ′)({|f(%−1(·))|>λ})(%(x)).

Finally, by Definition 2.3.2, the last equality takes to the result.

2

We trivially have that

f ∗(x) = (|f |)∗(x),

for all x ∈ T . So, in the sequel, we will always work with positive functions on the

tree.

By Lemma 2.3.1, for every positive function f in M0, there exists a positive

strictly decreasing sequence of real numbers {an : n ∈ N}, with limn→∞ an = 0, and

a collection of disjoint finite sets of vertices {En : n ∈ N}, such that

f(x) =
∞∑

n=1

anχEn(x), (2.6)

for all x ∈ T .
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Lemma 2.3.4 Take a positive f ∈ M0, and consider the representation (2.6) of f .

Then

f ∗(x) =
∞∑

n=1

anχF ∗n\F ∗n−1
(x),

for all x ∈ T , where Fn =
n⋃

k=1

Ek and F0 = ∅.

Proof. If an+1 < λ ≤ an, then

{x ∈ T : f(x) > λ} = E1 ∪ E2 ∪ . . . ∪ En = Fn,

and for a1 < λ, we have

{x ∈ T : f(x) > λ} = ∅.
Therefore,

f ∗(x) =

∫ ∞

0

χ{y∈T :f(y)>λ}∗(x) dλ

=
∞∑

n=1

∫ an

an+1

χ{y∈T :f(y)>λ}∗(x) dλ +

∫ ∞

a1

χ{y∈T :f(y)>λ}∗(x) dλ

=
∞∑

n=1

χF ∗n (x)(an − an+1)

=
∞∑

n=1

an χF ∗n\F ∗n−1
(x),

where in the last equality we have used Proposition 2.2.20, that is, F ∗
n ⊂ F ∗

n+1 because

Fn ⊂ Fn+1.

2

Remark 2.3.5 We can give another formulation of this lemma. If we write

f(x) =
∞∑

n=1

bnχFn(x),

where Fn ⊂ Fn+1, bn > 0 and
∑∞

n=1 bn < ∞, then

f ∗(x) =
∞∑

n=1

bnχF ∗n (x).

It suffices to consider En = Fn \ Fn−1 and an =
∞∑

k=n

bk.
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See Figure 18 as an example of the rearrangement of a positive function. Observe

that the function takes the values 1, 2, 3, 4, 5. Following Lemma 2.3.4, we rearrange

consecutively, for n = 1, 2, 3, 4, 5, the sets

Fn =
n⋃

k=1

{x : f(x) = 6− k} ,

and we put the value 6−n at the new layer. Recall that we use the order σ from left

to right fixed in Remarks 2.2.16.

We give the basic properties of the decreasing rearrangement:

Proposition 2.3.6 The decreasing rearrangement f ∗ of a function f ∈ M0 is a

nonnegative decreasing function on T . Furthermore, for f, g, fk, k ≥ 1, functions in

M0 we have:

(i) (χE)∗(x) = χE∗(x) for all finite sets E.

(ii) supp(f ∗) = (supp(f))∗.

(iii) (kf)∗(x) = |k| f ∗(x) for all k ∈ C.

(iv) If |g(x)| ≤ |f(x)| for all x ∈ T , then g∗(x) ≤ f ∗(x) for all x ∈ T .

(v) If f is positive and decreasing, then f ∗(x) = f(x) for all x ∈ T .

(vi) {x ∈ T : |f(x)| > λ}∗ = {x ∈ T : f ∗(x) > λ} for all λ > 0.

(vii) (|f |p)∗ = (f ∗)p.

(viii) If |f(x)| ≤ lim inf
n→∞

|fn(x)|, then f ∗(x) ≤ lim inf
n→∞

f ∗n(x). In particular, whenever

|fn(x)| ↗ |f(x)| for all x ∈ T , we have f ∗n(x) ↗ f ∗(x) for all x ∈ T .

Proof. Lemma 2.3.4 directly gives (ii) and that f ∗ is decreasing. Let us now prove

the other statements:

(i) (χE)∗(x) =
∫∞

0
χ{χE>λ}∗(x) dλ =

∫ 1

0
χE∗(x) dλ = χE∗(x).

(iii) (kf)∗(x) =
∫∞
0

χ{|kf |>λ}∗(x) dλ =
∫∞
0
|k|χ{|f |>ζ}∗(x) dζ = |k| f ∗(x).

(iv) If |g(x)| ≤ |f(x)| for all x ∈ T , then

{x ∈ T : |g(x)| > λ} ⊂ {x ∈ T : |f(x)| > λ} ,

for all λ > 0 and hence

{x ∈ T : |g(x)| > λ}∗ ⊂ {x ∈ T : |f(x)| > λ}∗ .
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Using this inclusion, we have:

g∗(x) =

∫ ∞

0

χ{y∈T :|g(y)|>λ}∗(x) dλ ≤
∫ ∞

0

χ{y∈T :|f(y)|>λ}∗(x) dλ = f ∗(x).

(v) If f is positive and decreasing, we have

{x ∈ T : f(x) > λ}∗ = {x ∈ T : f(x) > λ} ,

and therefore

f ∗(x) =

∫ ∞

0

χ{y∈T :f(y)>λ}∗(x) dλ =

∫ ∞

0

χ{y∈T :f(y)>λ}(x) dλ = f(x).

(vi) We use the representation (2.6) of |f |. Then,

{x ∈ T : |f(x)| > λ} =
n⋃

k=1

Ek = Fn,

if an+1 < λ ≤ an, and also

{x ∈ T : f ∗(x) > λ} =
n⋃

k=1

(F ∗
k \ F ∗

k−1) = F ∗
n .

(vii) Using twice a change of variable and (vi), we get:

(|f |p)∗(x) =

∫ ∞

0

χ{y∈T :|f(y)|p>λ}∗(x) dλ =

∫ ∞

0

p ζp−1χ{y∈T :|f(y)|>ζ}∗(x) dζ

=

∫ ∞

0

p ζp−1χ{y∈T :f∗(y)>ζ}(x) dζ =

∫ ∞

0

χ{y∈T :(f∗(y))p>λ}(x) dλ

= (f ∗(x))p.

(viii) Recall that

lim inf
n→∞

|fn(x)| = sup
k

inf
n≥k

|fn(x)| .
Fix λ > 0 and take x ∈ {y ∈ T : |f(y)| > λ}. Then, by hypothesis, there exists

n = n(λ, x) such that x ∈ {y ∈ T : |fk(y)| > λ} for all k ≥ n. Since f ∈ M0, the set

Eλ = {y ∈ T : |f(y)| > λ} is finite. Thus, set

n0(λ) = max
x∈Eλ

n(λ, x).

We then have that x ∈ {y ∈ T : |fk(y)| > λ} for all k ≥ n0(λ), that is,

{y ∈ T : |f(y)| > λ} ⊂
⋂

k≥n0(λ)

{y ∈ T : |fk(y)| > λ} .

By Proposition 2.2.20, we obtain

{y ∈ T : |f(y)| > λ}∗ ⊂
⋂

k≥n0(λ)

{y ∈ T : |fk(y)| > λ}∗ ,
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Figure 18: The rearrangement of a positive function.
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and therefore

χ{y∈T :|f(y)|>λ}∗(x) ≤ χ{y∈T :|fk(y)|>λ}∗(x),

for all x ∈ T and all k ≥ n0(λ), and hence:

χ{y∈T :|f(y)|>λ}∗(x) ≤ sup
n

inf
k≥n

χ{y∈T :|fk(y)|>λ}∗(x) = lim inf
n

χ{y∈T :|fn(y)|>λ}∗(x).

Finally, using Fatou’s lemma, we have

f ∗(x) =

∫ ∞

0

χ{y∈T :|f(y)|>λ}∗(x) dλ ≤
∫ ∞

0

lim inf
n

χ{y∈T :|fn(y)|>λ}∗(x) dλ

≤ lim inf
n

∫ ∞

0

χ{y∈T :|fn(y)|>λ}∗(x) dλ = lim inf
n

f ∗n(x).

2

How can we extend the definition of the decreasing rearrangement to any function

defined in the tree? Take f : T −→ C a function in the tree, and suppose that there

exist two sequences {fn : n ∈ N} and {gn : n ∈ N} of functions in M0 such that

|fn| ↗ |f | and |gn| ↗ |f | ,

pointwise. Define f ∗(x) = limn f ∗n(x) and g∗(x) = limn g∗n(x). Observe that these

limits exist by (viii) of Proposition 2.3.6, and they can be infinite. We claim that

f ∗ = g∗. In fact, we have

{y ∈ T : |f(y)| > λ} =
∞⋃

k=1

{y ∈ T : |fn(y)| > λ} =
∞⋃

k=1

{y ∈ T : |gn(y)| > λ} ,

for all λ > 0, and since fn and gn are in M0 for all n ≥ 1, their level sets are finite

sets, and thus, for all n ≥ 1 there exists m(n) ≥ 1 such that

{y ∈ T : |fn(y)| > λ} ⊂ {
y ∈ T :

∣∣gm(n)(y)
∣∣ > λ

}
,

and by Proposition 2.2.20,

{y ∈ T : |fn(y)| > λ}∗ ⊂ {
y ∈ T :

∣∣gm(n)(y)
∣∣ > λ

}∗
.

Using this inclusion, we get:

f ∗(x) = lim
n

∫ ∞

0

χ{y∈T :|fn(y)|>λ}∗(x) dλ ≤ lim
n

∫ ∞

0

χ{y∈T :|gm(n)(y)|>λ}∗(x) dλ = g∗(x).

Analogously, we have the converse inequality, and therefore f ∗ = g∗. Thanks to this

equality, the following definition makes sense:
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Definition 2.3.7 For a function f : T −→ C defined on the tree, the decreasing

rearrangement of f is the function

f ∗(x) = lim
n

(
|f(·)| · χ{y∈T :|y|≤n}(·)

)∗
(x).

We observe that from now on, it is enough to consider functions with finite support.

In view of the definition of the decreasing rearrangement and looking at Figure 18,

we can ask if the defined rearrangement is equivalent to rearrange recursively the

function restricted to each geodesic from o to a boundary point in the support of the

function, following the order given by σ. The answer is positive, as we will see in

Theorem 2.3.10, and it will be helpful in the following sections. We need first two

lemmas.

Lemma 2.3.8 Let S : M0 −→ M0 be a positive operator defined on positive func-

tions in M0 such that for all f ∈M0 and all λ > 0,

|{x ∈ T : Sf(x) = λ}| = |{x ∈ T : f(x) = λ}| .

For a positive f ∈M0, let x be a minimum of f . Let E = supp(f) be the support

of f , and set E0 = E \ {x}.
Then there exists a unique x′ in the support of Sf such that

• supp(Sf) = supp(S(f · χE0)) ∪ {x′}.

• Sf(x′) = f(x).

Proof. By hypothesis, |supp(f)| = |supp(Sf)|, and therefore

|supp(f · χE0)| = |supp(S(f · χE0))| .

Thus, we have

|supp(Sf)| = |supp(f)| = |supp(f · χE0)|+ 1

= |supp(S(f · χE0))|+ 1.

Set x′ = supp(Sf) \ supp(S(f · χE0)). By hypothesis, we get that

|{y ∈ T : f(y) = f(x)}| = |{y ∈ T : (f · χE0)(y) = f(x)}|+ 1

= |{y ∈ T : S(f · χE0)(y) = f(x)}|+ 1,
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and also that for all λ 6= f(x):

|{y ∈ T : f(y) = λ}| = |{y ∈ T : (f · χE0)(y) = λ}|
= |{y ∈ T : S(f · χE0)(y) = λ}| .

Consequently, we have that x′ ∈ {y ∈ T : Sf(y) = f(x)}, that is Sf(x′) = f(x).

2

As an easy consequence of this lemma with Sf(y) = f ∗(y), we get the following

result. It is important to remark that this lemma is not true in general if the vertex

x is not the minimum of the function.

Lemma 2.3.9 Suppose that supp(g) ⊂ [o, e] for a positive g ∈ M0, and e ∈ T . If g

attains its minimum at x and A0 = supp(g) \ {x}, then

(g · χA0)
∗(y) = g∗(y) · χA∗0(y),

for all y ∈ T .

We now give a decreasing rearrangement of a function by rearranging recursively

the restriction of the function to each geodesic from o to the boundary vertices of its

support, ordered by using σ. Specifically, take a positive f ∈M0 with finite support

and set E = supp(f) and ∂E = {e1, e2, . . . , en}σ. Define for each 1 ≤ k ≤ n:

fMk (y) =





fMk−1(y) if y ∈ Rk(E) ∩ [o, ek]
c,

(fMk−1 · χ[o,ek])
∗(y) if y ∈ Rk(E) ∩ [o, ek],

(2.7)

where fM0 = f . Observe that supp(fMk ) = Rk(E). Finally, set

fM = fMn . (2.8)

See Figures 19 and 20 for an example. Observe that we rearrange the same function

than in Figure 18, and that fM and f ∗ coincide.

Theorem 2.3.10 For every function f ∈M0 with finite support, we have

f ∗ = fM.

Proof. We prove it by induction on the cardinal of the support of the function. If

|supp(f)| = 1, then clearly f ∗ = fM. Suppose that it is true for |supp(f)| = n. Take
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a positive f ∈ M0 with |supp(f)| = n + 1. Write E = supp(f), and let x be a

minimum of f . Set E0 = E \ {x}. By Lemma 2.3.8, there exists a unique x′ ∈ E∗

such that E∗ = E∗
0 ∪ {x′} and f ∗(x′) = f(x). As the support of g∗ and gM coincide

for all g ∈M0 with finite support, we then also have that

f ∗(x′) = fM(x′) = f(x). (2.9)

By induction, we have

(f · χE0)
∗ = (f · χE0)

M. (2.10)

o
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2
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o
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Figure 19: The first steps of the definition of fM.
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Figure 20: The last steps of the definition of fM.
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Let us show that

(f · χE0)
∗(y) = f ∗(y) · χE∗0 (y), (2.11)

for all y ∈ T . Write

f(y) =
N∑

k=1

akχEk
(y),

with Ek ∩ Ej = ∅ if j 6= k, and ak > aj > 0 if j > k (and so, f(x) = aN). By

Lemma 2.3.4, we know that

f ∗(y) =
N∑

k=1

akχF ∗k \F ∗k−1
(y),

for all y ∈ T , where Fk =
k⋃

j=1

Ej and F0 = ∅. Thus,

(f · χE0)
∗(y) =

N−1∑

k=1

akχF ∗k \F ∗k−1
(x) + aNχE∗0\F ∗N−1

(y).

On the other hand,

f ∗(y) · χE∗0 (y) =
N−1∑

k=1

akχF ∗k \F ∗k−1
(y) + aNχ(E∗\{x′})\F ∗N−1

(y)

=
N−1∑

k=1

akχF ∗k \F ∗k−1
(x) + aNχE∗0\F ∗N−1

(y).

Now, we will show that

(f · χE0)
M(y) = fM(y) · χE∗0 (y), (2.12)

for all y ∈ T . To this end, we need to know what vertex in E∗ is x′, that is, we

need to know where the minimum value f(x) of f is going in the construction of fM.
Let ek be the first vertex (with respect to σ) in ∂E such that x ∈ [o, ek]. Recall the

definition of confluent vertex c(x, y) of two vertices x and y in page 76. Two things

can happen when we construct fMk , taking into account that x is a minimum of f (see

Figure 21):

• (1k) If |Rk−1(E) ∩ [o, ek]| > |[o, c(ek, ek+1)]|, then

x′ ∈ [o, ek] \ [o, c(ek, ek+1)]

and fMk (x′) = f(x), and we get x′.
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• (2k) If |Rk−1(E) ∩ [o, ek]| ≤ |[o, c(ek, ek+1)]| then there exists

xk ∈ [o, c(ek, ek+1)]

such that fMk (xk) = f(x), that is, the vertex xk is now the vertex with minimum

value f(x) for fMk . In this case, we proceed now by constructing fMk+1, and two

things can happen again:

I (1k+1) If |Rk(E) ∩ [o, ek+1]| > |[o, c(ek+1, ek+2)]|, then

x′ ∈ [o, ek+1] \ [o, c(ek+1, ek+2)]

and fMk+1(x
′) = f(x), and we get x′.

I (2k+1) If |Rk(E) ∩ [o, ek+1]| ≤ |[o, c(ek+1, ek+2)]| then there exists

xk+1 ∈ [o, c(ek+1, ek+2)]

such that fMk+1(xk+1) = f(x), and we follow repeating this process at each

step.

In view of this, the search stops if:

• (1m) There exists m < n such that |Rm−1(E) ∩ [o, em]| > |[o, c(em, em+1)]|, and

then

x′ ∈ [o, em] \ [o, c(em, em+1)]

and fMm(x′) = f(x).

• (2n−1) We arrive at the end of the rearrangement, that is, |Rn−2(E) ∩ [o, en−1]| ≤
|[o, c(en−1, en)]| and then there exists

xn−1 ∈ [o, c(en−1, en)]

such that fMn−1(xn−1) = f(x). Rearranging now with respect to en, we have that

x′ ∈ E∗ ∩ [o, en].

In both cases, there exists a family of vertices S(x) = {xk, xk+1, · · · , xn−j} for certain

1 ≤ j ≤ n− k + 1, with S(x) = ∅ if j = n− k + 1, such that

xi ∈ [o, c(ei, ei+1)] (2.13)

fMi (xi) = f(x), ∀i = k, . . . , n− j. (2.14)



x′ ∈ [o, en−j+1] \ [o, c(en−j+1, en−j+2)] if j > 1

x′ ∈ E∗ ∩ [o, en] if j = 1
(2.15)
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Rk−1(E)

ek
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U
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Rk(E)

o

c(ek, ek+1)

The case (1k).

The case (2k).

Figure 21: The two possibilities in the definition of fMk .
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This family of vertices S(x) can be seen as the path where the minimum value

f(x) is moving during the process of constructing fM (see Figure 22). As ek is the

first vertex in ∂E (with respect to σ) with x ∈ [o, ek], we trivially have that

(f · χE0)
M
k−1 = fMk−1 · χRk−1(E)\{x}. (2.16)

By definition, we have:

(f · χE0)
M
k (y) =





(f · χE0)
M
k−1(y) if y ∈ Rk(E0) ∩ [o, ek]

c,

((f · χE0)
M
k−1χ[o,ek])

∗(y) if y ∈ Rk(E0) ∩ [o, ek].

We observe that, by construction, we have that

Rk(E0) ∩ [o, ek]
c = Rk(E) ∩ [o, ek]

c

Rk(E0) ∩ [o, ek] = (Rk(E) ∩ [o, ek]) \ {xk} .

Thus, using (2.16) and observing that Rk(E) ∩ [o, ek]
c ⊂ Rk−1(E) \ {x}, this is

equivalent to:

(f · χE0)
M
k (y) =





fMk−1(y) if y ∈ Rk(E) ∩ [o, ek]
c,

(fMk−1 · χRk−1(E)\{x}χ[o,ek])
∗(y) if y ∈ (Rk(E) ∩ [o, ek]) \ {xk} .

Now, we apply Lemma 2.3.9 with A = Rk−1(E)∩ [o, ek], A0 = (Rk−1(E)\{x})∩ [o, ek]

and g = fMk−1 · χ[o,ek], getting:

(f · χE0)
M
k (y) =





fMk−1(y) if y ∈ Rk(E) ∩ [o, ek]
c,

(fMk−1 · χ[o,ek])
∗(y) if y ∈ (Rk(E) ∩ [o, ek]) \ {xk} .

where we have used that ((Rk−1(E) \ {x}) ∩ [o, ek])
∗ = (Rk(E) ∩ [o, ek]) \ {xk}, and

that is:

(f · χE0)
M
k (y) = fMk (y) · χRk(E)\{xk}(y).

Repeating the same argument and using that the minimum is attained at xi, i =

k + 1, . . . , n− j, by (2.14), we arrive at

(f · χE0)
M
n−j(y) = fMn−j(y) · χRn−j(E)\{xn−j}(y),

and applying the argument once more, we get

(f · χE0)
M
n−j+1(y) = fMn−j+1(y) · χRn−j+1(E)\{x′}(y).
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Figure 22: The “path” S(x) = {x1, x2, x3, x4} of the minimum value f(x) = 1 and

the final vertex x′, in the process of constructing fM.
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If j = 1 this is exactly (2.12). If j > 1, by (2.15), x′ ∈ [o, en−j+1]\[o, c(en−j+1, en−j+2)]

and so, in the following geodesic rearrangements, the lack of x′ does not imply changes

with respect to the case of the presence of x′, and therefore, (2.12) holds. Finally,

using Lemma 2.3.8, (2.9), (2.10), (2.11) and (2.12), we have:

f ∗(y) = f ∗(y) · χE∗0 (y) + f ∗(x′) · χ{x′}(y)

= (f · χE0)
∗(y) + f(x) · χ{x′}(y)

= (f · χE0)
M(y) + fM(x′) · χ{x′}(y)

= fM(y) · χE∗0 (y) + fM(x′) · χ{x′}(y)

= fM(y),

for all y ∈ T .

2

2.4 The Hardy-Littlewood inequality

In this section we will study the Hardy-Littlewood inequality in our context. We

then consider what kind of conditions on the functions are needed in order to get the

saturation of this inequality.

We now recall the classical decreasing rearrangement for measurable func-

tions. For a function f we denote it by f ? to distinguish it from our rearrangement

f ∗. Thus,

f ?(t) = inf {λ : |{|f | > λ}| ≤ t} , t ≥ 0,

where |{|f | > λ}| is the counting measure of the λ-level set of |f |. This is a decreasing

function defined in [0,∞). See [BS] (Chapter 2) for details.

The classical Hardy-Littlewood inequality for measurable functions f and g de-

fined in T is ∑
x∈T

|f(x)g(x)| ≤
∫ ∞

0

f ?(t)g?(t) dt. (2.17)

Consequently, the inequality

∑
x∈T

|f(x)h(x)| ≤
∫ ∞

0

f ?(t)g?(t) dt (2.18)

holds for all measurable functions h such that h? = g?. In some measure spaces, the

so-called strongly resonant spaces (see [BS]), the equality is attained in (2.18) for a

suitable h.
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A weaker requirement than the attainment of equality in (2.18) holds in our mea-

sure space. In particular, the measure space (T, |.|) is resonant (with respect to the

classical rearrangement), that is, for each measurable f and g in (T, |.|), the identity

∫ ∞

0

f ?(t)g?(t) dt = sup
∑
x∈T

|f(x)h(x)| , (2.19)

holds, where the supremum is taken over all measurable functions h on T such that

h? = g?. We will see in the next section that this identity is strongly linked with

normability properties of some functional spaces, and that is the reason for our study.

Our purpose is to give the same type of results but using our decreasing rear-

rangement on the tree.

Proposition 2.4.1 For all f ∈ M0 and for all finite set of vertices E ⊂ T the

inequality ∑
x∈E

|f(x)| ≤
∑
x∈E∗

f ∗(x)

holds.

Proof. We use the notation from Remark 2.3.5 for the function |f | and Proposi-

tion 2.2.20:

∑
x∈E

|f(x)| =
∞∑

n=1

bn |E ∩ Fn|

=
∞∑

n=1

bn |(E ∩ Fn)∗|

≤
∞∑

n=1

bn |E∗ ∩ F ∗
n | =

∑
x∈E∗

f ∗(x).

2

We obtain for our rearrangement the Hardy-Littlewood inequality.

Theorem 2.4.2 (Hardy-Littlewood inequality) For all f and g in M0, the in-

equality ∑
x∈T

|f(x)g(x)| ≤
∑
x∈T

f ∗(x)g∗(x)

holds.



118 2. Non-linear rearrangement on trees

Proof. We use the notation from Remark 2.3.5 for the function |f | and last proposi-

tion:

∑
x∈T

|f(x)g(x)| =
∞∑

n=1

bn

(∑
x∈Fn

|g(x)|
)
≤

∞∑
n=1

bn

( ∑
x∈F ∗n

g∗(x)

)
=

∑
x∈T

f ∗(x)g∗(x).

2

It is natural to ask if there is any relationship between both rearrangements. The

following two results give some information about this.

