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Abstract. We study transfer operators defined from vector bundle
maps. We will refer to these operators transfer operators or weighted
composition operators. This study appears naturally, in the study of
normally hyperbolic manifolds and in the study of linearization of hy-
drodynamic equations.

In a first part, we introduce the notation and review the main gen-
eral results that appear in the literature.

In a second part, we present the main general results of this manu-
script, in particular a study of the theory of Mather spectrum. We also
develop a study of the relation between the spectrum in different spaces
and also study which features of the spectrum can be obtained form the
study of individual orbits, in particular, periodic orbits. As an appli-
cation of these results, we obtain sharp versions of structural stability
and shadowing theorems including smooth dependence on parameters,
which appear in the last part of the manuscript.

In a third part, we concentrate on a particular case of importance
in applications, namely skew products over rotations. These systems
appear as models of systems subject to external forces which are quasi-
periodic. These problems appear often in applications. For example
in celestial mechanics. In the last part, as an application of the the-
ory developed, we present some results on the persistence of invariant
manifolds under quasi-periodic perturbations and a posteriori estimates
which can be used to validate numerical computations.

In a fourth part, we study the influence of the preservation of geo-
metric structures and we introduce what we call locally constrained
spaces. The main phenomenon here is that the spectrum may grow
when we consider restriction to invariant subspaces. As an application,
in the last part we present a spectral formulation of the Bowen conjec-
ture.

As we have mentioned above, the fifth part is devoted to several
applications: structural stability and shadowing theorems; invariant tori
in quasi periodic systems; the conjecture of Bowen.

Further applications are: spectral theory in Holder spaces; normally
hyperbolic invariant manifolds; non-stationary normal forms; applica-
tions to hydrodynamics (spectral properties of the perfectly conducting
dynamo problem and the linearization of Euler equations); etc.
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Preface

The study of Dynamical Systems has always been driven by the need to
understand concrete problems and hence it has incorporated a wide variety
of mathematical tools.

The incorporation of the functional analysis tools in a manner similar to
the one studied here started in [Mos69, Mat68] in the study of structural
stability. In particular, it was observed in [Mat68] that the property that a
map f was Anosov could be expressed in terms of spectral properties of f∗,
acting on C0 vector fields. This, among other things, lead to a very clean
proof of structural stability for Anosov maps (see e.g., [Mos69]).

The use of functional analysis to study problems of structural stability is
very natural since the core of the problem is the existence of a solution of a
functional equation. The study of the functional analysis properties of maps
was extended considerably in scope and generality by many authors. Let us
note in particular [SS74, SS76a, SS76b, Sac78] which develop very deep
relations between recurrence properties and uniformity of several functional
analysis constructs. The arguments for this interplay have a strange beauty
since one has often to take hypothesis in one category and obtain result from
another. See also [MS89, JPS87].

It should also be remarked that the weighted shift operators are very
natural from the point of view of ergodic theory. For example, [LS90,
LS91, Kit97]

Very similar problems to the problems of structural stability appears
in the study of invariant objects. The study of invariant manifolds near
hyperbolic points was started already by Poincaré and Lyapunov, before
modern functional analysis was started. Functional analysis language was
incorporated gradually. See [CFdlL05] for some historical notes.

More general invariant manifolds serve as landmarks that organize the
long term behavior of dynamical systems and are the key to understanding
many interesting geometric properties both for theoretical applications and
for more applied problems dealing with numerical computations of concrete
trajectories. The fact that a manifold is invariant is expressed as a func-
tional equation, somewhat similar to the equations appearing in the study
of structural stability. Hence, the study of invariant manifolds leads also to
very interesting functional analysis problems. Functional analysis character-
izations of normally hyperbolic manifolds were studied in [Mn78, Swa83].
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A further application of transfer operators arises in hydrodynamics. It
is very well known that many quantities in hydrodynamics are just “trans-
ported by the flow”. For example, Helmholtz theorem asserts that, given
a solution of Euler equations, vorticity is just transported. The celebrated
dynamo equations assert that in a perfectly conducting fluid, the magnetic
field is also transported by the fluid. These results are also expressed as
“conservation of the flux”. Hence the same spectral problems for transfer
operators appear as the problem of linearization of hydrodynamic equations.

Nevertheless, the study of transfer operators in hydrodynamics leads to
surprises. In hydrodynamics, the Physics dictates that the magnetic field, or
the perturbations of Euler equations satisfy that they have zero divergence.
Hence, it is natural to consider the linearization of the equations in spaces
of zero divergence vector fields. It was discovered in [dlL93] that this has
very important consequences for the spectral properties. The somewhat
counterintuitive result is that, when restricting to spaces of zero divergence,
which is proper closed space, the spectrum grows. Indeed, in the cases
considered, the spectrum becomes an annulus. Hence, the effect of growth
of the spectrum when restricting to zero divergence was termed the no-gaps
phenomenon in [CL99].

Understanding this no-gaps phenomenon throws some light in the study
of hydrodynamics. From our point of view, we thing that the no-gaps phe-
nomenon begs for a more systematic study of the effect of the geometric
properties (symplectic, contact, volume preserving) of dynamical systems
on their spectral properties. This has practical consequences for dynamical
systems since all the dynamical systems appearing in mechanics preserve a
symplectic structure.

Another important link between dynamical systems and functional anal-
ysis is in the study of zeta functions introduced in [AM65, Sma67] as
counting functions for periodic orbits. The connection with functional anal-
ysis [Rue76a, Rue76b, Rue92a] is that, under some assumptions on the
dynamical system, the operators that appear in the applications above are
nuclear. That is, one can define ζ(s) = det(A − sId) in some appropriate
sense. Moreover, one can also interpret ζ(s) as a counting function on peri-
odic orbits. By using functional analysis to study the properties of ζ(s) one
obtains remarkable counting results on periodic orbits. The counting func-
tions ζ(s) share remarkable properties with the Riemann ζ function that
counts primes. These studies have lead to a remarkable theory in which
there are functional analysis interpretations of many important dynamical
quantities such as decay of correlations and central limit theorems.

This book grew as an attempt by the authors to put together some of
the above results in a more systematic way. At the time, our main inter-
est was the study of numerical methods for the computation of invariant
manifolds for some quasi-periodically forced systems. We wanted to have
results that ensured that, given a numerical solution that solves the required
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functional equation with good accuracy (a well written program always pro-
duces that) then, there is a true solution nearby. Some of our rigorous
results, numerical algorithms and empirical results have already appeared
in [HdlLb, HdlL04, HdlL05a].

This lead us to a reexamination of the theory of transfer operators.
From the point of view of numerical analysis and from the point of view of
applications to hydrodynamics, it was important to have several functional
spaces at our disposal. For example, the Cr spaces and the Sobolev spaces.
We wondered what was the relation of the spectrum in these spaces.

We also wondered what was the relation between the spectral properties
and the spectrum on individual orbits. Besides being of interest for the
numerical analysis of normally hyperbolic manifolds, the issue had appeared
often in the theory of normally hyperbolic manifolds. There are two basic
theories of normally hyperbolic manifolds. One theory of hyperbolicity can
be found in [HPS77]. The theory of [HPS77] is based on the study of
bundles and their contraction properties. Another theory of hyperbolicity
is found in [Fen72, Fen74, Fen77]. This theory is based on the study
of individual orbits. This theory lends itself to generalization where the
properties are not uniform [Pes76, Pes77, Pol93, BP01]. The study of
the relation between global properties of the spectrum and the spectrum on
periodic orbits leads to a unification of these theories.

We should also remark that the relation between the spectrum in differ-
ent spaces and the periodic orbits had appeared naturally in the mathemati-
cal theory of hydrodynamics [Vis86]. (Similar relations had been found em-
pirically in the plasma theory, when practitioners often found that X-points
are associated with instabilities of the magnetic fields). Another different
area where spectral theory in different spaces (i.e. solvability of equations
in different spaces) is related to periodic orbits is the part of rigidity theory
related to the study of Livsic equation etc. See [dlLMM86]. Of course, the
relation between periodic orbits and spectral properties is the basis of the
theory of ζ functions.

We also felt that, given that the geometry affects significantly the spec-
trum, one should study more systematically the relations between spectrum
and geometry. In particular, since the systems of Hamiltonian mechanics
preserve a symplectic structure, it would be important to study the influ-
ence of the symplectic structure on the functional analysis properties and
therefore on stability properties etc. The issues of the relations of periodic
orbits and the regularity of splittings

For the problems mentioned above we could find scattered references in
the literature and some of the results (e.g. the equivalence of the hyperbol-
icity theory based on C0 and bounded sections) were in the folklore, even if
not explicitly written.

We undertook the task of writing a complete explanation of many of
these results, which were useful for the analysis needed for the numerical
analysis of invariant manifolds. We also undertook a comparison of the
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different theories of normal hyperbolicity of [HPS77] and that of [Fen72,
Fen74, Fen77].

We also undertook a more systematic study of the influence of geometric
properties on the spectrum. The arguments of [dlL93] could also extended
to other spaces and we obtain similar no-gaps phenomena in the study of
closed versus exact forms. This leads to some spectral formulations of some
global problems in dynamical systems such as the Bowen conjecture. We
hope that this can also lead to some spectral characterization of other non-
integrability phenomena such as those discovered in in [JPdlL95, dlL92].
We point out that very similar phenomena no-gap phenomena happen in
spaces of jets. This gives a spectral interpretation of some results of non-
integrability observed in [JPdlL95, dlL92]. We also expect that the theory
developed here leads to a spectral theory formulation of the method of “non-
stationary normal forms” [DeL93, GK98, KS96, Guy02].

Unfortunately, we have not been able to cover the very deep results
on ζ function theory and its relation with issues such as decay of cor-
relations. This is a theory still being developed. Excellent surveys are
[May80, Bal00].

Notice that, since our main motivation is to apply the spectral results to
finite-dimensional dynamical systems, the transfer operators we consider are
1-1. There are generalizations of most of the results of this manuscript to
the non-invertible case. The generalization of Mather spectral theory to this
context is easy. We can also use the generalization of Sacker-Sell spectral
theory to the non-invertible case [SS94, CL94, CL96, CL99], even this
theory works for infinite-dimensional transfer operators, i.e. associated to
bounded linear bundle maps in Banach bundles.

This book is organized as follows: In Part 1, we cover some general
results of the theory, reviewing the results of Sacker and Sell, Hirsch, Pugh
and Shub, Mañé, Oseledec, etc. (see the references above).

In Part 2, we refine the Mather theory of spectrum of transfer oper-
ators. This refinement leads us to consider the spectrum of the transfer
operator acting in different categories (bounded, continuous, Cr, Sobolev).
The results are very general, in the sense that do not depend on having
dynamical systems of a special form or considering some spaces with a local
constraint. As an application of the results of this first part, we present
results on smooth dependence on structural stability in different spaces (in
the last part).

In Part 3, we present results which assume that the dynamical system
on the base is a rotation. As an application, we summarize the results on ex-
istence of invariant manifolds in [HdlLb], that lead to numerical algorithms
[HdlL04, HdlL05a] (in the last part). Systems with quasi-periodic forcing
are very natural in astrodynamics where the forcing terms are the other ce-
lestial bodies, which are quasi-periodic to a very good approximation. Since
quasi-periodic systems are very important in applications, we have written
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Part 3 in a very self-contained way, even is this produces repetitions of some
arguments of Part 1 and Part 2.

In Part 4, we study the properties related to the fact that we are con-
sidering transfer operators acting on a space of functions that satisfy some
differential constraint (e.g. vector fields that are zero divergence, symplectic
or forms which are closed or exact). We show that in all those cases, we
obtain a non-gaps phenomenon. In the last part we present a spectral for-
mulation of the Bowen conjecture, a problem that concerns global dynamics.

Part 5 is devoted to several applications, as we have already mentioned:
Structural stability, invariant manifolds of quasi periodic systems, global
dynamics (Bowen conjecture).

There are many other applications that we have in mind, and are in
progress: spectral theory in Holder spaces (via interpolation spaces), nor-
mally hyperbolic invariant manifolds (with the parameterization method),
non-stationary normal forms, applications to magneto-hydrodynamics (dy-
namo theory) and to Euler equations (with the theory of spectrum in locally
constrained spaces of jets), etc.

Preliminary versions of this book have been circulated before as preprints
[dlL98, HdlL03a, HdlL03b, HdlL03c]. This book incorporates the mate-
rial of these preprints and superseeds them. This has allowed us to suppress
certain duplications and to develop further connections on the material. In
preparing the book, we have added significant new material not included in
any of the preprints. Indeed this book, besides some more pedagogical ma-
terial contains some results which, to our knowledge, have never appeared
in the literature.
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Part 1

Introduction and review



In this part, we start our study of the weighted shift operators. In this
part, we will cover the results which do not depend on the fact that the
dynamical system is a rotation or on the fact that the space of sections
satisfies some local constraints.

The first Chapter 1 collects standard results on differential geometry,
dynamical systems and spectral theory. The results covered here are well
known, but we will use them to establish the notation.

Since spectral theory is probably less known for the experts in dynamical
systems and some of the material is rather subtle, we have developed a very
detailed appendix on spectral theory, which we have placed in an appendix at
the end of this manuscript. A concept that we have found specially fruitful
in our studies is that of Weyl spectrum or approximate point spectrum,
which is the set of approximate eigenvalues.

Chapter 2 contains a review of the spectral theory of Sacker and Sell
[SS74, SS76a, SS76b, Sac78] compared with other spectral theories. In
particular, the results of [Mat68, HPS77, Mn78, CS80, Swa81, LS90,
LS91, CL99].

The main result is that there is a relation between the existence of gaps
in the spectrum of the transfer operator and the existence of invariant sub-
bundles for the generating vector bundle automorphism.

In the study of exponential dichotomies and invariant splittings our
starting point are the sets of positively and negatively bounded orbits We
have followed the lines in [SS74]. Later on, we obtain this sets from spec-
tral properties of the transfer operator acting on bounded sections (Theo-
rem 2.18). Although most of the papers in the literature consider the trans-
fer operator acting on continuous sections, study also spectrum acting on
bounded sections (see [HPS77]) and in other spaces of different regularity.

As it is well known, the regularity of the invariant subbundles comes
from the invariant section theorem [HP70, HPS77]. The last part the
section is devoted to the study of Lyapunov multipliers (see [SS78]).



CHAPTER 1

Preliminaries

In this section we will collect some standard facts from differential ge-
ometry, dynamical systems and spectral theory that we will use and state
precisely our results. The results that we quote are quite standard and
their proofs can be found in standard textbooks (e.g. [DFN92, DFN85,
DFN90] for differential geometry, [KH95] for dynamical systems and [Kat76,
DS88a, DS88b, DS88c] for spectral theory), nevertheless, stating them
will serve to establish our notation and make precise our standing assump-
tions. Since the spectral theory is possibly less known for the experts in
dynamical systems, we have extended the explanations in Appendix A.

1.1. Differential geometry

1.1.1. Bundles, sections. Along this manuscript, E will denote a
complex vector bundle over a compact and connected manifold P, whose
projection is Π : E → P. The rank of the vector bundle E is the dimension
of its fibers, and it will be denoted by n. The zero-section of the vector
bundle is denoted by E0.

Remark 1.1. Actually, the assumption that P is a manifold is only
needed in the section when we discuss Cr bundles. In the sections when we
discuss continuous, bounded or Lp sections we will only need that P is a
metric space which is compact, connected and, in some theorems, perfect.
This generality is useful for dynamical systems since, often one needs to deal
with attractors etc. which are complicated sets.

We also note that in Section 3.8 we will study the effect of restricting the
base set P so that one possible way of obtaining the results for invariant sets
in smooth dynamical systems is to consider them as subsets of a manifold.

A section is a map v : P → E that Π◦S = IdP , i.e. to a point θ ∈ P we
associate the vector v(θ) ∈ Eθ = Π−1(θ). We will denote the vector space
of sections by Γ(E).

A subbundle F is a closed subset of E such that every Fθ = {vθ ∈ F | θ ∈
P} is a linear subspace of Eθ and all of them have the same dimension n1. So,
the fibers depend continuously on θ and n1 is the rank of the bundle F . To
do so, notice that the map θ → Fθ is a section defined on the Grassmannian
bundle Gn1(E) (this is a bundle whose fibers Gn1(E)θ are the sets of linear
subspaces of E with dimensions n1). Since the manifold P is compact, this

11



12 1. PRELIMINARIES

section on the Grassmannian bundle has compact graphs and hence, the
mapping is continuous.

To introduce topology in the space of sections we make the standing
assumption that there is a Finsler metric on the bundle, i.e. a norm |·|θ
on each fiber Eθ, that depends continuously with respect to the base point
θ (we will suppress the subindex θ in the norm when there is no doubt of
the fiber where it is acting in). Of course, a particular case of the above
situation is when the norm on each fiber comes from an inner product, that
is, when the Finsler metric is a Riemannian metric. In this manuscript, we
will not need that the metric is Riemannian.

As it is well known, we can transfer vector space constructions into vector
bundle constructions, by extending the definitions fiberwise. For instance,
if E, E1, . . . , Ek, F are vector bundles over the same base P, we define:

• The Whitney sum E1 ⊕ · · · ⊕ Ek;
• The k-multilinear bundle, i.e., the vector bundle of k-multilinear

maps L(E1, . . . , Ek;F );
• If E1 = · · · = Ek = E, we will write Lk(E;F ) = L(E1, . . . , Ek;F ),

and we will also consider the symmetric k-multilinear bundle Lk
s(E;F )

and the antisymmetric k-multilinear bundle Lk
a(E;F );

• The dual bundle E∗, and its subbundles of k-symmetric forms
Altk(E) = Lk

s(E; C) (the k-symmetric bundle), and that of k-
alternate forms Altk(E) = Lk

a(E; C) (the k-alternate bundle).

Remark 1.2. Since we will be working on spectral theory, it is natural to
consider only complex vector spaces. Study of the spectrum of real operators
can be reduced to the complex case using the method of complexification.

At the functional analysis level, we recall that we can complexify a Ba-
nach space and its operator as follows.

Given X̃ a real Banach space and L : X̃ → X̃ a real linear operator, set
X = X̃ ⊕ X̃i and set for (a+ bi) ∈ C, x1 + x2i ∈ X

(1.1) (a+ bi)(x1 + x2i) = (ax1 − bx2) + (ax2 + bx1)i .

The complexification of L̃ is given by L(x1 + x2i) = L̃x1 + L̃x2i.
This construction on Banach spaces, has a counterpart in the study of

bundle automorphisms.
If Ẽ is a real vector bundle, we complexify it just complexifying the

fibers: Eθ = Ẽθ + Ẽθi. We have a complex conjugation on the fibers:
vθ + wθi = vθ − wθi. If we have a Finsler metric on Ẽ we define a Finsler
metric on E by |vθ + wθi| =

√
|vθ|2 + |wθ|2.

If M̃ is a real vector bundle automorphism on a real vector bundle Ẽ
we can consider it also as acting on the complexification E = Ẽ + Ẽi:
M(θ)(vθ + wθi) = M(θ)vθ + M̃(θ)wθi.

When we consider spaces of sections into the complexified bundle, the
complexified bundle automorphism induces the complexified operator.
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As it is usual in linear algebra and functional analysis, when we speak
about the spectrum of a real operator – which are often the ones which
appear naturally in geometric operations – we will mean the spectrum of
the complexification.

As we will point out in remarks, after one performs the functional anal-
ysis calculations, one can often check that the results in the complex spaces
(e.g spectral projections) project down to real space. In doing so, it is useful
to recall that in complexified real spaces, one can define a complex conju-
gation by x1 + x2i = x1 − x2i. This conjugation is not a linear operation.
but

x+ y = x+ y ∀x, y ∈ X̃

z · x = z · y ∀z ∈ C, x ∈ X̃

1.1.2. Vector bundle maps, transfer operators. We are interested
in the invariant objects of vector bundle automorphisms in E, also called
linear extensions [AA88]. Recall some definitions.

Definition 1.3. Following the notation above, a vector bundle automor-
phism M over a homeomorphism f : P → P is a homeomorphism M : E →
E such that Π◦M = f◦Π and for every θ ∈ P the map M(θ) : Eθ → Ef(θ) is
linear and 1−1. We will write Mf to denote a vector bundle automorphism
M over f .

Definition 1.4. Given a vector bundle automorphism Mf in E, an
invariant subbundle is a subbundle F of E such that for all θ ∈ P

M(θ)Fθ = Ff(θ) .

We say that a (Whitney sum) splitting

E = E1 ⊕ E2

is invariant if E1 and E2 are invariant.

Definition 1.5. To a vector bundle automorphism Mf we associate:
• A transfer operator. That is, the linear map Mf : Γ(E) → Γ(E)

defined by

(1.2) (Mfv)(θ) = M(f−1(θ))v(f−1(θ)) .

• A cocycle. That is, the set of maps

M(θ,m) : Eθ → Efm(θ) ,

where θ ∈ P and m ∈ Z defined by

M(θ, 0) = Id ,

M(θ,m) = M(fm−1(θ)) . . .M(f(θ))M(θ) if m > 0 ,

M(θ,−m) = M(f−m(θ))−1 . . .M(f−2(θ))−1M(f−1(θ))−1 if m > 0 .

(1.3)
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Notice that for a given section v ∈ Γ(E), and for any m ∈ Z and θ ∈ P,

(1.4) Mm
f v(θ) = M(f−m(θ),m)v(f−m(θ)) .

Remark 1.6. In general, given two vector bundles π1 : E1 → P1 and
π2 : E2 → P2, and a vector bundle map Mf : E1 → E2 over f : P1 → P2,
we associate the transfer map T (Mf ) = Mf : Γ(E1) → Γ(E2) defined by

Mfv = M◦f−1v◦f−1 .

This defines a covariant functor from the category of vector bundles to the
category of vector spaces. That is to say, if Mf : E → F and Ng : F → G
are vector bundle maps, then

T (Ng◦Mf ) = T (Ng)◦T (Mf ) .

As Mather pointed out in [Mat68], there is a nice connection between
the functional analysis of the transfer operator Mf (i.e., its spectrum), the
geometry of the vector bundle automorphism (i.e., invariant subbundles)
and the dynamics of the cocycle (rates of growth of orbits).

Two examples that we have in mind are linear skew product and push-
forward operator.

A linear skew product is a vector bundle automorphism in the trivial
bundle P × Cn. It is given by a matrix valued map M : P → GLn(C) and
a base homeomorphism f : P → P by

(1.5) x̄ = M(θ)x ,
θ̄ = f(θ) .

Linear skew products appear naturally in Dynamics when considering the
linearization of the Dynamics around an invariant manifold of a skew prod-
uct system [HdlLb, HdlL04, HdlL05a].

Given a smooth and discrete dynamical system on a real n-dimensional
manifold F : N → N , and an invariant manifold P , the push-forward of
F , F∗ = TF restricted to the tangent bundle of N in P, TPN , is a vector
bundle automorphism in TPN . Notice in this case we go through complex
spaces by means of complexifying the bundle TPN : E = TPN ⊕TPN i. The
push-forward appear naturally in dynamical systems as variational equa-
tions. Heuristically, it is useful to think of the vectors in the tangent space
as infinitesimal perturbations. Hence, the push-forward heuristically de-
scribes how infinitesimal perturbations are propagated by the dynamical
system. This, of course is a fundamental tool in the analysis of stability and
instability properties.

As it is well known in differential geometry, one can define the push-
forward in spaces of tensors, forms, etc. These are all vector bundles and fit
into our general framework. The spectral properties of the push-forward in
those spaces plays a role in dynamical systems. In particular, in Part 4, we
will have some occasion of studying the spectrum acting on forms.

Note that the operator Mf in (1.2) can be considered as acting on differ-
ent spaces. If the vector bundle E is Cr and the vector bundle automorphism
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(f,M) is Cr, we can consider Mf as acting on C l sections, with l ≤ r. The
spectral theory of these operators in different spaces has been considered in
different places (e.g. [LS90, LS91, CL99]). Section 3.7 of this manuscript
is devoted to study some related questions, and Part 3 makes a particular
study of transfer operators over rotations.

We are interested also in spectral theory of transfer operators acting in
other bundles. For instance, given k bundles over the manifold P, E1, . . . , Ek,
and k vector bundle automorphisms over the homeomorphism f , M1

f : E1 →
E1, . . . ,M

k
f : Ek → Ek, we can consider the vector bundle automorphism on

L(E1, . . . , Ek;F ) over f−1 given by:

M(θ)∗kv∗kf(θ)(v
1
θ , . . . , v

k
θ ) = v∗kθ (M1(θ)v1

θ , . . . ,M
k(θ)vk

θ ) ,

for any θ ∈ P, v∗kf(θ) ∈ L(E1
f(θ), . . . E

k
f(θ);Ff(θ)) and v1

θ ∈ E1
θ , . . . , v

k
θ ∈ Ek

θ .
Similar definitions give vector bundle automorphisms on the Whitney

sum (using push forward) or the dual bundle (using, as before, pull back),
etc.

1.2. Function spaces

1.2.1. Some standard functions spaces. We collect some standard
definitions on spaces of (real or complex) functions defined in a compact
manifold P. We consider also a Borel measure µ on P.

Definition 1.7. In the following, ϕ : P → C denotes a complex valued
function.

We denote by B(P), the Banach space of bounded functions with the sup
norm:

(1.6) ||ϕ||B = ||ϕ||∞ = sup
θ∈P

|ϕ(θ)| .

For r ∈ N, we denote Cr(P), the Banach space of r-times continuously
differentiable functions equipped with the norm

(1.7) ||ϕ||Cr = max
i≤r

sup
θ∈P

|Diϕ(θ)| .

Recall that |Diϕ(θ)| is computed according to the usual norm of i-multilinear
operators. Notice that C0(P) is a closed subspace of B(P).

For p ∈ [1,∞[, we consider the space Lp-functions, (or, more properly
equivalence classes of functions defined modulo equivalence of zero measure)
Lp(P, µ), with the norm given, for p <∞ by

(1.8) ||ϕ||Lp =
(∫

P
|ϕ|p dµ

) 1
p

.

For a L∞-function ϕ there exists a finite constant K such that |ϕ(θ)| ≤ K
for µ−a.e. θ ∈ P. The norm in L∞(P, µ) is given by the essential supremum

(1.9) ||ϕ||L∞ = inf{K ∈ R | |ϕ(θ)| ≤ K for µ− a.e. θ ∈ P} .
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When r ∈ N, p ∈ [1,∞], we say ϕ ∈W r,p(P, µ) when Diϕ ∈ Lp, i = 0, . . . , r
(we understand the derivative in the sense of distributions). At it is also
well known, the Sobolev space W r,p(P, µ) is a Banach space under the norm

(1.10) ||ϕ||W r,p = max
i≤r

||Diϕ||Lp .

An important characterization of Sobolev spaces is given by the fact
that, for r ∈ N \ {0}, 1 < p <∞,

ϕ ∈W r,p ⇔ (−∆ + Id)r/2 ∈ Lp ,

where ∆ denotes the Laplacian. This let us extend the definition of the
Sobolev spaces to real indices r.

Definition 1.8. For r ∈ R and p ∈]1,∞[, we define the Sobolev space

(1.11) W r,p = {ϕ : P → C | (−∆ + Id)r/2 ∈ Lp} .
The norm

(1.12) ||ϕ||W r,p = ||(−∆ + Id)r/2||Lp ,

makes W r,p a Banach space.

Remark 1.9. Definitions if W r,p in 1.7 and 1.8 are equivalent for r ∈
N \ {0} and 1 < p < ∞. The equivalence of the two norms (1.10) and
(1.12) is contained in Theorem 3, p. 303 of [Ste70]. The proof of this
result uses the theory of Bessel potentials. It depends very heavily in the
assumption – which we will be making in this chapter – that p ∈]1,∞[.
In the cases, p = 1,∞, the two norms mentioned above are not equivalent
and the corresponding spaces are not equivalent. We refer to [Ada75] for
variants of Sobolev spaces.

Lemma 1.10. Assume that

(1.13)
1
p
− r

d
< 0 .

Then,
a) The space W r,p is a Banach algebra under multiplication. That is,

for ϕ,ψ ∈W r,p: ||ϕ · ψ||W r,p ≤ K||u||W r,p ||v||W r,p.
b) If s ≥ r and 1

q −
s
d ≤

1
p −

r
d , then W s,q ⊂ W r,p and the imbedding

is continuous. Moreover, for ψ ∈ W s,q given, the multiplication
operator ϕ −→ ψϕ is continuous in W r,p.

c) We have W r,p ⊂ C0 and the imbedding is continuous.

Proof: Part a) of Lemma 1.10 is very standard. For integer k we just use
Leibniz rule for the derivative of the product and the Sobolev imbedding
W r,p ⊂ Lq with 1/q = (1/p − r/d)+ (allowing q = ∞ if 1/p − r/d < 0), to
control the factors. Then, the case for r ∈ R+ follows by interpolation. (See
[dlL01a, p. 1143] or [Tay97, Proposition 3.7].

The proof of b) is again a direct application of the Sobolev imbedding.
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Part c) of Lemma 1.10 is again part of Sobolev embedding Theorem.
See e.g. [Tay97, Proposition 8.5 p. 39]. tu

Remark 1.11. We note that part a) of Lemma 1.10 is valid also for

1
p
− r

d
= 0

nevertheless, we will have few applications for this borderline case.

Remark 1.12. Notice that in the definition of B(P), contrary to that
of L∞(P, µ), we do not identify functions differing in a set of measure zero.

This difference will be extremely important in our applications.

1.2.2. Interpolation spaces. In this section, we discuss the technique
of interpolation of operators. This is a standard technique in harmonic
analysis, but does not seem to be so well known for dynamicists.

It has some advantages since it unifies some of the results for different
spaces. One can often obtain estimates for intermediate spaces by obtaining
estimates for spaces of very smooth function as and in spaces of very rough
functions and then, interpolating. Since we are concerned with comparing
spectrum in different spaces, the theory of interpolation will give us some
convexity properties of spectral radius when considered as acting on different
spaces. Since this section is not much used yet, it could perhaps be skipped in
a first reading. Good surveys on interpolation spaces, which gives particular
attention to Hölder spaces, which are our main concern is [KP66, BL76,
KPS82]. We have also found useful the expositions in [Tay96, Tay97,
SW71]. We refer to these references for proofs and for accounts of the
primary literature. We will mainly follow [Tay96, p. 276 ff.].

Definition 1.13. Let E,F be Banach spaces such that F ⊂ E and the
inclusion is continuous. Let Ω = {z ∈ C | 0 < <z < 1}. Denote GHEF the
set of functions µ : Ω → E such that

a) µ is analytic in Ω,
b) µ is bounded and continuous in Ω̄
c) ‖µ(1 + iy)‖F bounded uniformly for y ∈ R.

GHEF is a Banach space endowed with the norm

‖µ‖GHEF
= max

(
sup
z∈Ω̄

‖µ(z)‖E , sup
y∈R

‖µ(1 + iy)‖F

)
For θ ∈ [0, 1] we define the interpolation spaces

[E,F ]θ = {µ(θ) | µ ∈ GHEF }

Endowed with the norm

‖f‖[E,F ]θ = inf
µ(θ)=f

‖µ‖GHE,F
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We note that F ⊂ [E,F ]θ ⊂ [E,F ]θ ⊂ E for 0 ≤ θ ≤ θ′ ≤ 1.
The main result from abstract interpolation theory is the following result

of [Cal64]. See also Proposition 2.1 in [Tay96, p.276] and [SW71, p.211].

Theorem 1.14. Let E, Ẽ, F , F̃ be Banach spaces, F ⊂ E, F̃ ⊂ Ẽ
where the inclusions are continuous. Let A be a bounded, linear operator
A : E → Ẽ such that A(F ) ⊂ F̃ and A : F → F̃ is also bounded. Then,

a) A([E,F ]θ) ⊂ [Ẽ, F̃ ]θ and the mappings are continuous
b) ‖A‖[E,F ]θ→[Ẽ,F̃ ]θ

≤ ‖A‖θ
E→Ẽ

‖A‖1−θ
F→Ẽ

Of course the equalities for the norm in b) are only true when we use
the interpolation norm.

Often, as it will be the case in the next section, one considers the inter-
polation spaces equipped with an equivalent norm, which sometimes arises
more naturally.

In such cases, we do not have the inequality b). Nevertheless, we observe
that in the case that E = Ẽ, F = F̃ , (and, hence, [E,F ]θ = [Ẽ, F̃ ]θ)
the spectral radius ρ(A) = limn→∞ ‖An‖1/n is independent of the norm
considered. Hence, from b) we have:

Proposition 1.15. Under the conditions above,

(1.14) ρ(A|[E,F ]θ) ≤ ρ(A|E)θρ(A|F )1−θ

The inequality (1.14) is clearly independent of the equivalent norm used.
As it turns out, many of the spaces that we have already considered are

interpolation spaces.

Theorem 1.16. Let r, s ∈ N + (0, 1), r > s. If θ ∈ [0, 1] and sθ +
(1 − θ)r /∈ N, then the interpolation space [Cs(Rd), Cr(Rd)]θ is isomorphic
to Csθ+(1−θ)r.

That is, the functions in one space are in the other and the norms in
both spaces are equivalent.

The result is Proposition 8.4 of [Tay97, p.39]. The proof is based on
the Littlewood-Paley theory characterization of Cr spaces

(1.15) ‖f‖Cr ≈ sup
k

2kr‖ψk(D)f‖L∞

where ψk is a Payley-Littlewood decomposition.
The equivalence of the norm in (1.7) and the interpolation norm is false

when r ∈ N and this is why Theorem 1.16 includes hypothesis that the
regularities involved are not integers.

Indeed, when When sθ + (1− θ)r is an integer, the interpolation space
is different from the Cr space. It is the space which in [Ste70] is called
Λsθ+(1−θ)r.
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It is rather straightforward to extend Theorem 1.16 to compact — hence
finite dimensional — manifolds without boundary. It suffices to use parti-
tions of unity.

One application that will be very important for us is the following

Lemma 1.17. Let M be a manifold, f : M →M a diffeomorphism. Let
X be a Banach space. Let A : M →  L(X,X). Consider the operator acting
on functions σ : M → X defined by

(1.16) (T σ)(x) = Af(x)σf(x)

Assume that f ∈ Cr(M,M), A ∈ Cr(M,  L(X,X)), r ≥ 0. Then, for
s ≤ r, T (Cs(M,X)) ⊂ Cs(M,X) and T : Cs(M,X) → Cs(M,x) is linear.

Then, for 0 ≤ s ≤ r such that s /∈ N, we have ρ(A|Cs) is log-convex as a
function on s.

The log convexity for non-integer values of s is a direct consequence of
Proposition 1.15 and Theorem 1.16.

We also recall the well known results

Proposition 1.18. The spaces Lp, p ∈ (1,∞) are interpolation spaces.
For fixed p, the spaces W r,p, r ∈ (0,∞) are interpolation spaces.
For fixed r, the spaces W r,p, p ∈ (1,∞) are interpolation spaces.

1.3. Spaces of sections

We can also consider different norms of the sections of a Finsler vector
bundle E over P.

Definition 1.19. We will denote by ΓB(E) the space of bounded sec-
tions, ΓC0(E) the space of continuous sections, and ΓLp(E) the space of
Lp sections. When assuming enough regularity on the objects, we also can
consider the spaces of Cr sections, ΓCr(E), and that of Sobolev sections,
ΓW r,p(E).

All of these spaces are Banach spaces when topologyzing them with the
corresponding norms above.

Remark 1.20. Given a continuous vector bundle automorphism Mf :
E → E, we can consider the corresponding transfer operator Mf as acting
on different spaces of sections (bounded, continuous and Lp).

We have found very useful to study first the case in which Mf acts on
ΓB(E), for which

||Mf ||ΓB(E) = sup
θ∈P

|M(θ)| .

Remark 1.21. Notice that all the spaces of sections mentioned above
for the complex vector bundle E can be stated for a real vector bundle Ẽ.
Notice also that Γ(Ẽ + Ẽi) = Γ(Ẽ) + Γ(Ẽ)i, where Γ denotes ΓB, ΓCr , etc.
This means that a space of complex sections is the complexification of the
corresponding space of real sections.
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1.4. Local Trivializations

In the functional analysis of a transfer operator Mf we can use any
norm on say ΓB(E) equivalent to that induced by the Finsler metric in E.
The following constructions are useful when we need to do computations
and estimates.

Recall we have defined a norm |·|θ on each fiber Eθ of the bundle E,
that depends continuously on θ ∈ P. Since P is compact, the topologies
in ΓB(E), ΓC0(E), etc. do not depend on the continuous Finsler metric we
have chosen. If the bundle is Cr the Finsler metric is supposed to be Cr.

Moreover, since P is compact we can cover it by a finite number of
trivializing neighborhoods {Ui}i=1,...,p. That is, for each i = 1, . . . , p, Ui ⊂ P
is open and there exists a homeomorphism (Cr diffeomorphism if the objects
involved are Cr)

ϕi : Π−1(Ui) −→ Ui × Cn ,

such that for each θ ∈ Ui

ϕi,θ : Eθ −→ {θ} × Cn

is an isomorphism. Notice that, say, the sup-norm in {θ} × Cn ' Cn is
equivalent to the norm in Eθ. Using again the compactness of P, we can
choose the neighborhoods {Ui}i=1,...,p in such a way that there exists positive
constants 0 < c < C such that for all θ ∈ P , if θ ∈ Ui then for all vθ ∈ Eθ,

(1.17) c|vθ|θ ≤ |ϕi(vθ)|∞ ≤ C|vθ|θ .
Let R > 0 a Lebesgue radius of the finite covering {Ui}i=1,...,p, that is

to say, for each θ ∈ P there exists a chart Ui such that B̄(θ,R) ⊂ Ui. We
define a new norm on E by

|vθ|∞ = |ϕνvθ|∞ where ν = ν(θ) = min{i = 1, . . . , p | B̄(θ,R) ⊂ Ui} .
We point out that this Finsler metric on E does not depend continuously
on θ, but the norms induced in the spaces of sections are equivalent to the
corresponding norms induced by the original continuous Finsler. We can
then represent a vector bundle automorphism Mf by n× n matrices.

Another device to produce trivializations is the embedding of the Finslered
vector bundle E in a trivial one (see, for instance [HPPS70]).

Lemma 1.22. Any Cr Finslered vector bundle E of rank n, can be isomet-
rically Cr embedded in a trivial Finslered Cr vector bundle Ẽ ' P × Cn+k,
where k is large enough.

To control the distance between vectors of E set in different (but close)
points, we can use the previous trivializations. We can also construct of a
connector [HPPS70]. It is like a ‘local’ parallel transport.

Definition 1.23. A connector T in a vector bundle E is a continuous
(we will often assume that they are more differentiable) family of isomor-
phisms Tθ,θ′ : Eθ → Eθ′ defined in neighborhood of the diagonal ∆ in P ×P
such that Tθ,θ = IdEθ

.
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Lemma 1.24. Every vector bundle E admits a connector. If the bundle
is Cr, the connector is Cr.

Proof: For the sake of completeness, we prove the lemma. Lemma 1.22
asserts that the vector bundle E of rank n has a complementary vector
bundle F of large enough rank k, such that E ⊕ F ' P × Cn+k. Let
iE : E → E ⊕ F and pE : E ⊕ F → E the corresponding inclusion and
projection maps, respectively.

Consider the diagram:

E × P iE×idP−→ P × Cn+k × P −→ P × Cn+k pE−→ E
(vθ, θ

′) −→ (θ, α, θ′) −→ (θ′, α) −→ vθ′

Notice that the maps Tθ,θ′ : Eθ → Eθ′ induced by the previous diagram
are lineal, and depend continuously on θ, θ′. Obviously, Tθ,θ′ = IdEθ

, and
this also implies that there exist a neighborhood of the diagonal in P × P
for which the connectors are isomorphisms.

If the objects are Cr, the whole construction is Cr. tu

Remark 1.25. When the bundle is the tangent bundle and there is a
Riemannian metric, a more geometric way of constructing connectors is to
observe that of we fix a point, for all the points in a small neighborhood
of it, there is a unique shortest geodesic (Hopf-Rinow theorem) connecting
it to the fixed point. We can define a connector from the fixed point to
the points in the neighborhood by transporting along this shortest geodesic
using the Levi-Civita connection.

1.5. Recurrence in dynamical systems

In the analysis of the dynamics of a vector bundle automorphism, the
motion on the base manifold P and, specially its recurrence properties plays
an important role. In this introductory subsection we will state the main
definitions that we will use in this manuscript. This should be considered
as a reference section.

In the following, f : P → P will be a homeomorphism in a compact
metric space P (although in most cases it will be a compact manifold). It
defines a discrete dynamical system.

Given θ ∈ P, we say that θ is a periodic point iff there exists N > 0
such that fN (θ) = θ, otherwise we will say that θ is an aperiodic point. The
minimal period function is p : P → N∗ ∪ {∞}, defined by

p(θ) =
{
∞ if θ is aperiodic,
min{N ∈ N∗ | fN (θ) = θ} if θ is periodic.

Definition 1.26. We will say that f is NPO (from No Periodic Orbits)
iff f does not have periodic points. We will say that f is APD (from APe-
riodic orbits Dense) iff the set of aperiodic point is dense. We will also say
that f is PD (from Periodic orbits Dense) iff the set of periodic orbits in
dense.
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Of course, a map may be simultaneously APD and PD. Notice also that,
using index theory, the NPO condition imposes strong restrictions on the
topology of P. One example of NPO map is an irrational rotation on the
torus, the case of study in Part 3. A characterization of the APD property
is given by the following.

Proposition 1.27. f is APD ⇔ for all open set U ⊂ P the restriction
p|U is not bounded.

Proof: The implication ⇒ is obvious. Suppose that for all open set U ⊂ P
the restriction p|U is not bounded. For each N > 0, let PN be the set of
periodic points whose period is less or equal than N . Since PN is closed,
the set AN = P \ PN is open. Notice also that AN is dense in P, otherwise
it would exist a non empty open set U ⊂ P such that AN ∩ U = ∅, that is
U ⊂ PN and so p|U ≤ N , in contradiction with the hypotheses. Notice that
the set of aperiodic points is

A =
∞⋂

N=1

AN .

Since A is a countable intersection of dense open sets, it is dense in P (by
Baire Category Theorem). tu

Remark 1.28. Note that the negation of the hypothesis that aperiodic
points are dense implies that for some N the set of periodic points of period
N has non empty interior. Therefore, we can find an open set such that
fN (θ) = θ.

We will also use the following standard definitions relative to properties
of recurrence.

Definition 1.29. We will say that f is topologically transitive iff there
exists one orbit {fk(θ) | k ∈ Z} that is dense. If P is separable, this property
is equivalent to for all non empty open sets U, V ⊂ P there exists N > 0
such that fN (U) ∩ V 6= ∅.

We will say that f is minimal iff all the orbits {fk(θ) | k ∈ Z} are dense,
that is f has no proper closed invariant sets.

A point θ ∈ P is nonwandering iff for all open set U ⊂ P with θ ∈ P,
there exists N > 0 such that fN (U) ∩ U 6= ∅. The set of nonwandering
points is the nonwandering set, denoted by Ω(f) (also NW (f)), and it is a
non empty closed invariant set. We will say that f is regionally recurrent
iff all the orbits are nonwandering, i.e. P = Ω(f).

A point θ ∈ P is chain recurrent iff for all N > 0 and ε > 0 there exist
a chain θ = θ0, θ1, . . . θk = θ ∈ P with k > 0 and n0, . . . , nk−1 ≥ N such
that

d(fni(θi), θi+1) < ε ,
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for i = 0, . . . , k− 1. The set of chain-recurrent points is the chain-recurrent
set, denoted by R(f). We will say that f is chain-recurrent iff all the orbits
are chain-recurrent, i.e. P = R(f).

Notice that chain recurrence is a very general concept of “repetitive-
ness”. For instance, PD property implies chain recurrence, and also topo-
logical transitivity implies such property. A minimal system is both chain-
recurrent and NPO. Since the set Ω(f) is a subset of R(f), and the inclusion
is in general proper, regionally-recurrent dynamical systems are also chain-
recurrent. In the words of [AA88], chain recurrence does not mean that
a motion “repeats”, rather that the dynamical system “does not interfere
with” the repetition of “approximate motions”.

Note that Poincaré recurrence theorem implies, in particular that if the
system preserves a probability measure which is positive on open sets, then,
it is chain recurrent.

Since P is connected, there are different properties that are equivalent
to chain recurrence, such that

• Non-existence of proper stable attractors;
• Weak incompressibility, that is for all non empty open set U ⊂ P

and for all m > 0, fm(U) * U .
We also recall the deep theorem of [Con88] that any dynamical system

admits a Lyapunov function outside of its chain recurrent set, so that in
some sense, chain recurrence is the mildest notion of recurrence.

Another important notion that will play a role in the theory of charac-
terization of the spectrum by orbits is specification.

Definition 1.30. We say that a dynamical system f on a manifold M
satisfies the specification property if for all ε > 0, there exists a K ∈ N
such that: Given a collection of orbit segments {f i(xj)}

a+
j

i=a−j
, j = 1, . . . , J

satisfying that a+
j +K < a−j+1, j = 1, . . . J − 1

i) there exists an orbit {f i(y)} such that

d(f i(y), f i(xj)) < ε where i ∈
⋃

j=1,...,J

[a−j , a
+
j ]

ii For any T > K+
∑N

j=1 a
+
j −a

−
j there exists a T -periodic orbit p such that

1.30 holds.

A sequence of orbit segments is usually called a specification, the prop-
erty a+

i + K ≤ a−i+1 is usually expressed by saying the specification is K-
separated and the property d(f i(y)f i(x)) ≤ ε for i in the indices is expressed
by saying that the orbit is ε-shadowed.

Hence, 1.30 is described as saying that, for the system f , sufficiently
separated specifications can be ε-shadowed.

Remark 1.31. We note that, in the literature, sometimes the specifica-
tion property is stated taking J = ∞. We note that, for compact manifolds,
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as we are considering in this manuscript, this follows from the finite J ver-
sion we stated. If yJ is the sequence of points produced by considering just
J orbit segments we can find a convergent subsequence. Its limit will satisfy
1.30 for all points.

Remark 1.32. We also note that if the map is expansive the points
satisfying 1.30 for an infinite sequence of intervals are unique. This shows
that for expanding maps i) implies ii). (We consider an infinite sequence
defined by a

+/−
i+J = a

+/−
i + T xi+j = xi. The y for this orbit has to be

periodic.)

Remark 1.33. We note that the specification property implies that pe-
riodic points are dense (we can take in the hypothesis to be any point that
we want, the periodic orbit produced is, in particular arbitrarily close to
x1).

Remark 1.34. It is a deep theorem [Bow75, KH95] that a transitive
Axiom A system (in particular, transitive Anosov system) satisfies the speci-
fication property. Nevertheless, there are other systems that are not Anosov
that satisfy specification.

We also have the elementary

Proposition 1.35. A system satisfying specification also satisfies APD.

Proof: If APD fails we can find n ∈ N and an open set U such that fn(x) = a
for all x ∈ U . If Fix(fn) had empty interior for all n, since it is a closed set,
by Baire category theorem

⋂∞
n=0M − Fix(fn) would be dense, hence APD

would hold.
The existence of this open set violates the specification property. If

x ∈ U , any orbit ε-close to it (ε sufficiently small) has to be periodic of
period n. In particular, it cannot ε-approximate any orbit that goes through
x2 where x2 is more than 2ε away from its orbit. tu

Since a system satisfying specification is also APD, the orbit produced
in i) can be assume to be aperiodic.

Remark 1.36. We refer to [Bow75, KH95], for more details about
the specification property. There are generalizations to continuous maps on
metric spaces and for actions of Zd instead of just dynamical systems. Large
parts of the ergodic theory of Anosov systems and of thermodynamics can be
generalized to systems satisfying specification and expansiveness [Rue73,
Bow75, DGS76, Rue92b].

To study a dynamical system from a statistical point of view, one uses
invariant measures. Given a continuous map f : P → P, an invariant
measure µ is a probability Borel measure such that µ(f−1(A)) = µ(A), for
all Borel set A ⊂ P. As it is well known, the statistical properties translate
into recurrence properties on the support of the measure. Recall that this is

suppµ = {θ ∈ P | ∀U ⊂ P, open , θ ∈ U ⇒ µ(U) > 0}
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and it is an invariant closed set of f . For instance, suppose that f preserves
a topological measure µ (i.e. non empty open sets have positive measure).
Then:

• f is chain-recurrent;
• if µ is ergodic (for all invariant Borel set A, µ(A) = 0 or µ(P \A) =

0), then f is topologically transitive;
• if µ is the only invariant measure (that is f is uniquely ergodic),

then f is minimal.

(For these properties, one just needs that P is a complete separable metric
space. For the last one, we need also P compact. Notice that the preser-
vation of a topological measure in the compact case also implies that f is
regionally-recurrent).

Notice that if f is uniquely ergodic then it is APD. In fact, f can not
have more than one periodic orbit. Indeed, it the map had two different
periodic orbits, we could define invariant measures supported in different
periodic orbits. Moreover, if the unique invariant measure is topological,
then f is also minimal (and NPO). If the uniquely ergodic map f has a
periodic orbit, the phase space has to be just the periodic orbit.

These definitions and well known facts will be important along the man-
uscript.

In Part 3 we will consider P = Td and the motion f will be a rotation
ω ∈ Rd: f(θ) = θ + ω. Notice that rotations are chain-recurrent. Rational
rotations (ω ∈ Qd) are PD (all the orbits are periodic), while irrational
rotations (ω /∈ Qd) are NPO (all the orbits are aperiodic). Notice also that
ergodic or non-resonant rotations (k ·ω /∈ Z for all k ∈ Zd\{0}) are minimal.

An important example of these situation is Anosov diffeomorphisms. See
the definition in We recall that it is well known that Anosov diffeomorphisms
satisfy APD. For an Anosov diffeomorphism, PD is equivalent to topological
transitivity, hence, we will use often the name transitive Anosov diffeomor-
phisms instead of PD Anosov diffeomorphisms even in sections when we are
discussion PD systems.

1.6. Spectral theory

In this section we recall some standard definitions and results in general
spectral theory. This review is completed in Appendix A.

In the following, L : X → X will denote a bounded linear operator in a
complex Banach space X.

Definition 1.37. We say that z ∈ C is in the resolvent set when (L−z)
is bijective. In such a case, the Banach isomorphism theorem implies that
(L− z)−1 is bounded. The complement of the resolvent set is the spectrum
. We will denote the spectrum of the operator L acting on the space X by
Spec(L,X), and the resolvent set by Res(L,X).
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An important subset of the spectrum is the Weyl spectrum of approx-
imate eigenvalues. Sometimes it is also called the Approximate point spec-
trum.

Definition 1.38. An approximate eigenvalue is a complex number z
such that

(1.18) z ∈ SpecW (L,X) ⇔ ∃ {vn}∞n=0 ⊂ X
∣∣∣ ‖vn‖ = 1 , ‖(L− z)vn‖ → 0

The vn’s are usually called approximate eigenvectors of L for z. The set of
approximate eigenvalues is known as approximate point spectrum or Weyl
spectrum and we will denote it by SpecW (L,X).

Obviously, the Weyl spectrum contains the point spectrum, denoted by
SpecP (X,L), that is the set of eigenvalues.

Note that the definition of Weyl spectrum makes it obvious that if Y
is a closed invariant subspace of X, i.e. LY ⊂ Y , then the approximate
eigenvectors in Y can be considered as approximate eigenvectors in X and
therefore,

(1.19) SpecW (L, Y ) ⊂ SpecW (L,X)

On the other hand, we emphasize that there is no general such inclusion for
the full spectrum and indeed, we will find in Part 4 examples in which the
spectrum in a proper subspace is strictly greater.

Since in many situations, the spectrum agrees with the Weyl spectrum
(e.g. finite dimensions, self-adjoint and many other operators in applied
mathematics) (1.19) implies the corresponding result for the spectrum, but
this is not true in general. The characterization of the spectrum of (even un-
bounded) self-adjoint operators by (1.18) is called the Weyl criterion, whose
proof consists in showing that self-adjoint operators (possibly unbounded)
do not have residual spectrum. The non-residual spectrum is included in the
Weyl spectrum (see Appendix A). Hence, the Weyl criterion asserts that for
normal operators the Weyl spectrum is the whole spectrum. Unfortunately,
transfer operators may fail to be normal. Indeed, specially in Part 4, we will
find transfer operators in spaces for which there is residual spectrum.

From the point of view of numerical analysis, the Weyl spectrum is the
most immediate to compute. Typically, in numerical analysis, one produces
a sequence of discretizations of the problem, which are, in turn, approxi-
mately diagonalized or some approximate eigenvectors are produced. (e.g
using Krylov, Arnoldi, Lanczos, etc. methods). In the customary ideal-
ization of numerical analysis, the sequence of discretizations is taken to be
infinite even if in practice only a finite number of them are run. This proce-
dure will locate the Weyl spectrum but will fail to locate its complementary.
At the moment, it does not seem clear to us how to go about computing the
non-Weyl spectrum through discretizations. The presence of this spectrum
in the dynamo problems may well be one of the reasons why the survey
[Bay92] describes the problem as “horrible”.
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We call attention to the fact the boundary of the spectrum is always Weyl
spectrum (see Proposition A.26). Hence, the boundary of the spectrum – in
particular the spectral radius – can always be computed using approximate
eigenvalues as in (1.18). This fact has the amusing corollary that if the Weyl
spectrum is rotationally invariant then the full spectrum is also rotationally
invariant (see Corollary A.27).

We also recall that when X is complex Banach space given an iso-
lated part of the spectrum, That is, given Σ ⊂ Spec(L,X), that satisfies
dist(Σ,Σc) > 0 – where we denote Σc = Spec(L,X) \ Σ) – we can find a
decomposition X = XΣ ⊕XΣc invariant under L and

Spec(L,XΣ) = Σ

Spec(L,XΣc) = Σc .

We denote by PΣ the projection over XΣ and we note that LPΣ = PΣL,
hence, LXΣ ⊂ XΣ, and similarly for Σc.

When we apply these results to the complexification X of a real Banach
space X̃ and L the complexification of L̃, if Σ∗ = Σ (where ∗ denotes the
complex conjugate of a complex number: (a+bi)∗ = a−bi), it can be shown
that XΣ, XΣc are the complexification of real subspaces X̃Σ, X̃Σc which
give a direct decomposition of X̃ which is invariant under L̃. Therefore,
provided that we consider spectral subsets that are invariant under complex
conjugation, the complex constructions that we perform have a real coun-
terpart. In the applications we will use, the spectral subsets will be annuli
or complement of annuli centered at the origin, which certainly satisfy that.

We also recall that the spectral radius formula states that Spec(L,X) ⊂
{z ∈ C | |z| ≤ ρ} is equivalent to

(1.20) ∀ ε > 0 ∃ Cε | ∀ m ≥ 0 ||Lm|| ≤ Cε(ρ+ ε)m .

By the uniform boundedness principle this is equivalent to

(1.21) ∀ v ∈ X , ∀ ε > 0 ∃ Cε,v | ∀ m ≥ 0 ||Lmv|| ≤ Cε,v(ρ+ ε)m .

This result is somewhat surprising since the spectrum does not depend
on any norm – just the topology enters –. This suggests that there could be
norms which are particularly useful when considering the spectral properties
of an operator. These are called the adapted norms.

Given an operator L with spectral radius ρ, we define

(1.22) |||v|||ε =
∑
m=0

||Lmv||(ρ+ ε)−m

In this adapted norm, we have easily |||Lmv|||ε ≤ (ρ + ε)m|||v|||ε. That is,
we can take the constants in (1.20) and (1.21) equal to 1. This becomes
particularly useful when we consider bundles since, in this metric, certain
estimates become uniform. In the case of applications to bundles, this will
lead later to the adapted metric.

Since we are going to be interested in rotational properties of the spec-
trum, we introduce the following notation.
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Definition 1.39. Given a set Σ ⊂ C, we define the annular hull of Σ,
AΣ, as the union set of the circles that intersect Σ:

AΣ = {eαiz | z ∈ Σ, α ∈ R} .
Given N ∈ N, we define also the set

ANΣ = {e2π k
N

iz | z ∈ Σ, k = 0, · · · , N − 1} .
We will denote

Aλ,µ = A[λ, µ] = {z ∈ C | λ ≤ |z| ≤ µ}
as the annulus of radii 0 < λ ≤ µ. For ρ > 0, we will write

Sρ = {z ∈ C||z| = ρ},
the circle of radius ρ.



CHAPTER 2

Dichotomies, invariant splittings and spectral gaps

In this section we review some known results on transfer operators and
asymptotic properties of cocycles. The main ideas of the results we present
go back to [Mat68]. Some further developments and variants can also be
found in [HPS77, SS74, SS76a, SS76b, Sac78, SS78, Mn78, CS80,
Swa81, LS90, LS91, CL99].

We will start by reviewing the theory of Sacker and Sell [SS74, SS76a,
SS76b, Sac78], on dichotomies and quasi-dichotomies (or weak-dichotomies).
We then relate both dynamical properties with the properties of the transfer
operator associated to the cocycle. So, the relation of quasi-dichotomy and
point spectrum is summarized in the Mañé lemma [Mn78] (see Section 4.2
for another version). Then we will review a result by [Mat68] relating the
existence of an invariant splitting with the existence of a gap in the full
spectrum of the transfer operator. This is the starting point of the Mather
spectrum theory [Mat68], which will be developed in Section 3. We men-
tion that the study of the regularity of the invariant splitting follows from
the celebrated invariant section theorem [HP70, HPS77].

Notice that these transfer operators can be considered as acting on dif-
ferent function spaces of sections, but the first general result corresponds to
ΓB(E), the space of bounded sections with the sup-norm. The continuous
case is a corollary.

2.1. Dichotomies and invariant splittings, Sacker-Sell theory

In a series of papers [SS74, SS76a, SS76b, Sac78], Sacker and Sell
studied the existence of invariant splittings of vector bundle maps (and flows)
under some standing hypotheses on the dynamics of the map. In particular,
the study the existence of the stable and unstable invariant bundles under
the assumption of non existence of non-trivial bounded orbits. This section
is a brief review and simplified version of a part of their work that we will
use later.

Given a vector bundle automorphism Mf : E → E over f : P → P, we
consider the subsets

B+ = {vθ ∈ E | sup
m≥0

|M(θ,m)vθ| <∞} ,(2.1)

B− = {vθ ∈ E | sup
m≤0

|M(θ,m)vθ| <∞}(2.2)

29
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and

(2.3) B = B+ ∩B− .

These are the sets of positively bounded orbits, negatively bounded orbits
and bounded orbits, respectively. Other related sets are the stable and
unstable sets, defined by:

Es = {vθ ∈ E | lim
m→+∞

|M(θ,m)vθ| = 0} ,(2.4)

Eu = {vθ ∈ E | lim
m→−∞

|M(θ,m)vθ| = 0}(2.5)

If we want to make explicit the dependence on the cocycle, we will write
B+(Mf ), B−(Mf ), etc.

These subsets are invariant linear subspaces, but from the definitions
we do not know if they are continuous, and not even if they have constant
rank (that is, we do not know if they are vector subbundles). This is what
the papers [SS74, SS76a, SS76b] studied, under the standing hypothesis
B = E0.

To bound the rates of growth of the orbits we will use the following
definitions, which generalize the previous ones. Later on, we will relate
these dynamical properties with spectral properties of transfer operators.

Definition 2.1. Given a positive constant ρ, for each θ ∈ P, we define
the growth spaces

W≤ρ = {vθ ∈ E | ∃ C≤ρ
vθ

> 0 : ∀m ≥ 0 |M(θ,m)vθ| ≤ C≤ρ
vθ
ρm} ,(2.6)

W≥ρ = {vθ ∈ E | ∃ C≥ρ
vθ

> 0 : ∀m ≤ 0 |M(θ,m)vθ| ≤ C≥ρ
vθ
ρm}(2.7)

and

(2.8) W ρ = W≤ρ ∩W≥ρ .

We also define:

W<ρ = {vθ ∈ E | lim
m→+∞

|ρ−mM(θ,m)vθ| = 0} ,(2.9)

W>ρ = {vθ ∈ E | lim
m→−∞

|ρ−mM(θ,m)vθ| = 0} .(2.10)

Remark 2.2. Using the uniform boundedness principle, it follows that
the constants C≤ρ

vθ and C≥ρ
vθ in (2.6) and (2.7) are of the form C≤ρ

vθ = C≤ρ
θ |vθ|

and C≥ρ
vθ = C≥ρ

θ |vθ|, respectively.

Remark 2.3. Notice that

W≤ρ
θ (Mf ) = B+

(
1
ρ
Mf

)
, W≥ρ

θ (Mf ) = B−
(

1
ρ
Mf

)
,

W<ρ
θ (Mf ) = Es

(
1
ρ
Mf

)
, W>ρ

θ (Mf ) = Eu

(
1
ρ
Mf

)
.

So then, some results for W -spaces follow from results on B-spaces.
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We summarize the results in the following theorem. The standing hy-
pothesis B = E0 in [SS74, SS76a, SS76b] is trivially replaced by W ρ = E0.

Theorem 2.4. Let Mf : E → E be a vector bundle automorphism.
Given ρ > 0, assume W ρ = E0.

Then:

(a) W<ρ = W≤ρ and W>ρ = W≥ρ.
(b) There exists a constant K ≥ 1 such that the sets W≤ρ and W≥ρ

are characterized by:

vθ ∈W≤ρ ⇔ ∀m ≥ 0 |M(θ,m)vθ| ≤ Kρm|vθ|(2.11)

vθ ∈W≥ρ ⇔ ∀m ≤ 0 |M(θ,m)vθ| ≤ Kρm|vθ| .(2.12)

To make explicit the uniform bound, we will write W≤ρ = W≤ρ,K ,
W≥ρ = W≥ρ,K .

(c) W≤ρ, W≥ρ are closed subsets of E.
(d) The functions θ → dimW≤ρ

θ and θ → dimW≥ρ
θ are upper semicon-

tinuous. That is, for all α ∈ R the sets {θ ∈ P | dimW≤ρ < α}
and {θ ∈ P | dimW≥ρ

θ < α} are open.
(e) There exists C > 0 and λ < ρ < µ such that the linear spaces W≤ρ

and W≥ρ are characterized by the following growth rates:

vθ ∈W≤ρ ⇔ ∀m ≥ 0 , |M(θ,m)vθ| ≤ Cλm|vθ|(2.13)

vθ ∈W≥ρ ⇔ ∀m ≤ 0 , |M(θ,m)vθ| ≤ Cµm|vθ| .(2.14)

So W≤λ = W≤λ,C = W<ρ = W≤ρ, W≥µ = W≥µ,C = W>ρ =
W≥ρ.

(f) If for all θ ∈ P Eθ = W≤ρ
θ ⊕W≥ρ

θ , then E = W≤ρ ⊕W≥ρ as a
Whitney sum of two subbundles.

(g) If f is chain-recurrent, then E = W≤ρ ⊕W≥ρ as a Whitney sum
of two subbundles.

Remark 2.5. Theorem 2.4 holds if we restrict the action of Mf to the
bundle Ê = E|P̂ = Π−1P̂ , where P̂ ⊂ P is an f -invariant closed set of P.

For instance, we can take P̂ = R(f), the recurrent set of f , that is the set
of chain-recurrent points of f .

Proof: From Remark 2.3, it is enough to consider the case ρ = 1. So, the
standing hypothesis will be B = E0.

(a) Es = B+ and Eu = B−.

We have to prove that if vθ ∈ B+
θ , then lim

m→+∞
|M(θ,m)vθ| = 0. We

denote vm = M(θ,m)vθ, and notice that {vm}m≥0 is bounded. For any
convergent subsequence {vmk

}k≥0, the limit v̄θ̄ belongs to the omega limit
set of vθ, that is compact and invariant. That is v̄θ̄ ∈ B = E0 and |v̄θ̄| = 0.
This proves (a).
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(b) There exists a constant K ≥ 1 such that the sets B+ and B− are
characterized by:

vθ ∈ B+ ⇔ ∀m ≥ 0 |M(θ,m)vθ| ≤ K|vθ| ;(2.15)
vθ ∈ B− ⇔ ∀m ≤ 0 |M(θ,m)vθ| ≤ K|vθ| .(2.16)

To prove (b) we use the following lemma [CI99].

Lemma 2.6. Under the assumption B = E0, there exists K ≥ 1 such
that for all vθ ∈ E, and m,n with 0 ≤ m ≤ n:

|M(θ,m)vθ| ≤ K(|vθ|+ |M(θ, n)vθ|),
|M(θ,−m)vθ| ≤ K(|vθ|+ |M(θ,−n)vθ|).

Proof of the lemma: We will prove the first inequality by contradiction.
Suppose it is false, then there exists a sequence of vectors {vk = vθk

}k≥0 ⊂
E \ E0 and two sequences of indices {mk}k≥0, {nk}k≥0 with 0 ≤ mk ≤ nk

such that

(2.17) |M(θk,mk)vk| > k(|vk|+ |M(θk, nk)vk|) .
We can assume that |vk| = 1, and mk satisfies

|M(θk,mk)vk| = max
0≤m≤nk

|M(θk,m)vk| .

We assume also that the sequence of unit vectors

wk =
1

|M(θk,mk)vk|
·M(θk,mk)vk ∈ Efmk (θk)

is convergent (taking subsequences, if necessary): fmk(θk) → θ0, wk → w0.
Henceforth,

|M(θk,mk)vk| > k(1 + |M(θk, nk)vk|)
and mk → +∞ because the right hand side tends to infinite. Notice also
that (

1− k
∣∣M(fmk(θk), nk −mk)−1

∣∣−1
)
|M(θk,mk)vk| > k ,

from where we see that nk −mk → +∞.
Then, for all m such that −mk ≤ m ≤ nk −mk

|M(fmk(θk),m)wk| =
|M(θk,m+mk)vk|
|M(θk,mk)vk|

≤ 1
|M(θk,mk)vk|

max
0≤m̄≤nk

·|M(θk, m̄)vk|

= 1 .

Taking limits k →∞, we see that

|M(θ0,m)w0| ≤ 1

for all m ∈ Z, so w0 ∈ B, which is a contradiction with the assumption
B = E0. So we are done with the proof of Lemma 2.6. tu
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The proof of (b) is now very easy. If vθ ∈ B+, then vθ ∈ Es and we can
take limn→∞ in the RHS of

|M(θ,m)vθ| ≤ K(|vθ|+ |M(θ, n)vθ|)

in Lemma 2.6, where 0 ≤ m ≤ n. Then, for all m ≥ 0, |M(θ,m)vθ| ≤
K|vθ|. This proves (b), that is the uniform bounds in the linear subspaces
of positively and negatively bounded orbits.

(c) B+, B− are closed subsets.
(d) The functions θ → dimB+

θ and θ → dimB−
θ are upper semicontin-

uous.
The proofs of (c) and (d) are straightforward [SS74].
(e) There exists C > 0 and λ < 1 < µ such that the stable and unstable

spaces are characterized by the following growth rates:

vθ ∈ Es ⇔ ∀m ≥ 0 , |M(θ,m)vθ| ≤ Cλm|vθ|(2.18)
vθ ∈ Eu ⇔ ∀m ≤ 0 , |M(θ,m)vθ| ≤ Cµm|vθ| .(2.19)

To prove (e) we use the following lemma (see lemma 6 in [SS74]).

Lemma 2.7. Under the assumption B = E0, there exists N > 0 such
that:

• for all vθ ∈ B+, if m ≥ N then |M(θ,m)vθ| ≤ 1
2 |vθ|;

• for all vθ ∈ B−, if m ≥ N then |M(θ,−m)vθ| ≤ 1
2 |vθ|.

Proof of the lemma: If this were not the case, we could construct a sequence
of vectors {vθk

} ⊂ B+ and a sequence of times {mk} with mk −→ +∞ such
that

|M(θk,mk)vθk
| > 1

2
|vθk

| .

From the uniform bound in (b) we have that for all m ≥ 0, k > 0,

|M(θk,m)vθk
| ≤ K|vθk

| .

Notice that we can choose |vθk
| = 1

K and taking subsequences we can assume
that vθk

−→ vθ ∈ B+.
If we define wθ̄k

= M(θk,mk)vθk
, notice that 1

2K < |wθ̄k
| ≤ 1, and taking

again subsequences we can assume that wθ̄k
−→ wθ̄.

Fixed, k, for all m ≥ −mk:

|M(θ̄k,m)wθ̄k
| = |M(θk,m+mk)vθk

| ≤ K|vθk
| = 1 .

Taking limits we obtain that for all m ∈ Z we have |M(θ̄,m)wθ̄| ≤ 1, and
hence |wθ̄| = 0. This is a contradiction with that fact that 1

2K < |wθ̄k
|. This

finishes the proof of the lemma. tu

To prove the exponential growth rate characterization of B+ in (e), take
any vθ ∈ B+ and m ≥ 0. We write m = jN+m0, with m0 ∈ {0, 1, . . . , N−1}
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(N given by the lemma). Then:

|M(θ,m)vθ| = |M(f jN (θ),m0)M(f (j−1)N (θ), N) . . .M(θ,N)vθ|

≤ |M(f jN (θ),m0)|
(

1
2

)j |vθ|

=
(

1
2

)−m0/N |M(f jN (θ),m0)|
(

1
2

)m/N |vθ|

≤ Cλm|vθ| ,
where

C = max
θ̄∈P

max
m0=0,...,N−1

(
1
2

)−m0/N

|M(θ̄,m0)|

and λ = N

√
1
2
< 1.

(f) If for all θ ∈ P Eθ = Es
θ ⊕ Eu

θ , then E = Es ⊕ Eu as a Whitney
sum of two subbundles.

Let us prove now (f), and assume then that Eθ = Es
θ ⊕Eu

θ for all θ ∈ P.
Notice that the rank functions θ → dimEs

θ and θ → dimEu
θ are upper

semicontinuous. Taking limits θ → θ0, the ranks dimEs
θ0

and dimEu
θ0

could
be bigger than dimEs

θ and dimEu
θ , respectively. But this is not possible,

because Es
θ and Eu

θ span the whole Eθ. Henceforth, both closed linear sub-
spaces Es

θ and Eu
θ have constant rank, and, therefore, they are (continuous)

subbundles.
(g) If f is chain-recurrent, then E = Es⊕Eu as a Whitney sum of two

subbundles.
The point (g) is a deep result in [SS76a] (see also [Sel75, Sel76]). This

result implies fairly easily that, under the hypothesis of chain recurrence for
the underlying dynamics – a mild condition of recurrence – we have that
quasi-hyperbolicity implies hyperbolicity.

Here, we will present a proof under the stronger condition that f is
regionally-recurrent. This is enough in many cases, but the reader should
read [SS76a] for a complete proof in the case of chain recurrence. We follow
the proof in [CI99], where this result was stated for flows.

So, assume that P = Ω(f). Let θ ∈ P any point, and consider a sequence
of points {θk}k≥0 ⊂ P and a sequence of indices {nk}k≥0 ⊂ N, such that

θk → θ , nk → +∞ , fnk(θk) → θ ,

when k → +∞.
For each k, we consider a subspace Ek ⊂ Eθk

such that

(2.20) dimEs
θ + dimEk = dimEθ = n , Es

θ ⊕ lim
k
Ek = Eθ .

We will see know that there exists a positive constant C > 0 such that

(2.21) ||M(fnk(θk),−m)|M(θk,nk)Ek
|| ≤ C for all 0 ≤ m ≤ nk,
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that is to say,

|M(θk, nk −m)vk| ≤ C|M(θk, nk)vk| for all vk ∈ Ek and 0 ≤ m ≤ nk.

If this were not true, there would exist a sequence of unit vectors {vk}k≥0,
with vk ∈ Ek and |vk| = 1, and a sequence of indices {mk}k≥0, with 0 ≤
mk ≤ nk, such that

(2.22) |M(θk, nk −mk)vk| ≥ k|M(θk, nk)vk| .
From Lemma 2.6,

|M(θk, nk −mk)vk| = |M(fnk(θk),−mk)M(θk, nk)vk|
≤ K (|M(θk, nk)vk|+ |vk|) ,

(2.23)

and using (2.22) we obtain that

|M(θk, nk)vk| ≤
K

k −K
.

Using again Lemma 2.6, we obtain that for all 0 ≤ m ≤ nk,

|M(θk,m)vk| ≤ K(|vk|+ |M(θk, nk)vk| ≤ K +
K2

k −K
.

Taking limits k → +∞ (passing to subsequences, so that vk → vθ), we
obtain that for all m ≥ 0

|M(θ,m)vθ| ≤ K .

Hence, |vθ| = 1 and vθ ∈ B+ = Es, but vθ ∈ limk Ek! This is a contradiction
with the construction (2.20). So, the claim (2.21) is proved.

Notice that we can assume that the subspaces constructed in (2.20)
satisfy

lim
k
M(θk, nk)Ek = E0 ⊂ Eθ .

Taking limits in (2.21), we see that for all m ≥ 0

||M(θ,−m)|E0
|| ≤ C ,

from where E0 ⊂ Eu
θ . Then, counting dimensions,

dimEu
θ ≥ dimE0 = dimEk = dimE − dimEs

θ ,

and since Es
θ ∩ Eu

θ = {0θ}, we obtain Es
θ ⊕ Eu

θ = Eθ. Since this splitting
works for any θ ∈ P, (g) is proved by appealing (f).

These arguments finish the proof of Theorem 2.4. tu

Remark 2.8. When Mf induces an invariant continuous splitting in sta-
ble and unstable subbundles E = Es⊕Eu it is said to be hyperbolic. When
it satisfies the weaker condition B = E0, it is said to be quasi-hyperbolic or
quasi-Anosov.

The previous result states that continuity of the stable and unstable
bundles in the definition of hyperbolicity is redundant, and we just need
quasi-hyperbolicity and the splitting condition. The previous result also
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shows that, under mild properties of recurrence on f , hyperbolic vector
bundle automorphisms covering f are hyperbolic.

The previous remark motivates the following definitions which try to
capture different notions of dichotomy much weaker than the ones considered
so far.

Definition 2.9. Let 0 < λ ≤ µ. We say that Mf is quasi-(λ, µ)-
dichotomic if W ρ = E0 for ρ ∈ [λ, µ]. We say that Mf is (λ, µ)-dichotomic
if there exists an invariant splitting E = W≤λ ⊕W≥µ. Notice that in this
case the growth rates can be made uniform and the invariant splitting is
continuous (see Theorem 2.4).

If λ = µ = ρ we will write ρ instead of (ρ, ρ) in the previous definitions.

2.1.1. Lyapunov characteristic numbers. The asymptotic rate of
growth of an orbit of the cocycle is given by its Lyapunov multipliers. These
are very weak notions of exponential dichotomy. They are associated to each
orbit and, even then, they do not require uniformity.

The importance of these notions is that Oseledec’s theorem shows that
they happen for almost all orbits of an invariant measure. On the other hand,
they are strong enough that they can allow to obtain many conclusions. See
[Pol93, BP01] for recent surveys and tutorials. One of the questions that
we will study in this paper (See specially Section 4) is the extent to which
the properties of individual orbits determine the spectrum.

Definition 2.10. For each θ ∈ P and vθ ∈ Eθ, the forward Lyapunov
multiplier and the backward Lyapunov multiplier of vθ are given by the
limits

(2.24) λ+
s (vθ) = lim sup

m→+∞
|M(θ,m)vθ|

1
m , λ−i (vθ) = lim inf

m→−∞
|M(θ,m)vθ|

1
m ,

respectively. Besides these two characteristic multipliers, we define also,

(2.25) λ+
i (vθ) = lim inf

m→+∞
|M(θ,m)vθ|

1
m , λ−s (vθ) = lim sup

m→−∞
|M(θ,m)vθ|

1
m .

Recall also that the Lyapunov (characteristic) exponents are just the loga-
rithms of the corresponding Lyapunov (characteristic) multipliers.

Lyapunov multipliers on Eθ satisfy the following properties:
a) λ+

s (vθ) ∈ R ∪ {0}, λ−i (vθ) ∈ R ∪ {+∞} for vθ ∈ Eθ;
b) λ+

s (αvθ) = λ+
s (vθ), λ−i (αvθ) = λ−i (vθ) for vθ ∈ Eθ and α ∈ C \ {0};

c) λ+
s (vθ + wθ) ≤ max{λ+

s (vθ), λ+
s (wθ)},

λ−i (vθ + wθ) ≥ min{λ−i (vθ), λ−i (wθ)} for vθ, wθ ∈ Eθ;
d) λ+

s (0θ) = 0, λ−i (0θ) = +∞.
These properties imply that there are finitely many distinct Lyapunov

multipliers over Eθ.
The following concept plays an important role in the Lyapunov theory.
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Definition 2.11. We say that a vector vθ ∈ Eθ is regular when its
forward and backwards Lyapunov exponents are the same.

That is,
λ+

s (vθ) = λ−s (vθ)

Related with the existence of Lyapunov exponents, it is important to
recall the Oseledec’s theorem [Ose68, Rue79, Pol93, BP01]. We will not
give a formal statement of the theorem, and refer to the references above.

We recall that Oseledec’s theorem ensures that

Corollary 2.12. With the notations above,
If µ is probability measure invariant under f . then, for µ almost every

point θ, there is a finite set of Lyapunov exponents reached on vectors in
Eθ. Furthermore, for almost every θ the set of forwards and backwards
Lyapunov exponents is the same. For each Lyapunov exponent, there is at
least a regular vector (in the sense of Definition 2.11) having this Lyapunov
exponent.

The set of Lyapunov exponents is invariant under f . In particular, if µ
is ergodic, then, the set of Lyapunov constants is constant a.e. µ.

2.1.2. Spaces characterized by rates of growth. When dealing
with spectral properties of transfer operators and Lyapunov multipliers it is
natural to consider the following subspaces of Eθ (see Theorem A.14).

Definition 2.13. Given a positive constants ρ, we define the Lyapunov
sets

(2.26) L<ρ = {vθ ∈ E | λ+
s (vθ) < ρ} , L>ρ = {vθ ∈ E | λ−i (vθ) > ρ} .

Obviously, Lyapunov sets are invariant linear subspaces of E.

It is obvious that

W≤ρ−ε ⊂ L<ρ ⊂W<ρ ⊂W≤ρ , W≥ρ+ε ⊂ L>ρ ⊂W>ρ ⊂W≥ρ .

for ε > 0.

Proposition 2.14. Let Mf be a vector bundle automorphism. Let ρ be
a positive number. Let θ ∈ P be a point. Hence, for ε > 0 small enough:

W≤ρ−ε
θ = L<ρ

θ , W≥ρ+ε
θ = L>ρ

θ .