Proposition 2.4.3 For all f ∈M0, the identity

(|f |∗)?(t) = f ?(t), t > 0,

holds.

Proof. We use the notation of Remark 2.3.5 for the function |f |, and this notation

also works for the classical rearrangement, that is

f ?(t) =
∞∑

n=1

bnχ[0,|Fn|)(t).

Applying this to the function f ∗(x) =
∑∞

n=1 bnχF ∗n (x) and recalling that |E| = |E∗|
for finite sets E, we get:

(|f |∗)?(t) =
∞∑

n=1

bnχ[0,|F ∗n |)(t) =
∞∑

n=1

bnχ[0,|Fn|)(t) = f ?(t).

2

Using this proposition, Theorem 2.4.2, (2.17) and (2.19) we have the following

result.

Corollary 2.4.4 For all f, g ∈M0, we have:

(i) For all measurable functions f and g in T ,

∑
x∈T

|f(x)g(x)| ≤
∑
x∈T

f ∗(x)g∗(x) ≤
∫ ∞

0

f ?(t)g?(t) dt.

(ii) For all measurable functions f and g in T ,
∫ ∞

0

f ?(t)g?(t) dt = sup
∑
x∈T

f ∗(x)h∗(x),

where the supremum is taken over all measurable functions h on T such that

h? = g?.
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By Proposition 2.4.3, if f ∗ = g∗ then f ? = g?. The converse is not true in general

as we can see in the next example.

Example 2.4.5 Consider the functions defined below on the pictures. Observe that

they differ only at two vertices and that their rearrangements on the tree also differ

at two vertices.

o

g

1

1

1

1

4

4

4 4

2

2

2

2

o

f

3

3

3

3

5
5 5

5

2 2

1

1

44

2

2

o

f ∗

3 3

5

5

2 1

1

44

2

2

o

g∗

3 3

5

5

2

Figure 23: Two functions on T with the same classical rearrangement, but different

rearrangement on the tree.

But their classical rearrangements coincide. In particular,

f ?(t) = g?(t) = 5χ[0,2)(t) + 4χ[2,4)(t) + 3χ[4,6)(t) + 2χ[6,9)(t) + 1χ[9,11)(t).

Returning to the Hardy-Littlewood inequality of Theorem 2.4.2, we observe that

as a consequence, we have that the inequality
∑
x∈T

|f(x)h(x)| ≤
∑
x∈T

f ∗(x)g∗(x)



120 2. Non-linear rearrangement on trees

holds for all functions h ∈ M0 such that h∗ = g∗. Is it possible to saturate this

inequality in order to obtain an identity such as (2.19) but with our rearrangement

on the tree? That is, is it possible to get the equality

∑
x∈T

f ∗(x)g∗(x) = sup
∑
x∈T

|f(x)h(x)| , (2.20)

where the supremum is taken over all functions h ∈ M0 such that h∗ = g∗? The

answer is negative in general, as the following example shows.

Example 2.4.6 Consider the four vertices in the tree of the following figure.

o

x1

x2 x3

Figure 24: The four vertices.

Take E = {o, x1, x2} and g = χE. Since E is a decreasing set, we have that g∗ = g.

For a fixed f ∈M0, we would like to have the equality

∑
x∈E

f ∗(x) = sup
{h∈M0: h∗=χE}

∑
x∈T

|f(x)h(x)| ,

or equivalently ∑
x∈E

f ∗(x) = sup
{D⊂T : D∗=E}

∑
x∈D

|f(x)| .

To see that this equality does not hold it is enough to take the function f to be large

enough at x3 with respect to its values at the rest of the vertices. In particular, take

f(x) = 4χ{x3}(x) + χ{o}(x) + χ{x1}(x) + χ{x2}(x).

Therefore,

f ∗(x) = 4χ{o}(x) + χ{x3}(x) + χ{x1}(x) + χ{x2}(x).

and thus ∑
x∈E

f ∗(x) = 6,
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but

sup
{D⊂T : D∗=E}

∑
x∈D

|f(x)| = 3,

because any set D such that D∗ = E cannot contain x3 (recall that we take the order

σ fixed in Remarks 2.2.16).

Last example says that identity (2.20) fails to be true for a general decreasing

function g, even for a general characteristic function of a decreasing set. Now, we

choose four new vertices given in the next figure.

o

x1

x2x3

Figure 25: The new four vertices.

As before set E = {o, x1, x2} and g = χE = g∗, and

f(x) = 4χ{x3}(x) + χ{o}(x) + χ{x1}(x) + χ{x2}(x),

and thus

f ∗(x) = χ{x3}(x) + 4χ{o}(x) + χ{x1}(x) + χ{x2}(x).

In this case, we have

∑
x∈E

f ∗(x) = sup
{D⊂T : D∗=E}

∑
x∈D

|f(x)| = 6,

simply taking D = {x1, x2, x3}.
We see that there exist decreasing functions g in the tree such that (2.20) holds.

Our purpose now is to identify the class of decreasing functions in the tree such that

this equality holds.

We first fix our attention to the functions with finite support, and we begin by

looking at the case of functions with support in one geodesic from the origin o to a fixed

vertex e. In this case, our rearrangement is equivalent to the classical rearrangement
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of discrete functions defined on N, with support in the interval [0, N ] for a fixed N ,

simply by considering the bijection

[o, e] = {o = e(0), e(1), . . . , e(N) = e} ≡ [0, N ],

such that e(i) ←→ i. The measure space ([0, N ], |.|) is strongly resonant and this

means that, for fixed f and g, the equality

∑

x∈[o,e]

|f(x)h(x)| =
∑

x∈[o,e]

f ∗(x)g∗(x), (2.21)

holds for a suitable h. In fact, a suitable h can be constructed by permuting the

values of g∗, by using the permutation that takes f into f ∗. To be precise, consider

the permutation

ϕf : [o, e] −→ [o, e]

such that

|f(x)| = f ∗(ϕf (x)),

for all x ∈ [o, e]. Then, h(x) = g∗(ϕf (x)) satisfies equality (2.21) (by considering a

change of variable x = ϕf (y)), and trivially h∗ = g∗.

Example 2.4.7 Consider the function

f(x) = 2χ{e(0)}(x) + 3χ{e(1)}(x) + 5χ{e(2)}(x) + 4χ{e(3)}(x) + 2χ{e(4)}(x) + χ{e(5)}(x),

with rearrangement

f ∗(x) = 5χ{e(0)}(x) + 4χ{e(1)}(x) + 3χ{e(2)}(x) + 2χ{e(3)}(x) + 2χ{e(4)}(x) + χ{e(5)}(x).

Now, set
ϕf (e(0)) = e(3), ϕf (e(1)) = e(2),
ϕf (e(2)) = e(0), ϕf (e(3)) = e(1),
ϕf (e(4)) = e(4), ϕf (e(5)) = e(5),

that satisfies f(x) = f(ϕf (x)). For all decreasing functions g∗ in [e(0), e(5)], the

function h(x) = g∗(ϕf (x)) satisfies equality (2.21) and trivially h∗ = g∗. For instance,

take

g∗(x) = 6χ{e(0)}(x) + 6χ{e(1)}(x) + 4χ{e(2)}(x) + 3χ{e(3)}(x) + 2χ{e(4)}(x) + χ{e(5)}(x),

then

h(x) = 3χ{e(0)}(x) + 4χ{e(1)}(x) + 6χ{e(2)}(x) + 6χ{e(3)}(x) + 2χ{e(4)}(x) + χ{e(5)}(x).
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It is easy to compute that

∑

x∈[o,e]

|f(x)h(x)| =
∑

x∈[o,e]

f ∗(x)g∗(x) = 77.

Observe that the permutation ϕf is not unique in general. In our example, we could

have also taken ϕf (e(0)) = e(4) and ϕf (e(4)) = e(3). If we require the permutation

to satisfy that ϕf (e(i)) < ϕf (e(j)) if e(i) < e(j), whenever f(e(i)) = f(e(j)), then

ϕf is unique.

We observe that the permutation ϕf , for measurable f , plays an important role

in order to obtain equality (2.21). In the “linear” case of [o, e], we trivially have that

if g is decreasing, then g(ϕf (.))
∗ = g for all f . In fact, the reverse implication is also

true, and we can trivially state that g is decreasing if and only if g(ϕf (.))
∗ = g for all

f . This is not true in the case of general finite support.

We fix now our attention on functions with general finite support not necessarily

contained in a geodesic.

Definition 2.4.8 Let f be a positive function with finite support E ⊂ T . A rear-

ranging transformation for f is a bijection

ϕf : E −→ E∗

such that

f(x) = f ∗(ϕf (x)),

for all x ∈ E.

In view of Theorem 2.3.10 and definitions (2.7) and (2.8), we can decompose ϕf

into the composition of rearranging transformations for every geodesic from o to each

vertex in the boundary of E. To be precise, if n = |∂E|,

ϕf = ϕf,n ◦ ϕf,n−1 ◦ · · · ◦ ϕf,1,

where each ϕf,k is a mapping

ϕf,k : Rk−1(E) −→ Rk(E)

such that

• ϕf,k is the identity out of [o, ek], that is

ϕf,k · χRk−1(E)\[o,ek] = Id.
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• Each ϕf,k is the rearranging transformation for fMk restricted to [o, ek], that is:

(i) ϕf,k : Rk−1(E) ∩ [o, ek] ←→Rk(E) ∩ [o, ek].

(ii) fMk (y) =





fMk−1(y) if y ∈ Rk(E) \ [o, ek],

fMk−1(ϕ
−1
f,k(y)) if y ∈ Rk(E) ∩ [o, ek].

In other words, each ϕf,k is the rearranging transformation for fMk · χ[o,ek], extended

to all Rk−1(E) as the identity. We have seen in Example 2.4.7 that these bijections

are not unique, unless we require that ϕf,k(x) ≤ ϕf,k(y) if x ≤ y whenever fMk−1(x) =

fMk−1(y). We keep this condition for granted, so that ϕf is also unique for every f .

For a finite set of vertices E, we define

Φ(E) = {ϕ : E ←→ E∗ : ∃f s.t. ϕ = ϕf} ,

and

Φ =
⋃

{E⊂T :|E|<∞}
Φ(E).

Thus, Φ is the set of all the rearranging transformations in the tree.

In general, for a decreasing positive function g, the equality

g(ϕf (.))
∗ = g (2.22)

does not hold.

Example 2.4.9 Consider the vertices of the next figure,

o

a b

Figure 26: The support of f and g.

and the functions

f(x) = χ{o}(x) + 2χ{a}(x) + 3χ{b}(x),
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and

g(x) = 2χ{o}(x) + χ{a}(x),

and thus,

f ∗(x) = 3χ{o}(x) + χ{a}(x) + 2χ{b}(x),

and g = g∗ is decreasing. By definition, we have

ϕf (b) = o, ϕf (o) = a, ϕf (a) = b.

Therefore,

g(ϕf (x)) = χ{o}(x) + 2χ{b}(x),

and

(g(ϕf (.))
∗(x) = 2χ{o}(x) + χ{b}(x),

and so, (2.22) does not hold.

Examples 2.4.6 and 2.4.9 say that g must be something better than decreasing in

order to have (2.20) or (2.22). We need to consider a new order structure in the tree.

Definition 2.4.10 Given two vertices x and y in T , we define

x £ y

if and only if

x ≤ y or I(x) ≥σ I(y).

We illustrate the definition below. Recall that we use the order σ (from left to right)

fixed in Remarks 2.2.16.

It is very important to observe that this new order is a total order, compatible

with the natural partial order, and that it depends on the choice of σ.

We give now some results that will lead to the final result of this section. In what

follows, we will use the notation

(x, y] = [x, y] \ {x} ,

or

[x, y) = [x, y] \ {y} ,

for two vertices x and y in T .
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o

∂T
I(y)

x

y

[ [] ]

I(x)

o

x

y

Figure 27: The two possibilities for x £ y.

Lemma 2.4.11 Let f be a positive function in T with finite support E, and ∂E =

{e1, e2, . . . , en}σ its boundary. If x, y ∈ E ∩ [o, e1] satisfy that

f(x) ≥ f(y),

then

ϕf (x) £ ϕf (y).

Proof. If ϕf (x) and ϕf (y) lie in the same geodesic, we trivially have that

ϕf (x) ≤ ϕf (y),

because of the hypothesis and that f ∗ is decreasing. Suppose that ϕf (x) and ϕf (y)

do not lie in the same geodesic. Take the decomposition

ϕf = ϕf,n ◦ ϕf,n−1 ◦ · · · ◦ ϕf,1,

and write yj = ϕf,j ◦ · · · ◦ ϕf,1(y) and xj = ϕf,j ◦ · · · ◦ ϕf,1(x). By hypothesis, there

exists 1 ≤ k ≤ n such that xk and yk lie in the same geodesic and

xk ≤ yk,

but xk+1 and yk+1 do not lie in the same geodesic. This can only happen if (see Figure

28)

yk ∈ Rk(E) ∩ (c(ek, ek+1), ek],
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and

xk+1 ∈ Rk+1(E) ∩ (c(ek, ek+1), ek+1],

since then, by definition of ϕf,k+1 we have

yk+1 = ϕf,k+1(yk) = yk ∈ (c(ek, ek+1), ek],

and then xk+1 and yk+1 do not lie in the same geodesic, and by construction

xk+1 £ yk+1.

ek
ek+1

yk

xk

c(ek, ek+1)

ek
ek+1

c(ek, ek+1)

xk+1

yk+1

-
ϕf,k+1

Figure 28: The situation of xk and yk, and the action of ϕf,k+1 .

Now, we claim that

ϕf (x) ≤ xk+1. (2.23)

Thus,

ϕf (x) ≤ xk+1 £ yk+1 = ϕf (y),

where the last equality is due to the fact that ϕf,j = Id in (c(ek, ek+1), ek] for all

j ≥ k + 1. We now prove the claim. Two possibilities can happen: first, if xk+1 ∈
(c(ek+1, ek+2), ek+1] then

ϕf (x) = xk+1,

because ϕf,j = Id in (c(ek+1, ek+2), ek+1] for all j ≥ k + 2, and so we have an

equality in (2.23). Second, if xk+1 ∈ [o, c(ek+1, ek+2)] and if it does not exist y ∈
(c(ek+1, ek+2), ek+2] such that

fMk+1(xk+1) ≤ fMk+1(y),
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then

xk+2 = ϕf,k+2(xk+1) = xk+1,

and nothing changes in this rearrangement. If there exists y ∈ (c(ek+1, ek+2), ek+2]

such that

fMk+1(xk+1) ≤ fMk+1(y),

then necessarily xk+2 = ϕf,k+2(xk+1) ∈ T (xk+1), and then

xk+2 ≤ xk+1.

Repeating this argument, we obtain

ϕf (x) = xn ≤ xn−1 ≤ . . . xk+1.

2

Lemma 2.4.12 Let E be a finite set in T , and n = |∂E|. If

ϕ = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 ∈ Φ(E),

then

ϕ′ := ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ∈ Φ(D),

where D = R1(E) \ (c(e1, e2), e1].

Proof. Observe that |D| = n− 1. Moreover,

∂D = ∂E \ {e1} .

There exists f supported in E such that ϕ = ϕf . Set

g = fM1 · χD,

and then we get

g∗ = f ∗ · χE∗\(c(e1,e2),e1],

and

g(x) = g∗(ϕ′(x)),

for all x ∈ D.

2

We illustrate this lemma with a graphic example.
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Example 2.4.13 We give a function with finite support and its decreasing rearrange-

ment:

o

1

e1 e2

3
e3

4

f

1

2

5

2

o

1

e1 e2

3

e3

4

f ∗

1

2

5

2

Figure 29: A function f and its rearrangement f ∗.

We label the vertices in order to explicit the rearranging transformations:

o

a b c

d e f g h i

j k l m n o p q r s t u

Figure 30: Putting labels at the vertices.

The geodesic rearranging transformations are:

ϕf,1(k) = o, ϕf,1(a) = a.

ϕf,2(b) = o, ϕf,2(o) = b, ϕf,2(g) = g, ϕf,2(p) = p.

ϕf,3(o) = o, ϕf,3(s) = c, ϕf,3(c) = h.

It is easy to check that ϕf = ϕf,3 ◦ ϕf,2 ◦ ϕf,1. The function g defined in last lemma

and g∗ are in our case:
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o

1

d1

3
d2

2

g

2

5

2

4
o

1

d1

3

d2

4

g∗

2

5

Figure 31: The function g and its rearrangement g∗.

It is straightforward to see that

ϕg,1 = ϕf,2 and ϕg,2 = ϕf,3,

and hence ϕg = ϕf,3 ◦ ϕf,2.

16

16

15

14

13

13

12

o

11

10

10

109

9

98

7

6

54

3

21

g

16

16

15

14

13

13

12

o

11

12

10

109

9

98

7

6

54

3

21

f

6 6 6 6

Figure 32: A linearly decreasing function g and a function f not linearly decreasing.

Before proving the next important result, we define a new decreasing property for

functions in the tree.
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Definition 2.4.14 A function g is linearly decreasing if

g(x) ≥ g(y)

if and only if

x £ y.

We observe that if g is linearly decreasing, then g is decreasing. We give a graphic

example in Figure 32; we agree that we extend the function to each tent of the vertices

at the bottom of the figure, with the same value at these bottom vertices. In the case

of the function not linearly decreasing, we remark what vertices do not satisfy the

definition.

The basic result of this section is the following:

Theorem 2.4.15 If g is a linearly decreasing positive function, then

(g ◦ ϕ)∗(y) = g(y), (2.24)

for all ϕ ∈ Φ, and for all y in the support of ϕ.

Proof. Take ϕ ∈ Φ(E) for a certain finite set E. We prove the proposition by induction

on |∂E|. If |∂E| = 1, then E is contained into a geodesic [o, e], and we are done

because if g is linearly decreasing, it is decreasing. Suppose it is true for |∂E| = n−1.

Fix E such that ∂E = {e1, e2, . . . , en}σ. If ϕ ∈ Φ(E), we know that

ϕ = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1,

where ϕi = ϕf,i for a certain f supported in E. Set h = g ◦ ϕ, which is supported in

E. There exists ϕh ∈ Φ(E) such that

h(x) = h∗(ϕh(x)),

for all x ∈ E. Its decomposition is

ϕh = ϕh,n ◦ ϕh,n−1 ◦ · · · ◦ ϕh,1.

We claim that

ϕ1 = ϕh,1.

Take x, y ∈ E∩[o, e1] and suppose that ϕ1(x) < ϕ1(y). Necessarily then, f(x) ≥ f(y).

By Lemma 2.4.11, we have that ϕ(x) £ ϕ(y), and then

h(x) = g(ϕ(x)) ≥ g(ϕ(y)) = h(y),
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because g is linearly decreasing. Therefore,

ϕh,1(x) < ϕh,1(y).

Since this is true for all x and y in E ∩ [o, e1] which is a finite set, we have proved the

claim. Using the claim and that ϕ1 = Id in R1(E) \ [o, e1] ⊂ E \ [o, e1], we have:

hM1 (y) =





h(y) if y ∈ R1(E) \ [o, e1],

h(ϕ−1
h,1(y)) if y ∈ R1(E) ∩ [o, e1].

= g(ϕn ◦ · · · ◦ ϕ2(y)), (2.25)

for all y ∈ R1(E). So, for y ∈ E ∗ \(c(e1, e2), e1], we get

h∗(y) = (hM1 )∗(y) = (g(ϕn ◦ · · · ◦ ϕ2(.))
∗(y). (2.26)

If R1(E) ∩ (c(e1, e2), e1] 6= ∅, using (2.25) and that ϕj = Id in R1(E) ∩ (c(e1, e2), e1]

for j ≥ 2, we get for y ∈ R1(E) ∩ (c(e1, e2), e1]:

h∗(y) = hM1 (y) = g(ϕn ◦ · · · ◦ ϕ2(y)) = g(y).

This equality, (2.26) and the fact that E∗ ∩ (c(e1, e2), e1] = R1(E) ∩ (c(e1, e2), e1]

finally takes to:

h∗(y) = h∗(y) · χE∗∩(c(e1,e2),e1](y) + h∗(y) · χE∗\(c(e1,e2),e1](y)

= g(y) · χE∗∩(c(e1,e2),e1](y) + (g(ϕn ◦ · · · ◦ ϕ2(.)))
∗(y) · χE∗\(c(e1,e2),e1](y)

= g(y) · χE∗∩(c(e1,e2),e1](y) + g(y) · χE∗\(c(e1,e2),e1](y)

= g(y),

where we have used in the third equality Lemma 2.4.12 and the hypothesis of induc-

tion.

2

We give a graphic example of this last proposition.

Example 2.4.16 In the figures below, we give a function f and its rearrangement.

If we label the vertices as in Figure 30, we can give explicitly the rearranging trans-

formation ϕ = ϕf :

ϕ(o) = e, ϕ(a) = j, ϕ(b) = n, ϕ(c) = c, ϕ(d) = o, ϕ(e) = a, ϕ(f) = o,
ϕ(g) = p, ϕ(h) = r, ϕ(i) = i, ϕ(j) = d, ϕ(k) = k, ϕ(l) = l, ϕ(m) = m,
ϕ(n) = b, ϕ(o) = f, ϕ(p) = g, ϕ(q) = q, ϕ(r) = h, ϕ(s) = s, ϕ(t) = t,
ϕ(u) = u.
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o
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6

66

7
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f ∗

Figure 33: A function f and its rearrangement f ∗.
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Figure 34: A linearly decreasing function g, the function g ◦ϕ and its rearrangement.
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Then, we have chosen a positive linearly decreasing function g, we have found

g ◦ ϕ and we have computed (g ◦ ϕ)∗. We observe that g(y) = (g ◦ ϕ)∗(y) for all y in

the support of f .

The last result of this section is the equality (2.20).

Theorem 2.4.17 If g is a positive function in T such that

(g ◦ ϕ)∗ = g,

in the support of ϕ, for all ϕ ∈ Φ, then

∑
x∈T

f ∗(x)g(x) = sup
{h: h∗=g}

∑
x∈T

|f(x)h(x)| ,

for all measurable functions f .

Proof. Set C =
∑

x∈T f ∗(x)g(x). It is enough to see that for all ε > 0, there exists a

function h such that h∗ = g and

C − ε <
∑
x∈T

|f(x)h(x)| .

Set Ek = {x ∈ T : |x| ≤ k} and fk = |f | · χEk
. By Proposition 2.3.6 (viii), we know

that

f ∗k ↗ f ∗,

because fk ↗ |f |. By the Monotone Convergence Theorem, and observing that

E∗
k = Ek for all k ≥ 0, there exists n such that

C − ε <
∑
x∈En

f ∗n(x)g(x). (2.27)

By hypothesis, we know that hn = g ◦ ϕfn satisfies

h∗n = g · χEn ,

and ∑
x∈En

fn(x)hn(x) =
∑
x∈En

f ∗n(x)g(x),

because trivially

∑
x∈En

f ∗n(x)g(x) =
∑
y∈En

f ∗n(ϕfn(y))g(ϕfn(y)) =
∑
y∈En

fn(y)hn(y).



2.4. The Hardy-Littlewood inequality 135

This equality and (2.27) lead to

C − ε <
∑
x∈En

fn(x)hn(x).

Define h = hn · χEn + g · χT\En . We claim that

h∗ = g,

and using the last inequality, we get

C − ε <
∑
x∈En

fn(x)hn(x) ≤
∑
x∈T

f(x)h(x),

as we wanted to prove. We now prove the claim. Since we know that

h∗ = lim
k

(h · χEk
)∗,

it is enough to prove that

(h · χEm)∗ = g · χEm ,

for all m ≥ n. We denote ∂En = Tn = {e1, e2, . . . , er}σ, with r = (q + 1)qn−1. If we

decompose

ϕfn = ϕr ◦ ϕr−1 ◦ · · · ◦ ϕ1,

then

(g ◦ ϕfn)Mk (ek) = g(ek),

because we know that (g ◦ ϕfn)∗ = g and ϕj = Id in Rj−1(E) \ [o, ej] for all j, and

in our case ek ∈ Rj−1(E) \ [o, ej] for all j ≥ k + 1. Now, to finish the proof, we

only need to observe that g is a decreasing function because of the hypothesis, and

to consider the following trivial fact at each geodesic rearrangement: let {a1, . . . , ak}
be a sequence of positive real numbers and {a∗1, . . . , a∗k} its decreasing rearrangement;

let us add some new values {b1, . . . , bm} to the sequence satisfying bi ≥ bi+1 for all

1 ≤ i ≤ m and b1 ≤ a∗k. Then, the rearrangement of

{a1, . . . , ak, b1, . . . , bm}

is

{a∗1, . . . , a∗k, b1, . . . , bm} .