Proof: We will prove W≤ρ−ε
θ = L<ρ

θ . Since the number of Lyapunov multi-
pliers over Eθ is finite, we define

λmax = max{λ+
s (vθ) | vθ ∈ L<ρ

θ } < ρ .

Hence, for ε > 0 small enough we have λmax < ρ− ε < ρ and, then, for any
vθ ∈ L<ρ

θ we have

lim
m→+∞

|M(θ,m)vθ|
(ρ− ε)m

= 0 ,

from where vθ ∈W≤ρ−ε
θ . tu
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2.2. Quasi-dichotomies and point spectrum

In this section we will review some arguments of Mañé that will be
used heavily later. In particular, the following Lemma relates the existence
of orbits of the cocycle satisfying certain growth rates with the existence
of point spectrum. This result is the well known Mañé’s lemma ([Mn78,
CL99]). The original proofs are based on studying the spectrum on spaces of
continuous sections. We will rather study the spectrum in spaces of bounded
sections. Later, we will show that the spectrum is the same in both spaces.

Lemma 2.15. Let Mf be a vector bundle automorphism and ρ > 0.

Mf is quasi-ρ-dichotomic ⇔ SpecP (Mf ,ΓB(E)) ∩ Sρ = ∅ .

Proof: Recall that Mf is quasi-ρ-dichotomic means, see Definition 2.9, that

W ρ = W≤ρ ∩W≥ρ = E0.

Suppose first that W ρ 6= E0. So, there exists a non zero vector vθ0 in
W ρ

θ0
supported in some point θ0. We will refer to vθ0 as a Mañé vector of

growth rate ρ.
There are two possibilities: either θ0 is aperiodic or θ0 is periodic.
If θ0 is aperiodic, for any z ∈ C with |z| = ρ the section v = v(θ) defined

by

(2.27) v̂(θ) =
{
z−kM(θ0, k)vθ0 , if θ = fk(θ0), k ∈ Z,
0, otherwise ,

is bounded and satisfies Mfv = zv. Hence: Sρ ⊂ SpecP (Mf ,ΓB(E)).
Suppose now that θ0 is periodic, that is there exists N > 0 such that

fN (θ0) = θ0. In such a case, W≤ρ
θ0
∩W≥ρ

θ0
is a non-zero subspace of Eθ0 that

is invariant under M(θ0, N). By assumption, there exist constants C1, C2

such that for each vθ0 ∈W
≤ρ
θ0

∩W≥ρ
θ0

and k ≥ 0:

|M(θ0, N)kvθ0 | = |M(θ0, kN)vθ0 | ≤ C1ρ
kN |vθ0 | ,

|M(θ0, N)−kvθ0 | = |M(θ0,−kN)vθ0 | ≤ C2ρ
−kN |vθ0 | .

Applying the spectral radius formula, we see that all the eigenvalues of
M(θ0, N) in W≤ρ

θ0
∩W≥ρ

θ0
have modulus ρN . Let z ∈ C be such that zN is

an eigenvalue of M(θ0, N) and vθ0 be an eigenvector, with |vθ0 | = 1. The
section defined by (2.27) is bounded and satisfies Mfv = zv. Notice that in
this case we prove that Mf has eigenvalues in the circle of radius ρ.

In both cases, we obtain the claimed result on the point spectrum.
Suppose now that SpecP (Mf ,ΓB(E)) ∩ Sρ 6= ∅. Under this assumption

we will prove that there exists a Mañé vector of growth rate ρ.
Let z ∈ SpecP (Mf ,ΓB(E)), with |z| = ρ. Let v be a bounded eigen-

section of z, with ||v||∞ = 1. We can suppose that v is supported in an
orbit {θm = fm(θ0)}m∈Z, with v(θ0) 6= 0. Let vm = v(θm) be the vectors
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supported on such orbit. Notice that M(θ0,m)v0 = zmvm, for all m ∈ Z.
Hence:

1
ρm
|M(θ0,m)v0| = |vm| ≤ 1 ,

for all m ∈ Z, so v0 ∈W ρ \ E0. tu

Remark 2.16. Notice that for a Mañé vector v0 of growth rate ρ, we
have the estimates λ+

s (v0) ≤ ρ and λ−i (v0) ≥ ρ.

Remark 2.17. If for certain 0 < λ ≤ µ there exists a non zero vector
vθ0 in W≤λ ∩W≥µ and supported on an aperiodic point θ0, then we can
take any z ∈ Aλ,µ in the definition of (2.27). As a result, we prove that
Aλ,µ ⊂ SpecP (Mf ,ΓB(E)).

Notice also that if such a vector is supported in a periodic point, then
the growth rates λ, µ are necessarily equal (applying the spectral radius
formula).

2.3. Dichotomies and spectrum

In this section we will see how invariant subbundles satisfying growth
rates can be constructed from spectral properties of the transfer operator
associated to a vector bundle automorphism.

2.3.1. Spectral characterization of invariant splittings. The fol-
lowing is a fairly general result about transfer operators, where the existence
of a gap in the spectrum of the transfer operator (Functional Analysis) is
related with the existence of an invariant splitting of the bundle (Dynamics).
This result can be found in many places, such as [Mat68, HPS77, Mn78,
LS90, CL99]). Notably, the essential argument can be found already in
[Mat68]. Note, however that some of the above papers state the theorem
for ΓC0(E) in place of ΓB(E). The version with ΓB(E) is somewhat easier
(see [HPS77]).

Theorem 2.18. Let Mf : E → E be a vector bundle automorphism.
Assume that

Spec(Mf ,ΓB(E)) ∩ Aλ,µ = ∅ ,
where 0 < λ ≤ µ. Denote by P<λ = P<λ

B , P>µ = P>µ
B the projections

associated to this spectral gap. Then, it is possible to find a continuous
invariant splitting

(2.28) E = E<λ ⊕ E>µ

such that the corresponding projections over the bundles, Π<λ,Π>µ, satisfy
for any v ∈ ΓB(E):

(2.29) (P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) .

The splitting is characterized by the following growth rates: for all ε > 0
small enough

(2.30) E<λ = W≤λ−ε = L<λ, E>µ = W≥µ+ε = L>µ .
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(See Definitions 2.1 and 2.13).
Moreover, the rates of growth can be made uniform: there exists a posi-

tive constant Cε such that W≤λ−ε = W≤λ−ε,Cε ,W≥µ+ε = W≥µ+ε,Cε.
The regularity of the invariant subbundles is determined by the following:

• If f−1 is Lipschitz, with L = Lip(f−1), then the splitting is Hölder,
with exponent α ≤ log(λ/µ)

log L .

• If all the objects are Cr, with L = Lip(f−1) and r ≤ log(λ/µ)
log L , then

the splitting is Cr.
Conversely, if there is a splitting (2.28) of E in linear subspaces E<λ

and E>µ satisfying (2.30), then both linear subspaces are vector subbundles
that satisfy all the other properties, and there is a gap in the spectrum:
Spec(Mf ,ΓB(E)) ∩ Aλ,µ = ∅.

Remark 2.19. We call attention to the remarkable formula (2.29). The
left hand side is constructed using functional analysis whereas the right hand
side is purely geometrical.

Remark 2.20. The case λ ≤ 1 ≤ µ corresponds to obtaining a stable
bundle Es = E<λ, and an unstable bundle Eu = E>µ.

Remark 2.21. If E and M are the complexification of a real vector
bundle Ẽ and a vector bundle automorphism M̃f on Ẽ, respectively, then
E<λ = E<λ and E>µ = E>µ, and we obtain an invariant real splitting
Ẽ = Ẽ<λ + Ẽ>µ (see Theorem A.13).

Now, we start the proof of Theorem 2.18.
Proof: The proof we present here follows [HPS77]. We split the proof
in several steps. In the following, we denote Γ<λ

B = P<λ(ΓB) and Γ>µ
B =

P>µ(ΓB).
• b-linearity of spectral projections. The first point is to realize that

the spectral projections are b(P,C)-linear.

Lemma 2.22. For any ρ ∈ b(P,C) and v ∈ ΓB(E):

(2.31) P<λ(ρv) = ρP<λv , P>µ(ρv) = ρP>µv .

Proof of the lemma: To prove Lemma 2.22, notice that

Mm
f (ρv)(θ) = ρ(f−m(θ))Mm

f v(θ) .

Using the Banach algebra properties of spaces of bounded functions,
and using Theorem A.14 we obtain that

v ∈ Γ<λ
B (E) ⇒ lim sup

m→∞
||Mm

f v||
1
m∞ < λ

⇒ lim sup
m→∞

||Mm
f ρv||

1
m∞ ≤ lim sup

m→∞
||ρ||

1
m∞ ||Mm

f v||
1
m∞ < λ

⇒ ρv ∈ Γ<λ
B (E) .
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Repeating the argument for P>µ, we obtain that

(2.32) v ∈ Γ<λ
B (E) ⇒ ρv ∈ Γ<λ

B (E) , v ∈ Γ>µ
B (E) ⇒ ρv ∈ Γ>µ

B (E) .

Finally, consider any v ∈ ΓB(E) and its spectral decomposition
v = v<λ +v>µ. Then, since ρv = ρv<λ +ρv>µ and (2.32) we obtain
the claimed result. tu

• Localization of spectral projections. The second step in the proof
is to check that the spectral projections are local operators, in
the sense that for a bounded section v, and a base point θ0 ∈ P,
(P<λv)(θ0) and P>µv(θ0) depend only on v(θ0).

Lemma 2.23. Let v be a bounded section. Let θ0 ∈ P be any
base point. If v(θ0) = 0 then (P<λv)(θ0) = 0 and (P>µv)(θ0) = 0.

Proof of the lemma: We have just to consider the bounded function
ϕ : P → C defined by

ϕ(θ) =
{

1, if θ = θ0,
0, otherwise ,

and apply Lemma 2.22. tu

• Bundle projections. We define the bundle automorphisms Π<λ
θ0

and
Π>µ

θ0
on the fiber Eθ0 , as

Π<λ
θ0
vθ0 = (P<λv)(θ0) , Π>µ

θ0
vθ0 = (P>µv)(θ0) ,

where v is a bounded section such that v(θ0) = vθ0 . Notice that
the definitions do not depend on the bounded section that we take
(Lemma 2.23). The bundle automorphisms are obviously linear.

• Splitting. From the properties of the spectral projections (Theo-
rem A.14), we prove that the bundle automorphisms are in fact
bundle projections. Hence, we obtain an invariant splitting Eθ =
E<λ

θ ⊕ E>µ
θ in linear subspaces just defining E<λ

θ0
= Π<λ

θ0
Eθ0 and

E>µ
θ0

= Π>µ
θ0
Eθ0 for each θ0 ∈ P. It is easy to see that

E<λ
θ0

= {v(θ0) | v ∈ Γ<λ
B (E)} , E>µ

θ0
= {v(θ0) | v ∈ Γ>µ

B (E)} .

• Rates of growth. From the characterization of the rates of growth
in the spectral subspaces (Theorem A.15), we obtain that for ε > 0
small enough there exists a positive constant Cε such that

Γ<λ
B (E) = {v ∈ ΓB(E) | ∀m ≥ 0 ||Mm

f v||∞ ≤ Cε(λ− ε)m||v||∞} ,
Γ>µ

B (E) = {v ∈ ΓB(E) | ∀m ≥ 0 ||M−m
f v||∞ ≤ Cε(µ+ ε)−m||v||∞} .

We claim that

(2.33) E<λ
θ0

= W≤λ−ε,Cε

θ0
= L<λ

θ0
, E>µ

θ0
= W≥µ+ε,Cε

θ0
= L>µ

θ0
.
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To prove this claim, take any vθ0 ∈ E<λ
θ0

. Notice that the bounded
section

(2.34) v(θ) =
{
vθ0 , if θ = θ0,
0, otherwise ,

belongs to Γ<λ
B (E) and v(θ0) = vθ0 . We are lead to

∀m ≥ 0 |M(θ,m)vθ| ≤ ||Mm
f v||∞ ≤ Cε(λ− ε)m||v||∞ = Cε(λ− ε)m|vθ| ,

and the inclusion E<λ
θ0

⊂ W≤λ−ε,Cε

θ0
is proved. Finally, to prove

that L<λ
θ0
⊂ E<λ

θ0
, take vθ0 ∈ L<λ

θ0
and define the bounded section v

by (2.34). Since

lim sup
m→∞

||Mm
f v||

1
m∞ = lim sup

m→∞
|M(θ0,m)vθ0 |

1
m < λ

then v ∈ Γ<λ
B (E), and vθ0 ∈ E<λ

θ0
.

Remark 2.24. Notice that the uniformity of the rates of growth that
characterizes the invariant subbundles comes from the boundedness of the
spectral projections (cf. Theorem 2.4).

One consequence of the characterization of the spaces by the rates of
growth (2.30) is that the mappings that to a point θ in the manifold P
associate the E<λ

θ and the E>µ
θ are closed. Since for each θ ∈ P those

spaces split the fiber Eθ, then the splitting Eθ = E<λ
θ ⊕ E>µ

θ is continuous
(see Theorem 2.4).

Another proof that also yields Hölder regularity is obtained using the
invariant section theorem (see [HP70, HPS77]). Here, we will give the
details only for the regularity of E<λ. Similar arguments give the claim for
E>µ. The idea of the proof is to show that the vector bundle automorphism
Mf induces a bundle morphism M̂<λ

f on the Grassmannian bundle Gn<λ .
Notice that the corresponding transfer operator, M̂<λ

f , acts on sections of
this Grassmannian bundle, and there exists an invariant section Ê<λ which
corresponds to E<λ. In fact, for ε > 0 small enough we can construct a
natural metric (see the section on adapted metrics below) for which this
map is a contraction by a factor λ−ε

µ+ε < 1, and there is one and only one
invariant section. Since this also acts on Hölder sections of exponent α and
it is a contraction of exponent λ−ε

µ+εL
α, where L = Lip(f−1). Hence, there is

a Cα section which is unique provided that α ≤ log(λ/µ)
log L .

To prove the converse, just note that any splitting satisfying (2.30) is,
at least, continuous. Then, the other properties follow immediately once we
define the spectral projections P<λ and P>µ by

(P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) ,

and check their properties using Theorem A.14. tu
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Remark 2.25. The bootstrap in the regularity of the splitting follows
from the invariant section theorem. It depends only on the growth rates
(2.30).

Remark 2.26. The arguments of the proof of Theorem 2.18 work if we
restrict the action of Mf to the bundle E|P0

, where P0 ⊂ P is a f -invariant
set without isolated points. This produces an invariant splitting of E on P0.

We note that the invariant sections theorem [HP70, HPS77] works
when the base set is just a metric space. So, the subbundles on P0 extend
to subbundles on cl(P0). See Theorem 3.39.

Remark 2.27. If the base manifold P is a torus Td, and the motion f
is a rotation f(θ) = tω(θ) = θ + ω with ω ∈ Rd, then the invariant splitting
is as smooth as the transfer operator, because the Lipschitz constant of
f−1(θ) = θ − ω is 1. This observation is important for Part 3.

Notice that the existence of annular gaps of the transfer operator has
consequences on the dynamics of the corresponding cocycle. This motivates
the following definition.

Definition 2.28. The annular hull of the spectrum of a transfer operator
Mf is decomposed in annuli

ASpec(Mf ,ΓB(E)) =
k⋃

i=1

Ai .

where the Ai is a pairwise disjoint set of annuli.

Ai = Aλ−i ,λ+
i

with λ+
i < λ−i+1 ≤ λ+i+ 1. The annuli Ai are called the spectral annuli.

Each annulus Ai has associated an invariant subbundle Ei, characterized
by the rates of growth of its orbits, and E =

⊕k
i=1Ei. Notice that

ASpec(Mf ,ΓB(Ei)) = Ai .

We call multiplicity of the spectral annulus Ai the rank of the corre-
sponding invariant subbundle Ei.

Remark 2.29. Since E =
⊕k

i=1Ei, the maximum number of spectral
annuli is n, the rank of the bundle E. That is to say, the maximum number
of gaps in the spectrum is n− 1.

Remark 2.30. We point out that the invariant bundles constructed
above as the images of spectral projections are not the only possible invariant
bundles. For example, if we take the product of two systems, the sum of
any pair of invariant subbundles – including the trivial subbundle – for
each system is an invariant subbundle for the product system. It is easy
to construct examples for which some of the invariant subbundles are not a
spectral subset. For example, if we take two identical systems, the product of
a spectral space from the first and the zero space in the other is invariant, but



44 2. DICHOTOMIES, INVARIANT SPLITTINGS AND SPECTRAL GAPS

it is not a spectral subset. Another example can be obtained by taking f∗ :
TT4 → TT4 where f =

(
A
0

0
A

)
where A =

(
2
1

1
1

)
. The bundles {e1} ⊕ {0}

and {0}⊗ {e1} where e1 is an eigenvalue of A — are non-trivial subbundles
of {e1} ⊕ {e1} which is the spectral subbundle.

Note that by taking the product of a system with itself we do not change
the spectrum — hence, the number of spectral subbundles — but by adding
a system to itself we can produce arbitrarily large number of invariant sub-
bundles. This observation plays a role in the theory of non-resonant invariant
manifolds (See e.g. [dlL97, CFdlL03a, CFdlL03b, HdlLb, HdlL04] ).

Remark 2.31. We will refer to the invariant subbundles constructed
above from spectral projections as spectral subbundles.

The spectral theory of transfer operators acting on continuous sections
is similar to that on bounded sections. A first dividend of Theorem 2.18 is
that the existence of gaps on Spec(Mf ,ΓB(E)) implies their existence on
Spec(Mf ,ΓC0(E)).

Proposition 2.32. Under the conditions of Theorem 2.18:

Spec(Mf ,ΓC0(E)) ∩ Aλ,µ = ∅ .

Proof: Once we know that the splitting (2.28) of Theorem 2.18 is continu-
ous we note that P<λ and P>µ send continuous functions into continuous
functions. Then ΓC0(E) is invariant under the spectral projections P<λ

and P>µ. We conclude that the annulus of radii λ, µ does not intersect
Spec(Mf ,ΓC0(E)) and that the projections on ΓC0(E) are the restrictions
of the projections on ΓC0(E) (see Corollary A.16). tu

Remark 2.33. As a corollary we obtain that

ASpec(Mf ,ΓC0(E)) ⊂ ASpec(Mf ,ΓB(E)) .

This result will be completed in Section 3.6.

2.3.2. Adapted metric, cone fields and existence of a spectral
gap. We have seen that a spectral gap Aλ,µ produces an invariant splitting
E = E<λ ⊕ E>µ. We will write M<λ = M|E<λ and M>µ = M|E>µ , the
restriction of the vector bundle automorphism over such a subbundles.

The following device is sometimes called the adapted metric or the Lya-
punov metric (see e.g. [Mat68]), and it is a metric adapted to the invariant
splitting. This is a geometric construct that parallels the construction of
adapted norms in functional analysis covered in Section A.3.

Proposition 2.34. Assume that

Spec(Mf ,ΓB(E)) ∩ Aλ,µ = ∅ ,
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where 0 < λ ≤ µ. Then, for every ε > 0 small enough we can find a metric
||·||θ on the fibers Eθ such that

||M<λ||C0 ≤ λ− ε ,

||(M>µ)−1||C0 ≤ (µ+ ε)−1 .

If the bundle and M are analytic, the metric can be chosen analytic on
θ.

Proof: Taking ε > 0 small enough, for vθ ∈ Eθ we define first the norms of
its projections on E<λ

θ and E>µ
θ by

(2.35) ||v<λ
θ ||2 =

∞∑
k=0

(λ− ε)−2k|M(θ, k)v<λ
θ |2

and

(2.36) |||v>µ
θ |||2 =

∞∑
k=0

(µ+ ε)2k|M(θ,−k)v>µ
θ |2 .

Notice that both series are convergent, from the characterization of the
invariant splitting by growth rates. Finally, we define

(2.37) ||vθ||2 = ||v<λ||2 + ||v>µ||2 .

It is very easy to show that ||·|| continuous with respect to θ and satisfies

(2.38) |||M<λ(θ)||| ≤ λ− ε , |||(M>µ)−1(f−1(θ)||| ≤ (µ+ ε)−1 ,

for every θ ∈ P.
If we smooth the metric, we obtain an analytic metric for which (2.38)

is satisfied with slightly worse constants. tu

Remark 2.35. We note that if the original norm satisfied the parallelo-
gram law, (i.e. are Riemannian metrics coming from an inner product) it is
easy to check that the norms (2.35), (2.36), and hence that in (2.37) also do.
Hence, if we chose a norm in Eθ which comes from a Riemannian metric,
we obtain a norm that also comes from a Riemannian metric.

The hypothesis on the existence of the spectral gap in C0 can be checked
with a finite computation. As it is quite standard in hyperbolicity theory,
the tool is the construction of suitable cone fields. .

Proposition 2.36. Suppose we can find cone fields C<λ
θ , C>µ

θ such that

(2.39) M(θ)C<λ
θ ⊂ C<λ

f(θ) , M
−1(f−1(θ))C>µ

θ ⊂ C>µ
f−1(θ)

and a metric such that

(2.40)
|M(θ)v| ≥ µ|v| , v ∈ C>µ

θ ,

|M−1(f−1(θ))v| ≥ λ−1|v| , v ∈ C<λ
θ ,
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and that, for every θ, there are spaces Ê<λ
θ ⊂ C<λ

θ and Ê>µ
θ ⊂ C>µ

θ such that

(2.41) Ê<λ
θ , Ê>µ

θ span E .

Then
Spec(Mf ,ΓC0(E)) ∩ Aλ,µ = ∅ .

Proof: The proof of the Proposition 2.36 is quite straightforward because it
implies that there exist cones in B on which ||M>µ

f || ≥ µ and ||M<λ
f

−1|| ≥
λ−1. The cone fields C<λ , C>µ are spanning and the spectral radius formula
tells us that the spectrum satisfies the result claimed. tu

In numerical applications, it is not too difficult to verify the hypothesis
of Proposition 2.36. If the conclusion is true, one can compute the stable
and unstable splittings by iterating frames. Since the mapping on frames is
a contraction, a calculation with finite precision is enough to give the cones.
A discussion of the implementation of these calculations is in [HdlL04].

2.4. Lyapunov multipliers and spectral annuli

In this section we continue the study of the asymptotic growth rates of
the orbits of a vector bundle automorphism undertaken in Section 2.1. We
will exploit here the spectral properties of the associated transfer operator.

The results of this section are highly inspired in [SS78], which developed
a spectral theory for lineal skew-product flows. The spectrum considered
in [SS78], the so called Sacker-Sell spectrum, is defined using dynamical
properties rather than functional analysis. The fact that there is relation
between Sacker-Sell spectrum and the functional analysis spectrum of the
transfer operator was established in [CS80] (see also [Joh80]), incidentally
this gave functional analysis proofs of several results in [SS78].

In this paper, we will also adopt the point of view of trying to obtain
results using with preference “soft” functional analysis rather than “hard”
analysis based on the dynamics. See also [Swa81].

The first result we consider is the translation of the uniformization
lemma in [SS78] (see also [Fen72]) to the language of the spectral theory
of transfer operators. We will use the notation introduced in Section 2.1.

Proposition 2.37. Let Mf : E → E be a vector bundle automorphism.
Let ρ be a positive number. The following four statements are equivalent:

(a) W≤ρ = E and W≥ρ = E0;
(b) L<ρ = E;
(c) for all θ ∈ P, lim

m→+∞
ρ−m|M(θ,m)| = 0;

(d) rs(Mf ,ΓB(E)) < ρ.
Analogously, the following four statements are equivalent:

(a’) W≥ρ = E and W≤ρ = E0;
(b’) L>ρ = E;
(c’) for all θ ∈ P, lim

m→−∞
ρ−m|M(θ,m)| = 0;
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(d’) ri(Mf ,ΓB(E)) > ρ.

Proof: We will first prove the equivalence among (a),(b), (c) and (d).
Notice that (d)⇒(a) and (d)⇒(b) are immediate consequences of the

characterization of spectral subbundles undertaken in Theorem 2.18.
Assume (a) E = W≤ρ and W≥ρ = E0. Obviously, W≤ρ ∩W≥ρ = E0,

and Theorem 2.4 (e) implies E = W≤λ for any λ < ρ close enough, with
uniform growth rates. Hence, for all θ ∈ P, vθ ∈ Eθ, and for all m ≥ 0

|M(θ,m)vθ| ≤ Cλm|vθ| .

That is to say, |M(θ,m)| ≤ Cλm. This proves (a)⇒(c).
Assume (b) E = L<ρ. Let θ ∈ P be any base point. Since there are

finitely many Lyapunov multipliers in Eθ, then Proposition 2.14 concludes
that for any ε = ε(θ) small enough W≤ρ−ε

θ = L<ρ
θ = Eθ. Hence, using the

uniform boundedness principle, there exists a constant Cε,θ such that

|M(θ,m)| ≤ Cε,θ(ρ− ε)m ,

for any m ≥ 0. This proves (b)⇒(c).
It only remains to prove (c)⇒(d). To do so, assume that (c) is true, and

we will bound ρ−mM(θ,m) uniformly in θ. To do so, we use the following
argument [SS78]. From (c), for each θ ∈ P there exists mθ > 0 and an open
neighborhood Uθ of θ such that

M(θ̄,mθ)
ρmθ

<
1
2

for any θ̄ ∈ Uθ. Since P is compact, we can cover it with a finite number of
open neighborhoods U1, . . . , Uk such that

M(θ̄,mi)
ρmi

<
1
2

for any θ̄ ∈ Ui, i = 1, . . . , k, where m1 ≤ · · · ≤ mk. Given any θ ∈ P and
m ≥ 0, we can construct a finite sequence mi1 , . . . ,mil ,mil+1

such that

sl = mi1 + · · ·+mil ≤ m < mi1 + · · ·+mil+1
= sl+1 ≤ (l + 1)mk

and fsj (θ) ∈ Uij+1 for j = 0, . . . , l, that is,

|M(fsj (θ),mj+1)| ≤ 1
2
ρmj+1 .

Therefore,

|M(θ,m)| = |M(fsl(θ),m− sl)M(fsl−1(θ),mil) . . .M(fs1(θ),mi2)M(θ,mi1)|

≤ |M(fsl(θ),m− sl)|
(

1
2

)l

ρsl

≤ K

(
1
2

) m
mk

−1

ρm ,
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where

K = max
θ∈P

max
0≤m≤mk

|M(θ,m)|
ρm

,

and we use that l > m
mk

− 1. Hence,

||Mm
f ||

1
m = sup

θ∈P
|M(θ,m)|

1
m ≤ K

1
m

(
1
2

) 1
mk

− 1
m

ρ
m→+∞−−−−−→

(
1
2

) 1
mk

ρ < ρ .

Hence, rs(Mf ,ΓB(E)) < ρ and (d) is proved. We are done with the proof
of Proposition 2.37. tu

In the analysis of the spectral annuli in terms of Lyapunov multipliers
we have the following result. This proof summarizes the dividends obtained
from the the relationship between spectrum (functional analysis) and Lya-
punov multipliers (dynamics).

Theorem 2.38. Let Mf : E → E be a vector bundle automorphism such
that we can write the annular hull of the spectrum on bounded sections as:

ASpec(Mf ,ΓB(E)) =
k⋃

j=1

Aλ−j ,λ+
j
.

Let

E =
k⊕

j=1

Ej

be the corresponding invariant splitting. Hence:

(a) For each spectral subbundle Ej, the four characteristic multipliers
of any of its non-zero vectors v ∈ Ej \ E0 belong to [λ−, λ+]. In
particular, if λ+ = λ− = λ, the four characteristic multipliers are
equal to λ and the limits

lim
m→+∞

|M(θ,m)vθ|
1
m = lim

m→−∞
|M(θ,m)vθ|

1
m = λ

exist.
(b) For each spectral subbundle Ej there exist v, w ∈ Ej, such that

λ+
s (v) = λ+

j and λ−i (w) = λ−j .
(c) Each spectral subbundle Ej is characterized by

Ej = {vθ ∈ Eθ | λ+
s (vθ) ≤ λ+

j , λ−i (vθ) ≥ λ−j }

(d) If vθ =
∑k2

j=k1
vj
θ, with vj

θ ∈ E
j
θ for all j, then:

λ−k2
≤ λ+

i (vθ) ≤ λ+
s (vθ) ≤ λ+

k2
, λ−k1

≤ λ−i (vθ) ≤ λ−s (vθ) ≤ λ+
k1

In particular, for any vector vθ ∈ E its four characteristic multi-
pliers lie in the spectral annuli.
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Proof: For the proof of the sentences (a) and (b) we have just to analyze
one spectral subbundle, so we suppose that

ASpec(Mf ,ΓB(E)) = Aλ−,λ+ .

Given θ ∈ P and vθ ∈ Eθ \ {0θ}, we will prove that λ− ≤ λ+
i (vθ) and

λ+
s (vθ) ≤ λ+. The other inequalities are proved using similar arguments.

Since ASpec(Mf ,ΓB(E)) = Aλ−,λ+ , then E = L<λ for all λ > λ+.
Hence, λ+

s (vθ) < λ for all λ > λ+ and then λ+
s (vθ) ≤ λ+.

Notice also that E = L>µ for all µ < λ−. Fixed µ < λ−, from the
characterization of spectral subbundles, for all ε > 0 small enough (i.e.,
such that µ+ ε < λ−) there exists a positive constant Cε such that

∀vθ ∈ E ∀m ≥ 0 |M(θ,−m)vθ| ≤ Cε(µ+ ε)−m|vθ| .

Fixed vθ ∈ Eθ and m ≥ 0, since M(θ,m)vθ ∈ Efm(θ), then

|vθ| = |M(fm(θ),−m)M(θ,m)vθ| ≤ Cε(µ+ ε)−m|M(θ,m)vθ|

and, hence,

|M(θ,m)vθ|
1
m ≥

(
1
Cµ,ε

|vθ|
) 1

m

(µ+ ε) .

Taking lim inf
m→+∞

in this inequality we obtain that λ+
i (vθ) ≥ µ+ε for all µ < λ−

and ε > 0 small enough, so then λ− ≤ λ+
i (vθ). (a) is proved.

To prove (b), that the boundary radii of the spectral annulus are reached
as Lyapunov multipliers of some vectors, we have just to apply Proposi-
tion 2.37.

The statement (c) is straightforward.
To prove (d), we will show that, if

θ = v<k2
θ + vk2

θ

with

v<k2
θ ∈

k2−1⊕
j=1

Ej

and vk2
θ ∈ Ek2 , then

λ−k2
≤ λ+

i (vθ) ≤ λ+
s (vθ) ≤ λ+

k2
.

First, notice that:

λ+
s (vθ) ≤ max{λ+

s (v<k2
θ ), λ+

s (vk2
θ )} = λ+

s (vk2
θ ) ≤ λ+

k2
.

Second, take any ε > 0 such that λ+
k2−1 < λ−k2

− ε < λ−k2
. Since v<k2

θ ∈

E
<λ−k2

−ε then

lim
m→+∞

|M(θ,m)v<k2
θ |

(λ−k2
− ε)m

= 0 .
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Since vk2
θ ∈ E>λ−k2

−ε then

lim
m→+∞

|M(θ,m)vk2
θ |

(λ−k2
− ε)m

= ∞ .

Henceforth, for all ε > 0 small enough

lim
m→+∞

|M(θ,m)vθ|
(λ−k2

− ε)m
= ∞

and then λ+
i (vθ) ≥ λ−k2

. tu

2.4.1. Bounds of the spectrum. In this section we will bound the
spectrum of a transfer operator Mf associated to a vector bundle automor-
phisms Mf , under the assumption that f is uniquely ergodic (i.e. it admits
only one invariant measure). We will establish the results for the spectrum
on the space of bounded sections, because the corresponding results for the
other spaces follows from this paper.

The following is a well known result that gives estimates on the size of
the spectrum. See also [CS81].

Proposition 2.39. Let Mf be a vector bundle automorphism over a
uniquely ergodic homeomorphism f . Let µ be its corresponding invariant
measure. Then:

Spec(Mf ,ΓB(E)) ⊂ Aρ−,ρ+ ,

where
(2.42)

exp
(
−
∫
P

log |M(θ)−1| dµ
)

= ρ− ≤ ρ+ = exp
(∫

P
log |M(θ)| dµ

)
.

Proof: We will prove the inequality rs(Mf ,ΓB(E)) ≤ ρ+, because the other
one follows immediately by inverting.

The spectral radius formula is

log rs = lim
m→∞

1
m

log ||Mm
f ||∞

Notice that

1
m

log ||Mm
f ||∞ ≤ 1

m
log max

θ∈P
|M(θ,m)| ≤ max

θ∈P

1
m

m−1∑
i=0

log |M(f i(θ))| .

Since f is uniquely ergodic, it is well known in ergodic theory (see
[Wal82]) that the time average of the continuous function log |M(θ)|

1
m

m−1∑
i=0

log |M(f i(θ))|

converges uniformly in θ when m→ +∞ to the space average∫
P

log |M(θ)| dµ .
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The inequality rs ≤ ρ+ is follows immediately. tu

Remark 2.40. Jensen’s inequality together with Proposition 2.39 im-
plies that:(∫

P
|M(θ)−1| dµ

)−1

≤ ρ− ≤ ρ+ ≤
(∫

P
|M(θ)| dµ

)
.

The above result is enough to locate the spectrum in some situations
(cf. [CS81]).

Corollary 2.41. Assume that the mapping f is uniquely ergodic.
If the rank of the bundle E is n = 1, then the spectrum is the circle of

radius ρ = ρ− = ρ+.
If M(θ) is an isometry for all θ ∈ P, that is |M(θ)| = 1 for all θ ∈ P,

then the spectrum is the unit circle.

Corollary 2.42. In the conditions of Proposition 2.39 we have for
every n

(2.43) ρ+ = exp
(∫

P

1
n

log |M(θ, n)| dµ
)
.

Taking infimum in n in (2.43) and using Oseledec’s theorem, we obtain

(2.44) ρ+ ≤ expλ+(M,µ)

where λ+ denotes the maximal Lyapunov exponent with respect to the in-
variant measure µ.

The proof of Corollary 2.42 consists in observing that the spectral radius
of Mf is the same as the spectral radius of Mn

f . On the other hand, Mn
f

is induced by the cocycle M(θ, n). If we apply (2.42) to M(θ, n), we obtain
(2.43). �

Remark 2.43. If the spectrum is decomposed in n spectral annuli, then
they are in fact spectral circles. This is a direct consequence of the previous
corollary and the fact that there are invariant subbundles associated to the
spectral annuli, that are 1-dimensional. Notice that the proof of this results
uses essentially that the invariant measure is uniquely ergodic.

It is straightforward that if we multiply a transfer operator by a constant
number α ∈ C∗, then the spectrum is multiplied by such constant number.
When the motion on the base is uniquely ergodic, we can generalize this
result.

Proposition 2.44. Let Mf : E → E be a vector bundle automorphism.
Let σ : P → C be a non-vanishing complex function. Assume one of the
following hypotheses:

• The modulus of σ is constant, with σ̂ = |σ(θ)| for all θ ∈ P;
• f is uniquely ergodic and σ̂ = exp

(∫
log |σ(θ)| dµ

)
, where µ is the

invariant measure. (σ̂ is the geometric average).
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Then:
ASpec(σMf ,ΓB(E)) ⇔ σ̂ASpec(Mf ,ΓB(E)) .

Remark 2.45. Recall that under the assumption of the existence of
an unique invariant measure the homeomorphism f is APD, and so the
spectrum involved is rotationally invariant.

Proof: Since (̂ 1
σ ) = 1bσ , we have just to prove for λ > 0, if Spec(Mf ,ΓB(E))∩

Sλ = ∅ then Spec((σM)f ,ΓB(E)) ∩ Sσ̂λ = ∅.
From the assumption Spec(Mf ,ΓB(E))∩Sλ = ∅, we know that there is

an invariant splitting ΓB(E) = Γ<λ
B (E) ⊕ Γ>λ

B (E) of the space of bounded
sections. Let M<λ

f and M>λ
f be the corresponding restrictions of the trans-

fer operator on these closed Banach subspaces. Since this spectral subspaces
are ΓB-linear subspaces, they are also invariant under the action of σMf .
Notice that the splitting E = E<λ ⊕E>µ is invariant for both M and σM .

Then, under the assumptions on σ (constant modulus) or f (unique
ergodicity),

rs((σM)f ,Γ<λ
B (E)) = lim

m→∞
||σ(f−1(θ)) . . . σ(f−m(θ))||

1
m∞ ||
(
M<λ

f

)m
||

1
m∞

= σ̂ rs(Mf ,Γ<λ
∞ )

< σ̂λ .

The same arguments are used to prove

ri((σM)f ,Γ>λ
B ) > σ̂λ .

Therefore, Spec((σM)f ,ΓB(E))∩Sσ̂λ = ∅. The rest of the proof is straight-
forward. tu

The following result gives a characterization of the spectral radius ρ in
terms of the maximal Lyapunov exponents of invariant measures. For the
proof we refer to [CL99, Thorem 8.15, p. 269]. See also [JPS87, LS90].

Theorem 2.46. With the notations above we have

(2.45) ρ(Mf ) = supλ+(M,µ)

where the supremum is taken over all the ergodic measures of f .

Of course, from Theorem 2.46 one can obtain similar formulas for the
spectral radius of the inverse. If the spectrum is contained in different annuli,
we can obtain a formula for the edges of the annuli by applying (2.45) to
the cocycle restricted to the invariant bundle.

2.5. Dependence of the spectrum on parameters

In this section we study the persistence of the spectral gap and the asso-
ciated invariant subbundles under perturbations of vector bundle automor-
phisms. This dependence was undertaken, for instance, in [HPS77, SS78].
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As we will see, stronger results can be obtained for transfer operators
over rotations, see Part 3, that lead to the perturbation theory of normally
hyperbolic invariant tori for quasi-periodic systems, see Chapter 15.

Given two Cr bundles E and F defined over the same base manifold
P, we denote by MorCr(E,F ) the Banach space of Cr vector bundle maps
from E to F , with the Cr-topology. As usual, we use trivialization charts
to introduce the topology. If we fix the dynamics on the base manifold with
a Cr diffeomorphism f : P → P, we denote by MorCr,f (E,F ) the space
of Cr vector bundle maps over f . Both MorCr(E,F ) and MorCr,f (E,F )f

are closed subspaces of Cr(E,F ). The definitions can be extended to other
categories, such as analytic, Sobolev, etc.

Remark 2.47. As was pointed out in [HPS77], the transfer operators
Mf , M̄f̄ associated to two close vector bundle automorphisms Mf , M̄f̄ are
not necessarily close as operators on ΓB(E). So, we cannot apply general
spectral theory to prove that the corresponding spectra are close.

The following is an illustrating example. Consider a trivial bundle E =
P × Cn. Let M : P → GLn(C) be the matrix valued continuous map
generating two vector bundle automorphisms Mf , Mg, where f, g : P →
P are two different homeomorphisms. The distance of the corresponding
transfer operators, as acting on ΓB(E), can be estimated from below as
follows. Let θ0 ∈ P such that f(θ0) 6= g(θ0). Take any v0 ∈ Eθ0 such that
|v0| = 1 and construct the bounded section

v0(θ) =
{
v0 if θ = θ0 ,
0 if θ 6= θ0 ,

whose norm is 1. Then:

||Mf −Mg||ΓB
≥ ||Mfv −Mgv||∞
= sup

θ∈P
|M(f−1(θ))v(f−1(θ))−M(g−1(θ))v(g−1(θ))|

= |M(θ0)v0|
≥

∣∣M(θ0)−1
∣∣−1

.