2

As a consequence of the last two results, we can state the following corollary:
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Corollary 2.4.18 If g is a positive linearly decreasing function, then

∑
x∈T

f ∗(x)g(x) = sup
{h: h∗=g}

∑
x∈T

|f(x)h(x)| ,

for all measurable functions f .

We will show in Theorem 2.5.12 that the converse also holds.

2.5 The Lorentz spaces

We give the definition of the Lorentz spaces related to our decreasing rearrangement,

and we study normability properties of these new spaces.

In 1951, G.G. Lorentz (see [Lo]) introduced the so-called Lorentz spaces for an

interval (0, l). For a positive real number p and a weight u in the positive real line, the

Lorentz space Λp(u) is defined as the set of Lebesgue measurable functions defined in

(0, l) such that the functional

‖f‖Λp(u) =

(∫ ∞

0

(f ?(t))pu(t) dt

)1/p

(2.28)

is finite, where f ? stands as the classical decreasing rearrangement. For a general

measure space (X, µ), the Lorentz space Λp
X(u) is the set of µ-measurable functions

f defined in X such that the functional (2.28) is finite, where now the classical

decreasing rearrangement is defined with respect to the measure µ, that is

f ?(t) = inf {λ : µ({|f | > λ}) ≤ t} , t ≥ 0.

These spaces are generalizations of the Lebesgue spaces Lp(X,µ).

We give now our version of these spaces in the tree, using our decreasing rear-

rangement.

Definition 2.5.1 Let 0 < p < ∞ be a real number and u a positive function defined

in T , that is, a weight. The Lorentz space ∆p
T (u) is the set of measurable functions

f defined in T such that the functional

‖f‖∆p
T (u) =

(∑
x∈T

(f ∗(x))pu(x)

)1/p

is finite.
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Remarks 2.5.2

(i) The simple functions with finite support are in ∆p
T (u). If u ∈ L1(T ), then

L∞(T ) ⊂ ∆p
T (u) and all simple functions are in ∆p

T (u).

(ii) Once more, we observe that this space depends on the choice of the origin o

and the order σ. But we do not complicate the notation by doing explicit this

dependence.

We give some basic properties, with trivial proof derived from Proposition 2.3.6.

Proposition 2.5.3 For measurable functions f , g and fk, k ≥ 1, defined in T , we

have:

(i) If |f | ≤ |g|, then ‖f‖∆p
T (u) ≤ ‖g‖∆p

T (u).

(ii) ‖λf‖∆p
T (u) = |λ| ‖f‖∆p

T (u).

(iii) If 0 ≤ fk ↗ f pointwise, then ‖fk‖∆p
T (u) ↗ ‖f‖∆p

T (u).

(iv) ‖lim infk |fk|‖∆p
T (u) ≤ lim infk ‖fk‖∆p

T (u).

We will use the notation

U(E) =
∑
x∈E

u(x),

for every set E ⊂ T and for every weight u in T . We describe the functional in a new

way that will be useful later on.

Lemma 2.5.4 For all f ∈ ∆p
T (u), we have

‖f‖∆p
T (u) =

(∫ ∞

0

p λp−1U({|f | > λ}∗) dλ

)1/p

.

Proof. By Proposition 2.3.6 (vii), we have:

‖f‖∆p
T (u) =

(∑
x∈T

(|f |p)∗(x))u(x)

)1/p

.
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We use Definition 2.3.2 of the decreasing rearrangement and then we apply Fubini’s

Theorem obtaining:

‖f‖∆p
T (u) =

(∑
x∈T

(∫ ∞

0

χ{|f |p>λ}∗(x) dλ

)
u(x)

)1/p

=

(∑
x∈T

(∫ ∞

0

p ξp−1χ{|f |>ξ}∗(x) dξ

)
u(x)

)1/p

=

(∫ ∞

0

p ξp−1

( ∑

x∈{|f |>ξ}∗
u(x)

)
dξ

)1/p

.

2

We show that our Lorentz spaces have the property of completeness.

Proposition 2.5.5 Suppose u(o) 6= 0, and let {fk : k ≥ 0} be a sequence of measur-

able functions defined in T . If

lim
m,n

‖fm − fn‖∆p
T (u) = 0,

then there exists a function f ∈ ∆p
T (u) defined in T such that

lim
n
‖f − fn‖∆p

T (u) = 0.

Proof. Using the expression given in the previous lemma for the functional, we get

for all t > 0:

‖f‖p
∆p

T (u)
≥

∫ t

0

p λp−1U({|f | > λ}∗) dλ ≥ U({|f | > t}∗)
∫ t

0

p λp−1 dλ

= U({|f | > t}∗) tp,

and thus, for all t > 0 we have

U({|f | > t}∗) ≤
‖f‖p

∆p
T (u)

tp
.

This inequality and the hypothesis lead to

lim
m,n

U({|fm − fn| > t}∗) = 0,

for all t > 0. Since u(o) 6= 0, the last equality implies that for all t > 0, there exists

p such that

{|fm − fn| > t} = ∅,
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for all m,n ≥ p, that is, {fk : k ≥ 0} is a Cauchy sequence in measure. Then, we

know that the sequence is converging in measure to certain measurable f , and there

exists a subsequence {fnk
: k ≥ 0} that converges pointwise to f . By Proposition

2.5.3 (iv), we have that f ∈ ∆p
T (u) and also that

‖f − fn‖∆p
T (u) ≤ lim inf

k
‖fnk

− fn‖∆p
T (u) ,

and therefore

lim
n
‖f − fn‖∆p

T (u) = 0.

2

The classical Lorentz spaces are generalizations of the classical Lebesgue spaces,

in the sense that

Λp
X(1) = Lp(X, µ).

In view of this, it is logical to ask if this relation holds true in the case of our Lorentz

spaces. Next proposition gives an answer to this question.

Proposition 2.5.6 For 0 < p < ∞, we have

∆p
T (1) = Lp(T, |.|).

Proof. We will use Proposition 2.3.6 (vi) and (vii), and that |E| = |E∗| for all E ⊂ T ,

and by Fubini’s Theorem, we get

‖f‖Lp(T,|.|) =
∑
x∈T

|f(x)|p =

∫ ∞

0

|{|f |p > λ}| dλ =

∫ ∞

0

|{(f ∗)p > λ}| dλ

=
∑
x∈T

(f ∗(x))p = ‖f‖∆p
T (1) .

2

As a consequence we have Λp
T (1) = ∆p

T (1). However, the spaces Λp
T (v) (v a weight

in [0,∞)) and ∆p
T (u) (u a weight in T ) are not equal in general. The classical Lorentz

spaces are rearrangement invariant spaces, that is

‖f‖Λp
X(u) = ‖g‖Λp

X(u) ,

whenever f and g are equimeasurable functions, in the sense that

µ({|f | > λ}) = µ({|g| > λ}),
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for all λ > 0. In fact, two functions f and g are equimeasurable if and only if f ? = g?.

The Lorentz spaces ∆p
T (u) are not rearrangement invariant spaces in this sense in

general, as the functions f and g in Example 2.4.5 show (f ? = g? but f ∗ 6= g∗).

Furthermore:

Proposition 2.5.7 The space ∆p
T (u) is a rearrangement invariant space if and only

if the weight u is a constant in T \ {o}.
Proof. Suppose first that u is constant in T \{o}. Take two equimeasurable functions

f and g in (T, |.|), that is

|{|f | = λ}| = |{|g| = λ}| . (2.29)

We can assume that their supports are finite. We have:

‖f‖∆p
T (u) = (f ∗(o))pu(o) + C

∑

x 6=o

(f ∗(x))p,

‖g‖∆p
T (u) = (g∗(o))pu(o) + C

∑

x6=o

(g∗(x))p.

By (2.29), f ∗(o) = g∗(o) and using also the last proposition, we get :
∑

x 6=o

(f ∗(x))p = ‖f‖Lp(T,|.|) − (f ∗(o))p

= ‖g‖Lp(T,|.|) − (g∗(o))p

=
∑

x6=o

(g∗(x))p,

and thus

‖f‖∆p
T (u) = ‖g‖∆p

T (u) .

Let us see the converse implication. Suppose that ∆p
T (u) is a rearrangement invariant

space. We first show that necessarily, u is radial. Take x and y two different vertices

such that

d(o, x) = d(o, y).

Then f = χ[o,x] and g = χ[o,y] are equimeasurable functions and thus

U([o, x]) = ‖f‖∆p
T (u) = ‖g‖∆p

T (u) = U([o, y]).

This equality implies that u is radial. Now take x ∈ T , and y such that y /∈ [o, x] and

d(o, y) = 1. Set E = ([o, x]\{x})∪{y} and f = χE and g = χ[o,x] are equimeasurable

functions satisfying f ∗ = f and g∗ = g, and thus

U([o, x]) = ‖g‖∆p
T (u) = ‖f‖∆p

T (u) = U([o, x])− u(x) + u(y),
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that is, u(x) = u(y). This equality and the fact that u is radial leads to u = C in

T \ {o}.

2

In any case, we always have an inclusion between these two spaces.

Proposition 2.5.8 If u is a weight in T , then Λp
T (u?) is a subspace of ∆p

T (u∗).

Proof. We simply apply Corollary 2.4.4 (i) and Proposition 2.4.3:

‖f‖p
∆p

T (u∗) =
∑
x∈T

(f ∗(x))pu∗(x)

=
∑
x∈T

(|f |p)∗(x)u∗(x)

≤
∫ ∞

0

(|f |p)?(t)(u∗)?(t) dt

=

∫ ∞

0

(f ?(t))pu?(t) dt

= ‖f‖Λp
T (u?) .

We have used the well-known fact (|f |p)?(x) = (f ?(x))p.

2

We focus our attention on the functional ‖.‖∆p
T (u), and we study what kind of

conditions are required on the weight u such that it becomes a quasi-norm or a norm.

We observe that we trivially have

‖f‖∆p
T (u) = 0 ⇔ f ≡ 0.

In the classical context, M.J. Carro and J. Soria ([CSo1]) characterized the weights

u such that the functional ‖.‖Λp
X(u) is a quasi-norm, if X is non-atomic. Later, J.A.

Raposo ([R]) completed this result for all X. In our case, we have the following

characteritzation.

Theorem 2.5.9 The functional ‖.‖∆p
T (u) is a quasi-norm if and only if there exists a

constant C > 0 such that

0 < U((E ∪D)∗) ≤ C(U(E∗) + U(D∗)), (2.30)

for all sets E and D such that E ∪D 6= ∅.
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Proof. Suppose that condition (2.30) holds. By Lemma 2.5.4, if ‖f‖∆p
T (u) = 0, then

U({|f | > λ}∗) = 0,

for all λ > 0, and by hypothesis,

{|f | > λ} = ∅,

for all λ, that is, f ≡ 0. Also by Lemma 2.5.4 and applying our hypothesis, we have:

‖f + g‖p
∆p

T (u)
=

∫ ∞

0

p λp−1U({|f + g| > λ}∗) dλ

≤
∫ ∞

0

p λp−1U(({|f | > λ/2} ∪ {|g| > λ/2})∗) dλ

≤ C

(∫ ∞

0

p λp−1U({|f | > λ/2}∗) dλ +

∫ ∞

0

p λp−1U({|g| > λ/2}∗) dλ

)

= 2C

(∫ ∞

0

p λp−1U({|f | > λ}∗) dλ +

∫ ∞

0

p λp−1U({|g| > λ}∗) dλ

)

= 2C(‖f‖p
∆p

T (u)
+ ‖g‖∆p

T (u))
p,

where we have used the monotonic property E∗ ⊂ D∗ if E ⊂ D. Now, suppose that

the functional is a quasi-norm. Take E and D such that E ∪D 6= ∅, an then:

U((E ∪D)∗)1/p = ‖χE∪D‖∆p
T (u) ≤ C(‖χE‖∆p

T (u) + ‖χD‖∆p
T (u))

= C(U(E∗)1/p + U(D∗)1/p).

2

We study now when the functional ‖.‖∆p
T (u) is a norm. In the classical context,

this problem was solved by G.G. Lorentz ([Lo]) in the case X = (0, l) and p ≥ 1.

The general case is completely characterized by J.A. Raposo in [R]. In all cases, the

necessary and sufficient condition on the weight so that ‖.‖Λp
X(u) becomes a norm is

that u must be a decreasing function. With these results in mind, we obtain our first

positive result:

Lemma 2.5.10 If ‖.‖∆p
T (u) is a norm, then u is a decreasing function in T .

Proof. We take two neighbor vertices x and y, with x ≤ y. Set f = χ[o,x] + λχ{y} and

g = χ[o,y]\{x} + λχ{x}, with 0 < λ < 1. We then have g∗ = f ∗ = f and

‖f‖p
∆p

T (u)
= ‖g‖p

∆p
T (u)

= U([o, x]) + λpu(y).
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Moreover, f + g = 2χ[o,y]\{x} + (1 + λ)(χ{x} + χ{y}), and thus

‖f + g‖p
∆p

T (u)
= 2pU([o, y] \ {x}) + (1 + λ)p(u(x) + u(y)).

By the triangle inequality, we have

(
2pU([o, y] \ {x}) + (1 + λ)p(u(x) + u(y))

)1/p

≤ 2

(
U([o, x]) + λpu(y)

)1/p

.

We derive from here that

u(y) ≤ 2p − (1 + λ)p

(1 + λ)p − 2pλp
u(x).

We obtain u(y) ≤ u(x) by letting λ ↗ 1.

2

Unfortunately, it is easy to see that this condition on u is not sufficient to get a

norm.

Example 2.5.11 Consider the decreasing weight u and the functions f and g in the

figure.

o o o

u f g

3

2 1 3 3

2 2

1 4

Figure 35: A decreasing weight u and the functions f and g.

It is easy to compute that ‖f + g‖∆1
T (u) = 33 and ‖f‖∆1

T (u) + ‖g‖∆1
T (u) = 32, that is

‖.‖∆1
T (u) is not a norm.

As Examples 2.4.6 and 2.4.9 in the previous section, this example says that u must

be something better than decreasing. If we observe the proof of G.G. Lorentz in [Lo]

of the characteritzation as a norm of the functional, we can complete this result by

stating the following: if p ≥ 1, the following are equivalent
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(i) The weight u is a decreasing function in [0,∞).

(ii) For all Lebesgue measurable functions f in (0, l), the equality

sup
{h: h?=u}

∫ l

0

|f(t)h(t)| dt =

∫ ∞

0

f ?(t)u(t) dt,

holds.

(iii) The functional ‖.‖Λp
(0,l)

(u) in (2.28) is a norm.

In view of this, maybe the required condition on the weight u is to be a linearly

decreasing function, since in the previous section we saw that this condition leads to

an equality of the type (ii) above. The answer is next theorem. Recall that Φ is the

set of all the rearranging transformations in the tree.

Theorem 2.5.12 Let u be a weight in T .

(i) If 0 < p < 1, the functional ‖.‖∆p
T (u) is a norm if and only if supp(u) = {o}.

(ii) If p ≥ 1, the following are equivalent:

(a) u is linearly decreasing in T .

(b) For all ϕ ∈ Φ, the equality

(u ◦ ϕ)∗(y) = u(y)

holds for all y in the support of ϕ.

(c) For all measurable functions f in T , the equality

sup
{h: h∗=u}

∑
x∈T

|f(x)h(x)| =
∑
x∈T

f ∗(x)u(x)

holds.

(d) The functional ‖.‖∆p
T (u) is a norm.

Proof. We first proof that if ‖.‖∆p
T (u) is a norm, then u is linearly decreasing, for all

0 < p < ∞. If x ≥ y, then Lemma 2.5.10 shows that u(x) ≤ u(y). Take x ¥ y and

0 < a < b < c < d, set 2m = a + b and consider the functions f and g of Figure 36.

Observe that f ∗ = g∗. The triangle inequality gives, after cancelations

((a + b)p − (2a)p) u(x) ≤ ((2b)p − (a + b)p) u(y).
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o

o

o

o

f

g

f ∗
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Figure 36: The functions f , g, f + g and their rearrangements.
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If we set 1 < λ = b/a, the inequality becomes

((1 + λ)p − 2p) u(x) ≤ ((2λ)p − (1 + λ)p) u(y).

Now, observe that

lim
λ→1

(2λ)p − (1 + λ)p

(1 + λ)p − 2p
= 1,

and thus, u(x) ≤ u(y). This proves (d) ⇒ (a) in part (ii).

(i) The sufficiency is obvious. Suppose that the functional is a norm. Set f = χ{o}
and g = λχ{x} with 0 < λ < 1 and x a neighbor vertex of o such that x £ y for all

y 6= 0 in T . Then f ∗ = f , g∗ = λχ{o} and (f + g)∗ = f + g = χ{o} + λχ{x}. The

triangle inequality gives

‖f + g‖∆p
T (u) =

(
u(o) + λpu(x)

)1/p

≤ u(o)1/p + (λpu(o))1/p = ‖f‖∆p
T (u) + ‖g‖∆p

T (u) .

From this, we have

(
u(o) + λpu(x)

)1/p

− u(o)1/p

λ
≤ u(o)1/p < ∞.

If u(x) 6= 0, then

lim
λ→0

(
u(o) + λpu(x)

)1/p

− u(o)1/p

λ
= ∞,

because p < 1, getting a contradiction. Thus, u(x) = 0 and since u is linearly

decreasing, u = u(o)χ{o}.

(ii)(a) ⇒ (b) This is Theorem 2.4.15.

(b) ⇒ (c) This is Theorem 2.4.17. (c) ⇒ (d) We apply Proposition 2.3.6 (vii), and

the hypothesis (twice):
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‖f + g‖∆p
T (u) =

(∑
x∈T

(f + g)∗(x)pu(x)

)1/p

=

(∑
x∈T

(|f + g|p)∗(x)u(x)

)1/p

= sup
{h: h∗=u}

(∑
x∈T

|f(x) + g(x)|p h(x)

)1/p

≤ sup
{h: h∗=u}

(∑
x∈T

|f(x)|p h(x)

)1/p

+ sup
{h: h∗=u}

(∑
x∈T

|g(x)|p h(x)

)1/p

=

(∑
x∈T

(f ∗(x))pu(x)

)1/p

+

(∑
x∈T

(g∗(x))pu(x)

)1/p

= ‖f‖∆p
T (u) + ‖g‖∆p

T (u) .

2

Taking into account Proposition 2.5.5, we obtain:

Corollary 2.5.13 For 1 ≤ p < ∞, ∆p
T (u) is a Banach space if and only if u is

linearly decreasing in T .

By considering Proposition 2.5.8, we can state:

Corollary 2.5.14 For 1 ≤ p < ∞, if u is a linearly decreasing weight in T , Λp
T (u?)

is a Banach proper subspace of the Banach space ∆p
T (u).

In view of Theorem 2.5.12, it is now clear that the property of being a Banach space

is not invariant under the choice of the origin and the order of the rearrangement,

because the linearly decreasing property on a weight is not invariant by the change

of the origin and the order in T .

Finally, we use Theorem 1.1.10 to completely characterize the embeddings between

these spaces.

Theorem 2.5.15 For weights u and v in T and 0 < p, q < ∞, we have:

(a) If 0 < p ≤ q < ∞, then ∆p
T (u) ↪→ ∆q

T (v) if and only if there exists a constant

C > 0 such that

sup
D↓

V (D)1/q

U(D)1/p
≤ C.

(b) If 0 < q < p < ∞, then the following are equivalent:
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(i) ∆p
T (u) ↪→ ∆q

T (v).

(ii) There exists C > 0 such that

(∫ 1

0

[∑

k∈Z

(
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

)r/p

V (∆k)

]
dt

)1/r

≤ C,

for all {Dk} ⊂ D(T ).

(iii) There exists C > 0 such that

(∫ 1

0

[∑

k∈Z

(
V (Dk) + V (∆k)t

U(Dk) + U(∆k)t

)r/q

U(∆k)

]
dt

)1/r

+
V (X)1/q

U(X)1/p
≤ C,

for all {Dk} ⊂ D(T ).

2.6 Finite trees and regular trees

2.6.1 Regular trees

Recall that a regular tree T is a tree with the property that

2 ≤ deg(x) ≤ M + 1,

for all x ∈ T , for some M ≥ 1, where deg(x) is the number of neighbour vertices of

x. For a rooted regular tree To, consider the homogeneous tree TM of degree M + 1

and an injective map

i : To ↪→ TM ,

such that d(x, y) = dM(i(x), i(y)), where d and dM are the distances defined in To

and TM respectively, that is, i is an isometry. Define a partial order in TM as follows:

x ≤ y if and only if x ∈ [i(o), y]. With this embedding i, we can think of To as a

subtree of TM
i(o).

Extending, in the natural way, the map i to the boundary of To, we easily obtain

that

i(∂To) ⊂ ∂TM
i(o).

Hence, if we consider an order σ in ∂TM
i(o) (recall Definition 2.2.4), it is also an order

in i(∂To).

It is possible to rearrange a set E ⊂ To by rearranging its inclusion i(E) in TM
i(o).

More explicitly, for a finite set E in To, define its rearrangement by

E∗
(o,σ) := R(i(o),σ)(i(E)),
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where o is the origin in T and σ is an order in ∂TM .

In this case, we loose the canonicity of the rearrangement expressed in Theo-

rem 2.2.15 for the case of a homogeneous tree, because the group of automorphisms

of a regular tree T is not as reach as the one of a homogeneous tree TM . Moreover,

we observe that, in general, an automorphism of TM is not an automorphism of T .

As a consequence, we need to be clear in specifying the origin of the regular tree and

the order in the boundary.

However, the rest of the results for homogeneous trees given in the previous sec-

tions can be applied to this special case, because the group of automorphisms is not

playing any role (except in Proposition 2.3.3). We observe that we have only needed

to prove this results for finite sets of vertices, and that every finite set of vertices E

in T can be viewed as a finite set of vertices i(E) in TM .

Definition 2.6.1 For every f ∈ M0(T ), its decreasing rearrangement with re-

spect to the origin o in T and the order σ in ∂To is the function

f ∗(o,σ)(x) =

∫ ∞

0

χ{y∈T M :|f(i−1(y))|>λ}∗(o,σ)
(i(x)) dλ,

defined for all x ∈ T .

Definition 2.6.2 Let 0 < p < ∞ be a real number and u a positive function defined

in T . The Lorentz space ∆p
(o,σ)(u) is the set of measurable functions f defined in T

such that the functional

‖f‖∆p
(o,σ)

(u) =

(∑
x∈T

(f ∗(o,σ)(x))pu(x)

)1/p

is finite.

Theorem 2.6.3 The functional ‖.‖∆p
(o,σ)

(u) is a quasi-norm if and only if there exists

a constant C > 0 such that

0 < U((E ∪D)∗(o,σ)) ≤ C(U(E∗
(o,σ)) + U(D∗

(o,σ))), (2.31)

for all sets E and D such that E ∪D 6= ∅.

Definition 2.6.4 Given two vertices x and y in T , we define

x £(o,σ) y

if and only if

x ≤o y or i(I(x)) ≥σ i(I(y)).
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Definition 2.6.5 A function g is (o, σ)-linearly decreasing if

g(x) ≥ g(y)

if and only if

x £(o,σ) y.

We denote by Φ(o, σ) the set of all the rearranging transformations (recall Defi-

nition 2.4.8), for the given pair (o, σ).

Theorem 2.6.6 Let u be a weight in a regular tree To, and σ an order defined in the

boundary of the associated homogeneous tree TM .

(i) If 0 < p < 1, the functional ‖.‖∆p
(o,σ)

(u) is a norm if and only if supp(u) = {o}.

(ii) If p ≥ 1, the following are equivalent:

(a) u is (o, σ)-linearly decreasing in T .