The best lower bound, which is general on f ,g is:

||Mf −Mg||ΓB
≥ inf

θ∈P

∣∣M(θ)−1
∣∣−1

.

With similar arguments, we obtain the same lower bound for ||Mf −Mg||C0 .
An exception to the previous comments and constructions is the case in

which the base homeomorphisms coincide (f = f̄). If Mf and M̄f are two
vector bundle automorphisms over the same base homeomorphism f , then

||Mf − M̄f ||B ≤ ||M − M̄ ||∞ .

Since we cannot apply functional analysis (Theorem A.20) to study the
perturbation of the spectrum in a general situation, a more dynamical con-
struction has to be performed (cf. [HPS77]).
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Theorem 2.48. Let Mf be a C0 vector bundle automorphism. Assume
that

Spec(Mf ,ΓB(E)) ∩ Aλ,µ = ∅ ,
where 0 < λ ≤ µ. Let E = E<λ ⊕ E>µ be the corresponding continuous
invariant splitting.

Then, we can find a C0 neighborhood U of Mf in MorC0(E) such that:

M̄f̄ ∈ U ⇒ Spec(M̄f̄ ,ΓB(E)) ∩ Aλ,µ = ∅ .

Moreover, the mapping that to M̄f̄ associates the continuous splitting E =
Ē<λ⊕ Ē>µ is continuous when we give the space of bundle splittings the C0

topology and U the C0 topology.
The map

Mf −→ A(Spec(Mf ,ΓB(E)))

is continuous, when consider from C0 vector bundle automorphisms (with
the C0 topology) to compact sets (with Hausdorff topology).

Proof: The following construction of the splitting E = Ē<λ⊕Ē>µ, invariant
under M̄f̄ , appears, mutatis mutandis, in [HPS77]. We will do here the
construction of Ē<λ, but a similar construction can be also carried for Ē>µ.

First, recall that for ε > 0 small enough, we can construct a norm
adapted to the splitting E = E<λ ⊕ E>µ, invariant under Mf , such that:

(2.46) ||A(θ)|| ≤ λ− ε , ||D(f−1(θ))−1|| ≤ (µ+ ε)−1 ,

where A(θ) = M(θ)|E<λ
θ

and D(θ) = M(θ)|E>µ
θ

.
We represent M̄f̄ relatively to that splitting by

M̄f̄ (θ) =
(
Ā(θ) B̄(θ)
C̄(θ) D̄(θ)

)
.

That is: Ā(θ) = Π<λ
f̄(θ)

M̄(θ)Π<λ
θ , B̄(θ) = Π<λ

f̄(θ)
M̄(θ)Π>µ

θ , etc. With this
notation, notice that B̄(θ) and C̄(θ) are “small” and Ā(θ) and D̄(θ) are
“close” to A(θ) and D(θ), respectively (using the C0 topology).

We will write the invariant bundle Ē<λ for M̄f̄ as the graph of a linear
map Wθ : E<λ

θ → E>µ
θ . A point (vθ,Wθvθ), with vθ ∈ E<λ

θ , gets mapped by
M̄(θ) onto

(2.47) (Ā(θ)vθ + B̄(θ)Wθvθ, C̄(θ)vθ + D̄(θ)Wθvθ) .

We see that the fact that the bundle Ē<λ is invariant under M̄f̄ just means
that the second component of (2.47) is Wf̄(θ) applied to the first component.
That is

Wf̄(θ)(Ā(θ) + B̄(θ)Wθ) = C̄(θ) + D̄(θ)Wθ ,

or, equivalently,

(2.48) TM̄f̄
(W ) = W ,
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where
(2.49)

T : MorC0(E,E)×MorC0,id(E<λ, E>µ) −→ MorC0,id(E<λ, E>µ)
(M̄f̄ ,W ) −→ TM̄f̄

(W )

is defined by(
TM̄f̄

(W )
)

θ
= D̄(θ)−1(Wf̄(θ)(Ā(θ) + B̄(θ)Wθ)− C̄(θ)) .

We note that when M̄f̄ = Mf the operator reduces to(
TMf

(W )
)
θ

= D(θ)−1Wf(θ)A(θ) .

Using the adapted norm (2.46), this is a contraction in MorC0,id(E<λ, E>µ),
whose fixed point is W (θ) = 0. If M̄f̄ is close enough to Mf , then T̄M̄f̄

is

a contraction in MorC0,id(E<λ, E>µ) and we construct the invariant bundle
Ē<λ by using the fixed point theorem.

From here, we obtain that Spec(Mf̄ ,ΓB(E)) ∩ Aλ,µ = ∅ if M̄f̄ is close
enough to Mf . tu

Corollary 2.49. Let M ε
fε

: E → E be a Cr family of Cr vector bundle
automorphisms on E, with corresponding base Cr diffeomorphisms fε : P →
P, where ε ∈ B0 = B(0, ε0) ⊂ Rp and ε0 > 0. This means that M :
E ×B0 → E defined by M(θ, ε)vθ = M ε(θ)vθ is Cr jointly in θ and ε.

Suppose that the Lipschitz constants of the Cr diffeomorphisms f−1
ε are

uniformly bounded: Lip(f−1
ε ) ≤ L. Suppose that

1) For ε = 0, Spec(M0
f0
,ΓB(E)) ∩ Aλ,µ = ∅, where 0 < λ < µ;

2) The global Lipschitz constant satisfies λ
µL

r < 1.

Then, there exists 0 < ε1 < ε0 such that for all ε ∈ B1 = B(0, ε1):
a) Spec(Mε

fε
,ΓB(E)) ∩ Aλ,µ = ∅;

b) The corresponding invariant splitting E = E<λ
ε ⊕ E>µ

ε is Cr;
c) The splitting is Cr jointly in θ and ε.

Proof: a) is a direct consequence of the previous theorem. b) follows from
the invariant section theorem (see Theorem 2.18), using hypothesis 2).

To prove c), we define the extended bundle Ê = E×B̄1 over P̂ = P×B̄1,
and the extended vector bundle automorphism M̂ : Ê → Ê over f̂ : P̂ → P̂ ,
by

f̂(θ, ε) = (fε(θ), ε), M̂(θ, ε)(vθ, ε) = (M ε(θ)vθ, ε) .

Notice that
Spec(M̂f̂ ,ΓB(Ê)) ∩ Aλ,µ = ∅ ,

and the Lipschitz constant of f̂−1 is L̂ = max(1, sup|ε|≤|ε1| Lε) ≤ max(1, L),
that satisfies λ

µ L̂ < 1. We have just to apply Theorem 2.18 to prove (c). tu
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Remark 2.50. We emphasize that the constructions of this section can
be implemented numerically (see [HdlL04]).

Remark 2.51. We emphasize that the spectrum is only claimed to be
continuous in open sets around a gap. The open set depends a lot on the
properties of the spectral projections.

When we consider the closure of sets where the gaps exit, it could well
happen that the spectrum at the endpoint. This may happen because the
norm of the spectral projections blow up.

In [HdlL05a] it is conjectured that this phenomenon happens in the
examples that were considered in [HdlLa]. Namely, in the cocycles associ-
ated to some normally hyperbolic manifolds it happens that the spectrum
remains continuous in an open interval of parameters. Nevertheless, the
norm of the spectral projections blows up as we approach the boundary. As
a consequence, the spectrum at the boundary is larger than the limit (the
gap is filled).



Part 2

Mather theory of transfer
operators



In this part we go over the Mather theory of transfer operators, that is
the application of Spectral Theory to study dynamical properties of cocycles.

In Section 3 we repeat some of the arguments of [Mat68] in the slightly
more general framework of vector bundle automorphisms. Notice that, in
principle, the spectrum of a bounded linear operator depends heavily on the
Banach space on which it is acting. We have found the study in the lower
level of sections, just bounded sections, very fruitful. This point of view
simplifies many arguments. As we will see, the spectrum of the transfer
acting on other spaces, such as continuous sections or Lp sections (p > 1),
coincides with that on bounded sections (see also [CS80]).

An important ingredient is a device known as Mather localization (see
also [CL99]), that lies in finding approximate bounded eigensections of
a simple type, that means supported on orbits. This is the content of
Lemma 3.1. We have refined the arguments in [Mat68] so they can be
applied to prove the equality of approximate point spectrum in bounded
and continuous sections (Theorem 3.7), and, as we will see in Section 4,
to obtain a characterization of the spectrum based on the behavior of the
transfer on orbits at least in some cases. The invariance under rotation of
the spectrum in the case that the homeomorphism on the base manifold
has a dense set of aperiodic orbits is also a corollary (Theorem 3.11). An-
other ingredient is the characterization of spectral projections carried out
in Theorem 3.14. The generality of the framework presented here let us
work in a great variety of spaces of sections, and will be also very useful in
the further Part 3 and Part 4. To prove this theorem, we use heavily some
arguments in [Mn78] (see also [CL99]), that we summarize in Lemma 2.15.
As a corollary of Theorem 3.14, we obtain the equality of the spectrum in
bounded and continuous sections (Theorem 3.25). This theorem also con-
tains a similar result for Lp sections. Notice that these equalities among
the spectra reduce the study the action of the transfer operator on bounded
sections, that are the simpler ones. For instance, repeating some arguments
in [Swa81], that are supported in a deep result in [SS76a], we prove in
Theorem 3.19 that, if the dynamics on the base manifold is chain-recurrent
and does not have periodic orbits, then the full spectrum is point spectrum
(when acting on bounded sections). Section 3.7 is devoted to study the
spectrum of the transfer operator acting on spaces of Cr sections. As we
will see, making smaller the space (taking Cr sections instead of bounded
or continuous sections) the spectrum of the operator grows. The results will
be improved, including also Sobolev regularities, in Part 3, in the special
case of transfer operators over rotations.

In Section 2.5 we study the persistence of the spectral gaps and the
associated invariant subbundles under perturbations of vector bundle auto-
morphisms (see also [HPS77]).

In Section 3.9 we will study the spectral implication of lifting of the
cocycle to a covering space. That is to say, what is the relationship between
the spectra of a vector bundle automorphism and its lifting when covering
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the base manifold. We obtain, for instance, that if the dynamics on the base
manifold is chain-recurrent and has a dense set of aperiodic orbits, then both
spectra coincide.

Finally, the last section is devoted to the spectral theory of triangular
transfer operators, that arise for instance when considering push forward
operators acting on jets in Part 4, or the construction of a great variety of
invariant manifolds [dlL97, CFdlL03a, CFdlL03b, CFdlL05, HdlLb,
HdlL04, HdlL05a]).





CHAPTER 3

Mather theory for the spectrum of vector bundle
maps

In this section we repeat the arguments in [Mat68] in the slightly more
general framework of vector bundle automorphisms. Even if the notation
changes, most of the ideas come from [Mat68]. Nevertheless, stating them
in the greater generality of vector bundles will allow us to perform induction
arguments, either by passing to invariant subbundles, that are not necessar-
ily trivial (see also Part 3, or by passing to tangent bundles (see Part 4).
Moreover, some of the constructions of approximate eigensections, etc. will
be performed in such a way that they are of use for later developments. We
will also find it convenient to consider at the same time the spaces of con-
tinuous sections and the spaces of bounded sections. Later, this will make
it easy to shorten significantly some of the arguments.

We will first show that the Weyl spectrum does not depend on whether
we consider ΓB(E) or ΓC0(E). Then, we will establish invariance under rota-
tion and finally, the characterization of spectral projections. As a corollary,
we will obtain that the spectra on ΓB(E) and ΓC0(E) agree. In the case
that f preserves a topological measure µ (i.e. a measure which is positive on
non-empty open sets), we will show the same results for Lp sections (p > 1).

3.1. Mather localization

Theorem 3.7 below states the equality of the approximate point spectra

SpecW (Mf ,ΓB(E)) = SpecW (Mf ,ΓC0(E)) .

Since the inclusion SpecW (Mf ,ΓC0(E)) ⊂ SpecW (Mf ,ΓB(E)) is obvious,
it suffices to establish the opposite inclusion. So, given an approximate
eigensection v ∈ ΓB(E) we will produce another one ṽ ∈ ΓC0(E).

The first task will be to show that we can assume that the bounded
approximate eigensection is of a particularly simple kind. Once we have ac-
complished this, we will fatten up this approximate eigensection to produce
a continuous approximate eigensection, that is localized around an orbit.

This device is also known as Mather localization, and it is based on the
ideas of [Mat68] (see also [CL99]), where approximate continuous eigensec-
tions of push forward operators of APD diffeomorphisms were considered.
A similar argument will occur in Part 3 and Part 4, where other spaces
of sections are considered. Since the process of fattening up a function is
rather cumbersome, it is to our advantage to get these eigensections to be as
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simple as possible. Much of this argument will be used again later. Roughly,
we will show that it is always possible to obtain approximate eigensections
that are supported either on a finite segment of an orbit or on a periodic
orbit. Moreover, these eigensections are obtained by letting the map act
and multiply by a suitable number.

Lemma 3.1. Let z ∈ SpecW (Mf ,ΓB(E)). We can find a sequence of ap-
proximate eigensections vn supported on finite segments of orbits {f i(θn)}i∈Z
with |vn(θn)| ≥ 3/4, ||vn||∞ ≤ 1. Moreover, we can assume that θn tends to
θ∗ ∈ P and the approximate eigensections satisfy one of the following sets of
properties, depending on the periodicity properties of the points around θ∗:
(a) If for all open set U ⊂ P such that θ∗ ∈ U , the function p|U is not
bounded, then:

(i) v = vn is supported in the finite segment of orbit {f i(θn)}N
i=−N ,

with N = [1/εn];
(ii) there exist constants γn,−N , · · · , γn,N−1 ∈ [12 ,

3
2 ], such that

v(f i+1(θn)) =
γn,i

z
M(f i(θn))v(f i(θn)) ,

for i = −N, · · · , N − 1;
(iii) ||Mfv − zv||∞ ≤ 2εn|z|

n→∞−−−→ 0.
(b) If there exists an open set U ⊂ P such that θ∗ ∈ U and p|U is bounded,
and in particular p(θ∗) = N∗, then:

(i’) v = vn is supported in the periodic point θn ∈ U , whose minimal
period N does not depend on n and it is multiple of N∗;

(ii’) there exists a complex constant zn such that

v(f i+1(θn)) =
1
zn

M(f i(θn))v(f i(θn)) ,

for i = 0, · · ·N − 1; (In particular, v(θn) is an eigenvector of
M(θn, N) whose eigenvalue is zN

n ).
(iii’) ||Mfv − zv||∞ ≤ |zn − z| n→∞−−−→ 0.
Moreover, if f is APD, it is the first alternative (a) that holds.

Proof: By the assumption that z ∈ SpecW (Mf ,ΓB(E)) we can find a se-
quence of approximate eigensections wn. For each of these eigensections, we
can find a point θn such that

(3.1) |wn(θn)| ≥ 3/4.

By compactness of P we can find a point θ∗ which is an accumulation of
{θn}n. By passing to a subsequence, we can assume that it is a limit.

A first localization of the approximate eigensection wn is just considering
the bounded section restricted to the orbit of θn, so wn is a bounded sequence
of vectors {wn(f i(θn))}i∈Z.

Using Thychonov theorem, we note that we can pass to a further sub-
sequence in such a way that wn(f i(θn)) n→∞−−−→ wi, for all i ∈ Z. Note that,
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because of our assumptions |wi| ≤ 1, |w0| ≥ 3/4, and Π(wi) = f i(θ∗). Since

|M(f i(θn))wn(f i(θn))− zwn(f i+1(θn))| n→∞−−−→ 0 ,

we have

(3.2) M(f i(θ∗))wi = zwi+1 ,

for all i ∈ Z.
If {f i(θ∗)}i∈Z is an aperiodic section, we can consider wi to be a section

supported on {f i(θ∗)}i∈Z. Note that in this case, wi is an eigenvector and
that z is in the point spectrum.

On the other hand, if fN (θ∗) = θ∗, we have to argue further. We have
to distinguish depending on whether

(3.3) wi+N = wi ∀i ∈ Z

whether this is not the case.
If (3.3) holds, again, we can consider {wi}i∈Z as a section on the orbit

and it is an eigenvalue for an eigenvalue z.
If (3.3) fails, we cannot consider wi as a section supported on the finite

set {f i(θ∗)}i∈Z. On the other hand, we have that the sequence wNj satisfies

z−NM(fN−1(θ∗)) · · ·M(θ∗)wNj = wN(j+1)

Since the sequence wNj is bounded uniformly in j, we conclude that
the only possibly is that wN is an eigenvalue of modulus 1 of the matrix
z−NM(fN−1(θ∗)) · · ·M(θ∗).

Remark 3.2. As we will see in Section 4, this implies that there is an
eigenvalue on the periodic orbit of the same eigenvalue.

Hence, we have shown that if z ∈ SpecW (Mf ,ΓB(E)) we have that for
some η ∈ R we have zeiη ∈ SpecW (Mf ,ΓB(E))

The case η 6= 0 happens only when the eigenvalue is supported in a
periodic orbit.

In particular, if f is NPO, the Weyl spectrum is point spectrum (on
bounded sections). One important case of systems satisfying NPO is irra-
tional rotations in the circle, which are the main case considered in Part 3
motivated by [HdlLb, HdlL04, HdlL05a].

There are two alternatives for θ∗: either there are points of periods arbi-
trarily high, possibly infinite, arbitrarily close to θ∗; or there is a neighbor-
hood of θ∗ in which all the points are periodic, and the periods are bounded.
We will analyze both alternatives separately.

(a) The first alternative is that for all open set U ⊂ P such that θ∗ ∈ U ,
the function p|U is not bounded.

Notice that if f is APD, this is the only possible alternative.
We distinguish two cases:
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(a.1) If θ∗ is aperiodic, we define N = [1/ε] and set

v(f i(θ∗)) = vi = (1− |i|/(N + 1))+wi for |i| ≤ N ,
v(θ) = 0 otherwise ,

where we denote (t)+ = max(t, 0). This section is supported in the finite
segment f−N (θ∗), · · · , fN (θ∗). In this case θn = θ∗.

Using (3.2) we have

|M(f i(θ∗))vi − zvi+1)| =
∣∣∣∣(1− |i|

N + 1

)
+

−
(

1− |i+ 1|
N + 1

)
+

∣∣∣∣ |z||wi+1|

≤ |z|/(N + 1) < |z|ε

and M(θ)v(θ)− zv(f(θ)) = 0 for all points θ not on the orbit of θ∗. Notice
also that v satisfies

(3.4) v(f i+1(θ∗)) = γi
1
z
M(f i(θ∗))v(f i(θ∗)) ,

for i = −N, · · · , N − 1, where

γi =
(1− |i+ 1|/(N + 1))+

(1− |i|/(N + 1))+
.

Remark 3.3. Notice that in this case we have found a bounded eigen-
section for z supported on the orbit of θ∗. That is, there exists a bounded
sequence {wk}k∈Z such that Π(wk) = fk(θ∗) and

M(fk(θ∗))wk = zwk+1 .

Notice also that for a given α ∈ R, the sequence {w̄}k∈Z defined by w̄k =
e−kαiwk satisfies

M(fk(θ∗))w̄k = eαizw̄k+1 .

That is to say, from a eigenvalue whose bounded eigensection is supported
in an aperiodic orbit we obtain a whole circle of eigenvalues.

(a.2) If θ∗ is periodic, we can find a point θn whose period is p(θn) >
2
ε (possibly infinite), and so close to θ∗ that the finite segment of orbit
{f i(θn)}N

i=−N with N = [1/ε], does not leave the trivializations around the
corresponding segment of orbit {f i(θ∗)}N

i=−N , and the distance between both
segments of orbits is smaller than a small enough δ > 0.

Working on the trivializations – so that we can freely add vectors at
different points –, we define the section

(3.5) v(f i(θn)) = vi = (1− |i|/(N + 1))+
1
zi
M(θn, i)w0 for |i| ≤ N ,

v(θ) = 0 otherwise .
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Using (3.2), it is easy to show that v is an approximate eigensection:

|M(f i(θn))vi − zvi+1)| ≤ ε 1
|z|i |M(θn, i+ 1)w0|

≤ ε 1
|z|i (|(M(θn, i+1)−M(θ∗, i+1))w0|

+ |M(θ∗, i+1)w0|)

≤ ε|z| (ηi+1(δ) + 1) ≤ 2ε|z|,

where ηi is the modulus of continuity of 1
ziM(·, i), and we choose δ > 0 small

enough. Obviously, for all the points θ not on the segment of orbit of θ∗,
M(θ)v(θ)− zv(f(θ)) = 0.

It is obvious from the construction that v satisfies (3.4).

Remark 3.4. Instead of using local trivializations, a more geometric
construction is using a connector T on the bundle E (see Definition 1.23 in
Part 1).

We define the section v(f i(θn)) = (1− |i|/(N + 1))+ 1
ziM(θn, i)Tθ∗,θnw0

if |i| ≤ N and v(θ) = 0 otherwise.
The main reason why we have used the local trivializations is that the

typography is significantly easier since we can use additive notation.

Remark 3.5. Notice that if p(θ∗) = N∗, then the sequence

wN∗k =
1

zkN∗
M(θ∗, N∗k)w0 =

(
1
zN∗

M(θ∗, N∗)
)k

w0

is bounded (|wi| ≤ 1 for all i ∈ Z). So then, the matrix M(θ∗, N∗) has eigen-
values of modulus |z|N∗ , and w0 is in the space spanned for the corresponding
eigenvectors.

Notice also that if z̃ = eαiz with α ∈ R, then the definition (3.5) with z̃
instead of z also produces an approximate eigensection, in this case for the
approximate eigenvalue z̃ = eαiz.

In summary, if z ∈ C is such that zN∗ is an eigenvalue of M(θ∗, N∗),
then z is an eigenvalue of Mf , and it produces a whole circle of radius |z|
of approximate eigenvalues.

(b) The second alternative is that there exist an open set U ⊂ P such that
θ∗ ∈ U and p|U is bounded.

Hence, we can consider the points θn satisfying (3.1) inside this neigh-
borhood U , so the corresponding approximate eigensection can be restricted
to their orbits, that are periodic (and the periods are bounded). We can
assume that all the minimal periods are equal to N , p(θn) = N , and this
implies that N is a multiple of p(θ∗) = N∗: N = N∗` for some natural `.

Thychonov theorem implies

M(f i(θ∗))wi = zwi+1 0 ≤ i < N − 1 ,

M(fN−1(θ∗))wN−1 = zw0 ,
(3.6)
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but, however, there is no reason why wi+N∗ = wi. Hence, we cannot consider
{wi}N−1

i=0 as a function over the periodic orbit {f i(θ∗)}N−1
i=0 . Using (3.6), we

obtain that zN and w0 are an eigenvalue and a corresponding eigenvector
of M(θ∗, N) = (M(θ∗, N∗))

`. For large enough n, M(θ∗, N) is close to
M(θn, N). Hence, we can find a zn close to z so that zN

n is an eigenvalue of
M(θn, N). Let ṽ0 be an eigenvector corresponding to such eigenvalue. Now,
we construct the function ṽ(f i(θn)) = 1

zi
n
M(θn, i)ṽ0 and zero otherwise.

This function satisfies Mf ṽ − znṽ = 0 and is supported in a periodic orbit.
Finally, consider v = ṽ/||ṽ||∞. This satisfies the second set of properties.

Remark 3.6. Since zN = zN∗l is an eigenvalue ofM(θ∗, N) = (M(θ∗, N∗))l,
then z = e2π j

N
iz̃,where j ∈ {0, 1, · · · , l − 1} and z̃N∗ is an eigenvalue of

M(θ∗, N∗). Obviously, z̃ is an eigenvalue of Mf , whose bounded eigensec-
tion is supported in a periodic orbit.

Conversely, if z̃N∗ is an eigenvalue of M(θ∗, N∗) and j = 0, 1, . . . , N − 1,
we will see that z = e2π j

N
iz̃ is an approximate eigenvalue of Mf . To do

so, notice that if w̃0 is an eigenvector of M(θ∗, N∗) for z̃N∗ , then the finite
sequence {wi}N−1

i=0 defined by

wi =
1
zi
M(θ∗, i)w̃0

satisfies (3.6). Although wi+N = wi, there is no reason why wi+N∗ = wi, but
with the same arguments above we prove that z is an approximate eigenvalue
of Mf .

In summary, for a periodic point θ∗, of minimal period N∗, if it can be
approached by periodic orbits of minimal period N , then for each complex
value z such that zN∗ is an eigenvalue of M(θ∗, N∗) we produce a regular
N -polygon of approximate eigenvalues of Mf with one vertex in z.

tu

3.2. Equality of Weyl spectra for bounded, continuous and Lp

sections

The main result of this subsection is

Theorem 3.7. Let Mf : E → E be a vector bundle automorphism.
Then:

(3.7) SpecW (Mf ,ΓB(E)) = SpecW (Mf ,ΓC0(E))

In the case that f preserves a measure µ we have that

(3.8) SpecW (Mf ,ΓB(E)) ⊃ SpecW (Mf ,ΓLp(µ)(E))

for p > 1.
If, furthermore, µ is a topological measure

(3.9) SpecW (Mf ,ΓB(E)) = SpecW (Mf ,ΓLp(µ)(E))
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for p > 1.

Remark 3.8. The inclusion SpecW (Mf ,ΓC0(E)) ⊂ SpecW (Mf ,ΓLp(µ)(E))
for p = 2 was proved in [CS80] for push-forward operator of a diffeo-
morphism over a smooth compact Riemannian manifold, preserving the
Lebesgue measure induced by the metric, and under the assumption that
f is APD. This, without the assumption of APD, is a particular case of
Theorem 3.7

[CS80] quote in a remark that their result holds for vector bundle maps
+ APD + measure absolutely continuous w.r.t Lebesgue, even for the case
p= 1. They do not present a proof.

Proof: Since SpecW (Mf ,ΓC0(E)) ⊂ SpecW (Mf ,ΓB(E)), it suffices to es-
tablish the opposite inclusion to prove the first part of Theorem 3.7.

Let z ∈ SpecW (Mf ,ΓB(E)). Given an approximate eigensection v ∈
ΓB(E) we will produce another one ṽ ∈ ΓC0(E). Notice that we can as-
sume that the bounded approximate eigensection is of a particularly sim-
ple kind, that is satisfying one of the set of properties (a) and (b) of
Lemma 3.1. Then, we will fatten up this localized approximate eigensection
to produce a continuous approximate eigensection. This will prove inclusion
SpecW (Mf ,ΓB(E)) ⊂ SpecW (Mf ,ΓC0(E)).

Once we obtain a continuous approximate eigensection, we will obtain
a Lp approximate eigensection with p > 1 under the assumption that the
measure µ is topological. This will prove inclusion SpecW (Mf ,ΓB(E)) ⊂
SpecW (Mf ,ΓLp(µ)(E)).

Proof of SpecW (Mf ,ΓB(E)) ⊂ SpecW (Mf ,ΓC0(E)) ⊂ SpecW (Mf ,ΓLp(µ)(E))
The proof will start in the same way as the proof of Lemma 3.1. We will

start by considering a sequence of approximate eigensections vn such that
|vn(θn)| ≥ 3/4 and assume also that θn converges to θ∗.

We will analyze the alternatives (a) and (b) of Lemma 3.1 separately.
(a) In this alternative, the period function was unbounded in any neighbor-
hood of θ∗.

Proceeding as in Lemma 3.1, we obtain a bounded approximate eigen-
section v supported in a finite segment of orbit {f i(θn)}N

i=−N , with f i(θn) 6=
f j(θn) for i 6= j with |i| ≤ N, |j| ≤ N , with N = [1/ε]. The error as
approximate eigensection is smaller than 2ε|z|. To produce a continuous
approximate eigensection, we just replace each of the vectors on the orbit
by a function that has support in a small neighborhood chosen in such a
way that it is still an approximate eigensection.

Notice that we can pick coordinates around each of the points in the
finite segment {f i(θn)}N

i=−N in such a way that the bundle is trivialized.
Pick ρ : R+ → R continuous such that ρ(0) = 1, ρ(t) = 0 if t ≥ δ with

δ > 0 small enough that if d(θ, θn) ≤ δ then f i(θ) is in the neighborhood of
f i(θn) where the trivialization is valid, for all |i| ≤ N . We can also assume
that these trivializing neighborhoods do not overlap. (We will later assume
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further smallness properties for δ.) Set

(3.10) ρ0(θ) = ρ(d(θ, θn)) and ρi(θ) = ρ0(f−i(θ)) .

Then, for each |i| ≤ N , we set in the trivialization on the bundle around
f i(θn)

(3.11) ṽ(θ) = ρi(θ)v(f i(θn)) ,

and the section is zero away of these trivializations. This section is contin-
uous and ṽ(θn) ≥ 3/4.

Then, working in coordinates, we have for θ with d(f−i(θ), θn) < δ:

|M(θ)ṽ(θ)− zṽ(f(θ))| = ρi(θ)|M(θ)v(f i(θn))− zv(f i+1(θn))|
≤ |M(θ)−M(f i(θn))||v(f i(θn))|

+ |M(f i(θn))v(f i(θn)− zv(f i+1(θn))|
≤ ηi(δ) + 2ε|z| ,

(3.12)

where ηi is the modulus of continuity of M◦f i, and we use the estimates in
Lemma 3.1. We note that both terms are small. In fact, we can make the
first term arbitrarily small by making δ sufficiently small. Clearly, outside
of these neighborhoods the difference is zero.

This completes the construction of the continuous approximate eigen-
section in the alternative (a).

Remark 3.9. We note that the above construction is hard to generalize
for p = 1. On one hand, the error of the approximate eigensection is the
sum of the error at all the steps, which should be small. On the other hand,
the sum of the error at all the step should be of order 1 because this is what
allows to get the error to be small.

Of course, this is not the only possible constructions of eigensections.
Clearly, we have ||Mfv − λv||L1 ≤ ||Mfv − λv||C0 . It is perhaps possible to
choose sets for smoothing tailored for the function, etc.

We will show now that, under the assumption that µ is a topological
measure, a multiple of such continuous approximate eigensection is also an
Lp(µ) approximate eigensection. This is not completely trivial because the
continuous approximate eigensections may have very small Lp norm, but we
will perform a careful construction.

We will compute now the Lp norm of the continuous approximate eigen-
section defined in (3.11) and the Lp norm of the error as approximate eigen-
section. Using the invariance of the measure, we have

||ṽ||pLp =
N∑

i=−N

|v(f i(θn))|p
∫

(ρi(θ))p dµ =
∫

(ρ0)pdµ

N∑
i=−N

|v(f i(θn))|p

≥ (3/4)p

∫
(ρ0(θ))pdµ > 0 ,

(3.13)
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where the last bound is obtained just because the sum contains a term of
size 3/4. Notice also that this bound is positive, because the measure is
topological and the function ρ0 is strictly positive in a open neighborhood.
Therefore: ||ṽ||Lp ≥ (3/4)||ρ0||Lp > 0.

Bounding each term in (3.12) as in (3.13), we obtain:

||Mf ṽ − zṽ||pLp

≤ 2p−1

∫
(ρ0)pdµ

N∑
i=−N

|v(f i(θn))|p sup
θ∈supp ρ0

|M(f i(θ))−M(f i(θn))|p

+ 2p−1

∫
(ρ0)pdµ

N∑
i=−N−1

|M(f i(θn))v(f i(θn))− zv(f i+1(θn))|p

(3.14)

The first term in (3.14) can be made arbitrary small by making the sup-
port of ρ0 sufficiently small since sup

θ∈supp ρ0

|M(f i(θ)) − M(f i(θn))| can be

made arbitrary small. The second term can be bounded from above by
2p−1

∫
(ρ0)pdµ εp(2N + 2). Recalling that we took N = [1/ε], we obtain

that, for ε sufficiently small, this term can be made arbitrarily small with
respect to ||ṽ||pLp , provided that p > 1.

So, by multiplying the continuous approximate eigensection ṽ by ||ρ0||−1
Lp

we obtain an Lp approximate eigensection. These arguments complete the
analysis of the first alternative.

Remark 3.10. We can also construct the Lp approximate eigensection
from the localized bounded approximate eigensection by defining a suit-
able step eigensection (that is, constant in small trivializing neighborhoods
around the points of the finite segment of orbit).

(b) We make now the construction of the continuous and Lp approximate
eigensection under the alternative (b) of Lemma 3.1.

A key observation is that there exists an open neighborhood V ⊂ U
of θn in which all the periods of the points θ ∈ V are multiple of N (the
minimal period of θn): p(θ)/p(θn) ∈ N. If this were not the case, we could
construct a sequence of periodic points θ̄k tending to θn and whose periods
are all equal to N̄ (notice that there is a finite number of possible periods
around θn), and such that the period N̄ is not a multiple of N . But this is
not possible, because

θ̄k = f N̄ (θ̄k) k→∞−−−→ θn = f N̄ (θn) ,

so N̄ is a period of θn, whose minimal period is N .
Following the arguments of the alternative (a), we construct a continuous

section by

(3.15) ṽ(θ) = ρi(θ)v(f i(θn)) ,
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for θ near enough to f i(θn), with 0 ≤ i < N . Recall that ρ(t) = 0 for t ≥ δ,
and we choose δ small enough to be able of defining this section through
trivializations and such that d(θ, θn) < δ implies θ ∈ V . This choice assures
that we construct a continuous section (and we do not double the definition
of the vector supported on one point).

To check that the continuous section ṽ defined by (3.15) is an approx-
imate eigensection, we proceed as in the alternative (a). The key point is
that for a given θ such that d(f−i(θ), θn)) < δ, the corresponding orbit is
periodic of period multiple of N .

To produce an Lp approximate eigensection in the case that µ is a topo-
logical measure we proceed just as in the alternative (a). Notice that
in this case, the second term in (3.14) can be bounded from above by
2p−1

∫
(ρ0)pdµεpN , but in this case N does not depend on ε. Hence, we

produce approximate eigensection even in the case p = 1.
This finishes the proof of the first part of Theorem 3.7.

Proof of SpecW (Mf ,ΓLp(µ)(E)) ⊂ SpecW (Mf ,ΓB(E)).
It suffices to show that given an approximate eigensection in Lp we can

produce an approximate eigensection in ΓB(E). Notice that for this part of
the argument, we do not need the assumption that the invariant measure µ
is topological.

Let v be an Lp approximate eigensection with ||v||Lp = 1, ||Mfv − zv||Lp =
ε. Since C0 is dense in Lp we can assume without loss of generality that v is
C0. Notice, however, that v is not in principle an approximate eigensection
in C0.

Denote e(θ) = M(θ)v(θ) − zv(f(θ)) and for N ∈ N, that will specify
later, denote

(3.16) r(θ) =


1

|v(θ)|p
2N∑

i=−2N

|e(f i(θ))|p if v(θ) 6= 0

0 otherwise

(3.17) s(θ) =


1

|v(θ)|p
2N∑

i=−2N

|v(f i(θ)|p if v(θ) 6= 0

0 otherwise

We consider the measure ν = |v(·)|pµ, which is by definition absolutely
continuous with respect to µ. Note that ν(P) = 1 and

∫
rdν ≤ (4N + 1)εp,∫

sdν = (4N + 1). We can take, in particular, (4N + 1) = ε−α for some
α > 0, that will be specified later.

If we apply Chebyshev inequality to both positive and ν-integrable func-
tions r and s, we obtain

ν(r(θ) ≥ a) ≤ 1
a

∫
r(θ)dν ≤ 1

a
εp−α,
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ν(s(θ) ≥ b) ≤ 1
b

∫
s(θ)dν =

1
b
ε−α,

for positive values a,b. By taking a = εp−α−δ and b = ε−α−δ for some δ > 0,
we get that r is greater than εp−α−δ in a set Ωr of ν-measure less than εδ

and s is greater than ε−α−δ in a set Ωs of ν-measure less than εδ.
At this point, we will assume that α, δ are so small that p− α− δ > 0,

i.e. 1 − α/p − δ/p > 0. Since p > 1, we can also assume that they are so
small that α(1 − 1/p) − δ/p > 0. This choice fixes also N in (3.16) and
(3.17).

Since ν(P) = 1, ν(Ωr) ≤ εδ and ν(Ωs) ≤ εδ, we obtain ν(P−Ωr−Ωs) > 0
for ε sufficiently small. Hence, there exist θ0 ∈ P − Ωs − Ωr for which
v(θ0) 6= 0. Denote θi = f i(θ0).

Bounding each of the terms – they are all positive – in r by their sum,
we have
(3.18)
|e(θi)|p ≤ |M((θi)v(θi)− zv(θi+1)|p ≤ |v(θ0)|pεp−α−δ i = −2N, . . . , 2N .

Similarly for s,

(3.19) |v(θi)|p ≤ |v(θ0)|pε−α−δ i = −2N, . . . , 2N .

If we denote ṽ = v/ max
i=−N,...,N

|v(θi)| we have:

|M(θi)ṽ(θi)− zṽ(θi+1)| ≤ ε1−α/p−δ/p for all − 2N ≤ i ≤ 2N

|ṽ(θi)| ≤ 1 for all −N ≤ i ≤ N

|ṽ(θj)| = 1 for some −N ≤ j ≤ N

|ṽ(θi)| ≤ ε−α/p−δ/p for all − 2N ≤ i ≤ 2N

(3.20)

There are two possibilities. Either {θi}2N
i=−2N contains a periodic orbit

of period less than N or not.
In the case that we have a periodic orbit of period less or equal than N ,

we have produced an approximate eigensection in ΓB(E), so we are done.
In the later case, we proceed in a manner similar to the proof of the

first part of Theorem 3.7, that used localization arguments. We consider
v̂(θi) = (1− 2|i− j|/N)+ṽ(θi) for i = −2N, . . . , 2N , and v̂(θ) = 0 otherwise,
where j is as in (3.20).

Notice that

M(θi)v̂(θi)− zv̂(θi+1) =
(

1− 2|i− j|
N

)
+

[M(θi)ṽ(θi)− zṽ(θi+1)]

+
((

1− 2|i− j|
N

)
+

−
(

1− 2|i+ 1− j|
N

)
+

)
zṽ(θi+1) .

(3.21)

Using (3.20), we can bound from above the size of the first term in the
R.H.S. by ε1−α/p−δ/p and, since 4N + 1 = ε−α, the size of the second term
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can be bounded by 10|z|εα−α/p−δ/p. According to the way that we chose the
α, δ, both bounds have positive powers of ε.

With these arguments we complete the proof of Theorem 3.7. tu

3.3. Invariance of the spectrum under rotations

The following theorem is a restatement of a result in [Mat68] for the
generality of bundle automorphisms.

Theorem 3.11. Let Mf : E → E be a vector bundle automorphism over
an APD homeomorphism f . Then, the Weyl spectrum on bounded sections
is rotationally invariant, that is

z ∈ SpecW (Mf ,ΓB(E)) ⇒ eαiz ∈ SpecW (Mf ,ΓB(E))

for all α ∈ R.
Of course, the same happens for all the other spaces of sections Γ for

which the Weyl spectrum is the same as that in ΓB(E).