(b) For all ϕ ∈ Φ(o, σ), the equality

(u ◦ ϕ)∗(o,σ)(y) = u(y)

holds for all y in the support of ϕ.

(c) For all measurable functions f in T , the equality

supn
h: h∗

(o,σ)
=u
o∑

x∈T

|f(x)h(x)| =
∑
x∈T

f ∗(o,σ)(x)u(x)

holds.

(d) The functional ‖.‖∆p
(o,σ)

(u) is a norm.

2.6.2 Finite trees

The same results of the previous subsection can be given for finite trees, using the

same idea. A finite tree T is a tree with a finite number of vertices. We fix an origin

vertex o and we define a partial order in To as usual:

x ≤o y ⇔ x ∈ [o, y].

We define the boundary of To as in Definition 2.2.6, that is,

∂To = {x ∈ T : T (x) ∩ T = {x}} ,
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where T (x) = {y ∈ T : y ≥o x}.
Set

M + 1 = max
x∈To

deg(x).

The finite tree can be seen as a subtree of the homogeneous tree TM of degree M +1,

if we consider an injective isometric map

i : To ↪→ TM .

Define a partial order in TM as before: x ≤ y if and only if x ∈ [i(o), y]. Therefore,

every order in ∂TM
i(o) is also an order in ∂i(To), and we can rearrange every finite set

E in To by rearranging its image i(E) in TM
i(o). We define

E∗
(o,σ) := R(i(o),σ)(i(E)).

In this context, and with the same definitions of the previous subsection, we can

state the main result.

Theorem 2.6.7 Let u be a weight in a finite tree To, and σ an order defined in the

boundary of the associated homogeneous tree TM .

(i) If 0 < p < 1, the functional ‖.‖∆p
(o,σ)

(u) is a norm if and only if supp(u) = {o}.

(ii) If p ≥ 1, the following are equivalent:

(a) u is (o, σ)-linearly decreasing in T .

(b) For all ϕ ∈ Φ(o, σ), the equality

(u ◦ ϕ)∗(o,σ)(y) = u(y)

holds for all y in the support of ϕ.

(c) For all measurable functions f in T , the equality

supn
h: h∗

(o,σ)
=u
o∑

x∈T

|f(x)h(x)| =
∑
x∈T

f ∗(o,σ)(x)u(x)

holds.

(d) The functional ‖.‖∆p
(o,σ)

(u) is a norm.
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We now point out a surprising fact. For a rooted finite tree To, it is easy to choose

an order in ∂To simply by listing these vertices. So, we can use this listing order to

rearrange sets and, therefore, functions. A natural question arises: can we have the

same previous theorem for this rearrangement? The answer is negative in general, as

we are going to show.

By the previous theorem, if there exists an order in ∂TM such that its restriction

to ∂i(To) coincides with our listing order, the theorem will be true. But it is easy to

see that there are listing orders that are not restriction of any order in ∂TM . And for

this listing orders, the theorem fails to be true, as stated. Let us see an example that

shows that we can have a linearly decreasing weight ω not satisfying the condition

(ω ◦ ϕ)∗ = ω, for all rearranging transformations ϕ. We consider the finite tree T of

Figure 37:

We observe that ∂To = {x1, x3, x4}. We choose the listing order x3 < x1 < x4.

With this choice, the linearly decreasing order is

o ¢ x2 ¢ x4 ¢ x1 ¢ x3.

o

x1 x2

x3 x4

Figure 37: The finite tree T .

5

4

3

2

1

Figure 38: The linearly decreasing weight ω.
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1

2

2 4

3

f

1 2

2

4

3

f ∗

Figure 39: The function f and its rearrangement.

In the two preceding figures, a linearly decreasing weight ω is given, and we have

considered a positive function f and its rearrangement.

Thus, the rearranging transformation for f is

ϕf (o) = x3, ϕf (x1) = x2, ϕf (x2) = x1, ϕf (x3) = x4, ϕf (x4) = o.

Finally, we compute ω ◦ ϕf and we rearrange it. We observe that 2 = ω(x1) 6=
(ω ◦ ϕf )

∗(x1) = 3.

1

2

3

4

5

ω ◦ ϕf

1 2

3 4

5

(ω ◦ ϕf )
∗

Figure 40: ω ◦ ϕf and its rearrangement.

We can see in this example that the crucial result in Lemma 2.4.11 is not satisfied

by a general listing order. In our case, f(x2) ≥ f(x3) but ϕ(x2) = x1 ¤ x4 = ϕ(x3).

We observe that the listing order in this example cannot come from an order

defined in the boundary of the homogenous tree of degree 3 (an admissible map),

because the assumptions in Definition 2.2.2 oblige to satisfy

x1 ¢ x3, x1 ¢ x4,

or, on the other hand,

x3 ¢ x1, x4 ¢ x1.





Chapter 3

Weighted inequalities and the
shape of approach regions

In the history of analysis, many problems are concerned with the existence of bound-

ary limits for certain classes of functions defined on a general domain. The beginning

of the study of these questions goes back to 1872, when H.A. Schwarz ([Sc1]) proved

the existence of radial limits for all boundary points in the unit disc D for the Pois-

son integral of a continuous 2π-periodic function. P. Fatou proved in 1906 ([F])

the existence of boundary limits, for almost every point in the boundary of D, for

bounded holomorphic functions if we approach the boundary point within certain

regions called nontangential approach regions. The nontangential condition became

strongly linked with boundary convergence when J. Littlewood ([Li], 1927) proved

the failure of convergence for bounded holomorphic functions on D along tangential

curves. In 1930, Hardy and Littlewood ([HL]) introduced the idea of studying the

convergence of a sequence of operators by means of estimates on a maximal function.

It turns out that a natural setting to study estimates on maximal functions is the

spaces of homogeneous type.

In [K], A. Korányi gave the boundary convergence for Hp functions on the gen-

eralized half-plane of Cn+1 within the so-called admissible domains. These regions

allow parabolic tangential approach to the boundary along certain directions. In

1984, A. Nagel and E.M. Stein ([NS]) completely characterized the approach regions

in the half space Rn+1
+ := {(x, t) ∈ Rn+1 : x ∈ Rn, t > 0} where we have boundary

convergence for the Poisson integral of Lp functions on the boundary. They studied

estimates on a maximal operator MΩ related to the approach region, for the origin 0,

155
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Ω(0) defined by

MΩf(x) = sup
(y,r)∈Ω(0)

1

|B(y, r)|
∫

B(y,r)

|f(x + z)| dz, (3.1)

and the result is quite surprising: there exist nontangential regions (without tangen-

tial directions) not contained in any cone for which convergence is allowed. These are

the so-called non nontangential approach regions. J. Sueiro ([Su], 1986) generalizes

this result by studying the problem in the general setting of the spaces of homoge-

neous type, and he applies it in the case of the generalized half-plane in Cn+1 which

can be seen as the product Hn×(0,∞), where Hn is the Heisenberg group. Later,

M. Andersson and H. Carlsson ([AC]) gave an easy proof of the Nagel-Stein result

using the key concept of Carleson measures. A complete and original overview of this

subject can be found in [DiB], where new interesting results are given.

Following the ideas of [Su], Pan (see [P]) studied the weak-type weighted norm

estimates for MΩ also in spaces of homogeneous type. Later, in [SS1], A. Sánchez-

Colomer and J. Soria gave and answer to the strong-type weighted estimates for

MΩ in the Euclidean space, and they also studied the relationship between weighted

inequalities for this operator and the geometry of the region Ω (see [SS2]).

Our intention is to follow these researches by extending the results in the Euclidean

spaces of [SS2] to the more general setting of the spaces of homogeneous type. In

this new context, we find two new difficulties: the lack of a group structure and the

lack of the invariance of the measure with respect to the metric (i.e., balls of the

same radii but with different centres can have very different measures). Thus, we will

characterize geometric properties of a family of approach regions by means of analytic

properties on the class of weights related to the boundedness of the maximal operator

associated to this family, in the framework of the spaces of homogeneous type. In

order to obtain our results, we will need to go deeply in the description of this class

of weights giving the relationship with the classical Muckenhoupt Ap weights.

The chapter is organized as follows. The first section is devoted to collect some

of the known results for the Euclidean spaces in order to present the current state of

the theory. The second section is our main section, and we work in the product space

X×(0,∞) for a space of homogeneous type X. There, we find another (easier) charac-

terization of the weak–type inequalities for MΩ, in terms of the classical Ap condition

plus an extra property related to being a Carleson measure (see Theorem 3.2.17). For

this, we use some of the techniques given in [AC]. This result allows us to prove that
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the equivalence of weighted inequalities for MΩ and the classical Hardy–Littlewood

maximal function M completely determines the geometry of the family of approach

regions Ω (see Theorem 3.2.30). To this end, we observe that there exists a class

of “power” weights which are the key to establish the correspondence between ana-

lytic properties (boundedness of maximal operators) and geometric properties of the

domains Ω. The main idea behind this technique is to find an equivalent metric in

the given space which enjoys some extra invariance properties (see Theorem 3.2.21

and Corollary 3.2.25). This new quasi-metric is described in [ST]. Some particular

examples of spaces with a group structure where our results apply are given in the

final subsection. The contents of the second section have been published in [GS1]

and [GS2]. In the third section we go further into the generalization of the results

by considering an abstract context. We first show that our study makes sense in a

more general setting by considering the case of homogeneous trees. In the fourth

section, we go back to the case of Euclidean spaces to obtain two applications of our

results that allow us to extend two results dealing with approach regions and singular

integral operators of [FJR] and with approach regions and potential spaces of [RS].

We now introduce some notation. For a measure space (X,µ) equipped with a

quasi-metric function d, M will always denote the non-centered Hardy-Littlewood

maximal operator defined for a measurable function f by

Mf(x) = sup
x∈B

1

µ(B)

∫

B

|f(y)| dµ(y),

where the supremum is taken over all the balls containing x, and Mcen stands as the

centered Hardy-Littlewood maximal operator defined for a measurable function f by

Mcenf(x) = sup
r>0

1

µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y).

For a weight u defined in X, we write U(E) =
∫

E
u(z) dµ(z) for a measurable set

E ⊂ X. Two positive functions f and g are said to be equivalent if there exists a

positive constant C ≥ 1 such that C−1g(x) ≤ f(x) ≤ C g(x) for all x. We then write

f ∼ g.

3.1 Preliminary results in Rn+1
+

This section is devoted to give the classical definitions of approach regions in the

particular case of Rn+1
+ , and to collect the known results in this setting that will be

extended in the forthcoming sections.
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We consider the Euclidean half-space Rn+1
+ := Rn × (0,∞). Its boundary, Rn,

equipped with the Lebesgue measure and the Euclidean metric is a space of homoge-

neous type (see Section 2 for a definition). The measure of a set E ⊂ Rn is denoted

by |E|, and the balls of the metric by B(x, r), for x ∈ Rn and r > 0.

As usual the existence of boundary limits for certain classes of functions follows

from estimates for the corresponding maximal operator. Thus, for a given family of

measurable sets Ω = {Ω(x) : x ∈ Rn} in Rn+1
+ , we consider the operator MΩ defined

by

MΩf(x) = sup
(y,r)∈Ω(x)

1

|B(y, r)|
∫

B(y,r)

|f(z)| dz,

which is a generalization of the operator (3.1) of [NS], where A. Nagel and E.M. Stein

characterized the boundedness of MΩ when Ω(x) = (x, 0) + Ω0, for a measurable set

Ω0. We will always assume that Ω is chosen in such a way that MΩf is a well-defined

measurable function.

We define some concepts that will be used.

Definition 3.1.1 For a family of sets Ω, the shadow of a point (x, t) by Ω is the set

Ω↓(x, t) = {y ∈ Rn : (x, t) ∈ Ω(y)} ,

the cross–section at height t of Ω(x) is the set

Ωt(x) = {y ∈ Rn : (y, t) ∈ Ω(x)} ,

and the Ω–neighborhood at height t of a point x ∈ Rn is the set

SΩ(x, t) =
{
y ∈ Rn : Ωt(y) ∩B(x, t) 6= ∅} .

The set Ω(x) is said to be full on the vertical direction if

Ω↓(x, s) ⊂ Ω↓(x, t),

whenever 0 < s ≤ t. This means that if (y, s) ∈ Ω(x), then (y, t) ∈ Ω(x) for all t ≥ s.

It is proved in [Su] that in order to get estimates on MΩ, we can assume with no loss

of generality, that Ω(x) is full on the vertical direction for all x ∈ Rn, that is, the

approach family is full on the vertical direction.

We recall that a weight u : Rn −→ [0,∞) is a locally integrable positive function.

The weight u is doubling if there exists a constant Ku > 0 such that

U(B(x, 2r)) ≤ Ku U(B(x, r)),
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for all x ∈ Rn and r > 0.

The main result in [Su] applies to the case of Rn+1
+ with the measure u(x) dx, for

a doubling weight u, instead of the Lebesgue measure:

Theorem 3.1.2 (Sueiro) For a family of sets Ω ⊂ Rn+1
+ full on the vertical direction

and a doubling weight u, the following conditions are equivalent:

(i) MΩ : L1(u) −→ L1,∞(u) is bounded.

(ii) There exists a constant C > 0 such that U(SΩ(x, t)) ≤ C U(B(x, t)) for all

x ∈ Rn and t > 0.

Since MΩ is bounded on L∞(u), the weak type (1,1) implies the strong type (p, p)

for p > 1, by the Marcinkiewicz interpolation theorem.

The set Ω(x) ⊂ Rn+1
+ is an approach region for x ∈ Rn if and only if (x, 0) ∈

Ω(x). If every set Ω(x) is an approach region for x, then the family Ω is said to be

an approach family.

The following proposition appears in [SS1]. It makes explicit the relation between

the geometric condition of being an approach region and a pointwise estimate for the

maximal operator related to the approach family.

Lemma 3.1.3 (Sánchez-Colomer, Soria) Suppose that Ω(x) is full on the vertical

direction, for certain x ∈ Rn. Then Ω(x) is an approach region for x if and only if

Mcenf(x) ≤ MΩf(x), for all measurable functions f .

A weight u is in the Ap class of Muckenhoupt (see [M]) if and only if

Mcen : Lp(u) −→ Lp,∞(u)

is bounded. It is well-known that the non-centered and the centered Hardy–Littlewood

maximal operators are equivalent in a space of homogeneous type as Rn, and that

every Ap weight is doubling. An AΩ
p weight is a weight u such that

MΩ : Lp(u) −→ Lp,∞(u)

is bounded.

A consequence of Theorem 3.1.2 and Lemma 3.1.3 is the following result in [SS2]:

Proposition 3.1.4 (Sánchez-Colomer, Soria) If Ω is an approach family full on

the vertical direction, the following conditions are equivalent for p ≥ 1:
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(i) u ∈ AΩ
p .

(ii) u ∈ Ap and there exists C > 0 such that U(SΩ(x, t)) ≤ C U(B(x, t)) for all

(x, t) ∈ Rn+1
+ .

With this result in mind, the last two authors ask the following natural question:

how must a region Ω be to ensure that AΩ
p = Ap? They could answer it in the par-

ticular case of a translation invariant family of regions, obtaining a nice result which

relates weighted inequalities for maximal operators and the shape of the approach

regions:

Proposition 3.1.5 Let Ω(0) ⊂ Rn+1
+ be an approach region for 0 = (0, . . . , 0) ∈ Rn

full on the vertical direction, and set Ω(x) = (x, 0) + Ω(0) for all x ∈ Rn. Then,

Ap = AΩ
p for some p ≥ 1, if and only if Ω(0) is contained in a cone with vertex at

0 ∈ Rn.

We will extend this result to a more general setting.

3.2 The half space X × (0,∞) for a space of homo-

geneous type X

We are interested in understanding more deeply the relationship between weighted

inequalities and the shape of approach regions. So, our main purpose is to give a new

and clarifying proof of Proposition 3.1.5, which allows us to extend the results to the

framework of the spaces of homogeneous type. To be precise, we will work with the

half-space

X+ := X × (0,∞),

where (X,µ, d) is a space of homogeneous type with the measure µ and the metric

d (see the definition below). The space X can be viewed as the boundary of X+. In

this new setting, two difficulties appear:

(i) The lack of a group or pseudo-group transformation in X.

(ii) The lack of the invariance of the measure with respect to the collection of balls,

that is, in general, we have neither

µ(B(x, r)) = µ(B(y, r)) nor µ(B(x, r)) ≈ µ(B(y, r)),

for all x, y ∈ X and r > 0.



3.2. The half space X × (0,∞) for a space of homogeneous type X 161

3.2.1 Definitions and previous results

Let X be a topological space with a nonnegative Borel measure µ. Suppose we have

a nonnegative real-valued function d defined in X × X that satisfies the following

properties:

(i) d(x, y) = 0 if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y in X.

(iii) There is a constant A ≥ 1 such that d(x, y) ≤ A (d(x, z)+d(y, z)), for all x, y, z

in X.

(iv) The balls B(x, r) = {y ∈ X : d(x, y) < r} are measurable sets for all x in X and

r > 0. Moreover, {B(x, r) : r > 0} is a basis of open neighborhoods for all x in

X.

(v) There is a constant Kµ > 1, such that 0 < µ(B(x, 2r)) ≤ Kµ µ(B(x, r)), for all

x in X and r > 0. .

Definition 3.2.1 A trio (X,µ, d) satisfying the above conditions is called a space of

homogeneous type (see [CW] for a more general definition), a measure satisfying

(v) is called a doubling measure and d is called a quasi-distance.

Although our purpose is to work in the setting of spaces of homogeneous type, we

need to assume our quasi-distance not symmetric in general (we still call it a quasi-

distance), and in order to distinguish it from the symmetric case, we will denote it

by δ.

Let us introduce the precise definition.

Definition 3.2.2 A ns-space of homogeneous type is a trio (X,µ, δ) satisfying:

(i) δ(x, y) = 0 if and only if x = y.

(ii) There exists a constant D ≥ 1 such that δ(x, y) ≤ D δ(y, x) for all x, y in X.

(iii) There is a constant A ≥ 1 such that δ(x, y) ≤ A (δ(x, z)+ δ(y, z)), for all x, y, z

in X.

(iv) The balls B(x, r) = {y ∈ X : δ(x, y) < r} are measurable sets for all x in X and

r > 0. Moreover, {B(x, r) : r > 0} is a basis of open neighborhoods for all x in

X.
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(v) There is a constant Kµ > 1, such that 0 < µ(B(x, 2r)) ≤ Kµ µ(B(x, r)), for all

x in X and r > 0.

Obviously, every space of homogeneous type is a ns-space of homogeneous type,

with D = 1.

In the sequel, it will be important in every computation to be careful with con-

stants, since we are trying to have uniform results in x ∈ X. We will explicit the

dependence of the constants appearing at each result if it is needed. If not, a constant

C > 0 may change from one occurrence to the next. The constant Kν will always be

the doubling constant of a measure ν. We give some technical results involving the

metric and the measure of our space that are important for later purposes. The first

one is well-known.

Lemma 3.2.3 A measure µ is doubling if and only if there exists α > 0 such that

µ(B(x, tr)) ≤ Kµ tα µ(B(x, r)), for all x ∈ X and r > 0.

Lemma 3.2.4 ([ST]) Let a > 0. If B(x, r) ∩ B(y, r′) 6= φ and r ≤ ar′, then

B(x, r) ⊂ B(y, c0r
′), with c0 = A2(1 + a) + ADa.

The next result is a Vitali-type covering lemma:

Lemma 3.2.5 ([ST]) Let F be a family of balls with bounded radii. Then there is

a countable subfamily of pairwise disjoint balls B(xk, rk) such that each ball in F is

contained in one of the balls B(xk, c0rk), where c0 is the constant of the previous

lemma in the case a=2.

Given a nonnegative measure ν, the Hardy-Littlewood maximal function of ν with

respect to the measure µ is:

Mµν(x) = sup
B3x

ν(B)

µ(B)
.

We write M = Mµ if there is no possible confusion.

As a consequence of Lemma 3.2.5, it is now easy to prove the following well-known

estimates (see also [ST]):

Theorem 3.2.6 For a doubling measure µ, we have:

(a) The Hardy-Littlewood maximal operator is of weak-type (1,1) and strong-type (p,p)
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for 1 < p ≤ ∞ on Lp(µ).

(b) There is a constant Cµ > 0 such that for every λ > 0,

µ({x ∈ X : Mν(x) > λ}) ≤ Cµ

λ
ν(X),

for all nonnegative measures ν of finite total variation.

The following theorem, a Whitney-type decomposition, is proved in [CW] in the

case of spaces of homogeneous type, and works in the setting of the ns-spaces of

homogeneous type with slight modifications.

Theorem 3.2.7 Let µ be a doubling measure. Let f ∈ L1(µ) be a positive function

with bounded support. Then, there exists a countable family of balls {B(xk, rk)}k such

that:

(i) O = {x ∈ X : Mf(x) > 1/2} =
⋃

k

B(xk, rk).

(ii) There is a constant Cµ > 0 such that
∑

k

µ(B(xk, rk)) ≤ Cµ ||f ||1.

(iii) B(xk, 3Ark) ∩Oc 6= φ, for all k.

We will follow the ideas of M. Andersson and H. Carlsson in [AC], involving the

concept of Carleson measures to obtaining estimates for maximal operators. We now

introduce a general notion of pairs of Carleson measures. The tent of an open set

O ⊂ X is the set T (O) = {(y, t) ∈ X+ : B(y, t) ⊂ O}.

Definition 3.2.8 We say that two measures, ρ defined in X+ and ν defined in X,

are a Carleson pair if there exists a constant Cρ,ν > 0 such that

ρ(T (B)) ≤ Cρ,ν ν(B),

for all balls B ⊂ X. In this case, we use the notation (ρ, ν) ∈ C(X).

By using the Whitney-type decomposition of Theorem 3.2.7, it is now a classical

computation to extend the definition of a Carleson pair to every open set.

Proposition 3.2.9 Let (ρ, ν) ∈ C(X) so that ν is doubling. Then, there exists a

constant C ′
ρ,ν > 0 such that

ρ(T (O)) ≤ C ′
ρ,ν ν(O),

for all O ⊂ X open.
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Proof. We can assume that ν(O) < ∞. Let f = χO ∈ L1(ν). Then

O ⊂ {x ∈ X : Mνf(x) > 1/2}.

We use Theorem 3.2.7 to obtain a family of balls {B(xk, rk)}k satisfying:

(i) O ⊂
⋃

k

B(xk, rk).

(ii) There is a constant Cν > 0 such that
∑

k

ν(B(xk, rk)) ≤ Cν ν(O).

(iii) B(xk, 3Ark) ∩Oc 6= φ, for all k.

Take (x, s) ∈ T (O). By definition, B(x, s) ⊂ O and (i) implies that there is k0 so

that x ∈ B(xk0 , rk0). Now, (iii) implies there exists y ∈ B(xk0 , 3Ark0) \ B(x, s) and

hence:

s ≤ δ(x, y) ≤ A(δ(x, xk0) + δ(y, xk0))

≤ AD(δ(xk0 , x) + δ(xk0 , y))

≤ AD(1 + 3A)rk0 .

Using Lemma 3.2.4, there exists C > 0 independent of x, s, xk0 and rk0 such that

B(x, s) ⊂ B(xk0 , Crk0), that is (x, s) ∈ T (B(xk0 , Crk0)). Therefore T (O) ⊂ ∪kT (B(xk, Crk)).

Now, using (ii) and the hypothesis on the measures, we have:

ρ(T (O)) ≤
∑

k

ρ(T (B(xk, Crk)))

≤ Cρ,ν

∑

k

ν(B(xk, Crk))

≤ Cρ,ν Kν Cα(ν)
∑

k

ν(B(xk, rk))

≤ Cρ,ν Kν Cα(ν) Cν ν(O)

= C ′
ρ,ν ν(O),

where Kν and α(ν) are the constants appearing in Lemma 3.2.3 for the measure ν.

2

We consider a family of measurable sets Ω = {Ω(x) : x ∈ X}, with Ω(x) ⊂ X+ for

all x ∈ X. For such a family, let us introduce the following definitions:
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Definition 3.2.10

(i) The shadow of a point (x, t) ∈ X+ by the family Ω is the set

Ω↓(x, t) = {y ∈ X : (x, t) ∈ Ω(y)} .

(ii) The cross-section of Ω(x) at height t > 0 is the set

Ωt(x) = {y ∈ X : (y, t) ∈ Ω(x)}.

(iii) The Ω-neighborhood at height t > 0 of a point x ∈ X is the set

SΩ(x, t) = {y ∈ X : Ωt(y) ∩B(x, t) 6= φ}.

(iv) Given a nonnegative measure σ in X, we define the outer measure in X+

σΩ(E) = σ({x ∈ X : Ω(x) ∩ E 6= φ}),

for E ⊂ X+ (see [AC]).

As we did in the first section, we define the maximal operator related to the family

Ω.

Definition 3.2.11 For a measurable function f , the maximal operator related to a

family of sets Ω is the function

MΩf(x) = sup
(y,t)∈Ω(x)

1

µ(B(y, t))

∫

B(y,t)

|f(z)| dµ(z).

We will always assume that MΩf is a measurable function.

In the next proposition, we find a necessary condition for the boundedness of this

operator.

Proposition 3.2.12 Let ρ and ν be two nonnegative measures on X so that ν is

doubling. If MΩ : Lp(ν) −→ Lp,∞(ρ) is bounded for some p ≥ 1, then there exists a

constant C = C(Kν , ||MΩ||Lp(ν)→Lp,∞(ρ)) > 0 such that:

ρ(SΩ(x, t)) ≤ C ν(B(x, t)),

for all (x, t) ∈ X+.
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Proof. Take y ∈ SΩ(x, t). Then, there exists z ∈ B(x, t) so that z ∈ Ωt(y)). Now, by

condition (iii) on δ, we have B(z, t) ⊂ B(x,A(D + 1)t). Let f = χB(x,A(D+1)t). Then,

MΩf(y) > 1/2 for all y ∈ SΩ(x, t), and therefore:

ρ(SΩ(x, t)) ≤ ρ({x ∈ X : MΩf(x) > 1/2})
≤ C ||f ||pLp(ν)

= C ν(B(x,A(D + 1)t))

≤ C ν(B(x, t)).

2

It is proved in [Su] that with no loss of generality, we can always assume that Ω

is full on the vertical direction, that is (y, s) ∈ Ω(x) implies (y, t) ∈ Ω(x) for all

t ≥ s. This is equivalent to the fact that Ω↓(y, s) ⊂ Ω↓(y, t) whenever s ≤ t. We will

also take this condition for granted.

We say that a family of measurable sets Ω = {Ω(x) : x ∈ X} in X+ is an approach

family if (x, 0) ∈ Ω(x) for all x ∈ X, with respect to the product topology in

X+. The natural example of approach family is the cone of width θ > 0, Γθ(x) =

{(y, t) ∈ X+ : x ∈ B(y, θt)}. We denote Γ(x) = Γ1(x). In the particular case of

Ω(x) = Γθ(x), it is known that Mf ∼ MΓθ
f for all measurable f , that is, there is a

positive constant C such that

C−1Mf(x) ≤ MΓθ
f(x) ≤ C Mf(x), (3.2)

for all measurable f and x ∈ X. So, the operator MΓθ
has the same estimates of M

in Theorem 3.2.6.

We now characterize the boundedness of MΩ : Lp(ν) −→ Lp,∞(ρ) for some p ≥ 1.

Theorem 3.2.13 Let (X, µ, δ) be a ns-space of homogeneous type, and consider a

family Ω. Let ρ and ν be two nonnegative measures on X. If M : Lp(ν) −→ Lp,∞(ν)

is bounded for some p ≥ 1, then the following conditions are equivalent:

(i) There exists C > 0 such that

ρ({x ∈ X : MΩf(x) > λ}) ≤ C ν({x ∈ X : MΓf(x) > λ}),

for all λ > 0 and measurable f .

(ii) MΩ : Lp(ν) −→ Lp,∞(ρ) is bounded.
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(iii) There exists C > 0 such that ρ(SΩ(x, t)) ≤ C ν(B(x, t)) for all (x, t) ∈ X+.

(iv) (ρΩ, ν) ∈ C(X).

Proof. It is known that ν is necessarily a doubling measure. That (i) implies (ii)

follows trivially by using (3.2). That (ii) implies (iii) is Proposition 3.2.12. Let us

see that (iii) implies (iv). Take y ∈ X so that Ω(y)∩T (B(x, t)) 6= φ. There is (z, s) ∈
Ω(y) with B(z, s) ⊂ B(x, t). Since Ω(y) is full on the vertical direction, (z, t) ∈ Ω(y).

Therefore z ∈ Ωt(y)∩B(x, t), and hence {y ∈ X : Ω(y)∩ T (B(x, t)) 6= φ} ⊂ SΩ(x, t).

So, using the definition of ρΩ, we have:

ρΩ(T (B(x, t)) ≤ ρ(SΩ(x, t)) ≤ C ν(B(x, t)).

Now, suppose (ρΩ, ν) ∈ C(X). Observe that
{

(y, t) :
1

µ(B(y, t))

∫

B(y,t)

|f(z)|dµ(z) > λ

}
⊂ T (O),

where O = {x ∈ X : MΓf(x) > λ}, for all functions f . Then, applying Proposi-

tion 3.2.9, we obtain:

ρ({x ∈ X : MΩf(x) > λ}) = ρΩ

({
(y, t) :

1

µ(B(y, t))

∫

B(y,t)

|f |dµ > λ

})

≤ ρΩ(T (O))

≤ C ν(O)

= C ν({x ∈ X : MΓf(x) > λ}).

2

Remarks 3.2.14

(i) The hypothesis of the boundedness of M is only needed in the implication

(i) ⇒ (ii).

(ii) We observe that Ω need not be an approach family.

A weight u in (X, µ, δ) is a positive and locally integrable function. We say that

u is doubling if the measure u(z) dµ(z) is doubling.

A weight u is in the Ap class of Muckenhoupt (see [M]), 1 ≤ p < ∞, if the maximal

operator M : Lp(u) −→ Lp,∞(u) is bounded. By the Ap constant ||u||Ap of a weight u

in Ap we mean the norm of the maximal operator. It is a well-known fact that every

weight u in Ap is doubling, but we need to be more explicit for later purposes:
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Lemma 3.2.15 If u is an Ap weight for some p ≥ 1 in a ns-space of homogeneous

type (X, µ, δ), then u is doubling and

Ku ≤ Kp
µ ||u||Ap , (3.3)

where Ku is the doubling constant of the measure u(z) dµ(z).

Proof. We recall that u ∈ Ap if and only if there exists C > 0 such that

U({x ∈ X : Mf(x) > λ}) ≤ C

λp
‖f‖p

Lp(u) ,

for all f ∈ Lp(u) and all λ > 0. For a ball B = B(y, 2r), it is easy to see that for all

x ∈ X

fB :=
1

µ(B)

∫

B

|f(z)| dµ(z) ≤ M(fχB)(x).

Thus B ⊂ {x ∈ X : M(fχB)(x) > t}, if t < fB. Using this and the definition above

of an Ap weight, we have

U(B) ≤ U({x ∈ X : M(fχB)(x) > t}) ≤ C

tp

∫

B

|f(z)|p u(z) dµ(z),

for all t < fB. Letting t −→ fB, we obtain

fp
B U(B) ≤ C

∫

B

|f(z)|p u(z) dµ(z).

Now, we choose f = fχB′ whith B′ = B(y, r), and we substitute this in the last

expression getting

(
1

µ(B)

∫

B′
|f(z)| dµ(z)

)p

U(B) ≤ C

∫

B′
|f(z)|p u(z) dµ(z).

Finally, if f ≡ 1, this is (
µ(B)

µ(B)

)p

U(B) ≤ C U(B′),

that is,

U(B) ≤ C

(
µ(B)

µ(B′)

)p

U(B′) ≤ C Kp
µ U(B′).

2

We introduce two new classes of weights related to a family Ω.
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Definition 3.2.16 For a family Ω, we consider:

(a) For 1 ≤ p < ∞, a weight u belongs to the AΩ
p class of weights if and only if

MΩ : Lp(u) −→ Lp,∞(u) is bounded, and the AΩ
p -constant ||u||AΩ

p
is the norm of MΩ.

(b) Set

W (Ω) =
{
u ∈ L1

loc(µ), u ≥ 0 : ∃C > 0, U(SΩ(x, t)) ≤ C U(B(x, t)), ∀ (x, t) ∈ X+

}
,

and let the W (Ω)-constant ||u||W (Ω) be the infimum of the constants appearing in

this expression.

A basic result to explain the interplay between weighted inequalities and approach

regions is the following theorem, that is our version of Proposition 3.1.4.

Theorem 3.2.17 Let Ω be a family of approach regions in X+. For 1 ≤ p < ∞, we

have

AΩ
p = Ap ∩W (Ω),

and

||u||Ap ≤ ||u||AΩ
p
,

for all u in AΩ
p .

Proof. Theorem 3.2.13 with dρ(z) = dν(z) = u(z) dµ(z) says that Ap ∩W (Ω) ⊂ AΩ
p

and AΩ
p ⊂ W (Ω). Now, let us see that if Ω is a family of approach regions full on the

vertical direction, then

Mcenf(x) ≤ MΩf(x),

for all x ∈ X and all measurable f . Therefore, we will have that AΩ
p ⊂ Ap, and

||u||Ap ≤ ||u||AΩ
p
.

Suppose {(xk, rk) : k ≥ 0} ⊂ Ω(x), with xk −→ x and rk −→ 0. Given r > 0, we

can find k0 ≥ 0 such that if k ≥ k0, then rk ≤ r and hence (xk, r) ∈ Ω(x) since Ω is

full on the vertical direction. Since

MΩf(x) ≥ 1

µ(B(xk, r))

∫

B(xk,r)

|f(y)| dµ(y) −→ 1

µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y),

by the Lebesgue’s differentiation theorem. Hence, taking the supremum over r > 0,

we obtain

MΩf(x) ≥ Mcenf(x).

2

Remark 3.2.18 The argument to show the estimate between the maximal operators

comes from Proposition 2.1 in [SS1].
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3.2.2 The shape of approach regions

In this subsection we show our main theorem that answers a natural question in view

of Theorem 3.2.17: when is it true that Ap = AΩ
p ? To this end, we will need some kind

of invariance property on the measure of the balls of comparable radius. This will be

a consequence of a new requirement on the metric of our space of homogeneous type.

In fact, this new requirement on the initial quasi-distance will allow us to replace it

by a second quasi-distance, changing neither the topology nor the maximal operators.

Let (X, µ, d) be a space of homogeneous type (and hence, d is symmetric). To be

precise, we denote the balls with respect the quasi-distance d by

Bd(x, t) = {y ∈ X : d(x, y) < t} , (x, t) ∈ X+.

We impose on (X, µ, d) the following extra condition: there is a constant M > 1

such that

Bd(x,Mr) \Bd(x, r) 6= φ, (3.4)

for all x in X and r > 0. (If X is bounded, this should be considered for r small

enough.)

As a consequence of Lemma 3.2.4 and the hypothesis in (X,µ, d), we obtain (see

also [ST]):

Proposition 3.2.19 There exist α > 0 and β > 0, and 0 < K1 < 1 such that

K1 tβµ(B(x, r)) ≤ µ(B(x, tr)) ≤ Kµ tαµ(B(x, r)), (3.5)

for all x in X, r > 0 and t ≥ 1.

Proof. The right inequality is Lemma 3.2.3, and condition (3.4) is not needed. To see

the left inequality, we claim that there exist two constants A0 > 1 and 0 < K1 < 1

such that

µ(B(x, r)) ≤ K1 µ(B(x,A0r)),

for all x ∈ X and r > 0, and therefore, letting n ≥ 1 so that An−1
0 ≤ t < An

0 , we

obtain:

µ(B(x, tr)) ≥ µ(B(x, An−1
0 r)) ≥ K1−n

1 µ(B(x, r)) ≥ K1 tβµ(B(x, r)),

where β = logA0
(K−1

1 ).
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We now prove the claim. Let c0 be the constant in Lemma 3.2.4 when a = 1. Choose

L > Dc0, and take y ∈ B(x,MLr) \ B(x, Lr) which is not empty by condition

(3.4). Then Lr ≤ d(x, y) < MLr, and by condition (ii) in Definition 3.2.1, we have

Lr/D ≤ d(y, x) < DMLr. By the choice on L, we have c0r < d(y, x) < DMLr.

Now, using Lemma 3.2.4, we obtain:

B(x, r) ∩B(y, r) = φ and B(y, r) ⊂ B(x, c0MLr).

Let A0 = c0ML. By construction, we have:

µ(B(x, r)) ≤ µ(B(x,A0r))− µ(B(y, r)).

The right inequality in (3.5), gives us the existence of a constant C > 1 such that

µ(B(x,A0r)) ≤ C µ(B(y, r)), and hence:

µ(B(x, r)) ≤ µ(B(x,A0r))− 1

C
µ(B(x,A0r)) = K1 µ(B(x,A0r)).

2

This proposition says that our measure is invariant in some sense. We observe

that we avoid measures with atoms.

In [ST], under condition (3.4), J.O. Strömberg and A. Torchinsky introduce a

non-symmetric quasi-distance δ in X × X having the property that the measure of

a δ-ball is comparable to its radius. Specifically, for a fixed x ∈ X, consider the

function:

rx(t) = exp

( −1

1 + t

) ∫ 1

1/2

µ(B(x, st)) ds, if t 6= 0,

rx(0) = 0.

This function is strictly increasing, continuous (continuity at 0 is given by Propo-

sition 3.2.19), rx(t) →∞ if t →∞ when X is not a compact space, and the measure

of a ball Bd(x, t) is comparable to rx(t):

Lemma 3.2.20 For all x ∈ X and t > 0

2 rx(t) ≤ µ(Bd(x, t)) ≤ Kµ 2α−1 e rx(t). (3.6)

Proof. In one direction,

rx(t) ≤
∫ 1

1/2

µ(B(x, st)) ds ≤ µ(Bd(x, t))

∫ 1

1/2

ds =
1

2
µ(Bd(x, t)).
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Using Proposition 3.2.19, we have

µ(Bd(x, t)) = µ(Bd(x, (1/s)st)) ≤ Kµ (1/s)α µ(Bd(x, st)) ≤ Kµ 2α µ(Bd(x, st)),

for all 1/2 ≤ s ≤ 1. From this inequality it follows:

µ(Bd(x, t)) =
1

2

∫ 1

1/2

µ(B(x, t)) ds

≤ Kµ 2α−1

∫ 1

1/2

µ(B(x, st)) ds

≤ Kµ 2α−1 e exp

( −1

1 + t

) ∫ 1

1/2

µ(B(x, st)) ds

= Kµ 2α−1 e rx(t).

2

The function rx has an inverse r−1
x for all x in X. If X is a compact space, there

exists a constant cx > 0 such that r−1
x is defined in [0, cx).

We define the normalized quasi-distance

δ(x, y) := rx(d(x, y)),

for all x, y ∈ X. This new quasi-distance is non-symmetric in general. The δ-balls

are Bδ(x, t) = {y ∈ X : δ(x, y) < t}. By (3.6), we trivially have that

2 t ≤ µ(Bδ(x, t)) ≤ Kµ 2α−1 e t.

Theorem 3.2.21 ([ST]) If (X,µ, d) is a space of homogeneous type satisfying prop-

erty (3.4), then (X,µ, δ) is a ns-space of homogeneous type such that:

(i) Bd(x, t) = Bδ(x, rx(t)) for all x in X and t > 0.

(ii) µ(Bδ(x, t)) is comparable to t, for all x ∈ X and t > 0.

Since the collection of balls for both quasi-distances coincide, the topology does

not change if we adopt the new quasi-distance. But, what is the effect on the Ap and

AΩ
p weights?

Definition 3.2.22 Given an approach family Ω = {Ω(x) : x ∈ X} in X+ with re-

spect to (X,µ, d), we define the corresponding family Ωδ with respect to (X, µ, δ) as

follows. Set

Ωδ(x) :=
{
(y, s) : (y, r−1

y (s)) ∈ Ω(x)
}

= {(y, ry(t)) : (y, t) ∈ Ω(x)} .
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The next lemma ensures that we can still assume that our approach regions are

full on the vertical direction.

Lemma 3.2.23 For all x ∈ X and t > 0, we have

Ω↓(x, t) = (Ωδ)↓(x, rx(t)),

and therefore, Ω is full on the vertical direction if and only if Ωδ is.

Proof. By definition,

y ∈ Ω↓(x, t) ⇔ (x, t) ∈ Ω(y) ⇔ (x, rx(t)) ∈ Ωδ(y) ⇔ y ∈ (Ωδ)↓(x, rx(t)).

2

Consider the Hardy-Littlewood maximal operator with respect to δ:

M δf(x) = sup
Bδ3x

1

µ(Bδ)

∫

Bδ

|f(z)|dµ(z),

for a measurable function f . The maximal operator associated to Ωδ in (X, µ, δ) is:

M δ
Ωδf(x) = sup

(y,s)∈Ωδ(x)

1

µ(Bδ(y, s))

∫

Bδ(y,s)

|f(z)| dµ(z),

for a measurable function f .

Lemma 3.2.24 Let Ω be a family in X+ with respect to (X, µ, d), and Ωδ the corre-

sponding family with respect to (X,µ, δ). Then,

(i) For all x in X and measurable f , M δf(x) = Mf(x), where M is the maximal

operator with respect to d.

(ii) For all x in X and measurable f , M δ
Ωδf(x) = MΩf(x), where MΩ is the maximal

operator related to Ω in (X, µ, d).

Proof. We simply need to observe that, by definition, (y, t) ∈ Ω(x) ⇔ (y, ry(t)) ∈
Ωδ(x), and to recall that Bd(y, t) = Bδ(y, ry(t)) for all t > 0 and rx is one to one.

2

Corollary 3.2.25 Let Ω be a family in X+ with respect to (X, µ, d), and Ωδ be the

corresponding family with respect to (X,µ, δ). Then,
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(i) If Aδ
p is the class of weights u such that M δ : Lp(u) −→ Lp,∞(u), then Aδ

p = Ap

with the same constants.

(ii) Define AΩδ

p as the class of weights u such that M δ
Ωδ : Lp(u) −→ Lp,∞(u) is

bounded. We have AΩδ

p = AΩ
p with the same constant.

In the sequel, we take δ as the ambient quasi-distance, and we simplify the no-

tation putting B(x, t) = Bδ(x, t) and Ω = Ωδ. So, we are working in a ns-space of

homogeneous type (X,µ, δ), where µ(B(x, t)) is comparable to t, for all x ∈ X and

t > 0. The next result is essentially proved in [CR], but we give the proof in our

general setting of the ns-space of homogeneous type for the sake of completeness.

Proposition 3.2.26 Let ν be a Borel measure in X such that Mν 6≡ ∞. Then

Mνε ∈ A1, for all 0 ≤ ε < 1, with A1 constant depending only on ε.

Proof. We need to see that M : L1(Mνε) −→ L1,∞(Mνε) with norm depending only

on ε. It is a well-known fact that this is equivalent to proving that there exists a

constant C = C(ε) such that

1

µ(B)

∫

B

Mν(x)ε dµ(x) ≤ C ess infx∈BMν(x)ε,

for all balls B ⊂ X (see [ST] for a proof of the equivalence in this context).

For a fixed B0, take x ∈ B0 and consider Q1 = {B 3 x : µ(B) ≤ µ(2B0)} and

Q2 = {B 3 x : µ(B) > µ(2B0)}, where 2B0 is the ball with the same center than B0

but with double radius. We have

Mν(x) ≤ sup
B∈Q1

ν(B)

µ(B)
+ sup

B∈Q2

ν(B)

µ(B)
= A(x) + B(x),

and then Mν(x)ε ≤ A(x)ε + B(x)ε.

If B ∈ Q2, by Lemma 3.2.4, 2B0 ⊂ c0B, and then:

ν(B)

µ(B)
≤ C

ν(c0B)

µ(c0B)
≤ C ess infy∈c0B Mν(y) ≤ C ess infy∈B0 Mν(y),

and so B(x) ≤ C ess infy∈B0 Mν(y). If B ∈ Q1, by Lemma 3.2.4, B ⊂ 2c0B0.

Consider the measure ν0 so that dν0(y) = χ2c0B0(y)dν(y). Then we have A(x) ≤
Mν0(x), and therefore, it is enough to prove

1

µ(B0)

∫

B0

Mν0(y)εdµ(y) ≤ C ess infy∈B0 Mν(y)ε,
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with C depending only on ε. Applying Fubini’s theorem, we get:

1

µ(B0)

∫

B0

Mν0(y)εdµ(y) =
1

µ(B0)

∫ ∞

0

εtε−1µ({y ∈ B0 : Mν0(y) > t})dt

=
ε

µ(B0)

(∫ R

0

+

∫ ∞

R

)
tε−1µ({Mν0 > t} ∩B0)dt

= I1 + I2,

for R > 0 to be chosen later. We obtain I1 ≤ Rε if we get the distribution function

bounded by the total mass of B0. In the second integral, we use the boundedness of

the maximal operator (Theorem 3.2.6 (b)) obtaining:

I2 ≤ Cµ

µ(B0)

∫ ∞

R

εtε−2ν0(X)dt ≤ Cµ

µ(B0)
ν0(X)

ε

1− ε
Rε−1.

Since ν0(X) = ν(2c0B0), taking R = ν(2c0B0)
µ(B0)

and using the doubling condition on µ,

we finally have:

I1 + I2 ≤ C(ε)

(
ν(2c0B0)

µ(B0)

)ε

≤ C(ε)

(
ν(2c0B0)

µ(2c0B0)

)ε

≤ C(ε) ess infy∈B0Mν(y)ε.

2

Corollary 3.2.27 For all x ∈ X, the weight u(ξ) = δ(x, ξ)−ε is in A1, for all 0 ≤
ε < 1, with A1 constant independent of x.

Proof. The result follows from the previous theorem taking ν = δx, the Dirac delta

at x, since Mδx(ξ) is pointwise equivalent to δ(x, ξ)−1.

2

If u1 and u2 are two A1 weights, Hölder’s inequality gives us that u1u
1−p
2 is an Ap

weight for 1 < p < ∞. Using the last result, there exists 0 < γ = γ(p) ≤ 1 such that

u(ξ) = δ(x, ξ)γ is an Ap weight for all x ∈ X, with Ap constant independent of x.

We will need some kind of regularity on the approach family to prove our main

result. However, in the case of the existence of a group or pseudo-group structure

in X, this additional condition allows us to work with a larger class of regions that

those generated by translation of a fixed one, as we can see in the examples below.

Definition 3.2.28 We say that an approach family Ω is regular if there is a constant

C > 0 such that for all (x, t) ∈ X+ the next condition is satisfied:

∀y ∈ Ωt(x), ∃ y∗ ∈ X with δ(y, x) = δ(y∗, x) such that B(y∗, t) ⊂ SΩ(x,Ct).
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Some examples of regular approach regions are:

Examples 3.2.29

(i) Assume that (X, µ, δ) is a space of homogeneous type and X is a group. Denote

e the identity element of the group. Let Ω(e) be an approach region of e, and

for each x ∈ X set Ω(x) = {(yx, t) : (y, t) ∈ Ω(e)}. Then (see [Su])

SΩ(x, t) = [Ωt(e)]−1B(x, t),

and since δ is left-invariant, also

SΩ(x, t) =
⋃

z∈Ωt(e)

B(z−1x, t).

Now, y ∈ Ωt(x) if and only if yx−1 ∈ Ωt(e). Then, take y∗ = xy−1x which

satisfies δ(y, x) = δ(y∗, x) because of the left-invariance, and B(xy−1x, t) ⊂
SΩ(x, t), and consequently, Ω is regular with C = 1. This is the case of Euclidean

spaces.

(ii) Let (X,µ, δ) be a space of homogeneous type. Consider a family of approach

regions given by cones of width bounded by a constant R ≥ 1, that is, Ω(x) =

Γθ(x)(x) and 0 < θ(x) ≤ R. Then Ωt(x) = B(x, θ(x)t) and B(x, t) ⊂ SΩ(x, t)

for all x in X and t > 0. Take y ∈ Ωt(x) ⊂ B(x,Rt) and use Lemma 3.2.4

to obtain B(y, t) ⊂ B(x, c0Rt) and hence B(y, t) ⊂ SΩ(x, c0Rt). The family is

regular with C = c0R and y∗ = y.