Proof: Let z ∈ SpecW (Mf ,ΓB(E)), and let α be any real number.
By Mather’s localization, we can find an approximate eigensection v

supported in a finite segment of an aperiodic orbit {f j(θ)}N
j=−N .

|M(f j(θ))v(f j(θ))− zv(f j+1(θ))| ≤ ε

for j = −N − 1, . . . , N , otherwise the difference is zero.
To construct an approximate eigensection for eαi, we define

ṽ(f j(θ)) = e−αjiv(f j(θ))

for j = −N, · · · , N and zero otherwise. With this election:

|M(f j(θ))ṽ(f j(θ))− e−αizṽ(f j+1(θ))|

= |M(f j(θ))e−αjiv(f j(θ))− e−αizeα(j+1)iv(f j+1(θ))| ≤ ε ,

and this proves the theorem. tu

Remark 3.12. Recall that if f is not APD then we can find an open
set such that fN (θ) = θ, for a certain N ≥ 1. In that case, it is possible
to show that the conclusion of Theorem 3.11 could be false (see Lemma 3.1
and Section 4).

As an immediate consequence of Theorems 3.11 and Corollary A.27, we
conclude the same property for the full spectrum.

Theorem 3.13. Let Mf : E → E a vector bundle automorphism over
and APD homeomorphism f . Then, the full spectrum on bounded sections
is rotationally invariant, that is

z ∈ Spec(Mf ,ΓB(E)) ⇒ eαiz ∈ Spec(Mf ,ΓB(E))

for all α ∈ R. The same happens for all the other spaces of sections Γ that
have the same Weyl spectrum as in ΓB(E).



3.4. SPECTRAL SUBBUNDLES 73

In particular, according to Theorem 3.7 we can take Γ = ΓC0(E). If f
preserves a topological measure µ, we can also take Γ = ΓLp(µ)(E) for p > 1.
In Part 3 we will show that there are some other spaces Γ for which Mf has
the same Weyl spectrum as in ΓB(E), in the case of rotations f(θ) = θ + ω

in the torus P = Td.

3.4. Spectral subbundles

Theorem 2.18 is crucial in Mather theory since it relates abstract con-
structs at the functional analysis level of Mf to the geometric setting of the
invariant subbundles of Mf . In this subsection, we generalize Theorem 2.18,
and this generalization will make possible to work with other spaces of sec-
tions. To do so, we exploit the results reviewed in Section 2.1.

Theorem 3.14. Let Mf : E → E be a vector bundle automorphism. Let
Γ ⊂ ΓB(E) be a Banach space of sections, with a norm ||·||Γ, for which we
assume:

(a) Mf defines a bounded linear operator in Γ (in particular, Γ is
invariant under the transfer operator).

(b) Evaluation at one point is a well defined operation. That is
(b.1) There exists a positive constant K such that |v(θ0)| ≤ K||v||Γ

for all v ∈ Γ and θ0 ∈ P;
(b.2) For all vθ0 ∈ Eθ0 there exists v ∈ Γ such that v(θ0) = vθ0.

(c) SpecP (Mf ,ΓB(E)) ⊂ Spec(Mf ,Γ).

Assume furthermore that

Spec(Mf ,Γ) ∩ Aλ,µ = ∅ ,

where 0 < λ ≤ µ. Denote by P<λ, P>µ the projections associated to the
spectral decomposition Γ = Γ<λ ⊕ Γ>µ.

Then, it is possible to find a continuous invariant splitting

(3.22) E = E<λ ⊕ E>µ

such that the corresponding projections over the bundles, Π<λ,Π>µ, satisfy
for any v ∈ Γ:

(3.23) (P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) .

The splitting is characterized by the following growth rates: for all ε > 0
small enough

(3.24) E<λ = W≤λ−ε = L<λ, E>µ = W≥µ+ε = L>µ .

(See Definitions 2.1 and 2.13).
Moreover, the rates of growth can be made uniform: there exists a posi-

tive constant Cε such that W≤λ−ε = W≤λ−ε,Cε ,W≥µ+ε = W≥µ+ε,Cε.
The rest of consequences in Theorem 2.18 also hold.
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Remark 3.15. We do not assume that the topology in Γ is that induced
by ΓB(E), although condition (b) implies that the inclusion Γ ⊂ ΓB(E)
is continuous: for all v ∈ Γ , ||v||∞ ≤ K||v||Γ . Since the norm in Γ can
be different to the sup-norm, there is no reason why SpecW (Mf ,Γ) ⊂
SpecW (Mf ,ΓB(E)). Notice, however that SpecP (Mf ,Γ) ⊂ SpecP (Mf ,ΓB(E))
does hold, because topology does not enter in the definition of the point
spectrum.

Remark 3.16. At the moment, the only spaces Γ for which we have
proved SpecP (Mf ,ΓB(E)) ⊂ Spec(Mf ,Γ(E)) are ΓC0(E) and, of course,
ΓB(E). In Section 3.7 we will consider the spectrum on the space of Cr

sections.
In Part 3 we will see this inclusion is in fact an equality for spaces of

higher regularities (Cr, Sobolev), in the case of vector bundle maps over
rotations.

In Part 4, these arguments imply the fact that such circular gaps do not
exist for certain constrained spaces. Therefore, for the constrained spaces,
Theorem 3.14 is only an intermediate step in the proof - by contradiction –
that its hypotheses are not verified for these spaces.

Nevertheless for ΓC0(E) the hypothesis are indeed verified often and
indeed there are gaps. Later on, we will use Theorem 3.14 to show that the
gaps in ΓC0(E) and ΓB(E) are the same.

Remark 3.17. In principle the decomposition of the bundle E into sub-
bundles E<λ, E>µ could depend on the space we are considering the spectral
projections. Nevertheless, (3.24) shows that this decomposition is unique (it
is expressed independently of the space considered). This is the reason why
we did not include this possible dependence in the notation. As a conclusion:
ASpec(Mf ,ΓB(E)) ⊂ ASpec(Mf ,Γ).

Now, we start the proof of Theorem 3.14.
Proof: We split the proof in several steps.

• Definition of the spectral subbundles. We start the proof by defining
the spectral subbundles. For each θ0 ∈ P, let

E<λ
θ0

= {v(θ0) | v ∈ Γ<λ} , E>µ
θ0

= {v(θ0) | v ∈ Γ>µ} .
Obviously, both of them are linear subspaces of Eθ0 . Notice that
the linear spaces E<λ and E>µ are invariant under Mf .

• Rates of growth. The spectral subspaces are characterized by

(3.25)
Γ<λ = {v ∈ Γ | ∀m ≥ 0 ||Mm

f v||Γ ≤ Ĉε(λ− ε)m||v||Γ} ,
Γ>µ = {v ∈ Γ | ∀m ≥ 0 ||M−m

f v||Γ ≤ Ĉε(µ+ ε)−m||v||Γ} ,

where ε > 0 is small enough. Therefore, for all v ∈ Γ<λ and for all
m ≥ 0

|M(θ0,m)v(θ0)| = |(Mm
f v)(fm(θ0))| ≤ K||Mm

f v||Γ
≤ KĈε(λ− ε)m||v||Γ ,
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where we use property (b.1). Hence,

(3.26) vθ0 ∈ E<λ
θ0

⇒ ∀m ≥ 0 |M(θ0,m)vθ0 | ≤ C<λ
ε,vθ0

(λ− ε)m ,

where

C<λ
ε,vθ0

= KĈε · inf{||v||Γ | v ∈ Γ<λ , v(θ0) = vθ0} .

This proves that E<λ ⊂W≤λ−ε and a similar argument proves also
E>µ ⊂W≥µ+ε.

Notice also that we have the towers of inclusions

E<λ ⊂W≤λ−ε ⊂ L<λ ⊂W≤ρ(3.27)

E>µ ⊂W≥µ+ε ⊂ L>µ ⊂W≥ρ(3.28)

for any ρ ∈ [λ, µ].
Notice that property (c) implies

SpecP (Mf ,ΓB(E)) ∩ Sρ ⊂ Spec(Mf ,Γ) ∩ Aλ,µ = ∅ ,

so there are not Mañé vectors of growth ρ. Hence, Lemma 2.15
implies that W ρ = W≤ρ ∩ W≥ρ = E0, incidentally proving that
E<ρ ∩ E>ρ = E0. So then, the growth rates can be made uniform
using Sacker-Sell theory (see Theorem 2.4 part (b) ).

• Splitting. For vθ0 ∈ Eθ0 , using (b.2) we construct v ∈ Γ such that
v(θ0) = vθ0 . Obviously

vθ0 = (P<λv)(θ0) + (P>µv)(θ0)

from where we obtain that the invariant linear subspaces E<λ and
E>µ span the bundle: E = E<λ + E>µ.

This proves that the sum is a Whitney sum, and that the in-
clusions in the towers (3.27) and (3.28) are in fact equalities.

• Localization of spectral projections. Once we know that E splits as
E = E<λ ⊕ E>µ, it is easy to see that

∀v<λ
θ0

∈ E<λ ∀v ∈ Γ , v(θ0) = v<λ
θ0

⇒ (P<λv)(θ0) = v<λ
θ0

,

because v<λ
θ0

= v(θ0) = (P<λv)(θ0) + (P>µv)(θ0) and (P<λv)(θ0) ∈
E<λ

θ0
, (P>µv)(θ0) ∈ E>µ

θ0
. We use the same argument for E>µ.

Then, for any v ∈ Γ and θ0 ∈ P, the values of (P<λv)(θ0) and
(P>µv)(θ0) depend only on v(θ0).

• Bundle projections. We define, then, the bundle projections

Π<λ
θ0
vθ0 = (P<λv)(θ0) , Π>µ

θ0
vθ0 = (P>µv)(θ0) ,

where v is any section in Γ such that v(θ0) = vθ0 . So, the functional-
geometrical identity (3.23) holds.

The rest of the proof follows the same lines as in Theorem 2.18. tu
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Remark 3.18. If the space Γ in Theorem 3.14 is ΓC0 , then the spectral
projections are in ΓC0 . Then, the functional-geometrical identity (3.23)
implies directly that the spectral subbundles are C0 (cf. Theorem 2.18).

More generally, the properties of the space of sections Γwe consider
translate into properties of the spectral subbundles.

3.5. Approximation of the spectrum

In this section we will see that under mild conditions of recurrence on
the dynamics on the base manifold, the full spectrum is approximate point
spectrum. A similar theorem was proved in [Swa81] for vector bundle flows,
and the operators in that paper acted on continuous sections. We obtain this
result for the spectrum on bounded sections, and the corresponding results
for continuous and for Lp sections follow from the results of this part, which
show that the spectrum does not depend on the spaces considered. Similar
results will be considered in Section 4.2.

Theorem 3.19. Let Mf : E → E be a vector bundle automorphism.
(a) If f is chain-recurrent, then:

ASpec(Mf ,ΓB(E)) = ASpecP (Mf ,ΓB(E)) .

(b) If f is chain-recurrent and APD, then:

Spec(Mf ,ΓB(E)) = SpecW (Mf ,ΓB(E)) .

(c) If z ∈ SpecW (Mf ,ΓB(E)) either we have an eigensection supported
on an orbit (in this case z ∈ SpecP (Mf ,ΓB(E)) or there is η ∈ R
such that there is an eigenvalue zeiη whose eigenvalue is supported
on a periodic orbit.

Note that a corollary of part c) is that

Corollary 3.20. In the conditions of Theorem 3.19 We have
c.1)

SpecW (Mf ,ΓB(E)) ⊂ ASpecP (Mf ,ΓB(E)) .

c.2) If, furthermore, f is NPO, then:

SpecW (Mf ,ΓB(E)) = SpecP (Mf ,ΓB(E)) .

Proof: The statement (c) follows from the arguments before Remark 3.2 in
the proof of Lemma 3.1. We recall that the gist of the argument is that, given
a sequence of approximate eigensections wn such that |wn(θn)| ≥ 3/4, we
can, extracting subsequences obtain a {wi} such that M(f i(θ∗))wi = zwi+1.
If {f i(θ∗)}i∈Z is aperiodic, then wi can be considered as eigensection. In
case that {f i(θ∗)}i∈Z is periodic, we argued that there is an eigensection of
an eigenvalue of the same modulus supported in the periodic orbit.

Statement (b) is an immediate consequence of statement (a), because
APD implies that the spectrum involved is rotationally invariant.
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It only remains to prove (a). A similar argument can be found in
[Swa81]. Let ρ be a positive number. If SpecP (Mf ,ΓB(E) ∩ Sρ = ∅,
then Lemma 2.15 implies that Mf is quasi-ρ-dichotomic. Since f is chain-
recurrent, Theorem 2.4 (g) implies that Mf is ρ-dichotomic and hence, The-
orem 2.18 implies that Spec(Mf ,ΓB(E) ∩ Sρ = ∅. tu

Remark 3.21. As an immediate consequence of this result we see that
if f is chain-recurrent and does not have periodic orbits, the full spectrum is
point spectrum. An example is given by vector bundle automorphisms over
irrational rotations, see Part 3.

Remark 3.22. If f is uniquely ergodic, then it is APD and the spec-
trum is rotationally invariant. Moreover, if the unique invariant measure is
topological then f is minimal, and the full spectrum is point spectrum.

In Section 2.4 we characterized the spectral subbundles in terms of Lya-
punov multipliers (see Theorem 2.38). Under stronger properties on the
motion f on the base manifold P, we can obtain stronger results using the
previous Theorem 3.19.

Proposition 3.23. Let Mf : E → E be a vector bundle automorphism
over an NPO homeomorphism. Let Ej be one spectral subbundle associated
to one spectral annulus Aλ−j ,λ+

j
. Then, there exist vj , wj ∈ Ej, such that

λ+
s (vj) = λ+

i (vj) = λ−j and λ−i (wj) = λ−s (wj) = λ+
j .

Proof: Notice that the spectrum is rotationally invariant because f does not
have periodic orbits. By analyzing each spectral subbundle, it suffices to
consider the case Spec(Mf ,ΓB(E)) = Aλ−,λ+ .

Notice that the boundary of the spectrum is included in the Weyl spec-
trum (Proposition A.26), and Weyl spectrum coincides with point spectrum
(Theorem 3.19) because f is NPO.

So, if z ∈ Spec(Mf ,ΓB(E)) with |z| = λ−, then z ∈ SpecP (Mf ,Γ(E)),
and Lemma 2.15 implies the existence of a non zero vector v0 ∈ E for which
λ+

s (v0) ≤ λ−. From Theorem 2.38 we know that λ− ≤ λ+
i (v0) ≤ λ+

s (v0), so
then λ+

s (v0) = λ+
i (v0) = λ−. A similar argument proves that there exists a

non zero vector w0 such that λ−i (w0) = λ−s (w0) = λ+. tu
Similar arguments prove the following proposition.

Proposition 3.24. Let Mf : E → E be a vector bundle automorphism
over an NPO and chain-recurrent homeomorphism f . Then, for all z ∈
Spec(Mf ,ΓB(E)) there exists a non zero vector v0 ∈ E such that

λ+
s (v0) ≤ |z| ≤ λ−i (v0) .

3.6. Equality of spectra for bounded, continuous and Lp sections

In this section we will study the relation between the spectrum of the
operator in the low regularity spaces. The main result is the following:
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Theorem 3.25. Let Mf : E → E be a vector bundle automorphism.
Then:

(3.29) ASpec(Mf ,ΓB(E)) = ASpec(Mf ,ΓC0(E)) .

In the case that f preserves a measure µ we have that

(3.30) ASpec(Mf ,ΓB(E)) ⊃ ASpec(Mf ,ΓLp(µ)(E))

for p ≥ 1.
If, furthermore, µ is a topological measure

(3.31) ASpec(Mf ,ΓB(E)) = ASpec(Mf ,ΓLp(µ)(E))

for p > 1.
If µ is non-atomic and topological, then (3.31) holds even for p = 1.
Suppose that f is an APD homeomorphism. Then:

(3.32) Spec(Mf ,ΓB(E)) = Spec(Mf ,ΓC0(E)) .

In the case that f preserves a measure µ we have that

(3.33) Spec(Mf ,ΓB(E)) ⊃ Spec(Mf ,ΓLp(µ)(E))

for p > 1.
If, furthermore, µ is a topological measure

(3.34) Spec(Mf ,ΓB(E)) = Spec(Mf ,ΓLp(µ)(E))

for p > 1.

Remark 3.26. Similar results were obtained in [CS80]. For instance,
The equality ASpec(Mf ,ΓC0(E)) = ASpec(Mf ,ΓL2(µ)(E)) is proved for
push-forward operators of measure preserving diffeomorphisms on a smooth
compact Riemannian manifold. This follows from Theorem 3.25 since the
Riemannian volume is a topological measure and the equality (3.29).

Remark 3.27. One situation where the assumption in Theorem 3.25
that the measure is non-atomic and topological is satisfied is when the mea-
sure is equivalent to Lebesgue.

Notice also that the hypothesis are satisfied if the measure µ is the push
forward by a homeomorphism of the another measure that satisfies them.
(e.g. if we consider an Anosov system f preserving an smooth measure µf

and g is a small perturbation, then the homeomorphism given by structural
stability will produce a measure µg invariant under g and satisfying the
hypothesis of our theorem. Even in the case that g preserves a smooth
measure, this transported measure may be different.) In dynamical systems,
SRB measures often (but not always) are non-atomic and topological.

Proof: We have just to prove the assertions on the annular hull of the
spectrum, because the additional property of APD implies that spectrum
involved is rotationally invariant (for p > 1).

Hence, the only thing that we have to show is that a gap in the spectrum
in one of the spaces are also a gap in the other spaces we are considering.
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The fact that gaps in Spec(Mf ,ΓB(E)) are also gaps in Spec(Mf ,ΓC0(E))
is just the content of Proposition 2.32:

ASpec(Mf ,ΓC0(E)) ⊂ ASpec(Mf ,ΓB(E)) .

If there is such an annular gap in Spec(Mf ,ΓC0(E)), by Theorem 3.14,
we have a continuous decomposition E = E<λ ⊕E>µ of the bundle charac-
terized by growth rates. Given a section v ∈ ΓB(E) (resp. v ∈ ΓLp(µ)(E))
then if we define v< and v> by

(3.35) v<(θ) = Π<λ
θ (v(θ)) , v>(θ) = Π>µ

θ (v(θ)) ,

it is immediate to verify that it is a direct decomposition of ΓB(E) (resp.
ΓLp(µ)(E)). Moreover, the pointwise bounds in (3.24) of Theorem 3.14 imply
||Mm

f v
<|| ≤ Cε(λ − ε)m||v<|| for m ≥ 0, with the norm understood in the

ΓB(E) sense (resp. in the ΓLp(µ)(E) sense), and an analogous result for v>

and m ≤ 0. Therefore, there is a gap in the spectrum in ΓB(E) (resp. in
ΓLp(µ)(E)).

Hence, we have proved

ASpec(Mf ,ΓB(E)) ⊂ ASpec(Mf ,ΓC0(E)) ,

that proves (3.32), and

ASpec(Mf ,ΓLp(µ)(E)) ⊂ ASpec(Mf ,ΓC0(E))

for p ≥ 1 and without any assumption on the measure µ, proving (3.33).
If µ preserves a topological measure, then it is chain-recurrent, and from

Theorems 3.7 and 3.19 we obtain that
ASpec(Mf ,ΓB(E)) = ASpecW (Mf ,ΓB(E))

= ASpecW (Mf ,ΓLp(µ)(E))

⊂ ASpec(Mf ,ΓLp(µ)(E)) .

This proves (3.34). Notice that this argument works for only for p > 1.
We can prove (3.34) for p ≥ 1 under the assumption that µ is non-atomic

and topological.
If there is an annular gap in Spec(Mf ,ΓLp(µ)(E)), we note that if v ∈

Γ<λ
Lp (E), then, for any ϕ complex function in L∞(µ), using

(3.36) Mm
f (ϕv)(θ) = ϕ(f−m(θ))Mm

f v(θ)

we conclude that ϕv< is also in Γ<λ
Lp (E). The arguments are similar to those

in the first step of the proof of Theorem 2.18.
We recall that by a celebrated theorem, any non-atomic probability Borel

measure in a complete and separable metric space is measure equivalent to
the Lebesgue measure in the unit interval [0,1] (see for instance [Hal50] p.
173, or [Par77] p. 118). Since all our constructions in the proof will only
use measurable functions (the transformations mapping the measure space
into the unit interval are often discontinuous) we will just consider that the
space we are working into ins the unit interval.
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In particular, by Lebesgue’s differentiation theorem, for each θ ∈ P we
can find a family of positive measure Borel sets {Br(θ)}r>0, with Br1(θ) ⊂
Br2(θ) if r1 < r2, with the property that ∩r>0Br(θ) = {θ}, and that for any
Ψ ∈ L1(µ) we have for µ-almost all θ0

(3.37) lim
r→0

1
µ(Br(θ0))

∫
Br(θ0)

Ψ(θ) dµ = Ψ(θ0) .

The points θ0 for which (3.37) is satisfied are the Lebesgue points of the
function Ψ.

If we take now ϕ = IBr(θ0)/µ(Br(θ0))1/p where IBr(θ0) is the character-
istic function, we have for a fixed m ≥ 0,

(3.38) ||Mm
f (ϕv<)||pLp(µ) ≤ Cp

ε (λ− ε)pm||ϕv<||pLp ,

which is equivalent to
(3.39)

1
µ(Br(θ0))

∫
Br(θ0)

|M(θ,m)v(θ)|pdµ ≤ Cp
ε (λ−ε)pm 1

µ(Br(θ0))

∫
Br(θ0)

|v(θ)|pdµ .

By Lebesgue’s differentiation theorem, for almost all points the limit as r
tends to zero exists, so, we get almost everywhere

(3.40) |M(θ0,m)v(θ0)| ≤ Cε(λ− ε)m|v(θ0)| ,

and we get that there is a set of full measure for which this is satisfied
for all m. This tells us that, given that there is a splitting in Lp we can
produce a pointwise splitting almost everywhere. The fact that the bounds
are uniform in the point, show, as before that the splitting is continuous,
hence it extends to the whole set P.

Conversely, we note that if an Lp-section v satisfies (3.40) almost every-
where, it is in Γ<λ

Lp(µ)(E). Analogously, for the other subspace Γ>µ
Lp(µ)(E).

From here on, the proof is almost the same as that of Theorem 3.14. We
argue that the linear space

E<λ
θ0

= {vθ ∈ Eθ | ∃v ∈ Γ<λ
Lp (E), v(θ0) = vθ0 ,

for all m ≥ 0 θ0 is Lebesgue point for |M(θ,m)v(θ)|p}
(3.41)

is a linear subspace, all the points in it satisfy (3.40). We do a similar
construction for E>µ.

The same argument we used Theorem 3.14 shows that, E<λ
θ , E>µ

θ are
a direct decomposition, and that they are characterized by (3.40). This
decomposition is defined in the support of the measure µ, which by our
assumption that µ is topological is the whole manifold.

Once we have finished the measure theoretical constructions, we can
look at the problem in the original space. The bounds (3.40) show that the
decomposition is continuous. tu
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3.7. Spectrum on Cr sections

In this section we will study the spectral properties of the transfer oper-
ator when acting on sections with Cr regularities. Given a Cr vector bundle
automorphism Mf : E → E, it is natural to consider the action on Cr sec-
tions: if v ∈ ΓCr(E) then Mfv ∈ ΓCr(E). Moreover, the Banach algebra
properties of Cr functions make Mf continuous in ΓCr(E). We will con-
sider the spectrum of the transfer operator in ΓCr(E). The results will be
improved in Part 3, including Sobolev regularities, in the case of transfer
operators over rotations.

The first result is a consequence of the fattening up arguments of The-
orem 3.7 to the generalities of Cr sections.

Theorem 3.28. Let Mf : E → E be a Cr vector bundle automorphism.
Then:

(3.42) SpecW (Mf ,ΓB(E)) ⊂ SpecW (Mf ,ΓCr(E)) .

Proof: We will use the fattening arguments of Theorem 3.7 to prove the
inclusion. That is to say, given z ∈ SpecW (Mf ,ΓB(E)), we will consider an
approximate eigensection supported in a finite segment of orbit satisfying
either (a) or (b) of Lemma 3.1, that will be fattened up to construct a Cr

eigensection.
We will analyze here the alternative (a) of Lemma 3.1, because the

alternative (b) follows similar lines.
In the alternative (a) we obtained a bounded approximate eigensection

v supported in a finite segment of orbit {f i(θ0)}N
i=−N , with f i(θ0) 6= f j(θ0)

for i 6= j with |i| ≤ N, |j| ≤ N , with N = [1/ε]. We will write θi = f i(θ0)
and vi = v(θi). The error as approximate eigensection is smaller than 2ε|z|.
Then we pick coordinates around each of the points in the finite segment
{θi}N

i=−N in such a way that the bundle is trivialized.
To fatten the localized eigensection, we will use the device of Cr- bump

functions.

Lemma 3.29. There exists a C∞-function ρ : Rd → R satisfying the
following conditions:

a) ρ is supported in B̄(0, 1), the closed unit ball with respect to the
Euclidean norm in Rd;

b) ||ρ||∞ < ||Dρ||∞ < · · · < ||Drρ||∞;
c) ||Drρ||∞ = |Drρ(0)| = 1.

Proof of Lemma 3.29
Consider the C∞ function ϕ : R → R defined by

(3.43) ϕ(t) =
1

1 + exp
(

1
(1−t)2

− 1
t2

) ,

in the interval [0, 1], ϕ(t) = 0 for t > 1 and ϕ(t) = 1 for t < 0. This function
satisfies the following set of properties:
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• ∀k ≥ 1 , ϕk)(0) = 0;
• ∀k ≥ 1 , ϕk)(1) = 0;
• 1 = ||ϕ||∞ < ||ϕ1)||∞ < ||ϕ2)||∞ < . . . .

We consider now the C∞ function β : Rd → R as

β(x) = ϕ(|x|) ,
which satisfies a) and b). Notice that, for 0 < δ ≤ 1, the function

βδ(x) = β(x/δ)

also satisfies a) and b), because ||Dkβδ||∞ = 1
δk ||Dkβ||∞ and it is supported

in B̄(0, δ).
Let x0 ∈ B(0, 1) be any point such that |Drβ(x0)| = ||Drβ||∞. Taking

δ = (1 + |x0|)−1, the function

(3.44) ρ(x) =
δr

||Drβ||∞
β(x0 − x/δ)

satisfies the three conditions a), b) and c). tu
From the function ρ defined above, we consider the functions ρσ(x) =

ρ(x/σ). Taking σ small enough, for each |i| ≤ N we set in the trivialization
on the bundle around f i(θ0)

(3.45) ṽ(θ) = σrρσ(f−i(θ))vi ,

and the section is zero away of these trivializations. This section is Cr and
|Drṽ(θ0)| ≥ 3/4.

Then, working in coordinates, we have for θ ∈ f i(B(θ0, σ)),

M(f−1(θ))ṽ(f−1(θ))− zṽ(θ) = σrρσ(f−i(θ))
(
M(f−1(θ))vi−1 − zvi

)
= σrρσ(f−i(θ)) (M(θi−1)vi−1 − zvi) +

σrρσ(f−i(θ))
(
M(f−1(θ))−M(θi−1)

)
vi−1 .

For s = 0, . . . , r, we have∣∣Ds
(
M(f−1(θ))ṽ(f−1(θ))− zṽ(θ)

)∣∣
≤ σr

∣∣Ds
(
ρσ(f−i(θ))

)∣∣ |M(θi−1)vi−1 − zvi| +

σr
s−1∑
l=0

(
s
l

) ∣∣∣Dl
(
ρσ(f−i(θ))

)∣∣∣ ∣∣∣Ds−l
(
M(f−1(θ))vi−1

)∣∣∣ +

σr
∣∣Ds

(
ρσ(f−i(θ))

)∣∣ ∣∣M(f−1(θ))−M(f i−1(θ0))
∣∣

≤ Cs,iσ
r−s2ε|z|+

s−1∑
l=0

(
s
l

)
Cl,iσ

r−l||Mf ||Cr + Cs,iσ
r−sηi(σ) .

where Cs,i are constants depending on the bounds of the derivatives of ρ
and f−i, and ηi is the modulus of continuity of M◦f i−1, for i = −N, . . . , N .
Notice that the first addend is small, and the elements of the second addend
can be made arbitrarily small by taking σ small enough. This is also the case



3.7. SPECTRUM ON Cr SECTIONS 83

of the third addend. Clearly, outside of these neighborhoods the difference
is zero.

Hence, we have constructed an approximate Cr eigensection. tu

Remark 3.30. Notice that we cannot use the inclusion argument (1.19)
to prove the opposite inclusion, because although ΓCr(E) ⊂ ΓB(E), the
topologies in both spaces do not coincide. In fact, SpecW (Mf ,ΓCr(E)) ⊂
SpecW (Mf ,ΓB(E)) is not true in general, but in some particular cases it
is, as for f being a rotation on a torus, see Part 3.

Theorem 3.31. Let Mf : E → E be a Cr vector bundle automorphism.
Assume that

Spec(Mf ,ΓCr(E)) ∩ Aλ,µ = ∅ .
Denote by P<λ = P<λ

Cr , P>µ = P>µ
Cr the projections associated to this spectral

gap. Then, it is possible to find a invariant Cr-splitting

(3.46) E = E<λ ⊕ E>µ

such that the corresponding projections over the bundles, Π<λ,Π>µ, satisfy
for any v ∈ ΓCr :

(3.47) (P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) .

Moreover, for all ε > 0 small enough there exists a constant Cε > 0 such
that

(3.48) E<λ = W≤λ−ε,Cε = L<λ , E>µ = W≥µ+ε,Cε = L>µ .

(See Definitions 2.1 and 2.13).
Proof: We have to check that the three properties (a),(b) and (c) of The-
orem 3.14 are satisfied by the space of Cr sections Γ = ΓCr(E), endowed
with the Cr norm:

(a) Since Mf is Cr, if v ∈ ΓCr(E) then Mfv ∈ ΓCr(E). Moreover, the
Banach algebra properties of Cr functions make Mf continuous in
ΓCr(E).

(b) For any v ∈ ΓCr(E) and θ0 ∈ P, obviously |vθ0 | ≤ ||v||Cr . Moreover,
given any vθ0 we can construct a Cr section v with v(θ0) = vθ0 ,
using Cr bump functions.

(c) SpecP (Mf ,ΓB(E)) = SpecW (Mf ,ΓB(E)) ⊂ SpecW (Mf ,ΓCr(E)) ⊂
Spec(Mf ,ΓCr(E)) (see Theorem 3.19 and Theorem 3.28).

Theorem 3.14 produces an invariant splitting that is C0 and it is charac-
terized by rates of growth. From the functional-dynamical equalities (3.47)
we will see that the splitting is, in fact, Cr. Since (P<λv)(θ) = Π<λ

θ (v(θ)),
if Π<λ

θ were not Cr we could find a Cr section v for which P<λv would not
be Cr, in contradiction with the fact that P<λ is a projection on ΓCr . The
same argument works for Π>µ

θ . Hence, E decompose in the Whitney sum
E = E<λ ⊕ E>µ, and this Cr-splitting is invariant. tu
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Remark 3.32. In the literature, it is customary to find the theory for
the regularity of the splittings corresponding to the spectral gaps in C0, B
sections. It is possible to show that these bundles have some smoothness.

The argument we have carried out assumes that there is a spectral gap
in Cr and obtains Cr regularity. Of course, the existence of a spectral gap
in Cr will require a separate argument. Later, we will develop tools to study
this question.

As an immediate consequence of the previous theorem, we have the
following inclusion.

Theorem 3.33. Let Mf : E → E be a Cr vector bundle automorphism.
Then:

(3.49) ASpec(Mf ,ΓB(E)) ⊂ ASpec(Mf ,ΓCr(E)) .

Remark 3.34. If f is chain recurrent, we can prove the inclusion in
Theorem 3.33 by using the inclusion in Theorem 3.28, because

ASpec(Mf ,ΓB(E)) = ASpecW (Mf ,ΓB(E))

⊂ ASpecW (Mf ,ΓCr(E))

⊂ ASpec(Mf ,ΓCr(E))

(see Theorem 3.19).

Remark 3.35. We can use Theorem 3.31 and Theorem 3.33 as interme-
diate steps to prove that a gap in the spectrum on bounded sections does
not exist in the spectrum on Cr sections. Notice that a gap in the spectrum
on bounded sections produces an invariant splitting characterized by rates
of growth. If we are able of proving that the splitting is not Cr, then such a
gap can not exist in the spectrum on bounded sections. Notice also that the
Invariant Section Theorem gives lower bounds of the regularity of the bun-
dles, but still we would need separate arguments to prove that the spectrum
on sections with such regularity has the gap. These separate arguments
work for transfer operators over rotations, see Part 3.

Remark 3.36. Notice that if f is APD, the spectrum of the operator
acting on bounded sections is rotationally invariant. We do not know if this
is also true when acting on smooth sections, except for some examples such
as transfer operators over rotations, see Part 3. The key to these proofs is
that there is a function in this space such that ϕ ◦ f = eiηϕ for a dense set
of η. In the case of rotations, it is enough to take the exponentials.

Remark 3.37. The inclusion in (3.49) can be strict. One easy example
can be obtained by taking f ∈ SL(2,Z). Such f defines an automorphisms
of the torus T2. We will assume that this automorphism has eigenvalues
|λ+| > 1 > |λ−|. We will assume that these eigenvalues are irrational, and
hence, there are no integer eigenvalues.

If we take E = R× T2 and define

MfΓ(θ) = Γ(fθ)
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we see that the spectral radius of Mf in C0 is just 1. Indeed, the spectrum
is just the unit circle.

On the other hand, if ∂u, ∂s denote respectively the derivative along the
unstable and stable eigenvector of f we have that

∂r
u(Mn

f )Γ(θ) = ∂r
uΓ(fnθ)(λ+)rn

∂r
s(Mn

f )Γ(θ) = ∂r
sΓ(fnθ)(λ−)rn

Hence, we see that the spectral radius in Cr is at least |(λ+)r| and that
the spectral radius of the inverse is at least |(λ−)−r|.

Actually, by using trigonometric polynomials, we can show that the Weyl
spectrum is the annulus of inner radius λ− and outer radius λ+.

If we take

ΨN,M =
N∑

j=−M

exp(2πi〈(f t)j(0, 1), θ〉)λ−j 1
|j − (N +M)/2|

we see that, if |λ−| ≤ |λ| ≤ |λ+| it is possible to choose N,M so that ΨN,M

becomes an approximate eigenfunction.

3.8. Restriction of the base set

In some previous sections we have taken advantage of a device that con-
sists in restricting the behavior of the transfer operator to sections supported
in orbits. This idea will be extended in Section 4.

Here, we will generalize some arguments to analyze the spectrum on
sections supported in invariant sets (and orbits are a particular case). The
following lemma is obvious.

Lemma 3.38. Let M : E → E be a vector bundle automorphism over a
homeomorphism f : P → P. Let P0 ⊂ P be a f-invariant set: f(P0) = P0.
Consider the vector bundle E|P0

= Π−1P0, and the restriction of M to E|P0
.

Then:
SpecW (Mf ,ΓB(E|P0

)) ⊂ SpecW (Mf ,ΓB(E)) ,
and

Spec(Mf ,ΓB(E|P0
)) ⊂ Spec(Mf ,ΓB(E)) .

Proof: Follows from the fact that the splitting ΓB(E) = ΓB(E|P0
)⊕ΓB(E|P\P0

)
in closed Banach subspaces is invariant under Mf . tu

The following result is a restatement of Theorem 2.18 to transfer oper-
ators restricted to sections supported in invariant sets (see Remark 2.26).

Theorem 3.39. Let M : E → E be a vector bundle automorphism over
a homeomorphism f : P → P. Let P0 ⊂ P be a f-invariant set without
isolated points. Then:

SpecW (Mf ,ΓB(E|P0
)) = SpecW (Mf ,ΓB(E|cl(P0))) ,

and
ASpec(Mf ,ΓB(E|P0

)) = ASpec(Mf ,ΓB(E|cl(P0))) .
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Remark 3.40. In particular, if P0 is dense in P, then E|cl(P0) = E. So,
if f has a dense invariant set P0, we can characterize all the spectrum from
the behavior on P0.

Proof: To prove the equality of Weyl spectra, it suffices to prove that if
z is an approximate eigenvalue of Mf in ΓB(E|cl(P0)), we can construct
an approximate eigensection in ΓB(E|P0

). Since cl(P0) is compact, we can
construct an approximate eigensection supported in a finite segment of orbit
S∗ of a certain θ∗ ∈ cl(P0), by Lemma 3.1. We can find a finite segment
S0 of an orbit of a point θ0 ∈ P0 arbitrarily close to a corresponding finite
segment S∗ of the orbit of θ∗. Working in a trivialization supported on
a sufficiently small neighborhood of these segments, we can transfer the
approximate eigensection supported in S∗ to the segment S0.

To prove the second equality, it suffices to prove that the gaps in the
spectrum of Mf in ΓB(E|P0

)) are also gaps when acting on ΓB(E|cl(P0))).
The existence of a gap Aλ,µ in the spectrum of Mf in ΓB(E|P0

)) implies the
existence of a continuous decomposition of the bundle E in P0, characterized
by uniform rates of growth (that come from the boundedness of the spectral
projections): E|P0

= E<λ
|P0

⊕ E>µ
|P0

. See Remark 2.26.
Since the invariant section theorem works[HP70, HPS77] even if the

base set is just a metric space, we conclude that the invariant splitting
of E on the points of P0 can be extended to an invariant splitting of E
on all the points of the closure cl(P0): E|cl(P0) = E<λ

|cl(P0) ⊕ E>µ
|cl(P0) with

E<λ
|cl(P0) = cl

(
E<λ
|P0

)
and E>µ

|cl(P0) = cl
(
E>µ
|P0

)
.

Moreover, these bundles are also characterized by the same rates of
growth. In effect, if we fix m ≥ 0 and θ∗ ∈ cl(P0), each vθ ∈ E<λ

θ∗
can be

approximated by a sequence v̂n ∈ E<λ
θn

with θn ∈ P0. Since

|M(θn,m)vn| ≤ Cε(λ− ε)m|vn|

then doing n→∞ we conclude

|M(θ∗,m)vθ| ≤ Cε(λ− ε)m|vθ∗ | .

An identical argument works for m negative and the other subbundle.
In particular, if P0 is dense in P and Spec(Mf ,ΓB(E|P0

) ∩ Aλ,µ = ∅,
then there is a continuous splitting on the whole E characterized by rates of
growth. This implies that ASpec(Mf ,ΓB(E)) = ASpec(Mf ,ΓB(E|P0

). tu

3.9. Covering the base set

In this section we will study the spectrum of a transfer operator asso-
ciated to a vector bundle automorphism that covers a vector bundle auto-
morphism.

Let (E, π,P) be a vector bundle, and P̃ be a covering space of P, with
projection p and with a finite number k of leaves. The elements of P are
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denoted by θ, and those of P̃ are denoted by θ̃. Recall that p is a local
homeomorphism and k = #{θ̃ | p(θ̃) = θ}, for all θ ∈ P.

The fibered product

Ẽ = p∗E = E ×P P̃ = {(vθ, θ̃) ∈ E × P̃ | θ = π(vθ) = p(θ̃)}

is a vector bundle over P̃, with the obvious projection π̃, and also covers E
with the obvious projection p̃, and the number of leaves is also k. Notice
that p̃ is a vector bundle map over p (it sends the fibers of Ẽ to fibers of E,
and this is done with isomorphisms): π◦p̃ = p◦π̃.