(iii) Set X = R, and let µ be the Lebesgue measure and δ the usual distance δ(x, y) =

|x−y|. We consider the family of cones Γ =
{
Γθ(x)(x) : x ∈ R}

with θ(x) = |x|.
By symmetry, we can take 0 < x, without loss of generality. Assume that

(y, t) ∈ Γ(x) and that y > x, that is

0 < y − x < tx. (3.7)

We claim that B(y, t) ⊂ SΓ(x, t), and thus Γ is regular with C = 1 and the

choice

y∗ =

{
y if |y| > |x|

2x− y if |y| < |x| .
We now prove the claim. Take z ∈ B(y, t) = (y − t, y + t). If z < x + t, then

z ∈ B(x, t) but also z ∈ Γt(z) and thus z ∈ SΓ(x, t) as claimed. Therefore, we

can restrict our attention to z ∈ [x + t, y + t), and thus 0 < z. To see that
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Γt(z) ∩ B(x, t) 6= ∅, it is now enough to show that z − tz < x + t. This is

trivially true if t ≥ 1. If t < 1, then we must show that z < (x + t)/(1 − t).

We know by (3.7) that z < y + t < x + tx + t, so all is reduced to see that

x + tx + t < (x + t)/(1− t) or equivalently x(1− t2) + t(1− t) < x + t, which is

true from the assumption t < 1.

We can see that regularity holds even when the regions are not the translated of

a fixed one. We now prove our main result:

Theorem 3.2.30 Let (X,µ, δ) be a ns-space of homogeneous type, and assume Ω ⊂
X+ to be a regular approach family. Then the following conditions are equivalent:

(i) There exists C > 0 and θ > 0 such that MΩf(x) ≤ C MΓθ
f(x), for all x in X

and all measurable functions f .

(ii) AΩ
p = Ap for all 1 ≤ p < ∞, with equivalent constants.

(iii) There is p ≥ 1 such that Ap = AΩ
p , with equivalent constants.

(iv) There exists 0 < γ ≤ 1 such that the family of weights {δ(x, .)γ : x ∈ X} is in

W (Ω) uniformly in x.

(v) There exists θ > 0 such that Ω(x) ⊂ Γθ(x) for all x in X.

Proof. It is obvious that (v) implies (i) and (ii) implies (iii). The implication (i) ⇒
(ii) is easy if we recall Theorem 3.2.17. Now, suppose AΩ

p = Ap for some p ≥ 1, with

equivalent constants. We can assume that p > 1 by the extrapolation theorem of

Rubio de Francia, as proved in [J]. We have seen that there is 0 < γ = γ(p) ≤ 1

such that the family of weights {δ(x, .)γ : x ∈ X} is in Ap, uniformly in x. So, by

hypothesis, this family is in AΩ
p uniformly in x. Then, we can see by Proposition 3.2.12

and (3.3) that this family of weights is in W (Ω) uniformly in x, that is, there exists

a constant C > 0 such that ‖δ(x, .)γ‖W (Ω) ≤ C for all x in X.

Suppose the family of weights is uniformly in W (Ω). Take (y, t) ∈ Ω(x) for a fixed

x ∈ X. Then, using the assumption of the regularity on Ω and conditions (ii) and
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(iii) of Definition 3.2.2 on δ, we have:

δ(y, x)γ = δ(y∗, x)γ

≤ Dγ δ(x, y∗)γ

=
Dγ

µ(B(y∗, t))

∫

B(y∗,t)
δ(x, y∗)γdµ(ξ)

≤ (AD)γ

µ(B(y∗, t))

∫

B(y∗,t)
(δ(x, ξ) + δ(y∗, ξ))γdµ(ξ)

≤ (AD)γ

(
1

µ(B(y∗, t))

∫

SΩ(x,Ct)

δ(x, ξ)γdµ(ξ) + tγ
)

.

Set ux(ξ) = δ(x, ξ)γ. Using the hypothesis on the family {ux : x ∈ X}, and the fact

that µ(B(y∗, t)) is comparable to the radius t, we have:

δ(y, x)γ ≤ (AD)γ

(
Ux(SΩ(x,Ct))

µ(B(y∗, t))
+ tγ

)

≤ C(AD)γ

(
Ux(B(x,Ct))

t
+ tγ

)
. (3.8)

Let us now see that Ux(B(x, t)) is comparable to tγ+1 for all t > 0 uniformly in x:

Ux(B(x, t)) =

∫

B(x,t)

δ(x, ξ)γdµ(ξ) =
∑

k≥0

∫

2−k−1t≤δ(x,ξ)<2−kt

δ(x, ξ)γdµ(ξ)

≈ tγ
∑

k≥0

2−kγµ({ξ : 2−k−1t ≤ δ(x, ξ) < 2−kt})

≈ tγ
∑

k≥0

2−kγ(µ(B(x, 2−kt))− µ(B(x, 2−k−1t)))

≈ tγ+1
∑

k≥0

2−kγ(2−k − 2−k−1)

≈ tγ+1.

Finally, returning to (3.8), we get δ(y, x) ≤ C
1
γ AD t, that is, (y, t) ∈ Γθ(x), where

θ = C
1
γ AD, and the proof is completed.

2

Remarks 3.2.31

(i) The implication (ii) ⇒ (iii) can be viewed as a local result: Fix x ∈ X; if Ω(x)

satisfies the condition in the Definition 3.2.28 for all t > 0, then ux = (x, .)γ ∈
W (Ω) implies there exists θx > 0 such that Ω(x) ⊂ Γθx(x).
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(ii) We observe that in the definition of a regular approach family, we could have

just assumed that the point y∗ satisfies that δ(y, x) ≈ δ(y∗, x). Also in statement

(iv), the restriction γ ≤ 1 is not really needed.

Next corollary allows us to obtain the result for an initial approach family defined

with respect to a space of homogeneous type.

Corollary 3.2.32 Let (X, µ, d) be a space of homogeneous type. Suppose Ω is an

approach family in X+ with respect to (X, µ, d) such that the related family Ωδ with

respect to (X,µ, δ) is regular. Then the following conditions are equivalent:

(i) Ap = AΩ
p for all p ≥ 1, with equivalent constants.

(ii) There is p ≥ 1 such that Ap = AΩ
p with equivalent constants.

(iii) There is θ > 0 such that Ω(x) ⊂ Γθ(x) for all x in X.

Proof. We only need to see that (ii) implies (iii). We saw before that AΩ
p = AΩδ

p

with the same constants. We can apply the previous theorem to obtain that Ωδ(x)

is contained in a cone Γδ
θ(x) with respect to δ, and then Ω(x) is also contained in

a cone. In fact, we will see that there exists θ > 0 such that Ω(x) ⊂ Γθ(x), if and

only if there exists θ′ > 0 such that Ωδ(x) ⊂ Γδ
θ′(x). First, we observe that using

Proposition 3.2.19 and the fact that

exp

( −1

1 + t

)
≤ exp

( −1

1 + θt

)
≤ e exp

( −1

1 + t

)
,

for all θ ≥ 1 and t > 0, we have that

K1 θβ ry(t) ≤ ry(θt) ≤ eKµ θα ry(t). (3.9)

Suppose first that Ω(x) ⊂ Γθ(x). We can assume that θ ≥ 1. Take (y, s) ∈ Ωδ(x), that

is (y, r−1
y (s)) ∈ Ω(x). By hypothesis, d(y, x) < θ r−1

y (s) and by definition δ(y, x) <

ry(θr
−1
y (s)); using (3.9) we get δ(y, x) < e K θαs, and so, (y, s) ∈ Γδ

θ′(x) with θ′ =

eK θα.

On the other hand, assume that Ωδ(x) ⊂ Γδ
θ′(x) with θ′ ≥ 1. Take (y, s) ∈ Ω(x).

Then (y, ry(s)) ∈ Ωδ(x) and therefore δ(y, x) < θ′ ry(s). Using the definition of δ and

(3.9), we get d(y, x) < (θ′/K1)
1/βs, and so (y, s) ∈ Γθ(x) with θ = (θ′/K1)

1/β.

2

We now give a version of our result in the case of a group structure in X.
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Corollary 3.2.33 Let (X, µ, d) be a space of homogeneous type. Suppose that X is

a group and that d and µ are left-invariant, that is

(i) yB(x, t) = B(yx, t) for all x and y in X and t > 0.

(ii) µ(xE) = µ(E) for all measurable sets E and x ∈ X.

Given an approach region Ω(e) for the identity element e of X, set Ω(x) = {(yx, t) :

(y, t) ∈ Ωe}. Then, the following conditions are equivalent:

(i) Ap = AΩ
p for all p ≥ 1.

(ii) There is p ≥ 1 such that Ap = AΩ
p .

(iii) There is θ > 0 such that Ω(x) ⊂ Γθ(x) for all x in X.

Proof. The assumptions on d and µ show that rx(t) = re(t) for all x in X (and there-

fore, δ is symmetric). Then, it is easy to see that Ωδ(x) =
{
(yx, t) : (y, t) ∈ Ωδ(e)

}

using the definition of Ωδ, and we saw in (i) of Examples 3.2.29 that this kind of

family of approach regions is regular. So, we are in the hypothesis of Theorem 3.2.30,

but we do not need the equivalence on the constants because in the case of translated

approach regions, if one region is contained in a cone, so are all the rest.

2

Corollary 3.2.34 Let (X, µ, d) be a space of homogeneous type as in the previous

corollary. There exists a family of approach regions Ω for which AΩ
p is not Ap, but

u ≡ 1 ∈ AΩ
p for p ≥ 1; i.e., φ 6= AΩ

p 6= Ap.

Proof. In [Su], the author gives a family of translated regions Ω which is not non-

tangential, and so, not contained in a cone, for which the operator MΩ is of weak-type

(p, p) on Lp(µ), for p ≥ 1, that is, u ≡ 1 ∈ AΩ
p for all p ≥ 1. Using the previous

corollary, we have that AΩ
p 6= Ap for this family.

2

3.2.3 The case of a group structure: some examples

We will give some examples of spaces of homogeneous type with a group structure

where we can apply our results. First, we give a simpler proof of Theorem 3.2.30 in

this setting.
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Consider (X, µ, d) a space of homogeneous type. Suppose that there exist two

constants C,C ′ > 0 such that

C ≤ µ(B(x, r))

µ(B(y, r))
≤ C ′, (3.10)

for all x, y ∈ X and r > 0. (We recall that this can occur under the assumption of

condition (3.4), as is proved in the last section.) Assume that X is a group with a

multiplicative law (not necessary commutative) such that d is left-invariant and µ is

left-invariant and invariant under inversion, that is respectively,

x ·B(y, r) = B(x · y, r) ∀ x, y ∈ X, r > 0,

µ(x · E) = µ(E) ∀ x ∈ X, E ⊂ X measurable,

µ(E) = µ(E−1) ∀ E ⊂ X measurable,

e.g. this is the case if X is unimodular and µ is the Haar measure ([Fo], Proposi-

tion 2.9). We denote by e the identity element of the group.

For a measurable set Ω(e) in X+ full on the vertical direction, consider the trans-

lated family of sets given by

Ω(x) := x · Ω(e) = {(x · y, t) : (y, t) ∈ Ω(e)} .

Recall that this family is regular in the sense of Definition 3.2.28.

With this hypothesis, the proof of Theorem 3.2.30 is much simpler:

Theorem 3.2.35 If Ω(x) = {(x · y, t) : (y, t) ∈ Ω(e)} for a given approach region

Ω(e) of e, then the following conditions are equivalent:

(i) There exist C > 0 and θ > 0 such that MΩf(x) ≤ CMΓθ
f(x), for all x ∈ X

and all measurable functions f .

(ii) AΩ
p = Ap for all 1 ≤ p < ∞.

(iii) There is p ≥ 1 such that Ap = AΩ
p .

(iv) There exists 0 < γ ≤ 1 such that u(y) = d(e, y)γ ∈ W (Ω).

(v) There exists θ > 0 such that Ω(e) ⊂ Γθ(e).
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Proof. It is obvious that (ii) implies (iii). Because of the left-invariance of d, if

Ω(e) ⊂ Γθ(e) then Ω(x) ⊂ Γθ(x) for all x, and so, (v) implies (i). The implication

(i) ⇒ (ii) is easy if we recall Theorem 3.2.17 (one can also show that, since Ω is

full on the vertical direction, then Mf(x) ≤ CMΩf(x)). Now, suppose AΩ
p = Ap for

some p ≥ 1. We can assume that p > 1 by the extrapolation theorem of Rubio de

Francia, as proved in [J]. We have seen that there is 0 < γ = γ(p) ≤ 1 such that

u(y) = d(e, y)γ is in Ap, and so, by hypothesis and Theorem 3.2.17, u ∈ W (Ω).

Suppose that u(y) = d(e, y)γ ∈ W (Ω). Take (y, t) ∈ Ω(e). Using the triangle

inequality, we have:

d(e, y)γ =
1

µ(B(y, t)−1)

∫

B(y,t)−1

d(e, y)γ dµ(z)

≤ Aγ

µ(B(y, t)−1)

∫

B(y,t)−1

(d(e, z−1)γ + d(z−1, y)γ) dµ(z)

=
Aγ

µ(B(y, t))

∫

B(y,t)−1

(d(e, z)γ + d(z−1, y)γ) dµ(z)

≤ Aγ

(
1

µ(B(y, t))
U(B(y, t)−1) + tγ

)
.

We now use that SΩ(e, t) = B(e, t) · [Ωt(e)]−1 (see [Su]), that is

SΩ(e, t) =
⋃

y∈Ωt(e)

B(y, t)−1,

and so, by hypothesis, we have:

d(e, y)γ ≤ Aγ

(
U(SΩ(e, t))

µ(B(y, t))
+ tγ

)

≤ C Aγ

(
U(B(e, t))

µ(B(y, t))
+ tγ

)
.

Finally, observe that U(B(e, t)) =
∫

B(e,t)
d(e, z)γ dµ(z) ≤ tγ µ(B(e, t)), and then using

(3.10),

d(e, y)γ ≤ 2 C Aγ tγ.

Hence, Ω(e) ⊂ Γθ(e), with θ = A (2C)1/γ.

2

We consider now some examples that satisfy our assumptions:
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Examples 3.2.36

(i) Take X = Rn and µ the Lebesgue measure. Consider the non-isotropic quasi-

distance

d(x, y) =
n∑

k=1

|xk − yk|1/ak ,

where a1, . . . , an are strictly positive constants, or the equivalent

d′(x, y) = sup
k
|xk − yk|1/ak .

It is easy to see that all the required conditions are satisfied. We write |x| =

d(x, 0) ≈ d′(x, 0). Our theorem completes now the result proved in [SS2] (The-

orem 3.1.5 in Section 1 of this chapter):

Theorem 3.2.37 If Ω(x) = {(x + y, t) : (y, t) ∈ Ω(0)} for a given approach

region Ω(0) of 0, then, the following conditions are equivalent:

(a) There exist C > 0 and θ > 0 such that MΩf(x) ≤ CMΓθ
f(x), for all x ∈ X

and all measurable functions f .

(b) AΩ
p = Ap for all 1 ≤ p < ∞.

(c) There is p ≥ 1 such that Ap = AΩ
p .

(d) There exists 0 < γ ≤ 1 such that u(x) = |x|γ ∈ W (Ω).

(e) There exists θ > 0 such that Ω(0) ⊂ Γθ(0).

If ak = 2 for all k, Nagel and Stein proved in [NS] that if the weight u(y) =

|y|0 = 1 is in AΩ
p , then Ω0 need not be contained in a cone: in fact, it can contain

a sequence of points approaching 0 tangentially. Our theorem states that this

is the extremal situation, because if AΩ
p contains a power weight with positive

exponent, Ω0 is necessarily a subset of a cone.

(ii) Take X = Hn the Heisenberg group (see [St2, XII.1.4] or [Su] for the details).

This is the set

Cn × R = {[ζ, t] : ζ ∈ Cn, t ∈ R},

with the (noncommutative) multiplicative law

[ζ, t] · [η, s] = [ζ + η, t + s + 2 Im(ζη)].

The identity element is e = [0, 0], and we have [ζ, t]−1 = [−ζ,−t].
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Consider the generalized half-plane D = {z ∈ Cn+1 : h(z) > 0}, where

h(z) = Im zn+1 −
n∑

k=1

|zk|2,

for z = (z1, . . . , zn+1) ∈ Cn+1. Then, we can see Hn as the boundary ∂D =

{z ∈ Cn+1 : h(z) = 0}, by considering the map ψ : Cn+1 −→ Hn defined

as ψ(z) = (z1, . . . , zn, Re zn+1), where the restriction to ∂D gives the desired

bijection. Now, we are able to think of D as the product Hn×(0,∞) using the

identification

Φ : D −→ Hn×(0,∞),

defined by Φ(z) = (ψ(z), h(z)).

The group Hn acts on D (and ∂D) associating to each element [ζ, t] ∈ Hn the

following affine self-mapping:

[ζ, t] : (z′, zn+1) 7−→ (z′ + ζ, zn+1 + t + 2iz′ζ + i|ζ|2).

It is not difficult to see that [η, s]([ζ, t]z) = ([η, s] · [ζ, t])z, and that this action

is simply transitive on ∂D: for every two points in ∂D, there is exactly one

element in Hn mapping the first to the second. So, we can also identify Hn as

the translations on ∂D.

We consider the pseudo-norm function defined in Hn

||[ζ, t]|| = max(|ζ|2, |t|),

satisfying the quasi-triangle inequality

||x · y|| ≤ c(||x||+ ||y||),

for all x, y ∈ Hn. Observe the different homogeneity in ζ and t. We can

define the quasi-distance in Hn by d(x, y) = ||y−1 · x||, symmetric because

||x|| = ||x−1||, and left-invariant with respect to the group action.

We take as the underlying measure dµ in Hn to be the Euclidean Lebesgue

measure on Cn × R, which is left-invariant and invariant under inversion.

With these definitions, (Hn, µ, d) becomes a space of homogeneous type, with

the conditions required in Theorem 3.2.35. For the following result we will use

the trivial fact that d(e, [ζ, t]) = max(|ζ|2, |t|) ≈ (|ζ|2 + |t|).
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Theorem 3.2.38 If Ω(x) = {(x · z, t) : (z, t) ∈ Ω(e)} ⊂ Hn×(0,∞) for a

given approach region Ω(e) of e ∈ Hn, then, the following conditions are equiv-

alent:

(a) There exist C > 0 and θ > 0 such that MΩf(x) ≤ CMΓθ
f(x), for all x ∈ Hn

and all measurable functions f .

(b) AΩ
p = Ap for all 1 ≤ p < ∞.

(c) There is p ≥ 1 such that Ap = AΩ
p .

(d) There exists 0 < γ ≤ 1 such that u([ζ, t]) = (|ζ|2 + |t|)γ ∈ W (Ω).

(e) There exists θ > 0 such that Ω(e) ⊂ Γθ(e).

The Korányi admissible regions for D are defined by

Γ̃θ(0) = {z ∈ D : ||ψ(z)|| < θh(z)},

and Γ̃θ(g · 0) = g · Γ̃θ(0) if g ∈ Hn. We have

Φ(Γ̃θ(ζ)) = Γθ(ψ(ζ)),

where Γθ(x) = {(y, s) ∈ Hn×(0,∞) : d(y, x) < θs} is a cone in Hn×(0,∞). If

Ω̃(0) is an approach region of 0 ∈ ∂D, we can translate it by the action of the

Heisenberg group: for ζ ∈ ∂D, there exists a unique element x ∈ Hn such that

ζ = x · 0, and then consider Ω̃(ζ) = x · Ω̃(0). Then, taking Φ(Ω̃(0)) = Ω(e) we

have

Φ(Ω̃(ζ)) = Ω(x),

with Ω(x) = {(x ·y, t) : (y, t) ∈ Ω(e)}. We have that Ω(e) is contained in a cone

if and only if Φ−1(Ω(e)) is contained in an admissible region (see [Su]). With

this notations, we can give the next result:

Corollary 3.2.39 For a given approach region Ω̃(0) ⊂ D of 0 ∈ ∂D, the fol-

lowing conditions are equivalent:

(a) There exist C > 0 and θ > 0 such that MΩf(x) ≤ CMΓθ
f(x), for all x ∈ Hn

and all measurable functions f .

(b) AΩ
p = Ap for all 1 ≤ p < ∞.

(c) There is p ≥ 1 such that Ap = AΩ
p .

(d) There exists 0 < γ ≤ 1 such that u([ζ, t]) = (|ζ|2 + |t|)γ ∈ W (Ω).

(e) There exists θ > 0 such that Ω̃(0) ⊂ Γ̃θ(0).
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(iii) Consider X as the set of all real 3 × 3 upper-triangular matrices having ones

along the diagonal. The group multiplicative law is the usual matrix product

(see [St, XIII.5.2.3]). The norm function is defined by

||x|| = max{|a|, |b|1/2, |c|},

where

x =




1 a b
0 1 c
0 0 1


 .

The function d(x, y) = ||y−1 · x|| is left-invariant but nonsymmetric. We can

consider the equivalent quasi-distance d′(x, y) = (d(x, y)+d(y, x))/2, since there

exists a constant C such that d(x, y) ≤ C d(y, x) for all x, y ∈ X. Notice that

we can realize X as R3 with the inner product

(a, b, c) · (d, e, f) = (a + d, b + e + af, c + f).

We write x = (a, b, c) ∈ X and observe that ||x|| ≈ (a2 + |b|+ c2)1/2 ≈ d′(x, 0).

Then we take as the underlying measure dµ to be the Lebesgue measure, which

is left-invariant and invariant under inversion. Also, (X, µ, d′) is a space of

homogeneous type. We can state the theorem:

Theorem 3.2.40 If Ω(x) = {(x · y, t) : (y, t) ∈ Ω(0)} ⊂ X× (0,∞) for a given

approach region Ω0 of 0, then, the following conditions are equivalent:

(a) There exist C > 0 and θ > 0 such that MΩf(x) ≤ CMΓθ
f(x), for all x ∈ X

and all measurable functions f .

(b) AΩ
p = Ap for all 1 ≤ p < ∞.

(c) There is p ≥ 1 such that Ap = AΩ
p .

(d) There exists 0 < γ ≤ 1 such that u(x) = (a2 + |b|+ c2)γ/2 ∈ W (Ω).

(e) There exists θ > 0 such that Ω(0) ⊂ Γθ(0).

(iv) Every connected nilpotent unimodular Lie group with a left-invariant Rieman-

nian metric and the induced measure is a space of homogeneous type satisfying

our conditions (see [Ch, Example VI.7]).

3.3 The general case

The boundary convergence phenomena has been studied for classes of functions de-

fined in general sets that have not a product structure of the type X × (0,∞) as
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studied in the previous section, but X is just the boundary of a more general set.

Some examples are: the unit ball in Cn, non-tangentially accessible domains (NTA do-

mains), strongly pseudoconvex domains in Cn and trees (see [DiB] and the references

therein.)

In this section we extend the results of Section 3.2 to an abstract setting, that

allows us to extend this results to a wider class of sets. Without the product structure,

we find some new difficulties: the notion of being full on the vertical direction has

no sense, in general; we are not able to work with cones; and we do not have the

natural assignment between points and balls (x, t) ∈ X × (0,∞) ↔ B(x, t) ⊂ X.

We will replace the notion of a cone by the definition of a so-called supernatural

approach region, which is a slight modification of the definition of a natural region

given in page 30 of [DiB]. Then, we also replace the notion of an approach region

completed in the vertical direction by the approach region completed with respect

the supernatural approach region. This is a notion introduced in [DiB], and it is

a generalization of the cone condition appearing in [NS]. Finally, we replace the

maximal operator related to an approach family by a new maximal operator that

depends on the supernatural family.

Before to go into the abstract case, we begin with the case of a homogeneous tree

in order to illustrate the way of generalization. Here, the tree To takes the place of

X × (0,∞) and the ∂To is just the boundary. The tree has not a product structure

but its geometry has a vertical direction. Moreover, there are cones, and to every

vertex in the tree corresponds a ball in the boundary. Boundary convergence on trees

are considered in, for example, [ADiBU], [C], [DiB], [FPR], [KP], [KPT] and [SV].