If E is admits a Finsler norm, we can construct a Finsler metric on Ẽ,
by just defining

|(vθ, θ̃)| = |vθ| .
Given a section v(θ) of E, it has a lift ṽ(θ̃) defined by

ṽ(θ̃) = (v(p(θ̃)), θ̃) ∈ Ẽ .

Let Mf : E → P be a vector bundle automorphism over the homeomor-
phism f : P → P. Suppose f is covered by a homeomorphism f̃ : P̃ → P̃ ,
that is to say, p◦f̃ = f◦p. From the lift f̃ of f we can construct a lift M̃f̃ of
Mf :

M̃(vθ, θ̃) = (M(θ)vθ, f̃(θ̃)) .

So, M̃f̃ is a vector bundle automorphism of Ẽ, over f̃ .
The question for us is the relationship between the spectrum of both

Mf and M̃f̄ .

Theorem 3.41. With the above notation.
(a)

ASpec(M̃f̃ ,ΓB(Ẽ)) ⊂ ASpec(Mf ,ΓB(E)) .

(b)
SpecW (M̃f̃ ,ΓB(Ẽ)) ⊃ SpecW (Mf ,ΓB(E)) .

(c) If f is chain-recurrent:

ASpec(M̃f̃ ,ΓB(Ẽ)) = ASpec(Mf ,ΓB(E)) = ASpecP (Mf ,ΓB(E)) .

(d) If f is chain-recurrent and APD:

Spec(M̃f̃ ,ΓB(Ẽ)) = Spec(Mf ,ΓB(E)) = SpecW (Mf ,ΓB(E)) .

Proof: The proof of (a) follows from the fact that if F ⊂ E is an invariant
subbundle of Mf , then F̃ = p∗F ⊂ Ẽ is an invariant subbundle of M̃f̃ . In
effect,

ṽθ̃ = (vθ, θ̃) ∈ F̃θ̃ ⇒ vθ ∈ Fθ, p(θ̃) = θ

⇒ M(θ)vθ ∈ Ff(θ), p(f̃(θ̃)) = f(θ)

⇒ M̃(θ̃)ṽθ̃ = M̃(θ̃)(vθ, θ̃) = (M(θ)vθ, f̃(θ̃)) ∈ F̃θ̃ .
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Moreover, if F is characterized by rates of growth, then F̃ is also character-
ized by the same rates of growth.

Henceforth, if there is a gap Aλ,µ in the spectrum of Mf , it produces an
Mf - invariant splitting E = E<λ ⊕ E>µ that its lifted to an M̃f̃ -invariant
splitting Ẽ = Ẽ<λ ⊕ Ẽ>µ characterized by the same rates of growth, so the
gap Aλ,µ is also present in the spectrum of M̃f̃ .

To prove b, notice that if z ∈ SpecW (Mf ,ΓB(E)), then we can find an
approximate eigensection v(θ) for every ε: |M(θ)v(θ)− zv(f(θ))| < ε for all
θ ∈ P. Lifting v to Ẽ, we have for all θ̃ ∈ P̃:

|M̃(θ̃)ṽ(θ̃)− zṽ(f̃(θ̃))| = |M̃(θ̃)(v(p(θ̃)), θ̃)− z(v(p(f̃(θ̃))), f̃(θ̃))|
= |M(p(θ̃))v(p(θ̃))− zv(f(p(θ̃)))| < ε .

So, ṽ(θ̃) is an approximate eigensection of M̃f̃ .
(c) and (d) follow immediately from (a) and (b) and Theorem 3.19 Notice

that if f is chain-recurrent, then the lift f̃ is also chain-recurrent. tu

3.10. Triangular transfer operators

In this section we study the spectral implications of the existence of an
invariant subbundle of a vector bundle automorphism. We emphasize that
the invariant subbundle is not necessarily and spectral subbundle. This case
of study is very useful for the construction of a great variety of invariant
manifolds (see [dlL97, CFdlL03a, CFdlL03b, HdlLb, HdlL04]). We
will use also these constructions to study spaces of sections of jets in Part 4,
which are closely related to some global questions in dynamical systems.

Definition 3.42. A vector bundle automorphism Mf on E is upper
triangular with respect to a splitting E =

⊕l
i=1E

i iff there exist vector
bundle maps M i,j

f : Ej → Ei, i = 1, . . . , l, j = i, . . . , l, such that for all
v = v1 + · · ·+ vl with vi = Ei

θ,

M(θ)v =
l∑

i=1

l∑
j=i

M i,j(θ)vj .

Pictorially, we will write

M(θ) =


M1,1(θ) M1,2(θ) . . . M1,l(θ)

0 M2,2(θ) . . . M2,l(θ)
... 0

. . .
...

0 . . . M l,l(θ)

 .

We will also write M i = M i,i. Notice also that each M i
f induces a transfer

operator Mi
f in ΓB(Ei).

We recall the following results from Functional Analysis.
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Definition 3.43. Given a Banach space, X which can be decomposed
into closed subspaces X =

⊕l
i=1Xi with the norm in X being equivalent to

the supremum of the norms of the projections, we will say that the operator
T : X → X is upper triangular (with respect to the above decomposition) if
for xi ∈ Xi, we can write

T

(
l∑

i=1

xi

)
=

l∑
i=1

l∑
j=i

Ti,jxj

with Ti,j : Xj → Xi linear operators.

Note that, in particular, Ti = Ti,i : Xi → Xi, hence it makes sense to
speak about the spectrum of Ti. A natural question is how is the spectrum
(and the Weyl spectrum) of T related to the spectrum of the Ti. Although
the answer is trivial in finite dimension, this is not the case in infinite di-
mensions. Nevertheless, some relations are true [CFdlL03a].

Lemma 3.44. Assume that T is upper triangular as in Definition 3.43.
Then:

Spec(T,X) ⊂
l⋃

i=1

Spec(Ti, Xi) ,

SpecW (T,X) ⊂
l⋃

i=1

SpecW (Ti, Xi)

and
l⋃

i=1

SpecW (Ti, Xi)
i−1⋂
j=1

Res(Tj , Xj)

 ⊂ SpecW (T,X)

Proof: For the sake of simplicity, we will prove the theorem for l = 2. Then,
one uses induction arguments. Let X = X1⊕X2 be a splitting of a Banach
space X into closed Banach subspaces X1 and X2, and A : X → X is a
bounded linear operator given by

(3.50) A =
(
A1 B
0 A2

)
,

with respect to that splitting (so X1 is invariant). We have to prove:

(3.51) Spec(A,X) ⊂ Spec(A1, X1) ∪ Spec(A2, X2) ,

(3.52) SpecW (A,X) ⊂ SpecW (A1, X1) ∪ SpecW (A2, X2)

and

(3.53) SpecW (A1, X1)∪
(
SpecW (A2, X2) ∩ Res(A1, X1)

)
⊂ SpecW (A,X) .
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To prove (3.51), take z ∈ Res(A1, X1) ∩Res(A2, X2), and we will prove
that z ∈ Res(A,X). Let y = y1 + y2 ∈ X be any vector, written in X1 and
X2 components. We have to solve the equation

A1x1 +Bx2 − zx1 = y1 ,
A2x2 − zx2 = y2 ,

where x = x1 +x2. Since z ∈ Res(A2, X2), we can solve the second equation
for x2. Then, x1 have to solve the equation A1x1 − zx1 = y1 − Bx2, that
has an unique solution because z ∈ Res(A1, X1). This proves (3.51).

The inclusion (3.52) is proved in the following way. Let z ∈ SpecW (A,X),
so there exist sequences {εn}n ⊂ R and {xn = x1

n + x2
n}n ⊂ X, with εn → 0

and ||xn|| = max{x1
n, x

2
n} ≥ 1, such that

||A1x1
n +Bx2

n − zx1
n|| ≤ εn ,

||A2x2
n − zx2

n|| ≤ εn .

If x2
n → 0, then ||A1x1

n − zx1
n|| ≤ εn + ||B||||x2

n||, and we conclude that z ∈
SpecW (A1, X1). Otherwise we conclude that z ∈ SpecW (A2, X2). Hence,
(3.52) is proved.

For the proof of the last inclusion (3.53), first notice that SpecW (A1, X1) ⊂
SpecW (A,X) is obvious, Notice also that from an approximate eigenvec-
tor x2 of z ∈ SpecW (A2, X2) we can produce an approximate eigenvec-
tor x = x1 + x2 of z for A if, for instance, we can find x1 such that
A1x1 +Bx2−zx1 = 0. This is the case if z ∈ SpecW (A2, X2)∩Res(A1, X1).
tu

The inclusions in Lemma 3.44 above can be strict. Also, all the other
inclusions may be false. Of course, a particular case in which the inclusions
are equalities is when T is diagonal, that is to say, the splitting X =

⊕l
i=1Xi

is invariant under T . Another special case that will be useful for us and in
which the inclusions are equalities is the following.

Lemma 3.45. Assume that T is upper triangular as in Definition 3.43.
Assume also that for every i, Spec(Ti, Xi) = SpecW (Ti, Xi). Then:

Spec(T,X) = SpecW (T,X) =
l⋃

i=1

Spec(Ti, Xi) .
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Proof: Since

Spec(T,X) ⊂
l⋃

i=1

Spec(Ti, Xi) =
l⋃

i=1

Spec(Ti, Xi)
i−1⋂
j=1

Res(Tj , Xj)



=
l⋃

i=1

SpecW (Ti, Xi)
i−1⋂
j=1

Res(Tj , Xj)

 ⊂ SpecW (T,X)

⊂ Spec(T,X) ,

all the inclusions are equalities. tu
As an immediate corollary of the previous general results, the spectrum

of triangular transfer operators is clarified. For instance, we have

Proposition 3.46. Let Mf be an upper triangular vector bundle au-
tomorphism as in Definition 3.42. Suppose that f is chain-recurrent and
APD. Then:

Spec(Mf ,ΓB(E)) =
l⋃

i=1

Spec(Mi
f ,ΓB(Ei)) .

Proof: It is an immediate consequence of Lemma 3.45, because if f is chain-
recurrent and APD then the full spectrum of a transfer operator is Weyl
spectrum. tu

The following result is important in the study of the whiskered tori in
Hamiltonian systems. For some applications see [dlLGJV05, HdlLb].

Proposition 3.47. Let Mf : E → E be a vector bundle automorphism
over a uniquely ergodic homeomorphism f . Let µ be its corresponding in-
variant measure. Suppose there exists a splitting

(3.54) E =
n⊕

i=1

Ei

in subbundles of rank 1.
With respect to the decomposition (3.54), the representation of Mf is:

(3.55) M(θ) =


a1(θ) b12(θ) . . . b1n(θ)

0 a2(θ) . . . b2n(θ)
... 0

. . .
...

0 . . . an(θ)

 .

Then:

Spec(Mf ,ΓB(E)) =
n⋃

i=1

Sρi
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where
ρi = exp

∫
P

log |ai(θ)| dµ .

Proof: Since f is uniquely ergodic and the rank of Ei is 1, then Corollary 2.41
implies that

Spec(Mf ,ΓB(Ei)) = Sρi .

Notice that the full spectrum is in fact Weyl spectrum, because it is a circle.
So, we get the result applying Proposition 3.45. tu



CHAPTER 4

Characterization of the spectrum by behavior on
orbits

In this section, we will show how the spectrum and Weyl spectrum in
ΓB(E) can be characterized by the behavior of individual orbits. Since we
have already shown that the spectrum in ΓB(E) is the same as in other
spaces, the same results will apply to other spaces, in particular to contin-
uous or to Lp sections.

This question is very natural from different points of view. From the
point of view of dynamical systems, there are two notions of hyperbolic-
ity, the one developed in [HP70, HPS77] based on contraction properties
on bundles (which can be shown to be spectral properties using adapted
metrics) and the theory of [Fen72, Fen74, Fen77] which emphasizes the
rates of growth of periodic orbits. The present results show that, the two
characterizations of regularity are equivalent. From the point of view of
PDE’s, the paper [Vis96] contains lower bounds of the spectrum in terms
of Lyapunov numbers of certain orbits. In this section we will show that, in
some cases (Lp spaces, the purely kinematic operators, some assumptions
on recurrence) the converse is also true.

4.1. The spectrum on bounded sequences supported on orbits

Let Mf : E → E be a vector bundle automorphism.

Definition 4.1. Given an aperiodic point θ ∈ P we define

(4.1) bf,θ(E) = {v ∈
∏
i∈Z

Ef i(θ) | ||v||∞ = sup
i∈Z

|vi| <∞}

where vi denote the components in the direct product.
Given a periodic point θ ∈ P of minimal period N , we define

(4.2) bf,θ(E) = {v ∈
N−1∏
i=0

Ef i(θ) | ||v||∞ = sup
0≤i<N

|vi| <∞} .

Definition 4.2. For each θ ∈ P, we define a pointwise transfer operator
acting on the spaces above, by

(mf,θv)i = M(f i−1(θ))vi−1 ,

where in the N -periodic case, the indices i are understood (mod N).

93
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The intuition behind these definitions is that mf,θ is the restriction of
Mf on orbits. Once we have fixed θ, we will denote Mi = M(f i(θ)) for
i ∈ Z. The pointwise transfer operators mf,θ are also known as weighted
shift operators (see [CL99]). (The weights are the Mi’s, and we shift the
indices).

Even if for one periodic orbit it does not make a difference what norm
we use in bf,θ, it will be quite important to specify the norm when we make
statements that are uniform on a set of periodic orbits.

We will use the notation

ΣP,θ = SpecP (mf,θ, bf,θ(E)) , and
⋃
θ∈P

ΣP,θ ⊂ SpecP (Mf ,ΓB(E))

ΣW,θ = SpecW (mf,θ, bf,θ(E)) , and
⋃
θ∈P

ΣW,θ ⊂ SpecW (Mf ,ΓB(E))

Σθ = Spec(mf,θ, bf,θ(E)) , and
⋃
θ∈P

Σθ ⊂ Spec(Mf ,ΓB(E)) .

(4.3)

We note that when θ is periodic, bf,θ(E) is finite dimensional and ΣP,θ =
ΣW,θ = Σθ. We will show now that, when θ is aperiodic Σθ = AΣθ. This,
of course, is impossible when θ is periodic.

Proposition 4.3. With the notations above
i) If θ is aperiodic, then ΣP,θ, ΣW,θ and Σθ are invariant under rota-

tions.
ii) If θ is periodic of minimal period N ,

(4.4) Σθ = {z ∈ C | zN is eigenvalue of M(θ,N)}

so that, in particular, Σθ is invariant under rotations by exp(2πi/N).

Proof: To prove i) we note that if θ is aperiodic and v ∈ bf,θ(E) satisfies

(4.5) ||mf,θv − zv|| ≤ ε , ||v|| = 1 ,

then, ṽ defined by

(4.6) ṽk = e−kαivk

satisfies

(4.7) ||mf,θṽ − zeαiṽ|| ≤ ε , ||ṽ|| = 1 .

Hence, given any sequence of approximate eigensections for z, we can con-
struct another such sequence for eαiz. The proof also works for the point
spectrum, taking ε = 0. Notice that since the Weyl spectrum is rotationally
invariant, so is the full spectrum. This proves i).

The same construction works for the periodic orbits of minimal period
N if we restrict α to satisfy eαN i = 1 so that the function eαN i j can be
considered as a function on the orbit.
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To prove ii) we note that if zN is an eigenvalue of M(θ,N) with eigen-
vector v0 then z 6= 0 (we assume that Mf is automorphism) and setting

(4.8) ṽ =
(
v0,

1
z
M(θ, 1)v0, . . . ,

1
zN−1

M(θ,N − 1)v0

)
we have ṽ 6= 0 and

mf,θṽ =
(

1
zN−1

M(θ,N)v0,M(θ, 1)v0, . . . ,
1

zN−2
M(θ,N − 1)v0

)
= zṽ .

(4.9)

Hence, the R.H.S. of ii) is contained in the L.H.S.
Conversely, if mf,θṽ = zṽ in bf,θ(E) for a periodic point θ with p(θ) = N ,

we have mN
f,θṽ = zN ṽ, which in coordinates means

(4.10) M(f i(θ), N)vi = zNvi ,

for all i = 0, . . . , N − 1. Notice that one of the vi is non-zero, and then we
define w0 = M(f i(θ), N − i)vi, that is obviously non-zero. Then:

M(θ,N)w0 = M(θ,N)M(f i(θ), N − i)vi = M(f i+N (θ), N − i)M(f i(θ), N)vi

= zNM(f i(θ), N − i)vi = zNw0 ,

and zN is an eigenvalue of M(θ,N).

Remark 4.4. If Mf is not invertible and we find z = 0, we conclude
from (4.10) that some of the M(f i(θ)) is not invertible, hence, 0 belongs to
the spectrum of M(θ,N).

Hence, the L.H.S. of ii) is contained in the R.H.S. and we conclude the
proof of Proposition 4.3. tu

4.2. Characterization of the Weyl spectrum

In this section we will characterize the Weyl spectrum on the space of
bounded sections, and we will finish the analysis started in Section 3.1.
Motivated by the findings in Lemma 3.1, we will distinguish the following
subsets of P:

• the set of aperiodic points:

A(f) = {θ ∈ P | p(θ) = ∞} ;

• the set of periodic points:

P (f) = {θ ∈ P | p(θ) <∞} ;

• the set of strongly periodic points:

B(f) = {θ ∈ P | ∃U ⊂ P, open , θ ∈ U, p|U bounded} .
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Moreover, for a given point θ ∈ P, we define its set of periods as

P (θ) = {N | ∃{θn}n>0, θn → θ, p(θn) = N} .
Notice that if θ ∈ B(f) then P (θ) is a finite set and all its elements are
(finite) multiple of p(θ).

The following theorem summarizes Lemma 3.1 and Proposition 4.3. As
we will see, the Weyl spectrum can be characterized from the point spectrum.

Theorem 4.5. Let Mf : E → E be a vector bundle automorphism.
Then:

SpecW (Mf ,ΓB(E)) =
⋃

θ∈A(f)

ΣP,θ ∪
⋃

θ∈P (f)\B(f)

AΣP,θ ∪
⋃

θ ∈ B(f)
N ∈ P (θ)

ANΣP,θ

⊂
⋃

θ∈A(f)

ΣP,θ ∪
⋃

θ∈P (f)

AΣP,θ .

Proof: We follow the proof of Lemma 3.1, and, in particular, the remarks 3.3,
3.5 and 3.6, stating them using the notation introduced above. See also the
proof of Theorem 3.19.

Given z ∈ SpecW (Mf ,ΓB(E)), recall that from a sequence of approx-
imate eigensections supported on orbits we can find a point θ∗ ∈ P and a
sequence of vectors {wi}i∈Z such that

(4.11) Π(wi) = f i(θ∗) ,M(f i(θ∗))wi = zwi+1 for all i ∈ Z .

We distinguish three cases:
(a.1) θ∗ ∈ A(f), that is θ∗ is aperiodic. Henceforth, z ∈ ΣP,θ∗ . Obviously,

ΣP,θ∗ ⊂ SpecW (Mf ,ΓB(E)).
(a.2) θ∗ ∈ P (f) \ B(f), that is θ∗ is periodic but can be approximated

by orbits of period arbitrarily high. Notice that if p(θ∗) = N∗, then
the sequence, indexed by k, given by

wN∗k =
1

zkN∗
M(θ∗, N∗k)w0 =

(
1
zN∗

M(θ∗, N∗)
)k

w0

is bounded (|wi| ≤ 1 for all i ∈ Z). Then, the matrix M(θ∗, N∗)
has eigenvalues of modulus |z|N∗ and w0 is in the space spanned
for the corresponding eigenvectors. That is to say, z ∈ AΣP,θ∗ .

Conversely, let z ∈ ΣP,θ∗ and w0 6= 0 such that M(θ∗, N∗)w0 =
zN∗w0. Define z̃ = eαiz, where α ∈ R. Take θ0 close enough θ∗
whose period is high enough, say p(θ0) > 2N . Then, the bounded
section

(4.12) v(f i(θ0)) = vi = (1− |i|/(N + 1))+
1
z̃i
M(θ0, i)w0 for |i| ≤ N ,

v(θ) = 0 otherwise ,

defines an approximate bounded eigensection of z̃. In summary,
if z ∈ ΣP,θ∗ with θ∗ ∈ P (f) \ B(f), then it produces a whole
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circle of radius |z| of approximate eigenvalues, that is AΣP,θ∗ ⊂
SpecW (Mf ,ΓB(E)).

(b) θ∗ ∈ B(f), (i.e. there exist an open set containing θ∗ in which the
periods of the orbits are bounded).

If p(θ∗) = N∗, recall we can obtain approximate eigensections
supported in periodic orbits of period N , with N = N∗`. (4.11)
reads now

M(f i(θ∗))wi = zwi+1 0 ≤ i < N − 1 ,

M(fN−1(θ∗))wN−1 = zw0 .
(4.13)

As a result, we obtain that zN = zN∗` is an eigenvalue ofM(θ∗, N) =
M(θ∗, N∗)`. This means that z = e2π j

N
iz̃, where z̃N∗ is an eigen-

value of M(θ∗, N∗) and j ∈ {0, 1, · · · , l−1}. That is to say, z is one
of the vertices of the regular N -polygon generated by z̃ ∈ ΣP,θ∗ .

Conversely, if z̃ ∈ ΣP,θ∗ , that is to say z̃N∗ is an eigenvalue
of M(θ∗, N), and N is one of the periods of θ∗, we see that z =
e2π j

N
iz̃ is an approximate eigenvalue of Mf . Notice that θ∗ can be

approached by periodic points θn, of period N . Moreover, if w̃0 is
an eigenvector of M(θ∗, N∗) for z̃, then the finite sequence {wi}N−1

i=0
defined by

wi =
1
zi
M(θ∗, i)w̃0

satisfies (4.13). Again, there is no reason why wi+N∗ = wi, but
we can transport these vectors to the N -periodic orbit θn and ob-
tain an approximate eigenvector of Mf for z. That is ANΣP,θ∗ ⊂
SpecW (Mf ,ΓB(E)).

The analysis of the three cases completes the proof of Theorem 4.5. tu

Remark 4.6. This result not only characterizes the Weyl spectrum of
a transfer operator by the behavior of orbits, but also summarizes some of
the results that we had obtained before.

Notice that the rotational part of the spectrum is contained in the ape-
riodic orbits and the periodic orbits that can be approached by orbits with
period arbitrarily high. In particular, if f is APD, then the Weyl spectrum
is invariant under rotations, because B(f) = ∅ (see Theorem 3.13).

Notice also that if f does not have periodic orbits then the Weyl spec-
trum can be computed from the point spectrum on the (aperiodic) orbits
(see remark 3.2).

As a corollary of Theorem 4.5, we obtain the following result, that is
stronger than lemma 2.15 (see [CL99], where a general result on Weyl spec-
trum is used).
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Corollary 4.7. Let Mf be a vector bundle automorphism. Given a
positive constant ρ:

Mf is quasi-ρ-dichotomic ⇔ SpecW (Mf ,ΓB(E)) ∩ Sρ = ∅ .

Proof: The proof of the “if” part is Lemma 2.15. For the proof of the “only
if” part, suppose that ρ = 1, and we will find a non-trivial bounded orbit
for Mf (the general result is obtained by scaling).

Let z ∈ SpecW (Mf ,ΓB(E)) with |z| = 1. From Theorem 4.5, z ∈ ΣP,θ

with θ ∈ A(f) or z ∈ AΣP,θ with θ ∈ P (f).
In the first case, since ΣP,θ is invariant under rotations we can assume

that z = 1, and then there exist {vi}i∈Z ∈ bf,θ(E) such that

M(f i(θ))vi = vi+1 .

That is vi = M(θ, i)v0 is an orbit, and it is bounded.
If θ is periodic, with p(θ) = N , then M(θ,N) has eigenvalues on the

unit circle. The corresponding eigenvectors produce bounded orbits for Mf .
tu

4.3. The spectrum on lp sequences supported on orbits

We consider in this section the pointwise transfer operators acting on lp

spaces of sequences (see [CL99] for related results).
Let Mf : E → E be a vector bundle automorphism.

Definition 4.8. Given an aperiodic point θ ∈ P we define

(4.14) lpf,θ(E) = {v ∈
∏
i∈Z

Ef i(θ) | ||v||
p
lp =

∑
i∈Z

|vi|p <∞}

where vi denote the components in the direct product.
Given a periodic point θ ∈ P of minimal period N , we define

(4.15) lpf,θ(E) = {v ∈
N−1∏
i=0

Ef i(θ) | ||v||
p
lp

=
∑

0≤i<N

|vi|p <∞} .

When θ is periodic, bf,θ(E) and lpf,θ(E) are the same space and the norms
are equivalent. Nevertheless, the constants that give the equivalence in the
norms are not uniform in the period. Hence, making statements that are
valid for all periods is not automatic.

We will study here the Weyl spectrum on spaces of lp sequences, and
we will see that it is the same as that on bounded sequences. As a con-
sequence, if the vector bundle automorphism Mf : E → E is defined over
an homeomorphism f that is APD and has an invariant measure µ that is
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topological, then the spectrum is rotationally invariant and for p > 1

Spec(Mf ,ΓLp(E)) = Spec(Mf ,ΓB(E))
= SpecW (Mf ,ΓB(E))

=
⋃

θ∈A(f)

ΣP,θ ∪
⋃

θ∈P (f)\B(f)

AΣP,θ ∪
⋃

θ ∈ B(f)
N ∈ P (θ)

ANΣP,θ .

So, the fact that ΣW,θ ⊂ SpecW (mf,θ, l
p
f,θ(E)) has further applicability in

the study of the spectrum of the transfer operator acting on Lp sections.
Another interesting example is the case in which the topological measure is
ergodic, because this implies that f has a dense orbit θ0. So, in this case:

Spec(Mf ,ΓLp(E)) = Spec(Mf ,ΓB(E)
= ΣW,θ0

= SpecW (mf,θ, l
p
f,θ0

(E)) .

This is the result, which we now state formally.

Theorem 4.9. Let Mf : E → E be a vector bundle automorphism.
Assume that f has an aperiodic orbit θ ∈ P. Then, for p > 1,

SpecW (mf,θ, l
p
f,θ(E)) = SpecW (mf,θ, bf,θ(E)) .

In particular, Spec(mf,θ, l
p
f,θ(E)) is invariant under rotations.

Remark 4.10. The fact that SpecW (mf,θ, l
p
f,θ(E)) is rotationally invari-

ant can be proved directly just noting that the map (vk)k → (v̄k)k defined by
v̄k = e−αkivk is an isometry in lpf,θ(E) for all α ∈ R that for an approximate
eigensequence v of z produces an approximate eigensequence v̄ of eαiz.

Proof: Firstly, from a bounded approximate eigensequence v of z we will
produce an lp approximate eigensequence v̄. Recall that using localization
arguments, we can assume that the bounded eigensequence is supported in
a finite segment of the orbit:

• vi = 0 for |i| > N =
[

1
ε

]
;

• ||v||b = 1, |v0| ≥ 3
4 ;

• ||mf,θv − zv||b ≤ 2|z|ε.
(Possibly, to obtain the sequence centered in θ we would have to shift the
indices i, but this do not change the spectrum). Notice that

||v||plp =
i=N∑

i=−N

|vi|p ≥
(

3
4

)p
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so ||v||lp ≥ 3
4 , and

||mf,θv − zv||plp =
N+1∑
i=−N

|Mi−1vi−1 − zvi|p

≤
N+1∑
i=−N

(2|z|ε)p = (2|z|ε)p(2N + 2)

≤ 2p+2|z|pεp−1 .

So then, v is a lp approximate eigensequence, provided that p > 1. This
argument proves the inclusion

SpecW (mf,θ, l
p
f,θ(E)) ⊃ SpecW (mf,θ, bf,θ(E)) .

For the proof of the opposite inclusion, we will use similar arguments to
those in the proof of Theorem 3.7. Let v be an lp approximate eigensequence
with ||v||lp = 1, ||Mfv − zv||lp = ε. Notice that v is bounded, but it is not in
principle a bounded approximate eigensequence.

For k ∈ Z, denote ek = Mk−1vk−1 − zvk and

(4.16) rk =


1

|vk|p
2N∑

i=−2N

|ek+i|p if vk 6= 0 ,

0 otherwise ,

(4.17) sk =


1

|vk|p
2N∑

i=−2N

|vk+i|p if v(θ) 6= 0 ,

0 otherwise ,

where N ∈ N will specify later. This setting defines three sequences

e = (ek)k∈Z , r = (rk)k∈Z , s = (sk)k∈Z .

We consider the finite measure in Z given by ν({i}) = νi = |vi|p, for
i ∈ Z. Note that ν(Z) =

∑
i∈Z νi = 1,∫

rdν =
∑
k∈Z

rkνk ≤
∑
k∈Z

2N∑
i=−2N

|ek+i|p ≤ (4N + 1)εp

and ∫
sdν =

∑
k∈Z

skνk =
∑
k∈Z

2N∑
i=−2N

1 = (4N + 1) .

We can take, in particular, (4N + 1) = ε−α for some α > 0, that will be
specified later.

For positive values a,b,∑
rk≥a

|vk|p ≤
1
a

∑
k

rk|vk|p ≤
1
a
εp−α,
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and ∑
sk≥b

|vk|p ≤
1
b

∑
k

sk|vk|p =
1
b
ε−α,

By taking a = εp−α−δ and b = ε−α−δ for some δ > 0, we get that r is
greater than εp−α−δ in a set of indices Ωr ⊂ Z of ν-measure less than εδ and
s is greater than ε−α−δ in a set of indices Ωs ⊂ Z of ν-measure less than εδ.

We assume that α, δ are so small that p−α−δ > 0, i.e. 1−α/p−δ/p > 0.
Since p > 1, we can also assume that they are so small that α(1−1/p)−δ/p >
0. This choice fixes also N in (4.16) and (4.17).

Since ν(P) = 1, ν(Ωr) ≤ εδ and ν(Ωs) ≤ εδ, we obtain ν(P−Ωr−Ωs) > 0
for ε sufficiently small. Hence, there exist k ∈ P −Ωs−Ωr for which vk 6= 0.
Shifting indices, we can assume that k = 0.

We have

(4.18) |ei|p ≤ |Mi−1vi−1 − zvi|p ≤ |v0|pεp−α−δ i = −2N, . . . , 2N

and

(4.19) |vi|p ≤ |v0|pε−α−δ i = −2N, . . . , 2N .

If we denote ṽi = vi/ max
k=−N,...,N

|vk| we have:

|Mi−1ṽi−1 − zṽi+1| ≤ ε1−α/p−δ/p for all − 2N ≤ i ≤ 2N

|ṽi| ≤ 1 for all −N ≤ i ≤ N

|ṽj | = 1 for some −N ≤ j ≤ N

|ṽi| ≤ ε−α/p−δ/p for all − 2N ≤ i ≤ 2N

(4.20)

We proceed again using localization arguments. We consider

v̂i = (1− 2|i− j|/N)+ṽi for i = −2N, . . . , 2N ,

and v̂i = 0 otherwise, where j is as in (4.20). Notice that

Miv̂i − zv̂i+1 =
(

1− 2|i− j|
N

)
+

(Miṽi − zṽi+1)

+
((

1− 2|i− j|
N

)
+

−
(

1− 2|i+ 1− j|
N

)
+

)
zṽi+1 .

(4.21)

Using (4.20), we can bound from above the size of the first term in the
R.H.S. by ε1−α/p−δ/p and, since 4N + 1 = ε−α, the size of the second term
can be bounded by 10|z|εα−α/p−δ/p. According to the way that we chose
the α, δ, both bounds have positive powers of ε. Henceforth, v̂ is a bounded
approximate eigensequence of z.

With these arguments we complete the proof of Theorem 4.9. tu
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4.4. Characterization of the spectrum by behavior on a dense
orbit

In this section we will characterize the spectrum of a transfer operator
Mf in case that f is topologically transitive. The spectrum is determined
by the behavior of the transfer on a dense orbit.

Theorem 4.11. Let Mf : E → E be a vector bundle automorphism.
Suppose that the orbit of θ0 ∈ P is dense in P. Then:

SpecW (Mf ,ΓB(E)) = ΣW,θ0

||
Spec(Mf ,ΓB(E)) = Σθ0

(4.22)

Remark 4.12. Since we have shown that the spectrum on bounded
sections is the same as the spectrum in the space of continuous sections, the
equalities (4.22) hold in the space of continuous sections.

Remark 4.13. The hypothesis of topological transitiveness holds if f
has an invariant measure µ that is topological and ergodic. In such a case,
the equalities hold in the space of Lp sections, with p > 1.

Proof: Note that the presence of a dense orbit forces that SpecW (Mf ,ΓB(E))
is rotationally invariant and so is Spec(Mf ,ΓB(E)).

Note also that as the orbit by θ0 is not periodic, then ΣW,θ0 and Σθ0 are
also rotationally invariant.

The equalities of Weyl spectra and of full spectrum are immediate con-
sequences of Theorem 3.39, since an orbit is a particular case of invariant
set.

Finally, the fact that the full spectrum is Weyl spectrum follows directly
from the fact that topological transitivity implies APD and chain-recurrence
(see Theorem 3.19). tu

4.5. Characterization of the spectrum by behavior on periodic
orbits

Our next result is a variation of Theorem 3.19, Theorem 4.5, which
characterize the spectrum in terms of behavior of individual orbits.

The conclusions are somewhat better since we show that it suffices to use
only periodic orbits. On the other hand, the hypothesis require a very strong
recurrence property (namely specification introduced in Definition 1.30) and,
more importantly, that we are dealing with one dimensional bundles.

Theorem 4.14. Let Mf : E → E be a vector bundle automorphism
covering a homeomorphism f which satisfies the specification property, and
assume that there is an continuous splitting of E in bundles of dimension 1
for which Mf is upper triangular.
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We define the periodic spectrum as

Σper =
⋃

θ0∈P (f)

Σθ0 .

Then:
Spec(Mf ,ΓB(E)) = SpecW (Mf ,ΓB(E)) = Σper .

Proof: Let E =
⊕n

i=1E
i the decomposition in bundles of dimension 1 for

which Mf is upper triangular. Since f is chain-recurrent and APD, Theo-
rem 3.19 asserts that

Spec(Mf ,ΓB(E)) = SpecW (Mf ,ΓB(E))

and
Spec(Mf ,ΓB(Ei)) = SpecW (Mf ,ΓB(Ei))

for all i = 1, . . . , n. Moreover, Proposition 3.46 asserts that

Spec(Mf ,ΓB(E)) =
n⋃

i=1

Spec(Mf ,ΓB(Ei)).

If Σi
per denotes the periodic spectrum on each subbundle, then

Σper =
n⋃

i=1

Σi
per,

because for finite-dimensional triangular matrices the eigenvalues are the
diagonal elements. In summary, what we have to prove is that

Spec(Mf ,ΓB(Ei)) = Σi
per

for all i = 1, . . . , n.
Henceforth, we will assume from now on that the bundle E is 1 dimen-

sional, M is bounded away from zero. Notice that the spectrum is a full
annulus, i.e. without gaps, Spec(Mf ,ΓB(E) = Aλ−,λ+ . We will show first
that the boundaries of the spectrum can be approached by the spectrum on
periodic orbits. Then, we will show that Σper is annularly convex, that is,
if z1, z2 ∈ Σper, then A|z1|,|z2| ⊂ Σper.

First of all, notice that Theorem 2.46 asserts that the boundary radii of
the spectrum can be approached by “regular” Lyapunov multipliers λ, for
which there exist a point θ0 such that

(4.23) lim
N→∞

1
N

log |M(θ0, N)| = log λ .

We will assume that θ0 is aperiodic, otherwise (4.23) says that λ is the
spectral radius of the transfer on the periodic orbit by θ0, whose spectrum
is a regular polygon centered in the origin. Choose now a segment of the
aperiodic orbit of length N which will take sufficiently large as indicated
later. Choose also ε, which later we will make small, and denote Kε the
natural number given by the specification property in Definition 1.30. Hence,
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for all T ≥ Tε,N := Kε+N there exists a T -periodic orbit by a certain ϕε,N,T

such that
d(f i(θ0), f i(ϕε,N,T )) < ε

for i = 0, 1, . . . , N . Then:
(4.24)∣∣∣∣ 1

T
log |M(ϕ, T )| − log λ

∣∣∣∣ ≤
∣∣∣∣ 1
T

(log |M(ϕ, T )| − log |M(ϕ,N)|)
∣∣∣∣

+
∣∣∣∣ 1
T

(log |M(ϕ,N)| − log |M(θ0, N)|)
∣∣∣∣

+
∣∣∣∣( 1
N
− 1
T

)
log |M(θ0, N)|

∣∣∣∣
+
∣∣∣∣ 1
N

log |M(θ0, N)| − log λ
∣∣∣∣ .

The first and third terms of the RHS above can be bounded by T−N
T log+ ||M ||∞

that can be made small by taking T = Kε + N and N large. The second
term can be bounded by N

T η(ε) ≤ η(ε), where η is the modulus of continu-
ity of the function log |M(θ)|, so it can be made small by taking ε small.
Finally, the fourth term can be made small by taking N large. In summary,
we can make all the terms in the RHS above as small as desired if we take ε
small enough and N large enough, and T = Kε +N . We conclude that the
spectrum of the T -periodic orbits ϕT contains eigenvalues whose modulus
can be made as close as desired to λ, that can be made as close as we want
to the radii of the spectrum, λ−, λ+.

Remark 4.15. The bound of the second term in (4.24) by η(ε) is the
only point in which we use the commutativity of the products in M(θ,N)
coming from the fact that the bundle is 1D.

Now, we turn to the proof of the annular convexity.
Let z1, z2 be eigenvalues corresponding to periodic orbits whose starting

points are θ1, θ2 respectively. Denote by T1, T2 the minimal periods of these
orbits. We will assume for the sake of convenience that |z1| ≤ |z2|. We fix
z ∈ Az1,z2 .

We will first discuss the case that the two orbits are different.
Now, we pick an orbit segments corresponding to iterating the first order

N1 times and the second orbit N2 times. Later we will choose N1, N2 to be
sufficiently large but their ratio approaches a fixed value.

We fix ε > 0 and apply the specification property to obtain a periodic
orbit of period T = N1 +N2 + 2Kε shadowing the periodic orbits, where Kε

is the jump required by the specification property.
Again, we compute the multiplier going around the orbit. Proceeding

as before, we note that, up to terms that go to zero when ε → 0 and
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N1, N2 →∞, the Lyapunov exponent around the orbit is

(4.25)
N1 · T1

N1 · T1 +N2 · T2
log |z1|+

N2 · T2

N1 · T1 +N2 · T2
log |z2|

If we take N1 and N2 large enough but their ratio approaches a limit, we can
obtain that the value in (4.25) approaches any desired value in the interval
[log |z1|, log |z2|].

Hence, for any fixed ε we can obtain a sequence of periodic orbits whose
Lyapunov exponent converges to any prescribed value in [log |z1|, log |z2|] up
to an error η(ε). Again, passing to a sequence of ε taking to zero, we can
get a sequence of periodic orbits whose Lyapunov exponent approaches any
desired value.

Since the minimal period of the orbits in the sequence constructed grows
to infinity (notice that the period has to be larger than N1T1), the spectrum
of the periodic orbits accumulates in the whole annulus of radii |z1| ≤ |z2|.

In the case that the two periodic orbits are the same (and hence, |z1| =
|z2|), the only thing that we need to do is to show that Σper includes the
whole circle of this radius. This can be easily achieved by taking any point
outside of the periodic orbit and shadowing an orbit that consists on repeat-
ing N times the periodic orbit and then visiting the other point. Proceeding
as before, we see that the average Lyapunov exponent is not affected much,
but the period grows to infinity which ensures that the spectrum accumu-
lates in the whole circle. tu

Remark 4.16. Notice that along the proof, we have also shown that, in
the hypothesis of Theorem 4.14, Σper is invariant under rotations.

This, also follows because specification implies that the system is APD
(Proposition 1.35) and, we have shown that this implies that the spectrum
is invariant under rotations (Theorem 3.11).

Remark 4.17. Recall that the size of the gaps in the spectrum gives
the regularity of the spectral subbundles, as a consequence of the invariant
section theorem (see Theorem 2.18). Theorem 4.14 transfer the growth
behavior on periodic orbits (their Lyapunov multipliers) to regularity of the
invariant subbundles.

A theorem very similar to Theorem 4.14 without the assumption that
the bundles are 1-dimensional is claimed in [Ham94] for transitive Anosov
systems (that indeed satisfy specification). This goes under the name pe-
riodic bunching . From the point of view of dynamical systems, this is
interesting since in [Ano69, HK90] it is shown that the periodic orbits
also give obstructions to regularity.

Unfortunately, the argument presented in [Ham94] (also used in [Has94])
is not complete. The k(ε, δ) constructed in p. 304 by appealing to the sub-
additive ergodic theorem for the invariant measure µ could depend on µ
and, indeed, simple examples show that this dependence could take place.
This invalidates the argument presented there.
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We do not know whether indeed the result is true for Anosov systems.
Nevertheless, the following examples, indicate that the eventual proof of this
result (if indeed there is one) cannot just rely on soft arguments.

The following example is a caricature of the situation in which periodic
orbits of a dynamical system approximate an aperiodic orbit. The spectrum
in the aperiodic orbit is significantly larger. It could well be true that
the result claimed in [Ham94] is true for dynamical systems on manifolds.
Nevertheless, the Example 4.18 shows that the proof will have to use some
delicate structure of the dynamical system (e.g. that it is defined on a
manifold) and cannot be based just on properties true for measurable spaces

Example 4.18. Consider the space M = N
⋃

n N/2n Denote its elements
by (n, i), n ∈ N ∪ {∞}, i ∈ N/2n (with the obvious meaning N/2∞ = N )
Define on it the topology in which (n, i) → (∞, i) as n→∞. Define on it the
dynamical system f(n, i) = (n, i+1). Consider a trivial bundle E = M×R2

and the bundle map T(n,i) =
(

2 0
0 3

)
when 0 ≤ i ≤ 2n− 2 M(n, 2n− 1) =(

0 1
1 0

)
Then, the Lyapunov multipliers of the periodic orbits are (2·3)1/2.

Nevertheless, the aperiodic orbit has Lyapunov multipliers 2, 3 and indeed
the spectrum is {2 ≤ |z| ≤ 3}.



Part 3

Transfer operators over rotations



In this part, we will study the spectrum of transfer operators when the
motion of the base is a translation on the torus.

In this special case, it is possible to obtain significantly sharper results
than in the general case discussed above.

Transfer operators over rotations appear naturally in many applications.
For example, many systems in celestial mechanics are systems that are sub-
ject to external perturbations which are quasi-periodic. The linearization of
such systems leads naturally to transfer operators over rotations. Indeed,
some of the results discussed here are useful in the study of persistence of
normally hyperbolic invariant manifolds for such systems.



CHAPTER 5

Corollaries from the general theory

In this chapter we obtain several results on transfer operators defined
from vector bundle maps over rotations on a torus. These results are just
corollaries of the general theory.

5.1. Some spectral equalities and inclusions

The following is a corollary of the results in Part 2.

Corollary 5.1. Let Mω : E → E be a Cr vector bundle automorphism
over a rotation ω. Assume that ω is irrational. Then:
(5.1)

Spec(Mω,ΓB(E)) = SpecW (Mω,ΓB(E)) = SpecP (Mω,ΓB(E))
‖ ‖

Spec(Mω,ΓLp(E)) = SpecW (Mω,ΓLp(E))
‖ ‖

Spec(Mω,ΓC0(E)) = SpecW (Mω,ΓC0(E))
∩ ∩

ASpec(Mω,ΓCr(E)) ⊃ SpecW (Mω,ΓCr(E))

where p > 1.
Moreover, the spectrum acting on bounded sections is rotationally in-

variant, and the same happens to the other spaces of sections that have the
same Weyl spectrum as in ΓB(E).

Proof: The fact that the Weyl spectrum (or approximate point spectrum)
on bounded sections is rotationally invariant follows from localization argu-
ments for C0 sections given in [Mat68]. In Part 2, they are generalized to
other regularities. The key ingredient is that irrational rotations does not
have periodic orbits (all the orbits through the irrational flow are aperiodic).
This implies that the full spectrum on bounded sections is also rotationally
invariant, because the boundary of the spectrum is approximate point spec-
trum. We will present an extended result (that works in other spaces) in
Section 5.2 (Theorem 3.13), that uses specifically that the motion on the
base torus is an irrational rotation.

The full spectrum on bounded sections is approximate point spectrum
because all the orbits through rotations are non wandering (and so, rotations
are chain recurrent). This result is proved in [Swa81, HdlL03a], using the
findings in [SS76a, Sel75, CI99] (quasi-hyperbolicity implies hyperbolicity
if the dynamics is chain recurrent).

109
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The approximate point spectrum on bounded sections is point spectrum
comes from the fact that irrational rotations does not have periodic orbits.
It is a direct application of Thychonov theorem. We will review these results
in Section 6.

The inclusion of SpecW (Mω,ΓB(E)) in SpecW (Mω,ΓC0(E)) is proved
by fattening the localized bounded approximate eigensections to produce
continuous approximate eigensections. A similar argument is used to prove
the inclusion in SpecW (Mω,ΓLp(E)), and it is crucial that p > 1 and the
Lebesgue measure is topological.

The inclusion SpecW (Mω,ΓC0(E)) ⊂ SpecW (Mω,ΓB(E)) is straight-
forward, because ΓC0(E) is a closed Banach subspace of ΓB(E). The proof
of the inclusion SpecW (Mω,ΓLp(E)) ⊂ SpecW (Mω,ΓB(E)), that is produc-
ing a bounded approximate eigensection from a Lp approximate eigensection,
is more involved and uses Chebyshev inequality.

The equalities among the Weyl spectra imply that the corresponding
spectra is rotationally invariant.

A gap in the spectrum on bounded sections produces an invariant split-
ting that is, at least, continuous. This splitting in the bundle produces
a splitting in the space of continuous sections, that is also characterized
by rates of growth, so the gap does exist also when acting on continuous
sections. This proves Spec(Mω,ΓC0(E)) ⊂ Spec(Mω,ΓB(E)).

Notice also that a gap in the spectrum on continuous functions pro-
duces a continuous invariant splitting satisfying rates of growth (this is a
general result, but it is also a direct application of Theorem 3.14). The
pointwise rates of growth imply similar rates of growth for bounded and
Lp sections (this argument works for p ≥ 1). This proves the inclusion of
Spec(Mω,ΓB(E)) and Spec(Mω,ΓLp(E) in Spec(Mω,ΓC0(E)).

With the previous arguments we have finished the prove of the equalities
in Corollary 5.1. Let us now to go through the prove of the inclusion when
considering higher regularities.

The inclusion of SpecW (Mω,ΓB(E)) in SpecW (Mω,ΓCr(E)) is carried
out using again fattening arguments. We emphasize that these arguments
use bump functions, that are not aware when working in the analytic cate-
gory.

Finally, for proving Spec(Mω,ΓB(E)) ⊂ ASpec(Mω,ΓCr(E)) we use
that a gap in the spectrum in ΓCr(E) produces an invariant splitting char-
acterized by rates of growth (by appealing to Theorem 3.14), and so the gap
is also present in the spectrum in ΓB(E). tu

Remark 5.2. From the results in Part 2, it does not follow that the
spectrum of on Cr sections is invariant under complex rotations for transfer
operators over a general map and, as far as we know, this is still an open
problem.
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We will prove later in Theorem 3.13 that that the spectrum is indeed
invariant under rotations using an argument which uses heavily that the
map on the base is an ergodic rotation of the torus.

Remark 5.3. For p = 1, we have the equality

Spec(Mω,ΓB(E)) = ASpec(Mω,ΓL1(E)) ,

because the Lebesgue measure is non-atomic and topological (see Theo-
rem 3.25 in Part 2). At this point, we do not know if the spectrum on L1

sections is rotationally invariant for a general base map. When the motion
on the base is an irrational rotation, the invariance under rotations follows
from Theorem 3.13.

Remark 5.4. Notice also that for ω irrational, we have

Spec(Mω,ΓB(E)) =
⋃

θ∈Td

SpecP (mω,θ, bω,θ(E)) .

(This is trivial if ω is rational).
Moreover, if ω is ergodic, then for any θ ∈ Td:

Spec(Mω,ΓB(E)) = Spec(mω,θ, bω,θ(E)) = SpecW (mω,θ, bω,θ(E)) .

The goal of this paper is to complete the diagram (5.1) as much as
possible, under the extra assumption that the base motion is a rotation.

In many cases, we will prove the inclusions are in fact equalities, includ-
ing also the action on Sobolev spaces. We will also pay attention to the
analytic case. For the sake of completeness and for making this part more
legible, we will repeat some of the arguments.

5.2. Invariance of the spectrum under rotations

The invariance of the spectrum under rotations was proved for C0 sec-
tions in [Mat68], under the assumption of existence of a dense set of aperi-
odic orbits, that is obviously satisfied for irrational rotations. In Part 2 there
is a proof for bounded sections (obtaining as a corollary the corresponding
result for continuous and Lp sections, p > 1). The proofs presented in those
papers do not generalize easily for spaces of sections that have more regu-
larity, so we use a different method which, however depends heavily on the
fact that the motion on the base is an irrational rotation.

Theorem 5.5. Let Mω : E → E be a vector bundle automorphism over
an irrational rotation. Let Γ ⊂ Γ(E) be a Banach space of sections (with a
norm ||·||Γ), such that:

a) Γ is invariant under Mω, and it defines a continuous linear oper-
ator in Γ;

b) Γ is invariant under the multiplication operators by the functions
ek : Td → C defined by

ek(θ) = e2πik·θ ,
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where k ∈ Zd, defining also continuous linear operators in Γ.
Then, Spec(Mω,Γ) is invariant under rotations, i.e.:

z ∈ Spec(Mω,Γ) ⇒ eαiz ∈ Spec(Mω,Γ)

for all α ∈ R.

Proof: Since the boundary of the spectrum is Weyl spectrum, it is enough
to prove that SpecW (Mω,Γ) is invariant under rotations. We observe that,
for any section v : Td → E in Γ, we have:

Mω(ekv)(θ) = e2πik·ωek(θ)Mωv(θ) .

Therefore, if vε is an ε-eigensection for λ, ekvε is an ε-eigensection for
λe−2πik·ω. Since {e−2πik·ω}k∈Zd is dense in the unit circle and SpecW (Mω,Γ)
is closed, we obtain the result claimed. tu

Remark 5.6. This result proves the invariance under rotations of the
spectrum on L1 sections, Cr sections and analytic sections, facts that do
not follow from the general results in [Mat68, HdlL03a].



CHAPTER 6

Spectral theory for transfer operators over
rotations in spaces of bounded sections

In this section we clarify the spectral theory for transfer operators over
rotations, when acting on bounded sections. As we will prove, all the spec-
trum is point spectrum (when acting on bounded sections).

In the analysis of the transfer operators over a rotation, the numerical
properties of the frequency vector ω ∈ Rd play an important role. We
distinguish the following cases:

• ω is rational : ω ∈ Qd, and then the orbit {mω (mod 1) | m ∈ Z} ⊂
Td is periodic;

• ω is irrational : ω is not rational, and then the orbit {mω (mod 1) |m ∈
Z} ⊂ Td is not periodic, and the set {k · ω (mod 1) | k ∈ Zp} is
dense in T1.

• ω is ergodic : k ·ω /∈ Z for all k ∈ Zd \ {0}, and then the orbit {mω
(mod 1) | m ∈ Z} ⊂ Td is dense in Td;

• ω is Diophantine: there exist constants C > 0,τ ≥ 1 such that for
all k ∈ Zd and n ∈ N \ {0}

|k · ω − n| ≥ C|k|−τ
1 .

A rotation that is not ergodic is called resonant.

6.1. Rational rotations

From the dynamical point of view, a cocycle over a rational rotation
ω = p

q , p ∈ Z, q ∈ N \ {0}, corresponds to iterating the matrix Mq(θ) =
M(θ, q). The dynamical analysis is straightforward: for each θ ∈ Td, we
have to compute the eigenvalues of Mq(θ). Two are the main reasons to
undertake the spectral analysis of the corresponding transfer operator: from
the numerical point of view, this analysis is useful to compute the spectrum
of a transfer operator over an irrational rotation, by approximating the
irrational frequency by rational frequencies (see [HdlL04]); this analysis
also leads to prove existence of normally hyperbolic invariant manifolds of
skew products over rational rotations which are foliated by periodic orbits
(see [HdlLb]).

In the analysis of the spectrum of transfer operators over rational rota-
tions we consider the eigenvalues of composition of matrices. For a given

113
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matrix A, we denote by Eig(A) the set of its eigenvalues. The next result is
elementary but useful for our analysis.

Proposition 6.1. Let M0,M1, . . . ,Mq−1 be matrices in Mn(C). We
denote by M̂q the nq-matrix defined by

M̂q =


0 . . . Mq−1

M0 0 . . . 0
M1 . . . 0

. . .
...

Mq−2 0

 .(6.1)

Then:
z ∈ Eig(M̂q) ⇔ zq ∈ Eig(Mq−1 . . .M0) .

In short: Eig(M̂q) = q
√

Eig(Mq−1 . . .M0), where we are supposed to take all
the possible determinations of the q root.

Proof: Given an eigenvector v̂ = (v0, . . . , vq−1) of z 6= 0 for M̂q, it is im-
mediate that v0 is non zero and it is an eigenvector for Mq−1 . . .M0, whose
eigenvalue is zq. If z = 0, then some of the M0, . . . ,Mq−1 have zero deter-
minant, and then 0 is also eigenvalue for Mq−1 . . .M0.

On the contrary, if zq 6= 0 is an eigenvalue of Mq−1 . . .M0, whose as-
sociated eigenvector is v0, then we can construct one eigenvector v̂ for M̂q,
whose eigenvalue is z, by

v1 =
1
z
M0v0 , v2 =

1
z
M1v1 , . . . , vq−1 =

1
z
Mq−2vq−2 .

If z = 0, then one of the matrices Mi has zero determinant, and so M̂q. tu

Remark 6.2. Notice that if z ∈ Eig(M̂q) then exp(2πip
q )z ∈ Eig(M̂q).

Hence, the eigenvalues of M̂q are distributed in at most n circles (in fact, n
regular q-polygons).

Remark 6.3. The previous result is the basis of the parallel shooting
method that is widely used in solving badly behaved equations (for instance,
in the computation of periodic orbits in celestial mechanics, or the compu-
tation of high period solutions in discrete systems).

We start now to analyze the spectrum of the transfer operator over a
rational rotation ω = p

q . The first result gives the spectrum when acting on
bounded functions.

Theorem 6.4. Let Mω : E → E be a vector bundle automorphism over
a rational rotation ω = p

q . Then:

Spec(Mω,ΓB(E)) = SpecW (Mω,ΓB(E)) = SpecP (Mω,ΓB(E))

=
⋃

θ∈Td

Eig(M̂q(θ)) ,
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where

M̂q(θ) :
q−1∏
i=0

Eθ+i p
q
→

q−1∏
i=0

Eθ+i p
q

is the linear map represented by the matrix M̂q(θ) associated to M0 =
M(θ),M1 = M(θ + ω), . . . ,Mq−1 = M(θ + (q − 1)ω) as in (6.1).

Proof: For a given θ0 ∈ Td, let z ∈ Eig(M̂q(θ0)) be an eigenvalue and
v̂ = (v0, v1, . . . , vq−1) be a corresponding eigenvector. Denoting θi = θ0 + ipq
and Mi = M(θ0 + ipq ), we have

M0v0 = zv1 , . . . , Mq−2vq−2 = zvq−1 , . . . ,Mq−1vq−1 = zv0 ,

and the bounded section

v(θ) =
{
vi , if θ = θ0 + ipq , i = 0, . . . , q − 1
0, otherwise.

defines an eigensection for Mω of z. So z ∈ SpecP (Mω,ΓB(E)).
To prove the other inclusion, take z ∈

⋂
θ∈Td(C \ Eig(M̂q(θ))). Notice

that for each θ ∈ Td the matrix M̂q(θ)− zId is invertible, and the map

(6.2) θ −→ (M̂q(θ)− zI)−1

is continuous. We have to see that z ∈ Res(Mω,ΓB(E)), that is to say, the
equation

(6.3) Mωv − zv = η

is solvable for each η ∈ ΓB(E) (and as a result we can control the sup-norm
of v by the sup-norm of η). From η, we construct the vector function

η̂(θ) = (η(θ), η(θ +
p

q
), . . . , η(θ + (q − 1)

p

q
))> .

We define the vector function

v̂(θ) = (M̂q(θ)− zI)−1η̂(θ) = (v0(θ), v1(θ)), . . . , vq−1(θ))> .

Since M̂q(θ + p
q )R̂qv̂(θ)− zR̂qv̂(θ) = η̂(θ + p

q ), where R̂q is the shift matrix

R̂q =


0 I . . . 0

0
. . . 0

0
I

I 0

 ,

we have vi(θ + p
q ) = vi+1(θ) (assuming vq(θ) = v0(θ). Hence, v(θ) = v0(θ)

solves (6.3). Notice that ||v||∞ ≤ ||(M̂q(θ)− zI)−1||∞ ||η||∞. tu

Remark 6.5. Notice that the Spec(Mω,ΓB(E)), with ω = p
q , is invari-

ant under multiplication by exp(2πip
q ).
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6.2. Irrational rotations

Since irrational rotations do not have periodic orbits, we see that approx-
imate eigenvalues in the space of bounded sections are, in fact, eigenvalues.
Even more, since irrational rotations are chain recurrent, the full spectrum
on bounded sections is Weyl spectrum. So that, for irrational rotations, all
the spectrum on bounded sections consists of eigenvalues.

Theorem 6.6. Let Mω : E → E be a vector bundle automorphism over
an irrational rotation ω. Then:

Spec(Mω,ΓB(E)) = SpecW (Mω,ΓB(E)) = SpecP (Mω,ΓB(E)) .

Proof: For the first equality, notice that irrational rotations are chain re-
current and all the orbits are aperiodic, and so the full spectrum is Weyl
spectrum. This result is proved in Part 2 (see [Swa81], when acting on
continuous sections), using the findings in [SS76a, Sel75, CI99].

For the second equality, we can apply directly a result in Part 2. We
will repeat here the argument, for the sake of completeness. The essential
property is that the dynamics on the base Td does not have periodic orbits.

Given z ∈ SpecW (Mω,ΓB(E)), for any εn > 0 we can construct an
εn-approximate eigensection vn supported in an orbit {θn,k = θn + kω}k∈Z,
such that, say |vn(θn)| ≥ 3

4 , |vn(θn,k)| ≤ 1 for all k ∈ Z and

(6.4) |M(θn,k)vn,k − zvn,k+1| ≤ εn ,

where we denote vn,k = vn(θn,k).
If DE denotes the unit disk bundle of E, that is DE = {v ∈ E | |v| ≤ 1},

we identify vn as an element {vn,k}k∈Z of DZ
E . Using Thychonov theorem,

DZ
E is compact when it is endowed with the product topology. Moreover,

DZ
E is metrizable.

Taking now a sequence εn → 0, and the corresponding orbit-supported
εn-eigensections vn we suppose that, without loss of generality, that:

• θn converges to θ∗, using compactness of Td;
• vn converges componentwise to v∗, using compactness of DZ

E .
Hence, for all k ∈ Z, vn,k → v∗,k and, in particular, θn,k = θn + kω →

θ∗,k = θ∗ + kω. That is, v∗ is also supported in an orbit. We have just
proved that the set

{{vk}k∈Z ∈ DZ
E | ∀k ∈ Z π(f(vk)) = π(vk+1)} ⊂ DZ

E

is closed in DZ
E , so compact.

Finally, taking limits again in (6.4) we see that for all k ∈ Z

|M(θ∗,k)v∗,k − zv∗,k+1| = 0 .

Since θ∗ is not periodic, {v∗,k}k∈Z produces an eigensection v∗ for z, sup-
ported in the orbit of θ∗: v(θ∗,k) = v∗,k and zero otherwise. Notice that
v(θ∗) ≥ 3

4 . Thus, z ∈ SpecP (Mω,ΓB(E)). tu
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Remark 6.7. When one considers transfer operators action on spaces
of sections of bundles that satisfy certain geometric constrains, the presence
of non Weyl spectrum is possible. This annoying fact was discovered in
[dlL93]. See Part 4 for more results.

The following proposition is very useful for the analysis of the Weyl
spectrum. It says that we can localize the eigensections in finite segments
of orbits (see [Mat68, CL99, HdlL03a]). A similar argument will be used
when analyzing the Weyl spectrum in other spaces of sections.

Lemma 6.8. Let Mω : E → E be a vector bundle automorphism over an
irrational rotation. Let z ∈ Spec(Mω,ΓB(E)) be a spectral value. Hence,
for all ε > 0 there exist a bounded ε-eigensection of z supported in a finite
number of points.

Proof: We know from Theorem 3.19 that z is an eigenvalue of Mω. Let
v ∈ ΓB(E) be a bounded eigensection of z, supported in the orbit {θk =
θ∗ + kω}k∈Z of θ∗ ∈ Td, such that |v(θ∗)| = 1, and

Mω(θk)v(θk)− zv(θk+1) = 0 , |v(θk| ≥ 1

for all k ∈ Z. We will write vk = v(θk), Mk = Mω(θk).
We are going to construct from v a finitely supported approximate eigen-

section w. Given ε > 0, we define N = [1ε ] and the section w is defined by

w(θ) =

{
wk =

(
1− |k|

N+1

)
+
vk , if θ = θk , k ∈ Z,

0, otherwise.

where we denote t+ = max{0, t} for any real number t. This bounded
section, which is supported in K = 2N + 1 points, is an approximate eigen-
section of z, because

|M∗,kw∗,k − zw∗,k+1| =
∣∣∣∣(1− |k|

N + 1

)
+

Mkvk −
(

1− |k + 1|
N + 1

)
+

zvk+1

∣∣∣∣
≤

∣∣∣∣(1− |k|
N + 1

)
+

−
(

1− |k + 1|
N + 1

)
+

∣∣∣∣ |z||vk+1|

< |z|ε .
This finishes the proof of the localization lemma. tu

6.3. Ergodic rotations

The following result gives bounds for the spectrum of a continuous trans-
fer operator over an ergodic rotation. It follows directly from Corollary 2.41
because ergodic rotations are uniquely ergodic.

Proposition 6.9. Let Mω : E → E be a vector bundle automorphism
over an ergodic rotation. Then:

Spec(Mω,ΓB(E)) ⊂ {ρ− ≤ |z| ≤ ρ+} ,
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where

exp
(
−
∫

Td

log |M(θ)−1| dθ
)

= ρ− ≤ ρ+ = exp
(∫

Td

log |M(θ)| dθ
)
.

The above result is enough to locate the spectrum in some situations
(see [CS81]).

Corollary 6.10. If the rank of the bundle E is n = 1, then the spectrum
is the circle of radius ρ = ρ− = ρ+.

If M(θ) is an isometry for all θ ∈ Td, that is |M(θ)| = 1 for all θ ∈ Td,
then the spectrum is the unit circle.

Remark 6.11. If the spectrum is decomposed in n spectral annuli, then
they are in fact spectral circles. This is a direct consequence of the previous
corollary and the fact that there are invariant subbundles associated to the
spectral annuli, that are 1-dimensional. Notice that this is not necessarily
true for rotations that are not ergodic.

The following result is again an immediate consequence of the findings
in Part 2.

Proposition 6.12. Let Mω : E → E be a vector bundle automorphism
over an ergodic rotation. Let α : P → C be a non-vanishing continuous
function and let

α̂ = exp
∫
P

log |α(θ)| dθ

be its geometric average. Then:

Spec((αM)ω,ΓB(E)) = α̂ Spec(Mω,ΓB(E)) .

6.4. Computation of the spectrum

In this section we will study a method to compute the spectrum of a
transfer operator over an irrational rotation by approaching the irrational
frequencies by rational ones. We refer the readers to Part 2 for general
results, and to [HdlL04] for other numerical applications.

As a result of the main theorems of this paper, it is enough to analyze
the spectrum of the transfer operator when acting on bounded sections.
Moreover, since spectral values are eigenvalues, we only need to compute
point spectrum.

The key idea is the following. In Proposition 6.8, we located approxi-
mate eigensections on finite number of points. An approximate eigensection
supported in K points of an orbit {θk = θ0 + kω}K−1

k=0 , for a certain θ0 ∈ Td

is just determined by the vectors supported on those points {vk = vθk
}K−1

k=0
(and vk = 0 if k < 0 or k > K). Notice that, if the bundle is trivial
E = Td × Cn, the condition

|M(θk)vk − λvk+1| < ε
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implies that the vector (v0, v1, . . . , vK−1) is an approximate eigenvector of
the matrix

(6.5) M̂k(θ0) =


0 . . . MK−1

M0 0 . . . 0
M1 . . . 0

. . .
...

MK−2 0

 ,

where Mk = M(θk). This is the type of matrices appearing in the analysis
of the spectrum of transfer operators over rational rotations.

We have just to take into account that Mk−1 sends the fibber Eθk−1
to

Eθk
, and that EθK

can be far from Eθ0 . So, we have to choose K = q such
that |p − qω| is small enough so that we have θq and θ0 close enough to
transport vectors in Eθq to Eθ0 .

In the general set up we can use the connector introduced in [HPPS70]
(see Definition 1.23 in Part 1), that is a ‘local’ parallel transport connecting
close fibbers. That is, a connector T in a vector bundle E is a continuous (we
will often assume that they are more differentiable) family of isomorphisms
Tθ,θ′ : Eθ → Eθ′ defined in neighborhood of the diagonal ∆ in Td ×Td such
that Tθ,θ = IdEθ

. If, for instance, we endow Td with the distance induced
by the Euclidean distance in Rd, we fix δ > 0 small enough such that the
connector T = Tθ,θ′ is defined when the points θ, θ′ ∈ Td satisfy d(θ, θ′) ≤ δ.

We can also consider local coordinates, or in order to simplify notation,
we can imbed the vector bundle into a trivial one.

Proposition 6.13. Let Mω be a vector bundle automorphism over an
irrational rotation. Then:

If z ∈ C is an approximate ε-eigenvalue of Mω, we can
construct a ε′-eigenvector for M̂q(θ0) (see (6.5)), with where
θ0 ∈ Td and d(qω, p) ≤ ε is small enough.

Proof: Proposition 6.8 shows that we can construct a bounded approximate
ε′′-section for z, v, with ε′ = |z|ε and that is supported in a finite number
of points {θk = θ0 + kω}K−1

k=0 , for a suitable θ0 ∈ Td, where K = 2
[

1
ε

]
+ 1.

Taking q large enough, such that |p− ωq| < δ for a suitable p ∈ Zd and
q > K, we define the vector w = (v0, . . . , vq−1). Notice that vk = 0 if K ≤
k < q−1, and ||w||∞ = 1. For k = 0, . . . , q−2, we have |Mkvk−zvk+1| ≤ |z|ε.
For k = q − 1, |Mq−1vq−1 − zv0| = |zv0| ≤ |z|ε. So, w is a ε′-eigenvector of
M̂q(θ0). tu

Remark 6.14. Using connectors, one can deal with the hat matrix
M̂ ′

q(θ0) defined from M ′
k = T−1

θ′k+1,θk+1
MkTθ′k,θk

, where θ′k = θ0 + k p
q . Notice

that θ′q = θ0.
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The following proposition deals with the opposite construction: We want
to obtain an approximate eigenvalue of an infinite dimensional matrix from
an approximate eigenvalue of a finite dimensional matrix.

Proposition 6.15. Let Mω be a vector bundle automorphism over an
irrational rotation.

If z ∈ C is an approximate ε-eigenvalue of M̂q(θ0) (see
(6.5)), where θ0 ∈ Td and |qω−p| is small enough, we can
construct a bounded ε′-eigensection of Mω for z.

Proof: Let |qω − p| < ε1 and 1
q < ε2. Let v = (v0, . . . , vq−1) be an ε-

eigenvector of M̂q(θ0), and let I ∈ {0, . . . , q − 1} be an index such that

|vI | = max
k=0,...,q−1

|vk| = 1 .

We consider the bounded section

w(θ) =
{
wk = (1− |k − I|ε2)+vk̄ if θ = θk, k ∈ Z ,
0, otherwise,

where k̄ means k (mod q). Notice that w is supported in 2
[

1
ε2

]
+ 1 points.

Since k runs on |k − I| < 1
ε2
< q, then −q < k < 2q − 1. Hence,

d(θ′k, θk) ≤ |k|
∣∣∣∣pq − ω

∣∣∣∣ < 2ε1,

and w is well defined if 2ε1 < δ (i.e., the connectors are well defined, or the
trivialization neighborhoods). Moreover,

d(θk̄, θk) = d(kω, k̄ω) =
|k − k̄|
q

d(qω,Zd) ≤ ε1 .

To see that w is an approximate eigensection of z, we make the estimates

|Mkwk − zwk+1| = |(1− |k−I|ε2)+Mkvk − (1− |k+1−I|ε2)+zvk+1|
≤ |Mk −Mk| |vk|+ |Mkvk − zvk+1|+ |z|ε2
≤ η(ε1) + ε+ |z|ε2 ,

where η is the modulus of continuity of M .
Hence, we can construct an approximate ε′-eigensection, with ε′ = η(ε1)+

ε+ |z|ε2. tu

Remark 6.16. We emphasize that recurrence properties of rotations
are essential in the arguments and they can be generalized to more general
dynamics.

In summary, the previous two propositions lead to the following theorem.
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Theorem 6.17. Let Mω be a vector bundle automorphism over an irra-
tional rotation. Let {pi

qi
}i be a sequence of rational approximants of ω, such

that |qiω − pi| = d(qiω,Zd) → 0 when i→∞. Then:

z ∈ Spec(Mω,ΓB(E)) ⇔ ∀i ∃θi | z is εi-eigenvalue of M̂qi(θ
i) ,

and εi → 0 .

Moreover, if the rotation ω is ergodic, we can fix the initial angle: θi = θ0,
for all i.

Proof: Suppose that z is an εi-eigenvalue of M̂qi(θ
i) and that εi → 0

when i → ∞. Given ε > 0, we take i such that εi ≤ ε, and d(qiω, pi)
is small enough. Using Proposition 6.15, we can construct a bounded ε′i-
eigensection for Mω, with ε′i and notice that ε′i → 0 when εi → 0. Then
z ∈ SpecW (Mω,ΓB(E)).

Let z be a spectral value ofMω, so it is an eigenvalue. Given i, let ε = 4
qi

,
and using Proposition 6.8 we construct a bounded ε′-eigensection supported
in 2N + 1 ≤ 21

ε + 1 < qi points, where ε′ = |z|ε. In Proposition 6.13 we
produce an ε′-eigenvalue of M̂qi(θi). So, εi = 4

qi
|z|. tu





CHAPTER 7

Spectral theory for transfer operators over
rotations in spaces of Cr sections

We start now the task of analyzing the spectrum of the transfer operators
over rotations when acting on different spaces of sections.

The main results will be to show that for rotating transfer operators, the
spectrum is largely independent of the space considered. (In the analytic
case, our results are not totally complete.)

We emphasize that the equality of the spectra for spaces of different
regularities is definitely false when the base is not a rotation.

In this section we analyze the spectrum in spaces of smooth functions.
From now on, E Π−→ Td is a Cr vector bundle over the torus, with r ∈ N, and
Mω is a transfer operator generated by a Cr vector bundle map M : E → E
over a rotation ω ∈ Rd.

The results for r = 0 follow immediately from those in Part 2. Never-
theless, these are a particular case of the following results in the case that
the motion on the base manifold is a rotation.

Remark 7.1. We call attention to the fact that the only properties of
Cr Banach spaces of functions that are used in the arguments in this section
are just:

• The spaces admit a structure of Banach algebra.
• It is possible to construct bump functions in these spaces.
• Evaluation at one point is a well defined operation.
• Composition on the left with a rotation does not increase the norm.

Hence, all the results that we will establish in this section have analogues
for the spaces that satisfy these all the properties above. Of course, some
particular results may use only a subset of these properties.

In Section 8 we will present the case of Sobolev spaces.

7.1. A technical device: fattening sections

One of the main devices of this section is the fattening of bounded sec-
tions to obtain smooth sections. This will be used in the analysis of spectral
gaps and of the Weyl spectrum.

Moreover, we can control the Cr norms with sup-norms of the initial
bounded section. This is the subject of the following proposition.

123
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Proposition 7.2. Let E Π−→ P be a Cr bundle. Then, there exists a
constant Kr such that for any vθ0 ∈ Eθ0 there exists v ∈ ΓCr(E) such that:

v(θ0) = vθ0 , ||v||Cr ≤ Kr|vθ0 | .
Proof: We split the proof in several steps. First, we construct bump func-
tions.

• Construction of bump functions.

Lemma 7.3. There exists a C∞ function ϕ : R → R satisfying
the following conditions:

a) ∀t ≤ 0 ϕ(t) = 1 (and therefore ∀k ≥ 1 , ϕk)(0) = 0);
b) ∀t ≥ 1 ϕ(t) = 0 (and therefore ∀k ≥ 1 , ϕk)(1) = 0);
c) 1 = ||ϕ||∞ < ||ϕ1)||∞ < ||ϕ2)||∞ < . . . .

Proof: We have just to construct a function satisfying a), b) and
1 = ||ϕ||∞, because c) follows from the repeated application of the
Mean Value Theorem.

A well known example of such a function is given by

(7.1) ϕ(t) =
1

1 + exp
(

1
(1−t)2

− 1
t2

) ,

in the interval [0, 1], and ϕ(t) = 0 otherwise. tu
The following result is a small modification of the previous re-

sult with some quantitative statements valid for finite regularities.

Lemma 7.4. For each r ≥ 0, there exists a C∞-function ρ :
Rd → R satisfying the following conditions:

a) ρ is supported in B̄(0, 1), the closed unit ball with respect to
the Euclidean norm in Rd;

b) ||ρ||∞ < ||Dρ||∞ < · · · < ||Drρ||∞;
c) ||Drρ||∞ = |Drρ(0)| = 1.

Proof: From the function ϕ of the previous Lemma 7.3, we define
the function β : Rd → R as

β(x) = ϕ(|x|) ,
which satisfies a) and b). Notice that, for 0 < σ ≤ 1, the function

βσ(x) = β(x/σ)

also satisfies a) and b), because ||Dkβσ||∞ = 1
σk ||Dkβ||∞ and it is

supported in B̄(0, σ).
Let x0 ∈ B(0, 1) be any point such that |Drβ(x0)| = ||Drβ||∞.

Taking σ = (1 + |x0|)−1, the function

(7.2) ρ(x) =
σr

||Drβ||∞
β(x0 − x/σ)

satisfies the three conditions a), b) and c). tu
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• Construction of a fat section. We are going to construct the section
v of the proposition. To do so, first we fix a finite atlas {Ui}i=1,...,p,
whose Lebesgue radius is R. We set σ = min{1, R} and define

(7.3) v(θ) =
{
βσ(θ)vθ0 , if θ ∈ B(θ0, σ) ⊂ Uν(θ0) ,
0, otherwise ,

where we are writing the formulae in the chart Uν(θ0). Obviously
v(θ0) = vθ0 . Since

||Dsv|U ||∞ =
1
σs
||Dsβ||∞|vθ0 |∞ .

The existence of Kr follows immediately from the equivalence be-
tween the Finsler norm and the “local” norms.

tu

Remark 7.5. A similar argument can be used to fatten a bounded sec-
tion supported on a finite number of points, i.e., a finite set of vectors
attached to different base points.

7.2. Equality of Weyl spectra for Cr and bounded sections

We analyze here the Weyl spectrum in ΓCr(E).

Theorem 7.6. Let Mω : E → E be a Cr vector bundle automorphism
over a rotation. Then:

(7.4) SpecW (Mω,ΓB(E)) = SpecW (Mω,ΓCr(E)) .

Proof: To prove that SpecW (Mω,ΓB(E)) ⊂ SpecW (Mω,ΓCr(E)), we will
“fatten” a bounded eigensection to produce a Cr eigensection. Recall that
we can choose the approximate bounded eigensections of a particularly
simple form, that are supported in finite segments of orbits. Hence, let
z ∈ SpecW (Mω,ΓB(E)), and for a given ε > 0 let v be a bounded ε-
eigensection supported in the finite segment of orbit {θk = θ0 +kω}k=0,...,K .
This argument works in both rational case and irrational cases, but in the ra-
tional case we have in fact a bounded eigensection (that is ε = 0) supported
in a periodic orbit.

To fatten v, we use the bump function ρ constructed in Lemma 3.29.
That is to say, ρ is a Cr function supported in the unit ball of Rd, and such
that:

||ρ||∞ < ||Dρ||∞ < · · · < ||Drρ||∞ = |Drρ(0)| = 1 .
We denote ρσ(θ) = ρ(θ/σ), that is supported in the ball of radius σ. Taking a
small enough σ > 0, so that the balls B(θk, σ) are included in the trivializing
charts and do not overlap, and that satisfies other smallness conditions that
we will specify later, we define the Cr section

w(θ) =
{
σrρσ(θ − θk)vk, if |θ − θk| ≤ σ,
0, otherwise.
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Obviously, ||w||∞ < ||Dw||∞ < · · · < ||Drw||∞ = 1. We have to estimate now
the derivatives of M(θ − ω)w(θ)− zw(θ), where |θ − θk| ≤ σ. To do so, for
any 0 ≤ s ≤ r:

|Ds
θ(M(θ − ω)w(θ)− zw(θ))|

= σr|Ds
θ(ρσ(θ − θk)(M(θ − ω)vk−1 − zvk))|

≤
s−1∑
l=0

(
s
l

)
σr−l||M ||Cr + σr−s|M(θ − ω)vk−1 − zvk|

≤ ((1 + σ)r − 1) ||M ||Cr + ε+ η(σ) ,

where η is the modulus of continuity of M . If we take σ small enough, we
obtain that ||Mωw − zw||Cr ≤ 2ε. This establishes SpecW (Mω,ΓB(E)) ⊂
SpecW (Mω,ΓCr(E)).

Remark 7.7. The previous arguments can be extended for general trans-
fer operators Part 2. So, the inclusion is true for other dynamics on the base
manifold.

Since ΓC0(E) ⊂ ΓB(E) (as a Banach subspace) and ΓC0(E) is invariant
underMω, it is straightforward that SpecW (Mω,ΓC0(E)) ⊂ SpecW (Mω,ΓB(E)).
To prove SpecW (Mω,ΓCr(E)) ⊂ SpecW (Mω,ΓB(E)) for r ≥ 1 we can not
use the previous inclusion argument, because the topologies in both spaces
are different. Since for r = 0 this result is proved, we will use an induction
argument. Suppose then that r ≥ 1 and that we have proven the inclusion
for r − 1.