3.3.1 Approach regions in an isotropic homogeneous tree

We briefly recall some notions about homogeneous trees. We refer to Chapter 2 for a

complete introduction.

A homogeneous tree of degree q is a tree where every vertex has q + 1 neighbor

vertices. When a origin vertex o has been chosen, the tree To is rooted and it is

endowed of a partial order structure, namely, x ≤ y if and only if x belongs to the

unique shortest path joining y and o, that is, the geodesic from o to y (or from y to

o), which is written as [o, y]. Then, the boundary of the tree ∂To is seen as the set of

geodesics of infinite length (and actually, it does not depend on the choice of o).

The tree is a metric space endowed with the so-called hyperbolic distance d(x, y),
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which counts the number of edges between x and y. We denote |x| = d(o, x) for every

x ∈ T .

For a vertex x ∈ To, the tent under x is the set

T (x) = {y ∈ T : y ≥ x} ,

and its shadow in ∂To is

I(x) = {ω ∈ ∂T : x ∈ [o, ω)} ,

where [o, ω) is the infinite geodesic joining the origin o and the boundary point ω,

also denoted as

[o, ω) = {o = ω(0), ω(1), ω(2), . . . , ω(n), . . .} ,

with the convention that ω(n) is the unique vertex in the path from o to ω at distance

n from o. Equivalently, we can write T (x) = {y ∈ T : I(y) ⊂ I(x)}.
The Euclidean distance in To ∪ ∂To is given by

de(x, y) = q−|c(x,y)|,

for all x 6= y ∈ To ∪ ∂To, where c(x, y) is the confluent vertex of x and y (with the

convention c(x, y) = x if x ∈ [o, y]), and de(x, y) = 0 if x = y (see [T]). The balls in

∂To with respect to de are exactly the shadows I(x) for some x ∈ To. Specifically, if

0 < r ≤ q, we have

B(ω, r) := {ζ ∈ ∂To : de(ω, ζ) < r} = I(ω(k + 1)), (3.11)

whenever q−k−1 < r ≤ q−k for k ≥ −1. Conversely,

I(x) = B(ω, r), ∀ ω ∈ I(x),

if q−|x| < r ≤ q1−|x|. The space To ∪ ∂To is compact with respect this distance. The

set of tents {T (x) : x ∈ T} forms a basis of open sets of the topology generated by

de, and the set of shadows {I(x) : x ∈ T} is a basis of open sets in the boundary.

We endow ∂To with a probability measure µ defined on the sets {I(x) : x ∈ T}
by

µ(I(x)) =
q1−|x|

q + 1
,

if x 6= o, and µ(∂To) = 1 (see again [T]).
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We observe that from (3.11) and the equality

µ(I(x)) = q µ(I(y)),

if x and y are neighbor vertices and |y| = |x|+1 (that is, y is a son of x), the measure

µ is doubling with respect to the Euclidean balls. Hence, (∂To, µ, de) is a space of

homogeneous type.

A pair of measures (ρ, ν), ρ defined in To and ν in ∂To, form a Carleson pair if

there exists a constant C > 0 such that

ρ(T (x)) ≤ C ν(I(x)),

for all x ∈ T . Set T (O) := {x ∈ T : I(x) ⊂ O} for an open set O ⊂ ∂To. The proof

of Proposition 3.2.9 also holds in this setting, and therefore we have:

Lemma 3.3.1 If (ρ, ν) is a Carleson pair and ν is doubling, then for all open sets

O ⊂ ∂To,

ρ(T (O)) ≤ C ν(O).

A family of sets Ω = {Ω(ω) : ω ∈ ∂To}, with Ω(ω) ⊂ To for all ω, is an approach

family in To if

ω ∈ Ω(ω),

where the closure is taken with respect to the Euclidean distance. An example is the

family of cones of width 0 ≤ θ ∈ Z

Γθ(ω) =
{
x ∈ T : de(ω, x) ≤ qθ−|x|} .

An approach family Ω is full on the vertical direction if x ∈ Ω(ω), then y ∈ Ω(ω) for

all y ≤ x, for all ω ∈ ∂To. For every Ω, it is possible to give a new approach region

full in the vertical direction by considering

Ω̂(ω) =
⋃

x∈Ω(ω)

{y ∈ T : y ≤ x} .

Ω̂(ω) is called the vertical completion of Ω.

For a measure ρ in ∂To and a family Ω, we define a (outer) measure in To by

ρΩ(E) = ρ({ω ∈ ∂To : Ω(ω) ∩ E 6= ∅}),

for a set E ⊂ To.
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We can define a maximal operator related to an approach family by mimicking

the Definition 3.2.11:

MΩf(ω) = sup
x∈Ω(ω)

1

I(x)

∫

I(x)

|f(z)| dµ(z).

In the special case of the cone Γ0(ω) = [o, ω), the operator becomes the centered

Hardy-Littlewood maximal operator Mcen, which is known that satisfies the estimates

of Theorem 3.2.6.

The analog of Theorem 3.2.13 is:

Theorem 3.3.2 Let ρ and ν be two nonnegative measures on To. If M : Lp(ν) −→
Lp,∞(ν) is bounded for some p ≥ 1, then the following conditions are equivalent:

(i) There exists C > 0 such that

ρ({ω ∈ ∂To : MΩf(ω) > λ}) ≤ C ν({ω ∈ ∂To : Mcenf(ω) > λ}),

for all λ > 0 and measurable f .

(ii) MΩ : Lp(ν) −→ Lp,∞(ρ) is bounded.

(iii) There exists C > 0 such that ρΩ(T (x)) ≤ C ν(I(x)) for all x ∈ To.

Proof. It is known that ν is necessarily doubling. That (i) implies (ii) is trivial.

To see that (ii) implies (iii), we take f = χI(x) for a fixed x ∈ To. If there exists

y ∈ Ω(ω) ∩ T (x), then I(y) ⊂ I(x), and therefore MΩf(ω) > 1/2 for all ω ∈ I(x).

Thus, by hypothesis we have

ρΩ(T (x)) ≤ ρ({ω ∈ ∂To : MΩf(ω) > 1/2}) ≤ C ‖f‖Lp(ν) = C ν(I(x)).

Suppose that (iii) holds and let us see (i). We take ω such that MΩf(ω) > λ for

certain λ > 0. There exists x ∈ Ω(ω) such that

1

I(x)

∫

I(x)

|f(z)| dµ(z) > λ,

and hence

Ω(ω) ∩
{

x ∈ To :
1

I(x)

∫

I(x)

|f(z)| dµ(z) > λ

}
6= ∅.

We observe that
{

x ∈ To :
1

I(x)

∫

I(x)

|f(z)| dµ(z) > λ

}
⊂ T (O),
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where O = {ω ∈ ∂To : Mcenf(ω) > λ}, for all functions f . Thus, by Lemma 3.3.1,

ρ({ω ∈ ∂To : MΩf(ω) > λ}) ≤ ρΩ

({
x ∈ To :

1

I(x)

∫

I(x)

|f(z)| dµ(z) > λ

})

≤ ρΩ(T (O))

≤ C ν(O)

= C ν({x ∈ To : Mcenf(ω) > λ})

2

Corollary 3.3.3 Let ρ and ν be two nonnegative measures on To. If M : Lp(ν) −→
Lp,∞(ν) is bounded for some p ≥ 1, then the following conditions are equivalent:

(i) MΩ : Lp(ν) −→ Lp,∞(ρ) is bounded.

(ii) MbΩ : Lp(ν) −→ Lp,∞(ρ) is bounded.

(iii) There exists C > 0 such that ρbΩ(T (x)) ≤ C ν(I(x)) for all x ∈ To.

Proof. Since MbΩf(ω) ≥ MΩf(ω), simply because Ω(ω) ⊂ Ω̂(ω) for all ω ∈ ∂To, we

have that (ii) implies (i). That (ii) is equivalent to (iii) is proved in the last theorem.

So, it is enough to see (i) =⇒ (iii). Trivially,

{ω ∈ ∂To : Ω(ω) ∩ T (x) 6= ∅} ⊂
{

ω ∈ ∂To : Ω̂(ω) ∩ T (x) 6= ∅
}

.

On the other hand, if Ω̂(ω)∩T (x) 6= ∅, there exists y ∈ Ω̂(ω)∩T (x). By definition of Ω̂,

this means that there exists z ∈ Ω(ω) such that z ≥ y, with y ∈ T (x). Consequently,

z ∈ Ω(ω) and I(z) ⊂ I(y) for y ∈ T (x), and hence z ∈ Ω(ω) and z ∈ T (x), that is

Ω(ω) ∩ T (x) 6= ∅. Finally,

{ω ∈ ∂To : Ω(ω) ∩ T (x) 6= ∅} =
{

ω ∈ ∂To : Ω̂(ω) ∩ T (x) 6= ∅
}

,

and it follows

ρΩ(T (x)) = ρbΩ(T (x)).

Now, the implication is derived from the last theorem.

2

This corollary says that we can always assume that our approach family is full on

the vertical direction. From now on, we take this condition for granted.
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Remark 3.3.4 If Ω is full on the vertical direction, it is easy to see that condition

(iii) is equivalent to the existence of C > 0 such that

ρ(Ω↓(x)) ≤ C ν(I(x)),

for all x ∈ To, since in the context of our tree we have

ρΩ(T (x)) = ρ(Ω↓(x)).

Moreover, it is easy to see the equality

Ω↓(x) =
{
ω ∈ ∂To : Ω|x|(ω) ∩ I(x) 6= ∅} := SΩ(x),

where Ωk(ω) = {ζ ∈ ∂To : ζ(k) ∈ Ω(ω)} is the cross-section at height 0 ≤ k ∈ Z.

The set SΩ(x) is the substitute of SΩ(x, t) of the last section. Thus, if Ω is full on

the vertical direction, condition (iii) also reads as follows: there exists C > 0 such

that ρ(SΩ(x)) ≤ C ν(I(x)) for all x ∈ To, which is the same condition appearing in

Theorem 3.2.13.

Lemma 3.3.5 If Ω is an approach family in To full on the vertical direction, then

Mcenf(ω) ≤ MΩf(ω),

for all ω ∈ ∂To and measurable f .

Proof. If ω ∈ Ω(ω), there exists {xk : k ≥ 0} ⊂ Ω(ω) ⊂ To such that

de(xk, ω) −→ 0.

For a fixed j ≥ 0, there exists n(j) ≥ 0 such that de(xk, ω) < q−j

q+1
for all k ≥ n(j).

Thus, xk ∈ T (ω(j)), and since Ω is full on the vertical direction, ω(j) ∈ Ω(ω). Then,

MΩf(ω) ≥ 1

I(ω(j))

∫

I(ω(j))

|f(z)| dµ(z),

for all j ≥ 0 and measurable f , and therefore

MΩf(ω) ≥ Mcenf(ω),

for all ω ∈ ∂To and measurable f .

2
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Remark 3.3.6 In fact, we have proved that [o, ω) ⊂ Ω(ω) for all ω ∈ ∂To if Ω is full

in the vertical direction.

As usual, a weight is a positive function u ∈ L1
loc(µ). For p ≥ 1, Ap is the class of

weights u : ∂To −→ [0,∞) such that Mcen : Lp(u) −→ Lp,∞(u) is bounded. We denote

Ap
Ω the class of weights u such that MΩ : Lp(u) −→ Lp,∞(u) is bounded. Finally, we

define

W (Ω) = {u : ∃C > 0 such that UΩ(T (x)) ≤ C U(I(x)), ∀x ∈ To} .

Combining Theorem 3.3.2 and Lemma 3.3.5, we easily get:

Proposition 3.3.7 Let Ω be a family of approach regions in To. For 1 ≤ p < ∞, we

have

AΩ
p = Ap ∩W (Ω),

and

‖u‖Ap ≤ ‖u‖Ap
Ω

.

The last result is the natural analog of Theorem 3.2.30. We observe that in our

actual context we have that

µ(B(ω, r)) = µ(B(ζ, r)),

for all ω, ζ ∈ ∂To and r > 0, or equivalently

µ(I(x)) = µ(I(y)),

if |x| = |y|. An approach family Ω is regular if for all ω ∈ ∂To we have

∀x ∈ Ω(ω), ∃ x∗ ∈ To with de(ω, x) = de(ω, x∗) such that I(x∗) ⊂ SΩ(ω(|x|)).

Theorem 3.3.8 Assume Ω ⊂ To to be a regular approach family, then the following

conditions are equivalent:

(i) There exists C > 0 and θ > 0 such that MΩf(ω) ≤ C MΓθ
f(ω), for all ω in ∂To

and all measurable functions f .

(ii) AΩ
p = Ap for all 1 ≤ p < ∞.

(iii) There is p ≥ 1 such that Ap = AΩ
p .
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(iv) There exists 0 < γ ≤ 1 such that the family of weights {δ(ω, .)γ : ω ∈ ∂To} is in

W (Ω) uniformly in ω.

(v) There exists θ > 0 such that Ω(ω) ⊂ Γθ(ω) for all ω in ∂To.

Proof. In view of the proof of Theorem 3.2.30, it is enough to prove that (iv) implies

(v), because by using Proposition 3.3.7 the same argument holds.

Suppose the family of weights is uniformly in W (Ω). Take x ∈ Ω(ω) for a fixed

ω ∈ ∂To. Then, using the assumption of the regularity on Ω, we have:

de(ω, x)γ = de(ω, x∗)γ

=
1

µ(I(x∗))

∫

I(x∗)
de(ω, x∗)γdµ(ξ)

≤ 1

µ(I(x∗))

∫

I(x∗)
(de(ω, ξ) + de(x

∗, ξ))γdµ(ξ)

≤ 1

µ(I(x∗))

∫

SΩ(ω(|x|))
de(ω, ξ)γdµ(ξ) + q−|x|γ.

Set uω(ξ) = de(ω, ξ)γ. Using the hypothesis on the family {uω : ω ∈ ∂To} and taking

into account Remark 3.3.4, we have:

de(ω, x)γ ≤ Uω(SΩ(ω(|x|)))
µ(I(x∗))

+ q−|x|γ

≤ C Uω(I(ω(|x|)))
µ(I(x∗))

+ q−|x|γ. (3.12)

But,

Uω(I(ω(|x|))) =

∫

I(ω(|x|))
de(ω, ξ)γ dµ(ξ)

= q−|ω(|x|)|γµ(I(ω(|x|)))
= q−|x|γµ(I(ω(|x|))),

and hence, returning to (3.12), we get de(ω, x) ≤ (C + 1)
1
γ q−|x|, that is, x ∈ Γθ(ω),

where θ is the integer part of log(C + 1)/(γ log(q)).

2

3.3.2 Approach regions in the abstract context

We present in this subsection the more general context where our results apply. We

use some of the terminology and the techniques introduced in [DiB].

Let (X, δ) be a quasi-metric space.
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Definition 3.3.9 A set D is a space of approach to (X, δ) for the approach

function

a : D ×X −→ [0,∞),

if the following conditions are satisfied:

(i) For each x ∈ X there exists a sequence {ζn : n ∈ N} in D such that

lim
n→∞

a(ζn, x) = 0.

(ii) Whenever lim
n→∞

δ(xn, yn) = lim
n→∞

a(ζn, xn) = 0, then

lim
n→∞

a(ζn, yn) = 0,

for sequences {xn : n ∈ N} and {yn : n ∈ N} in X and {ζn : n ∈ N} in D.

(iii) Whenever lim
n→∞

a(ζn, xn) = lim
n→∞

a(ζn, yn) = 0, then

lim
n→∞

δ(xn, yn) = 0,

for sequences {xn : n ∈ N} and {yn : n ∈ N} in X and {ζn : n ∈ N} in D.

If D is a space of approach to (X, δ), a subset Ω(x) ⊂ D is an approach region

to x ∈ X if there exists a sequence {ζn : n ∈ N} in Ω(x) such that

lim
n→∞

a(ζn, x) = 0.

The family of sets Ω = {Ω(x) : x ∈ X} is an approach family for (D; X, δ) if

every Ω(x) ⊂ D is an approach region to x.

For an approach family Ω, the shadow of a set E ⊂ D is the set

Ω↓(E) = {x ∈ X : Ω(x) ∩ E 6= ∅} ,

and, in particular, the shadow of a point ζ ∈ D is the set

Ω↓(ζ) = {x ∈ X : ζ ∈ Ω(x)} .

Definition 3.3.10 The approach family Γ = {Γ(x) : x ∈ X} for (D; X, δ) is super-

natural if the following conditions are satisfied:

(i) For all ζ ∈ D, Γ↓(ζ) is open.
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(ii) There exist two constants 0 < L1 ≤ L2 such that:

(a) For every ζ ∈ D, there is a ball B(x, r) = B(x(Γ, ζ), r(Γ, ζ)) satisfying

B(x, L1r) ⊂ Γ↓(ζ) ⊂ B(x, L2r).

(b) Conversely, for every ball B(x, r) in X, there exists ζ = ζ(x, r, Γ) ∈ D such

that

B(x, L1r) ⊂ Γ↓(ζ) ⊂ B(x, L2r).

(iii) If lim
n→∞

a(ζn, x) = 0, then

(a) lim
n→∞

diam(Γ↓(ζn)) = 0 and

(b) lim
n→∞

sup
y∈Γ↓(ζn)

a(ζn, y) = 0.

Examples 3.3.11

(i) If (X, µ, d) is a space of homogeneous type, then D = X+ is a space of approach

to X for the induced metric in X+. The set of cones of a given width θ > 0

Γθ(x) = {(y, t) ∈ X+ : d(x, y) < θt} , x ∈ X,

is a supernatural approach family, because (Γθ)
↓(y, t) = B(y, θt).

(ii) The tree To is a space of approach to its boundary ∂To for the Euclidean distance

de, and again the set of cones of a certain width 0 < θ ∈ Z

Γθ(ω) =
{
x ∈ To : de(ω, x) ≤ qθ−|x|} , ω ∈ ∂To,

is a supernatural approach family, since (Γθ)
↓(x) = I(x(|x| − θ)), where we

recall that [o, x] = {o = x(0), x(1), . . . , x(|x|) = x} is the geodesic from o to x,

and we use the convention x(|x| − θ) = o if θ > |x|.

(iii) The unit disc D = {z ∈ C : |z| < 1} is a space of approach to its boundary

∂D = {z ∈ C : |z| = 1} for the Euclidean distance. For α > 0 and ω ∈ ∂D, the

sets

Γα(ω) = {z ∈ D : |z − ω| < (1 + α)(1− |z|)}

form a supernatural approach family.
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In the sequel, we fix the notation Γ for a chosen supernatural approach family in

the space of approach D to (X, δ), where (X,µ, δ) is a ns-space of homogeneous type

(see Definition 3.2.2).

Given an approach family Ω for (D; X, δ), the related maximal operator is

defined by

MΩf(x) = sup
ζ∈Ω(x)

1

µ(Γ↓(ζ))

∫

Γ↓(ζ)

|f(y)| dµ(y), (3.13)

for a measurable f . If we choose Ω = Γ, the operator MΓ is easily seen to be pointwise

equivalent to the Hardy-Littlewood maximal operator M since µ is doubling, in view

of the definition of a supernatural family Γ.

Remark 3.3.12 For the particular setting D = X+ for a space of homogeneous type

X, this operator and the operator in Definition 3.2.11 are pointwise equivalent if Γ is

a supernatural family, but they are not equivalent in general if Γ is not supernatural.

We give, for this abstract setting, some known definitions.

Definition 3.3.13

(i) The tent of a ball B is the set

T (B) =
{
ζ ∈ D : Γ↓(ζ) ⊂ B

}
.

(ii) For a measure σ in X and an approach family Ω for (D; X, δ), the outer mea-

sure σΩ in D is given by

σΩ(E) = σ(Ω↓(E)) = σ({x ∈ X : Ω(x) ∩ E 6= ∅}),

for a measurable set E.

(iii) For p ≥ 1 and an approach family Ω for (D; X, δ), the class of AΩ
p -weights is

the set of weights u defined in X such that MΩ : Lp(u) −→ Lp,∞(u) is bounded,

and the AΩ
p -constant ||u||AΩ

p
is the norm of MΩ.

(iv) A weight u is in the W (Ω)-class if there is a constant C > 0 such that

UΩ(T (B)) ≤ CU(B),

for all balls B in X. Let ||u||W (Ω) be the infimum of the constants satisfying

this inequality for all balls.
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The following theorem is essentially proved in [DiB] (Theorem 2.14, page 37):

Theorem 3.3.14 Let (X,µ, δ) be a ns-space of homogeneous type. Consider an ap-

proach family Ω for (D; X, δ), with a fixed supernatural approach family Γ. Let ρ and

ν be two nonnegative measures on X. If M : Lp(ν) −→ Lp,∞(ν) is bounded for some

p ≥ 1, then the following conditions are equivalent:

(i) There exists C > 0 such that

ρ({x ∈ X : MΩf(x) > λ}) ≤ C ν({x ∈ X : MΓf(x) > λ}),

for all λ > 0 and measurable f .

(ii) MΩ : Lp(ν) −→ Lp,∞(ρ) is bounded.

(iii) There exists C > 0 such that ρΩ(T (B)) ≤ C ν(B) for all ball B in X.

In our new abstract context, the notion of a region full in the vertical direction has

no meaning. We now define its natural substitute. For x ∈ X, an approach region

Ω(x) is Γ-complete if for all ζ ∈ Ω(x), we also have ξ ∈ Ω(x) whenever Γ↓(ζ) ⊂ Γ↓(ξ).

It is proved in [DiB] that we can assume, without loss of generality, that the region

Ω(x) is Γ-complete for every x ∈ X, that is, the family Ω is Γ-complete. This notion

appears for the first time in [NS] in the Euclidean context D = Rn+1
+ and X = Rn.

Theorem 3.3.15 Let Ω be a Γ-complete family of approach regions for (D; X, δ).

For 1 ≤ p < ∞, we have

AΩ
p = Ap ∩W (Ω),

and there exists C > 0 such that

||u||Ap ≤ C||u||AΩ
p
,

for all u in AΩ
p .

Proof. The fact that MΓ and M are equivalent and Theorem 3.3.14 with dρ(z) =

dν(z) = u(z) dµ(z) say that Ap ∩W (Ω) ⊂ AΩ
p and AΩ

p ⊂ W (Ω). Now, let us see that

if Ω is a family of Γ-complete approach regions, there exists a constant C > 0 such

that

Mcenf(x) ≤ C MΩf(x),

for all x ∈ X and all measurable f , where Mcen is the centered Hardy-Littlewood

maximal operator. Therefore, we will have that AΩ
p ⊂ Ap, and ||u||Ap ≤ C||u||AΩ

p
.
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Fix x ∈ X and r > 0. Since Γ is supernatural, there exists ζ = ζ(x, r) ∈ D such

that

B(x, L1r) ⊂ Γ↓(ζ) ⊂ B(x, L2r). (3.14)

Suppose {ζn : n ≥ 0} ⊂ Ω(x), with limn→∞ a(ζn, x) = 0. By definition, x ∈ Γ↓(ζn)

for all n ≥ 0 and limn→∞ diam(Γ↓(ζn)) = 0. Thus, there exists n0 such that Γ↓(ζn) ⊂
B(x, L1r) for all n ≥ n0, and hence, by (3.14), Γ↓(ζn) ⊂ Γ↓(ζ). Since Ω(x) is Γ-

complete, we have that ζ ∈ Ω(x). Consequently,

MΩf(x) ≥ 1

µ(Γ↓(ζ))

∫

Γ↓(ζ)

|f(y)| dµ(y) ≥ C

µ(B(x, r))

∫

B(x,r)

|f(y)| dµ(y),

where the last inequality follows from (3.14) and the doubling property of µ. Hence,

taking the supremum over r > 0, we obtain

MΩf(x) ≥ C Mcenf(x),

with C independent of x.

2

Suppose that (X, µ, d) is a space of homogeneous type satisfying condition (3.4).

We proved in Theorem 3.2.21 of the previous section the existence of a non-symmetric

quasi-distance δ with a good invariance property, namely, the measure of a ball is

comparable to its radius, uniformly on the center of the ball. Moreover, (X, µ, δ) is a

ns-space of homogeneous type.

Theorem 3.3.16 If (X,µ, d) is a space of homogeneous type satisfying property

(3.4), then (X, µ, δ) is a ns-space of homogeneous type such that:

(i) If D is a space of approach to (X, d) for the approach function a, then it is also

a space of approach to (X, δ) for the same approach function a.

(ii) If Γ is a supernatural family for (D; X, d), then it is also a supernatural family

for (D; X, δ).

(iii) The Ap and AΩ
p class of weights do not change with the change of quasi-distance.

Proof. Condition (i) holds simply because by definition we have that

lim
n→∞

d(xn, yn) = 0 ⇐⇒ lim
n→∞

δ(xn, yn) = 0,
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for all sequences {xn : n ≥ 0} and {yn : n ≥ 0} in X. (ii) is due to (i) of Theo-

rem 3.2.21 and to condition (3.9). Condition (iii) follows from (i) of Corollary 3.2.25

and from the fact that the operator MΩ defined in (3.13) is invariant under the change

of quasi-distance.

2

As a consequence, we assume that the ambient ns-space of homogeneous type

(X, µ, δ) satisfies that µ(B(x, r)) ∼ r, for all x ∈ X.

Definition 3.3.17 An approach system of dilates of Γ is the collection {Γθ : θ > 0}
of approach regions Γθ satisfying:

(i) Γθ is a supernatural approach family for all θ > 0.

(ii) Γθ0 = Γ for some θ0 > 0.

(iii) Γθ(x) ⊂ Γϑ(x) whenever θ ≤ ϑ, for all x ∈ X.

(iv) There exist two positive increasing functions L1(θ) ≤ L2(θ) satisfying that

lim
θ→0

Li(θ) = 0 and lim
θ→∞

Li(θ) = ∞,

for i = 1, 2, such that for all θ > 0:

(a) For every ζ ∈ D, there is a ball B(x, r) = B(x(Γθ, ζ), r(Γθ, ζ)) satisfying

B(x, L1(θ)r) ⊂ (Γθ)
↓(ζ) ⊂ B(x, L2(θ)r),

(b) and conversely, for every ball B(x, r) in X, there exists ζ = ζ(x, r, Γθ) ∈ D

such that

B(x, L1(θ)r) ⊂ (Γθ)
↓(ζ) ⊂ B(x, L2(θ)r).

We say that a family of approach regions Ω is regular if there is a constant C > 0

such that for all ζ ∈ D the next condition is satisfied:

∀y ∈ Ω↓(ζ), ∃ y∗ ∈ X with δ(y, x) = δ(y∗, x) such that B(y∗, t) ⊂ Ω↓(TΓ(B(x,Cr))),

where we recall that (x, r) = (x(Γ, ζ), r(Γ, ζ)) comes from the definition of Γ being a

supernatural family.

Our last result is the next theorem.
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Theorem 3.3.18 Let (X,µ, δ) be a ns-space of homogeneous type, and assume Ω ⊂
D to be a regular family of approach regions. Then the following conditions are

equivalent:

(i) There exists C > 0 and θ > 0 such that MΩf(x) ≤ C MΓθ
f(x), for all x in X

and all measurable functions f .

(ii) AΩ
p = Ap for all 1 ≤ p < ∞, with equivalent constants.

(iii) There is p ≥ 1 such that Ap = AΩ
p , with equivalent constants.

(iv) There exists 0 < γ ≤ 1 such that the family of weights {δ(x, .)γ : x ∈ X} is in

W (Ω) uniformly in x.

(v) There exists θ > 0 such that Ω(x) ⊂ Γθ(x) for all x in X.

Proof. In view of the proof of the preceding results, the proof of equivalency between

(i), (ii) and (iii) is standard, and the completed proof follows once we get proved that

(iv) implies (v). We observe that (v) is equivalent to Ω↓(ζ) ⊂ (Γθ)
↓(ζ) for all ζ ∈ D.

Suppose the family of weights is uniformly in W (Ω). Fix ζ ∈ D. We know that

there exist x ∈ X and r > 0 such that

B(x, L1(θ)r) ⊂ (Γθ)
↓(ζ) ⊂ B(x, L2(θ)r),

for all θ > 0. Take y ∈ Ω↓(ζ). Then, using the assumption of the regularity on Ω, we

have:

δ(x, y)γ = δ(y∗, x)γ

≤ Dγ δ(x, y∗)γ

=
Dγ

µ(B(y∗, r))

∫

B(y∗,r)
δ(x, y∗)γdµ(z)

≤ (AD)γ

µ(B(y∗, r))

∫

B(y∗,r)
(δ(x, z) + δ(y∗, z))γdµ(z)

≤ (AD)γ

(
1

µ(B(y∗, r))

∫

Ω↓(TΓ(B(x,Cr)))

δ(x, z)γdµ(z) + rγ

)
.

Set ux(z) = δ(x, z)γ. Using the hypothesis on the family {ux : x ∈ X}, and the fact
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that µ(B(y∗, r)) is comparable to the radius r, we have:

δ(y, x)γ ≤ (AD)γ

(
Ux(Ω

↓(TΓ(B(x,Cr))))

µ(B(y∗, r))
+ rγ

)

= (AD)γ

(
(Ux)Ω(TΓ(B(x,Cr)))

µ(B(y∗, r))
+ rγ

)

≤ C(AD)γ

(
Ux(B(x,Cr))

r
+ rγ

)
. (3.15)

Now, we saw in Theorem 3.2.30 that Ux(B(x, t)) is comparable to tγ+1 for all t > 0

uniformly in x, and thus returning to (3.15), we get that for all y ∈ Ω↓(ζ) and for all

θ > 0 we have

δ(y, x(Γθ, ζ)) ≤ C
1
γ A D r(Γθ, ζ),

that is,

Ω↓(ζ) ⊂ B(x(Γθ, ζ), ADr(Γθ, ζ)).

To complete the proof, choose θ such that C
1
γ AD ≤ L1(θ), and thus Ω↓(ζ) ⊂

(Γθ)
↓(ζ).

2

3.4 Back to Euclidean spaces: two applications

The ideas and techniques used in the previous sections can be applied to extend some

known results and to simplify the proofs. We consider two cases.

3.4.1 Singular integral operators

We work in Rn equipped with the Lebesgue measure m and the Euclidean distance,

and we think of Rn+1
+ as a space of approach to Rn. We denote the the unit sphere

by Sn−1 and |E| = m(E) is the Lebesgue measure of a set E. We will easily proof

an extended version of the results obtained in [FJR]. Moreover, we will not use the

group structure of Rn to construct an approach family by translating a fixed one.

Let K : Rn −→ R be a Calderón-Zygmund kernel, that is, K(x) = ω(x)/ |x|n such

that:

(i) ω ∈ L∞(Sn−1) is homogeneous of degree 0.

(ii)

∫

Sn−1

ω(x) dx = 0.
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(iii) There exists a constant C > 0 such that |K(x + y)−K(x)| ≤ C
|y|

|x|n+1 , if

|x| > 2 |y|.

The Riesz kernel Kj(x) =
ωj(x)

|x|n , where ωj(x) =
xj

|xj| , is an example of a Calderón-

Zygmund kernel.

We consider the truncated singular integral operator defined by

Tεf(x) =

∫

|y|>ε

ω(y)

|y|n f(x− y) dy = (Kε ∗ f)(x),

where Kε(x) = K(x)·χ{|y|>ε}(x).

The maximal operator related to this family of truncated singular integral opera-

tors is

T ∗f(x) = sup
ε>0

|Tεf(x)| = sup
ε>0

|(Kε ∗ f)(x)| .

It is well-known that this operator satisfies the boundedness T ∗ : Lp(m) −→ Lp(m)

if p > 1 and T ∗ : L1(m) −→ L1,∞(m) (see Theorem 4 in page 42 of [St1]).

Let Ω = {Ω(x) : x ∈ Rn} be an approach family in Rn+1
+ . For such a family, we

define the maximal operator for a measurable function f by

NΩf(x) = sup
(y,t)∈Ω(x)

|(Kt ∗ f)(y)| .

In the particular case of cones Γ(x) =
{
(y, t) ∈ Rn+1

+ : |x− y| < t
}
, the next

lemma is proved in [FJR].

Lemma 3.4.1 For a Calderón-Zygmund kernel K, there exists a constant C > 0

depending on the dimension n such that:

NΓf(x) = sup
(y,t)∈Γ(x)

|(Kt ∗ f)(y)| ≤ T ∗f(x) + C Mf(x),

for all measurable f . Thus, we have the estimates NΓ : Lp(m) −→ Lp(m) if p > 1

and NΓ : L1(m) −→ L1,∞(m)

We recall some concepts defined in the previous sections. The set

Ω↓(y, t) = {x ∈ Rn : (y, t) ∈ Ω(x)}

is the shadow under (y, t) by the approach family Ω. We define the Γ−completion

of Ω by

Ω̂(x) =
{
(y, t) ∈ Rn+1

+ : ∃ (z, s) ∈ Ω(x) such that B(z, s) ⊂ B(y, t)
}

.



204 3. Weighted inequalities and the shape of approach regions

The approach family Ω is Γ−complete (it is also said that it satisfies the so-called

cone condition) if and only if Ω̂(x) = Ω(x) for all x ∈ Rn. For a measure σ in Rn and

an approach family Ω, we define the (outer) measure σΩ in Rn+1
+ by

σΩ(E) = σ({x ∈ Rn : Ω(x) ∩ E 6= ∅}),

for a measurable set E.

The tent under a point (y, t) ∈ Rn+1
+ is the set

T (y, t) = {(z, s) : B(z, s) ⊂ B(y, t)} .

A measure ρ defined in Rn+1
+ is a Carleson measure if there exists a constant

C > 0 such that

ρ(T (y, t)) ≤ C |B(y, t)| ,

for all (y, t) ∈ Rn+1
+ . By Proposition 3.2.9 this is equivalent to the existence of a

constant C > 0 such that

ρ(T (O)) ≤ C |O| , (3.16)

for all open sets O ⊂ Rn, where T (O) = {(z, s) : B(z, s) ⊂ O}.
For the special case of the Riesz kernel, we have:

Theorem 3.4.2 Let Ω be an approach family, and consider the Riesz kernel Kj(x) =

ωj(x)/ |x|n where ωj(x) = xj/ |xj| for 1 ≤ j ≤ n. For a measure ρ defined in Rn, the

following conditions are equivalent:

(i) There exists C > 0 such that

ρ({x ∈ Rn : NΩf(x) > λ}) ≤ C |{x ∈ Rn : NΓf(x) > λ}| ,

for all λ > 0 and measurable f .

(ii) NΩ : Lp(m) −→ Lp,∞(ρ) is bounded for p ≥ 1.

(iii) There exists C > 0 such that ρ(Ω̂↓(x, t)) ≤ C |B(x, t)| for all (x, t) ∈ Rn+1
+ .

(iv) ρbΩ is a Carleson measure.

(v) ρΩ is a Carleson measure.
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Proof. That (i) implies (ii) follows trivially by using Lema 3.4.1. Let us see that (iii)

implies (iv). Take x ∈ Rn so that Ω̂(x) ∩ T (y, t)) 6= φ. There is (z, s) ∈ Ω̂(x) with

B(z, s) ⊂ B(y, t). Since Ω̂(x) is Γ−complete, (y, t) ∈ Ω̂(x). Therefore x ∈ Ω̂↓(y, t),

and hence {
x ∈ Rn : Ω̂(x) ∩ T (y, t) 6= φ

}
⊂ Ω̂↓(y, t).

So, using the definition of ρbΩ, we have:

ρbΩ(T (y, t)) ≤ ρ(Ω̂↓(y, t)) ≤ C |B(y, t)| .

That (iv) and (v) are equivalent conditions follows once we have proved that

ρΩ(T (y, t)) = ρbΩ(T (y, t)).

That ρΩ(T (y, t)) ≤ ρbΩ(T (y, t)) is due to Ω(x) ⊂ Ω̂(x) for all x ∈ Rn. Now, if

Ω̂(x) ∩ T (y, t) 6= ∅, there exists (z, s) ∈ Ω̂(x) with B(z, s) ⊂ B(y, t). By definition

of the Γ−completion, there exists (u, r) ∈ Ω(x) such that B(u, r) ⊂ B(z, s). Thus,

(u, r) ∈ Ω(x) and B(u, r) ⊂ B(y, t), that is, Ω(x) ∩ T (y, t) 6= ∅, which leads to

ρbΩ(T (y, t)) ≤ ρΩ(T (y, t)). Now, suppose that ρΩ is a Carleson measure. Observe that

{(y, t) : |(Kt ∗ f)(y)| > λ} ⊂ T (O),

where O = {x ∈ Rn : NΓf(x) > λ}, for all functions f . Then, applying (3.16), we

obtain:

ρ({x ∈ Rn : NΩf(x) > λ}) = ρΩ({(y, t) : |(Kt ∗ f)(y)| > λ})
≤ ρΩ(T (O))

≤ C |O|
= C |{x ∈ Rn : NΓf(x) > λ}| .

Finally, let us see that (ii) implies (iii). Without loss of generality, we proof it in

the case of ω1(x) = x1/ |x1|. Take x ∈ Ω̂↓(y, t). By the definition of Ω̂ being the

Γ−completion of Ω, there exists (z, s) such that x ∈ Ω↓(z, s) and B(z, s) ⊂ B(y, t).

Let us write y = (y1, y
′) ∈ Rn with y1 ∈ R and y′ ∈ Rn−1. We consider B′ = B(y′, t) ⊂

Rn−1, and A(y, t) = (y1 − 3t, y1) × B′. We observe that |A(y, t)| = 3 |B(y, t)|. Set

f(w) = χA(y,t)(w). We claim that for this choice, there exists a positive constant Cn

depending on the dimension n such that |(Ks ∗ f)(z)| ≥ Cn, and thus NΩf(x) > Cn/2.

As a consequence, we have

Ω̂↓(y, t) ⊂ {x ∈ Rn : NΩf(x) > Cn/2} ,
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and by hypothesis

ρ(Ω̂↓(y, t)) ≤ µ({x ∈ Rn : NΩf(x) > Cn/2})
≤ Cn ‖f‖Lp(m)

= Cn |A(y, t)|
= Cn |B(y, t)| ,

which is (iii). Let us proof the claim:

|(Ks ∗ f)(z)| =

∣∣∣∣
∫

{y1−3t<z1−ξ1<y1, |zi−ξi−yi|<t, i 6=1}

ω1(ξ)

|ξ|n χ{|ξ|}>s(ξ) dξ

∣∣∣∣

=

∣∣∣∣
∫

{z1−y1<ξ1<3t+z1−y1, |zi−ξi−yi|<t, i 6=1}

ω1(ξ)

|ξ|n χ{|ξ|>s}(ξ) dξ

∣∣∣∣

=

∣∣∣∣
∫

{z1−y1<ξ1<0, |zi−ξi−yi|<t, i6=1}

−1

|ξ|n χ{|ξ|>s}(ξ) dξ

+

∫

{0<ξ1<3t+z1−y1, |zi−ξi−yi|<t, i 6=1}

1

|ξ|n χ{|ξ|>s}(ξ) dξ

∣∣∣∣

=

∫

{|z1−y1|<ξ1<3t+|z1−y1|, |zi−ξi−yi|<t, i6=1}

1

|ξ|n χ{|ξ|>s}(ξ) dξ,

where the last equality follows by symmetry. Now, since B(z, s) ⊂ B(y, t) we have

that

|z1 − y1| < |z − y| < t− s < t

3t− |z1 − y1| > 2t,

and therefore

|(Ks ∗ f)(z)| ≥
∫

{t<ξ1<2t, |zi−ξi−yi|<t, i 6=1}

1

|ξ|n χ{|ξ|>s}(ξ) dξ

=

∫

{t<ξ1<2t|zi−ξi−yi|<t, i6=1}

1

|ξ|n dξ,

where the equality is due to the fact that if t < ξ1, then s < t < |ξ|. We observe that

ξ1 < 2t but also |ξi| ≤ |ξ − zi + yi|+ |yi − zi| < 2t if i 6= 1, and thus |ξ| < √
n2t, that

is,
1

|ξ|n >
Cn

tn
.

Using this estimate, we finally have

|(Ks ∗ f)(z)| ≥ Cn

tn
|{ξ ∈ Rn : t < ξ1 < 2t, |zi − ξi − y1| < t, i 6= 1}| = Cn
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2

An easy consequence of Theorem 3.4.2 is that, without loss of generality, we can

always assume our approach family Ω to be Γ−complete :

Corollary 3.4.3 Let Ω be an approach family, and consider the Riesz kernel Kj(x) =

ωj(x)/ |x|n where ωj(x) = xj/ |xj| for 1 ≤ j ≤ n. For a measure ρ defined in Rn, the

following conditions are equivalent:

(i) NΩ : Lp(m) −→ Lp,∞(ρ) is bounded for p ≥ 1.

(ii) NbΩ : Lp(m) −→ Lp,∞(ρ) is bounded for p ≥ 1.

(iii) There exists C > 0 such that ρ(Ω̂↓(x, t)) ≤ C |B(x, t)| for all (x, t) ∈ Rn+1
+ .

In Theorem 3.4.2, all the implications remain true for a general Calderón-Zygmund

kernel, maybe except implication (ii) =⇒ (iii), and with the same proof. In particu-

lar, we have:

Theorem 3.4.4 Let Ω be an approach family, and K a Calderón-Zygmund kernel.

If, for a measure ρ in Rn, there exists C > 0 such that ρ(Ω̂↓(x, t)) ≤ C |B(x, t)| for

all (x, t) ∈ Rn+1
+ , then NΩ : Lp(m) −→ Lp,∞(ρ) is bounded for p ≥ 1.

3.4.2 Potential spaces

We extend the result of [RS] relaying potential spaces and approach regions. As

before, we do not need to consider translated regions of an initial approach region.

For 1 ≤ p < ∞, let k be a positive radially decreasing function in L1(m). We

define

Lp
k(m) = {f : f = F ∗ k, for some F ∈ Lp(m)} ,

endowed with the quotient norm ‖f‖Lp
k(m) = inf

{
‖F‖Lp(m) : f = F ∗ k

}
. We denote

Vt(x) = (Pt ∗ k)(x) the harmonic extension of k, where P is the Poisson kernel and

Pt(y) = t−nP (t−1y), that is

Pt(y) =
cnt

(|x|2 + t2)(n+1)/2
,

for (y, t) ∈ Rn+1
+ , where cn = Γ(n + 1/2). We set r(t) = ‖Vt‖−p/n

p′ .

For an approach family in Rn+1
+ , we consider the operator

NΩf(x) = sup
(y,t)∈Ω(x)

|(Pt ∗ f)(y)| ,
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for a measurable f .

The r-cones are the sets Γr(x) =
{
(y, t) ∈ Rn+1

+ : |x− y| < r(t)
}
. The following

lemma is proved in [NRS].

Lemma 3.4.5 For a radially decreasing function k ∈ L1(m) \ Lp′(m), there exists a

positive constant C such that

NΓr(F ∗ k)(x) ≤ C MpF (x),

for all x ∈ Rn, where MpF (x) = sup
B(y,t)3x

(
1

|B(y, t)|
∫

B(y,t)

|F (z)|p dz

)1/p

. As a conse-

quence NΓr : Lp
k(m) −→ Lp,∞(m) is bounded.

The Γr-completion of an approach family Ω is the approach family

Ωr(x) = {(y, t) : ∃ (z, s) ∈ Ω(x) such that B(z, r(s)) ⊂ B(y, r(t))} .

An approach family Ω is Γr-complete if Ω(x) = Ωr(x) for all x ∈ Rn.

The r-tents are the sets Tr(y, t) =
{
(z, s) ∈ Rn+1

+ : B(z, r(s)) ⊂ B(y, r(t))
}
. A

measure ρ defined in Rn+1
+ is a r-Carleson measure if there exists a constant C > 0

such that

ρ(Tr(y, t)) ≤ C |B(y, t)| ,
for all (y, t) ∈ Rn+1

+ . It is proved in [RS] that this is equivalent to the existence of a

constant C > 0 such that

ρ(Tr(O)) ≤ C |O| , (3.17)

for all open sets O ⊂ Rn, where Tr(O) =
{
(y, t) ∈ Rn+1

+ : B(y, r(t)) ⊂ O
}
.

Theorem 3.4.6 Let Ω be an Γr-complete approach family, and consider a radially

decreasing function k ∈ L1(m)\Lp′(m) and r(t) = ‖Vt‖−p/n
p′ . For a measure ρ defined

in Rn, the following conditions are equivalent:

(i) There exists C > 0 such that

ρ({x ∈ Rn : NΩf(x) > λ}) ≤ C |{x ∈ Rn : NΓrf(x) > λ}| ,

for all λ > 0 and measurable f .

(ii) NΩ : Lp
k(m) −→ Lp,∞(ρ) is bounded for p ≥ 1.
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(iii) There exists C > 0 such that ρ(Ω↓(x, t)) ≤ C |B(x, t)| for all (x, t) ∈ Rn+1
+ .

(iv) ρΩ is a r-Carleson measure.

Proof. That (i) implies (ii) is Lemma 3.4.5. Let us see that (iii) implies (iv). Take

x ∈ Rn so that Ωr(x) ∩ Tr(y, t)) 6= φ. There is (z, s) ∈ Ωr(x) with B(z, r(s)) ⊂
B(y, r(t)). Since Ωr(x) is Γr−complete, (y, t) ∈ Ωr(x). Therefore x ∈ Ω↓

r(y, t), and

hence

{x ∈ Rn : Ωr(x) ∩ Tr(y, t) 6= φ} ⊂ Ω↓
r(y, t).

So, using the definition of ρΩr , we have:

ρΩr(Tr(y, t)) ≤ ρ(Ω↓
r(y, t)) ≤ C |B(y, t)| .

That (iv) implies (v) is easy because ρΩ(E) ≤ ρΩr(E), since Ω(x) ⊂ Ωr(x) for all

x ∈ Rn. Now, suppose that (ρΩ,m) is a Carleson pair. Observe that

{
(y, t) ∈ Rn+1

+ : |(Pt ∗ f)(y)| > λ
} ⊂ T (O),

where O = {x ∈ Rn : NΓrf(x) > λ}, for all functions f . Then, applying (3.17), we

obtain:

ρ({x ∈ Rn : NΩf(x) > λ}) = ρΩ(
{
(y, t) ∈ Rn+1

+ : |(Pt ∗ f)(y)| > λ
}
)

≤ ρΩ(T (O))

≤ C |O|
= C |{x ∈ Rn : NΓrf(x) > λ}| .

Finally, let us proof that (ii) implies (iii). We fix (y, t) ∈ Rn+1
+ and take x ∈ Ω↓(y, t).

Since the application

F ∈ Lp(m) 7→ Hy(F )(.) = F (y + .) ∈ Lp(m)

is an isomorphic and isometric map of Lp for all y ∈ Rn, we have that

‖Vt‖p′ = sup
‖F‖p=1

∣∣∣∣
∫

Rn

Vt(w)Hy(F )(−w) dw

∣∣∣∣ = sup
‖F‖p=1

|(Vt ∗ F )(y)| .

We choose F ∈ Lp with ‖F‖p = 1 satisfying that |Vt ∗ F (y)| ≥ ‖Vt‖p′
2

. Now, we take

f = F ∗ k, and therefore:

NΩf(x) = sup
(z,s)∈Ω(x)

|(Vs ∗ F )(z)| ≥ |(Vt ∗ F )(y)| > ‖Vt‖p′

4
.
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Then,

Ω↓(y, t) ⊂
{

x ∈ Rn : NΩf(x) >
‖Vt‖p′

4

}
,

and by hypothesis, we obtain:

ρ(Ω↓
r(y, t)) ≤ ρ

({
x ∈ Rn : NΩf(x) > ‖Vt‖p′ /4

})

≤ C ‖Vt‖−p
p′ ‖f‖p

Lp
ν

≤ C |B(y, r(t))| .

2
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[K] A. Korányi, Harmonic functions on hermitian hyperbolic space, Trans.

Amer. Math. Soc. 135 (1969), 507-516.
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