Notice that if {vn}n is a sequence of Cr approximate eigensections of z,
i.e.,

||Mωvn − zvn||Cr → 0 , ||vn||Cr = 1 ,

we can assume that ||vn||Cr−1 → 0. Otherwise, since

||Mωvn − zvn||Cr−1 ≤ ||Mωvn − zvn||Cr

we would have that vn is an approximate eigensection on Cr−1 and we could,
by the induction hypothesis construct an approximate bounded eigensection.

Hence, we will assume that we have a Cr section v with ||v||Cr = 1, such
that ||v||Cr−1 ≤ ε and ||Mωv − zv||Cr ≤ ε. In those circumstances, there is a
point θ0 such that |Drv(θ0)| = 1.
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We write again θk = θ0 + kω. Since v is a Cr approximate eigensection
we have

ε ≥ max
θ∈Td

|Dr (M(θ − ω)v(θ − ω)− zv(θ))|

∗= max
θ∈Td

|Dr(Mv)(θ − ω)− zDrv(θ)|

≥ |Dr(Mv)(θk−1)− zDrv(θk)|

≥ |M(θk−1)Drv(θk−1)− zDrv(θk)| −

∣∣∣∣∣
r∑

s=1

(
r
s

)
DsM(θk−1)Dr−sv(θk−1)

∣∣∣∣∣
≥ |M(θk−1)Drv(θk−1)− zDrv(θk)| − ε(2r − 1)||M ||Cr .

Therefore,

|M(θk−1)Drv(θk−1)− zDrv(θk)| ≤ (1 + (2r − 1)||M ||Cr)ε .

Remark 7.8. Equality (*) is crucial in our argumentation, and uses that
the motion on the base manifold, a torus, is a rotation. It fails in general.

Since |Drv(θ0)| = 1, we can find r unit vectors e1, . . . er ∈ Eθ0 such that
|Drv(θ0)(e1, . . . , er)| = 1 (using the trivialization charts). We set

w(θ) =
{

Drv(θk)(e1, . . . , er) if k ∈ Z
0, otherwise.

Hence, ||w||∞ = 1 and

||Mωw − zw||∞ ≤ max
k∈Z

|(M(θk−1)Drv(θk−1)− zDrv(θk))(e1, . . . , er)|

≤ (1 + (2r − 1)||M ||Cr)ε .

So, we have found a bounded approximate eigensection and we are done
with the proof of Theorem 7.6. tu

7.3. Spectral gaps in spaces of Cr sections

We will prove a refinement of Theorem 2.18 for rotations. We will obtain
a characterization of spectral projections for spaces of Cr sections in terms
of bundles.

Theorem 7.9. Let Mω : E → E be a Cr vector bundle automorphism
over a rotation ω. Assume that

Spec(Mω,ΓCr(E)) ∩ Aλ,µ = ∅ .

Denote by P<λ = P<λ
Cr , P>µ = P>µ

Cr the projections associated to this spectral
gap. Then, it is possible to find a invariant Cr-splitting

(7.5) E = E<λ ⊕ E>µ
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such that the corresponding projections over the bundles, Π<λ,Π>µ, satisfy
for any v ∈ ΓCr(E):

(7.6) (P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) .

Moreover, for all ε > 0 small enough there exists a constant Cε > 0 such
that

(7.7) E<λ = W≤λ−ε,Cε = L<λ , E>µ = W≥µ+ε,Cε = L>µ .

Proof: A direct proof of this result follows from Theorem 3.14, and this is in
fact the content of Theorem 3.31, that is general. However, we will do here
a proof a la [HPS77] (whose proof works for the case ΓB(E)). We will
emphasize the arguments that use the rotations, that can not be extended
in general. This is one of the motivations of Theorem 3.31. We split the
proof in several steps (see the proof of Theorem 2.18).

• Cr-linearity of spectral projections. The first point is to realize that
the spectral projections are Cr(Td,C)-linear.

Lemma 7.10. For any ρ ∈ Cr(Td,C) and v ∈ ΓCr(E):

(7.8) P<λ(ρv) = ρP<λv , P>µ(ρv) = ρP>µv .

Proof of the lemma: To prove Lemma 7.10, notice first that
Mω(ρv)(θ) = ρ(θ − ω)Mωv(θ), and then

Mm
ω (ρv)(θ) = ρ(θ −mω)Mm

ω v(θ) .

The key point is that the Cr norms of ρ and their iterates remain
constant: ||ρ◦t−m

ω ||Cr = ||ρ||Cr (this is not true for general transfer
operators!). Hence, using the Banach algebra properties of spaces
of Cr functions, and using general spectral theory (see for instance
the survey in Part 2) we obtain that

v ∈ Γ<λ
Cr (E) ⇔ lim sup

m→∞
||Mm

ω v||
1
m
Cr < λ

⇒ lim sup
m→∞

||Mm
ω ρv||

1
m
Cr ≤ lim sup

m→∞
2

r
m ||ρ||

1
m
Cr ||Mm

ω v||
1
m
Cr < λ

⇒ ρv ∈ Γ<λ
Cr (E) .

Repeating the argument for P>µ, we obtain that

(7.9) v ∈ Γ<λ
Cr (E) ⇒ ρv ∈ Γλ

Cr(E) , v ∈ Γ>µ
Cr (E) ⇒ ρv ∈ Γ>µ

Cr (E) .

Finally, consider any v ∈ ΓCr(E) and its spectral decomposition
v = v<λ + v>µ. Then, since ρv = ρv<λ + ρv>µ and (7.9) we obtain
the claimed result. tu

• Localization of spectral projections. The second step in the proof
is to check that the spectral projections are local operators, in the
sense that for a Cr section v, and a base point θ0 ∈ Td, (P<λv)(θ0)
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and P>µv(θ0) depend only on v(θ0). This is proved by using stan-
dard techniques of differential geometry, involving bump functions
and local charts.

Lemma 7.11. Let v be a Cr section. Let U ⊂ Td be an open
set. If v|U ≡ 0 then (P<λv)|U ≡ 0 and (P>µv)|U ≡ 0.

Proof of the lemma: Given θ0 ∈ U , let ϕ : Td → R be a C∞

function such that ϕ(θ0) = 0 and for all θ /∈ U ϕ(θ) = 1. Notice
that v = ϕv. Then:

(P<λv)(θ0) = (P<λϕv)(θ0) = ϕ(θ0)(P<λv)(θ0) = 0 ,

and we repeat the argument for (P>µv)(θ0) = 0. tu

Lemma 7.12. Let v be a Cr section. Let θ0 ∈ Td be any base
point. If v(θ0) = 0 then (P<λv)(θ0) = 0 and (P>µv)(θ0) = 0.

Proof of the lemma: Take a trivialization U × Cd of the bundle,
with θ0 ∈ U , and let v|U =

∑n
i=1 vi(θ)ei be the corresponding

representation of v ({ei}i=1,...,d is the standard base of Cd, that we
consider as a local frame of the bundle E, and the coefficients vi(θ)
are Cr functions). Notice that vi(θ0) = 0 for i = 1, . . . n. Hence,

(P<λv)(θ0) = (P<λv|U )(θ0) =
n∑

i=1

vi(θ0)(P<λei)(θ0) = 0 .

tu
• Bundle projections. We define the bundle maps Π<λ

θ0
and Π>µ

θ0
on

the fiber Eθ0 , as

Π<λ
θ0
vθ0 = (P<λv)(θ0) , Π>µ

θ0
vθ0 = (P>µv)(θ0) ,

where v is a Cr section such that v(θ0) = vθ0 . Notice that the defi-
nitions do not depend on the Cr section that we take (Lemma 7.12),
and these kind of sections in fact do exist (using bump functions
and trivialization charts). The bundle maps are obviously linear.

• Splitting. We define the linear subspaces E<λ
θ0

= Π<λ
θ0
Eθ0 and

E>µ
θ0

= Π>µ
θ0
Eθ0 . It is easy to see that

E<λ
θ0

= {v(θ0) | v ∈ Γ<λ
Cr (E)} , E>µ

θ0
= {v(θ0) | v ∈ Γ>µ

Cr (E)} .
From the functional analytical properties of the spectral projec-
tions, we prove that the bundle maps are in fact bundle projections,
and that Eθ0 = E<λ

θ0
⊕ E>µ

θ0
. This defines an invariant splitting in

linear subspaces.
Much more, the bundle maps Π<λ

θ and Π>µ
θ are Cr in θ. Since

(P<λv)(θ) = Π<λ
θ (v(θ)), if Π<λ

θ were not Cr we could find a Cr

section v for which P<λv would not be Cr, in contradiction with the
fact that P<λ is a projection on ΓCr(E). The same argument works
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for Π>µ
θ . Hence, E decompose in the Whitney sum E = E<λ⊕E>µ,

and this Cr-splitting is invariant.
• Rates of growth. From the characterization of the rates of growth

in the spectral subspaces, we obtain that for ε > 0 small enough
there exists a positive constant Ĉε such that

(7.10)
Γ<λ

Cr (E) = {v ∈ ΓCr(E) | ∀m ≥ 0 ||Mm
ω v||Cr ≤ Ĉε(λ− ε)m||v||Cr} ,

Γ>µ
Cr (E) = {v ∈ ΓCr(E) | ∀m ≥ 0 ||M−m

ω v||Cr ≤ Ĉε(µ+ ε)−m||v||Cr} .
We claim that

(7.11) E<λ
θ0

= W≤λ−ε,Cε

θ0
= L<λ

θ0
, E>µ

θ0
= W≥µ+ε,Cε

θ0
= L>µ

θ0
,

for a suitable constant Cε that we will specify later.
To prove this claim, take any vθ0 ∈ E<λ

θ0
. From Proposition 7.2,

there exists a Cr section w such that w(θ0) = vθ0 and ||w||Cr ≤
Kr|vθ0 |, where Kr is a universal constant that depends only on the
bundle and r. Notice that

vθ0 = Π<λ
θ0
vθ0 = Π<λ

θ0
(w(θ0)) = (P<λw)(θ0) ,

and then the Cr section v = P<λw ∈ Γ<λ
Cr (E) satisfies v(θ0) = vθ0 .

Moreover,

||v||Cr ≤ ||P<λ|| · ||w||Cr ≤ Kr||P<λ|||vθ0 | .

Using a similar argument, we prove that for all vθ0 ∈ E>µ
θ0

there
exists a Cr section v ∈ Γ>µ

Cr (E) such that v(θ0) = vθ0 and

||v||Cr ≤ Kr||P>µ|||vθ0 | .

Hence, by defining Cε = ĈεKr max{||P<λ||, ||P>µ||} we are lead to
the inclusions E<λ

θ0
⊂W≤λ−ε,Cε

θ0
and E>µ

θ0
⊂W≥µ+ε,Cε

θ0
.

The inclusions W≤λ−ε,Cε

θ0
⊂ L<λ

θ0
and W≥µ+ε,Cε

θ0
⊂ L>µ

θ0
are ob-

vious.
Finally, notice that

(7.12) L<λ
θ ∩ L>µ

θ = {0} ,
because otherwise

SpecW (Mω,ΓCr(E)) ∩ Aλ,µ = SpecW (Mω,ΓB(E)) ∩ Aλ,µ 6= ∅ ,
in contradiction with the main hypothesis of the theorem (we apply
Theorem 7.6 and Mañé lemma in [Mn78, HdlL03a]). This proves
that E<λ = L<λ and E>µ = L>µ.

tu

Remark 7.13. We emphasize that the argument we have carried we used
projections in Cr and their smoothness is completely independent of the
C0, B theory which included a bootstrap on the regularity of the splittings
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appealing to the invariant section theorem Part 2. In the present case, the
spectral invariant bundles are created out of the spectral projections.

Remark 7.14. We also call attention to the fact that the present argu-
ment uses in an essential way that the motion on the base is a rotation. The
case of a general motion on the base is discussed in Part 2 and it is based on
Theorem 3.14. We will use Theorem 3.14 to prove the corresponding result
in Sobolev spaces.

Remark 7.15. One of the conclusions of the general theory is that, in
systems over a typical map, there can be no gaps in the Cr spectrum for r
large, see Section 3.7.

Remark 7.16. Notice also that some of the arguments of the proof of
Theorem 3.31 are not easily generalizable to study other spaces of sections.
Specifically, those arguments involving bumps functions do not apply in the
analytic case. The theory for this case will be developed later.

7.4. Equality of spectra for Cr and bounded sections

In this section we will prove the following.

Theorem 7.17. Let Mω : E → E be a Cr vector bundle automorphism
over a rotation ω. Then:

(7.13) Spec(Mω,ΓB(E)) = Spec(Mω,ΓCr(E)) .

Proof: To prove that

(7.14) Spec(Mω,ΓB(E)) ⊂ Spec(Mω,ΓCr(E)) ,

we use that the spectrum in spaces of bounded sections coincides with Weyl
spectrum in spaces of bounded sections, and this spectrum coincides with
Weyl spectrum in spaces of Cr sections. In summary:

Spec(Mω,ΓB(E)) = SpecW (Mω,ΓB(E)) = SpecW (Mω,ΓCr(E))

⊂ Spec(Mω,ΓCr(E)) .

This argument works in both rational and irrational rotations.

Remark 7.18. If ω is irrational, a different argument can be used. It
involves the fact that in this case the spectra is rotationally invariant. Hence,
to prove (7.14) it suffices to show that if Spec(Mω,ΓCr(E))∩Aλ,µ = ∅ then
Spec(Mω,ΓB(E)) ∩ Aλ,µ = ∅. Suppose then that Spec(Mω,ΓCr(E)) ∩
Aλ,µ = ∅. By Theorem 2.18 we can find an invariant Cr-splitting E =
E<λ ⊕ E>µ satisfying rates of growth E<λ = L<λ and E>µ = L>µ, and
Theorem 9.1 implies that Spec(Mω,ΓB(E)) ∩ Aλ,µ = ∅.

We are going to prove now that

(7.15) Spec(Mω,ΓCr(E)) ⊂ Spec(Mω,ΓB(E)) .
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This is equivalent to show that if z ∈ Res(Mω,ΓB(E)), then given any
η ∈ ΓCr(E) we can solve the equation

(7.16) M(θ − ω)φ(θ − ω)− zφ(θ) = η(θ)

in ΓCr(E) and, moreover, ||φ||Cr ≤ C||η||Cr , where C is a positive constant
depending only on M and ω.

If ω is rational, we use the following argument to prove that z is a
resolvent value ΓCr(E). We repeat the argument in Theorem 6.4, and realize
that the map (6.2) is in fact Cr, because of the differentiable dependence
on parameters for resolvent of matrices. Then we obtain uniform bounds
on the derivatives, and the estimates on Cr norms follow from the Banach
algebra properties of the spaces of smooth functions.

Suppose now that ω is irrational. Since the spectrum is rotationally
invariant, from z ∈ Res(Mω,ΓB) we produce a gap Spec(Mω,ΓB)∩Sρ = ∅,
where ρ = |z|. Hence, there is a Cr invariant splitting E = E<ρ ⊕E>ρ (see
Theorem 9.1, and recall that the smoothness of the subbundles comes from
the invariant section theorem).

We study the equation (7.16) by taking projections over those invariant
subbundles. So, we look for φ<ρ = Π<ρφ ∈ Cr and φ>ρ = Π>ρφ ∈ Cr

satisfying the equations

M<ρ(θ − ω)φ<ρ(θ − ω)− zφ<ρ(θ) = η<ρ(θ) ,(7.17)
M>ρ(θ − ω)φ>ρ(θ − ω)− zφ>ρ(θ) = η>ρ(θ) ,(7.18)

where η<ρ = Π<ρη ∈ Cr and η>ρ = Π>ρη ∈ Cr are given and is given,
and M<ρ(θ),M>ρ(θ) denote the action of M on the corresponding invariant
subbundles.

Note that because the projections are Cr and the angles are bounded
from below, there exists a constant C such that

||η<ρ||Cr ≤ C||η||Cr , ||η>ρ||Cr ≤ C||η||Cr

We solve (7.17) and (7.18) by setting

φ<ρ(θ) = −
∞∑

m=0

z−(m+1)M<ρ(θ −mω,m)η<ρ(θ −mω) ,(7.19)

φ>ρ(θ) =
∞∑

m=1

zm−1M>ρ(θ +mω,−m)η>ρ(θ +mω) .(7.20)

We have to prove that these series converge in Cr. We analyze (7.19),
because we can use similar arguments to analyze (7.20).

Since for ε > 0 small enough we can bound

||M<ρ(θ −mω,m)η<ρ(θ −mω)||∞ ≤ Cε(ρ− ε)m||η<ρ||∞ ,

and the series (7.19) converges in C0.
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To estimate the derivatives, just take into account that, applying Leibniz
rule, we have that

Dj(M<ρ(θ − ω) . . .M<ρ(θ −mω))

contains a sum of Cj,m ≤ mj terms, each of which is the product of j factors
of the form

(7.21) F<ρ
l = M<ρ(θ − alω) . . .M<ρ(θ − blω) ,

where al ≤ bl and
∑j

l=1(bl − al + 1) ≥ m − j and not more that j factors
which are derivatives of M of order not longer than j.

For ε > 0 small enough we have ||F i
l || ≤ Cε(ρ − ε)bl−al+1, and then

||DjM<ρ(θ −mω, θ)||∞ can be bounded by

mjCε,j,ρ(ρ− ε)m−j ||M ||j
Cj .

This leads to bounds

||Dj(M<ρ(θ −mω,m)η<ρ(θ −mω))||∞ ≤ mjCε,j,M,ω(ρ− ε)m−j ||η||Cj .

Hence, we conclude that (7.19) and (7.20) indeed give Cr solutions. tu

As a corollary of the results of this section we obtain the following.

Corollary 7.19. Let Mω be a Cr transfer operator over a rotation.
Then:

(7.22) Spec(Mω,ΓCr) = SpecW (Mω,ΓCr) .

7.5. Perturbation of the spectrum

In this section we study the perturbation of the spectrum in Cr spaces.

Proposition 7.20. Let Mω be a Cr transfer operator over a rotation
ω. Assume that for some real numbers 0 < λ < µ

Spec(Mω,ΓB(E)) ∩ Aλ,µ = ∅ .

Let E = E<λ ⊕ E>µ the corresponding Cr invariant splitting.
Then, if M̄ω is Cr close enough to Mω, then

M̄ω ∈ U ⇒ Spec(M̄f̄ ,ΓB(E)) ∩ Aλ,µ = ∅ .

Moreover, the mapping that to M̄ω associates the Cr splitting E = Ē<λ ⊕
Ē>µ is Cr when we give the space of bundles splitting the Cr topology and
U the Cr topology.

Remark 7.21. Notice that we can use standard theory of perturbation
of the spectrum because if M̄ω is Cr close to Mω, then the corresponding
transfer operators are close as linear bounded operators. The crucial fact
is that the motion on the base manifold is the same for both M̄ω and Mω.
For other general results on perturbation of the spectrum, see [HPS77] and
Part 2.
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Remark 7.22. We emphasize also that the fact of considering resonant
(non ergodic) frequency vectors allows us to produce perturbation results
by adding the parameters to the frequency vector.

Proof: From the results of this paper

Spec(Mω,ΓCr(E)) ∩ Aλ,µ = ∅ ,
and the invariant splitting E = E<λ ⊕ E>µ is constructed from the projec-
tions P<λ

Cr and P>µ
Cr on ΓCr(E).

If Mω and M̄ω are Cr-close, then the corresponding transfer operators
are also close when considered as acting on Cr-sections. Applying standard
perturbation theory of spectrum [Kat76], if M̄ω is Cr-close enough to Mω,
then

Spec(M̄ω,ΓCr(E)) ∩ Aλ,µ = ∅ ,
and the corresponding projections P̄<λ

Cr and P̄>µ
Cr are close to P<λ

Cr and P>µ
Cr ,

respectively. Hence, the corresponding splitting E = Ē<λ⊕ Ē>µ is Cr-close
to E = Ē<λ ⊕ E>µ. tu



CHAPTER 8

Spectral theory for transfer operators over
rotations in spaces of Sobolev sections

There are many spaces which are useful in analysis. Clearly, giving
detailed proofs of results on the spectrum for transfer operators is out of
question. Nevertheless, as pointed in Remark 7.1, the results proved here
depend only on a few properties of the spaces.

In this section, we will go briefly over the Sobolev spaces, which play
an important role in analysis. All the properties of Sobolev spaces that we
will use can be found in [Tay97]. A standard comprehensive reference for
Sobolev spaces is [Ada75].

8.1. Sobolev spaces

We will use the following Sobolev spaces. In the following, P is a compact
Riemannian manifold, and let µ be the associated Lebesgue measure.

Definition 8.1. For r ∈ N and p ∈ [1,∞], we define the Sobolev space

(8.1) W r,p = {ϕ : P → C | ∂αϕ ∈ Lp ∀0 ≤ |α| ≤ r} ,
where the derivatives are taken in the sense of distributions. The norm

(8.2) ||ϕ||W r,p = sup
0≤|α|≤r

||∂αϕ||Lp

makes W r,p a Banach space.

In Part 2, we have the result that the Sobolev spaces satisfy the Banach
algebra and evaluation at points properties provided that

1
p
− r

d
< 0

(The property of evaluation at points could have been done in slight more
generality appealing to the notion of essential values, but this is not worth
the trouble for us).

As for the other properties of Sobolev spaces mentioned in Remark 7.1,
we just note that the possibility of fattening sections (Proposition 7.2 )
is true for Sobolev spaces since it is possible to construct functions with
arbitrarily small support.

We also note that for P = Td, the property

||ϕ◦tω||W r,p(Td) = ||ϕ||W r,p(Td)

135
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is obvious from the definition.

8.2. Spectral theorems in Sobolev sections

We will quickly go over the proofs in Section 7 and formulate correspond-
ing results for Sobolev spaces. The definitions of Sobolev bundles, Sobolev
vector bundle maps, Sobolev sections, etc. are given as usual.

The following result corresponds to Theorem 7.6.

Theorem 8.2. Let Mω : E → E be a W s,q vector bundle automorphism
over a rotation ω, where

(8.3) 1/q − s/d < 0 , q ∈]1,∞[ .

Then, for all r, p, with

(8.4) r ≤ s , p ∈]1,∞[ ,
1
q
− s

d
≤ 1
p
− r

d
< 0 ,

we have

(8.5) SpecW (Mω,ΓB) = SpecW (Mω,ΓW s,q) .

Proof: The proof does not require any modification from the proof presented
for Theorem 7.6, we just note that the cut-off functions work just as well in
Sobolev spaces. Note that we do not need that the sections form a Banach
algebra, only that the transfer operator defines a bounded multiplication. tu

The following is an analogue of Theorem 7.9.

Theorem 8.3. Let Mω : E → E be a W s,q vector bundle automorphism
over a rotation ω, where s, q satisfy (8.3). Assume that

Spec(Mω,ΓW r,p) ∩ Aλ,µ = ∅ ,

for r, p satisfying (8.4). Denote by P<λ = P<λ
W r,p , P>µ = P>µ

W r,p the projec-
tions associated to this spectral gap.

Then, it is possible to find a invariant W r,p-splitting

(8.6) E = E<λ ⊕ E>µ

such that the corresponding projections over the bundles, Π<λ,Π>µ, satisfy
for any v ∈ ΓW r,p:

(8.7) (P<λv)(θ) = Π<λ
θ v(θ) , (P>µv)(θ) = Π>µ

θ v(θ) .

Moreover, for all ε > 0 small enough there exists a constant Cε > 0 such
that

(8.8) E<λ = W≤λ−ε,Cε = L<λ , E>µ = W≥µ+ε,Cε = L>µ .

Proof: We will check the three hypothesis (a),(b) and (c) of Theorem 3.14
to be satisfied by the space of W r,p sections Γ = ΓW r,p(E):
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(a) Since Mω is W s,q, if v ∈ ΓW r,p(E) then Mωv ∈ ΓW r,p(E). More-
over, the properties of the multiplication operator and the com-
position operator (in this case with tω), make Mω continuous in
ΓW r,p(E) (see Lemma 1.10).

(b) For any v ∈ ΓW r,p(E) and θ0 ∈ Td, obviously |vθ0 | ≤ ||v||W r,p . More-
over, given any vθ0 we can construct a Cr section v with v(θ0) = vθ0 ,
using bump functions (see Lemma 7.2), and that section is obvi-
ously W r,p.

This is possibly the most delicate step in the proof, but it is
overcome in Sobolev spaces by taking into account that, under the
hypothesis (8.4), the sections are continuous and can be evaluated
uniquely.

(c) The inclusion SpecP (Mω,ΓB(E)) ⊂ Spec(Mω,ΓW r,p(E)) follows
from Theorem 8.2.

Remark 8.4. Theorem 8.3 works in the generality of transfer operators,
not just for rotations.

The last result we consider for Sobolev spaces is about equality of spec-
tra.

Theorem 8.5. Let Mω : E → E be a W s,q vector bundle automorphism
over a rotation ω, where s, q satisfy (8.3). Let r, p satisfying (8.4). Then:

(8.9) Spec(Mω,ΓB) = Spec(Mω,ΓW r,p) .

Proof: The crucial fact is that we can appeal to the invariant section theorem
for Sobolev spaces [dlL01b] to obtain that the spectral subbundles coming
from a spectral gap on bounded sections are Sobolev. The rest of the proof
follows the lines of the proof of Theorem 7.17. tu





CHAPTER 9

Spectral theory for transfer operators over
rotations in spaces of analytic sections

In this section we study transfer operators over rotations acting on an-
alytic sections.

9.1. Spaces of analytic sections

A complex band of size ζ > 0 of the d-dimensional torus Td is

Td
ζ = (T× [−ζ, ζ])d = {θ + iϕ | θ ∈ Td , ϕ ∈ [−ζ, ζ])d} .

The space of analytic functions in this complex torus is

Aζ = {f : Td
ζ → C continuous, and analytic in the interior of Td

ζ} .
We also consider the spaces of bounded functions and continuous functions

Bζ = {f : Td
ζ → C bounded} , C0

ζ = {f : Td
ζ → C continuous} .

These three spaces are endowed with the sup-norm

||ϕ||∞,ζ = sup
z∈Td

ζ

|ϕ(z)| .

If v is analytic, then the open mapping theorem implies

||ϕ||∞,ζ = sup
z∈∂Td

ζ

|ϕ(z)| .

Notice also that Aζ ⊂ C0
ζ ⊂ Bζ , and the inclusions are closed.

9.2. Spectral theorems in spaces of analytic sections

The first result gives the regularity of the spectral subbundles in the
analytic case.

Theorem 9.1. Let Mω : E → E be an analytic vector bundle automor-
phism over a rotation ω. Assume that

Spec(Mω,ΓB(E)) ∩ Aλ,µ = ∅ .
Then:

(a) The continuous splitting E = E<λ⊕E>µ produced in Theorem 2.18
is analytic.

(b) For ζ > 0 small enough

Spec(Mω,ΓAζ
(E)) ∩ Aλ,µ = ∅ .

139
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Proof: The existence of a gap in the spectrum on bounded sections implies
the existence of a continuous invariant splitting E = E<λ⊕E>λ, character-
ized by rates of growth.

The representation of the vector bundle map Mω with respect to the
invariant splitting is

Mω(θ) =
(
A(θ) 0

0 D(θ)

)
,

where we write A = M<λ and D = M>µ.
For ε > 0 small enough, we construct an adapted metric such that

||A||∞ ≤ λ− ε , ||D−1||∞ ≤ (µ+ ε)−1 ,

where the supremum is taken on the (real) torus Td.
By smoothing the subbundles, we can obtain analytic subbundles Ē<λ

and Ē>µ arbitrarily close to E<λ and E>µ, respectively. Notice that these
are not necessarily invariant under M . The representation of M with respect
to the analytic splitting E = Ē<λ ⊕ Ē>µ is

M(θ) =
(
Ā(θ) B̄(θ)
C̄(θ) D̄(θ)

)
.

Smoothing the adapted metric, and choosing a small enough ζ > 0, we get

||Ā||∞,ζ ≤ λ− ε

2
, ||D̄−1||∞,ζ ≤ (µ+

ε

2
)−1

and
||B̄||∞,ζ , ||C̄||∞,ζ

are arbitrarily small.
In the space of bundle maps Wθ : Ē<λ

θ → E>µ
θ , analytic in Td

ζ , we
consider the fixed point equation

Wθ = D̄(θ)−1(Wθ+ω(Ā(θ) + B̄(θ)Wθ)− C̄(θ)

that has an unique solution by the fixed point theorem. The graph of Wθ

defines an analytic invariant bundle E<λ,ζ . A similar construction defines
E>µ,ζ . These analytic subbundles defined in Td

ζ , E<λ,ζ and E>µ,ζ are char-
acterized by rates of growth, so then they coincide with E<λ and E>µ,
respectively, when evaluated over the real torus.

From this, we conclude the proof of the Theorem. tu

We have seen that gaps in the spectrum on bounded sections produces
gaps in the spectrum on analytic sections. We will see now that these gaps
can be smaller, and their size is decreased in a length of order ζ, the size
of the analyticity band. To do so, we have to analyze the boundary of the
spectrum on analytic sections.

An observation is that a vector bundle map Mω over a real rotation ω ∈
Rd in the complex torus Td

ζ (given by θ+iϕ→ (θ+ω)+iϕ), induces a family
of vector bundle maps Mω,ϕ on the real torus Td by Mω,ϕ(θ) = Mω(θ+ iϕ).
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With these preliminaries, it is now very easy to use inclusion arguments:

∂Spec(Mω,ΓAζ
(E)) ⊂ SpecW (Mω,ΓAζ

(E))(9.1)

⊂ SpecW (Mω,Γbζ
(E))(9.2)

= SpecP (Mω,Γbζ
(E))(9.3)

=
⋃

ϕ∈[ζ,ζ]d

SpecP (Mω,ϕ,ΓB(E))(9.4)

=
⋃

ϕ∈[ζ,ζ]d

Spec(Mω,ϕ,ΓB(E))(9.5)

⊂ Spec(Mω,0,ΓB(E)) +O(ζ) .(9.6)

The notation A ⊂ B + O(ζ) means that there exist a constant C > 0 such
that for any a ∈ A there exists b ∈ B with d(a, b) ≤ Cζ.

The inclusion (9.1) is a general result in spectral theory (see Proposi-
tion A.26). The inclusion (9.2) follows because Aζ is a closed subspace of Bζ .
The equality (9.3) follows from Thychonov theorem (cf. Theorem 3.19). The
equality (9.4) needs a moment of reflection, but it is easy and shows the use-
fulness of going down to bounded sections. The equality (9.5) corresponds to
Theorem 3.19, that uses that rotations are chain recurrent. Finally, the last
inclusion (9.6) follows from standard perturbation theory of spectrum, since
the distance between Mω,0 and Mω,ϕ is O(ζ). We have then the following
Theorem.

Theorem 9.2. Let Mω be an analytic transfer operator over a rotation.
Then, for ζ > 0 small enough:

(9.7) ∂Spec(Mω,ΓAζ
(E)) ⊂ Spec(Mω,ΓB(E)) +O(ζ) .

Remark 9.3. Notice that for an analytic approximate eigensection vε of
z in the band of size ζ, we have ||vε||Aζ

= 1 and ||Mωvε − zvε||Aζ
< ε. From

the open mapping theorem, the maximum is taken in the boundary, so

max
θ∈Td ,|ϕ|∞≤ζ

|vε(θ + iϕ)| = max
θ∈Td ,|ϕ|∞=ζ

|vε(θ + iϕ)| ,

and then we obtain a continuous approximate eigensection of z for some of
the Mω,ϕ with |ϕ|∞ = ζ (notice that the boundary {θ + iϕ | |ϕ|∞ = ζ} is
compact). As a result,

SpecW (Mω,ΓAζ
(E)) ⊂

⋃
|ϕ|∞=ζ

SpecW (Mω,ϕ,ΓB(E)) .

This estimate is sharper than the produced with (9.2),(9.3),(9.4),(9.5).

Remark 9.4. In this section we have proved that gaps in the spectrum
on bounded sections produce gaps in the spectrum on analytic sections, and
that these gaps can be a little bit smaller. Compared with the results we
have obtained for the spectrum on other spaces, such as the equality of the
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spectrum with that on bounded sections, or the fact that the complete spec-
trum is Weyl spectrum, the results in the section are not totally complete.

We have not proved that gaps of the spectrum on analytic sections pro-
duce analytic invariant bundles! The reason is that some of the arguments
we have used to prove the corresponding theorems for continuous, Cr and
Sobolev sections involve the construction of bump functions, that are not
available for analytic functions. We have not been able to find an alternative
argument. This is something that needs a clarification.

On the other hand, we have shown that the existence of splittings, im-
plies the existence of a spectral gap.



CHAPTER 10

Reducibility and almost reducibility

In the classification of vector bundle automorphisms a natural question
is what are the conjugation classes, and what are the simplest conjugation
classes. That is to say, given two vector bundle automorphisms Mf , Nf :
E → E over the same homeomorphism f , we say that they are conjugate
if there exists a vector bundle automorphism P : E → E over the identity
such that P (f(θ))−1M(θ)P (θ) = N(θ). We also say that Mf is reducible to
Nf . It is obvious that the spectra of the corresponding transfer operators
coincide.

The goal of this section is to study the spectral implications of being Mf

reducible to a simple Nf . As we will see, these implications are the same if
Mf is almost reducible to Nf (see Definition 10.2 and Theorem 10.4).

10.1. Some abstract results

In this section we consider the previous circle of ideas in an abstract
level.

Definition 10.1. Let A,B : X → X two bounded linear operators in a
Banach space X. We say that A,B are conjugate iff there exists a continuous
isomorphism P : X → X such that

(10.1) P−1AP = B .

We will say also that A is reducible to B.

It is obvious from the definition that Spec(A,X) = Spec(B,X). A
similar notion, that will have the same spectral implications, is the following.

Definition 10.2. Let A,B : X → X two bounded linear operators in
a Banach space X. We will say that A,B are almost conjugate iff for all
ε > 0 there exists a continuous isomorphism Pε : X → X such that

(10.2) ||P−1
ε APε −B|| ≤ ε .

Almost conjugation defines an equivalence relation in the Banach space
of bounded linear operators in X.

Remark 10.3. A simple but illuminating example is the following. Con-
sider the 2× 2 matrices

A =
(

1 1
0 1

)
, B =

(
1 0
0 1

)
.

143
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For all ε > 0, the matrices

Pε =
(
ε−1 0
0 1

)
define an almost conjugation between A,B, because(

ε−1 0
0 1

)−1( 1 1
0 1

)(
ε−1 0
0 1

)
−
(

1 0
0 1

)
=
(

0 ε
0 0

)
.

In general, the representative elements of the almost conjugation equiva-
lence relation in the set of finite dimensional matrices are diagonal matrices.
In particular, a n × n matrix with complex entries is almost conjugate to
a diagonal matrix diag(λ1Idn1 , λ2Idn2 , . . . , λkIdnk

), where the λi’s are the
eigenvalues, whose (algebraic) multiplicities are the ni’s.

This is the main result of this section.

Theorem 10.4. Let A,B : X → X two bounded linear operators in a
Banach space X. Then:

A,B are almost conjugate ⇒ Spec(A,X) = Spec(B,X) .

Proof: Let λ ∈ Res(B,X). We will show that λ ∈ Res(A,X), that is to
say for any given y ∈ X there exists an unique x ∈ X solving the equation
(A− λId)x = y.

For ε > 0 small enough (we will fix its size later), let Pε be an almost
conjugation between A,B, that is to say Rε = P−1

ε APε−B satisfies ||Rε|| < ε.
Then, from

y = (A− λId)x

= Pε(P−1
ε APε − λId)P−1

ε x

= Pε(B − λId +Rε)P−1
ε x

= Pε(B − λId)(Id + (B − λId)−1Rε)P−1
ε x ,

where we use that B − λId is invertible, we obtain

x = Pε(Id + (B − λId)−1Rε)−1(B − λId)−1P−1
ε y ,

where we choose ε small enough such that ||(B − λId)−1Rε|| < 1. tu

Remark 10.5. An equivalent notion of almost reducibility is considering
also approximate inverses. That is to say, A,B are almost conjugate if for
all ε > 0 there exist continuous isomorphisms Pε, Qε : X → X such that

||QεAPε −B|| ≤ ε , ||QεPε − Id|| ≤ ε .

Remark 10.6. The equality of the Weyl spectrum of two almost conju-
gate operators A,B does not follow from Definition 10.2. We would control
the condition number of the approximate conjugacies cond(Pε) = ||Pε||||P−1

ε ||.
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Remark 10.7. The equality of the Weyl spectrum of two almost con-
jugate transfer operators over rotations, (or in general over APD and chain
recurrent homeomorphisms) is a consequence of the non existence of spec-
trum that is not Weyl spectrum.

10.2. Reducibility to constant coefficients

If the bundle E is trivial, E = P × Cn, a vector bundle automorphism
Mf is identified with a couple (f,M), where f : P → P is a homeomorphism
and M : P → GLn(C) is a continuous matrix valued map, giving rise to the
linear skew product

x̄ = M(θ)x ,
θ̄ = f(θ) .

The simplest conjugation classes are those whose representatives are con-
stant type linear skew products, that is to say, M(θ) = M0 for a constant
matrix M0 ∈ GLn(C).

Definition 10.8. Let Mf a linear skew product. We say that it is C0

reducible when we can write

P (f(θ))−1M(θ)P (θ) = Λ

where Λ is a constant matrix and P : P → GLn(C) is C0.

Remark 10.9. The geometric meaning of P is that it is an isomorphism
on each fiber Eθ in such a way that it reduces the linear skew product to
constant.

Remark 10.10. Analogous definitions of reducibility can be set for
higher regularities (Cr, Sobolev, analytic, etc.), but all of them imply C0

reducibility. Moreover, C0 reducibility has implications on the spectrum on
continuous sections, but as a result of this paper the same implications also
work in the other spaces (for cocycles over rotations).

One motivation for the study of reducibility in the context of transfer
operators over rotations is the theory of small divisors, since it allows to
solve easily equations for sections ∆ : Td → Cn, like

(10.3) M(θ − ω)∆(θ − ω)−∆(θ) = R(θ),

given a section R : Td → Cn. These equations appear in KAM theory as well
as in the theory of computation of invariant manifolds [HdlLb, HdlL04].
If Mω is reducible, we can rewrite (10.3) as

P (θ)ΛP (θ − ω)−1∆(θ − ω)−∆(θ) = R(θ) ,

which is equivalent to

Λ∆̂(θ − ω)− ∆̂(θ) = R̂(θ) ,
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where R̂(θ) = P (θ)−1R(θ) and the unknown is ∆̂(θ) = P (θ)−1∆(θ). We
see that ∆̂ satisfies an equation involving translations and multiplication by
constant coefficients. Hence, it can be analyzed using Fourier coefficients

e2πikωΛδ̂k − δ̂k = r̂k .

With this motivation it has been shown that reducibility happens frequently
when M(θ) is a small perturbation of a constant matrix and ω is Diophantine
[JS92, Eli98].

Remark 10.11. Reducibility is a very strong property that allows us to
solve equations (10.3) even in the case that 1 is in the spectrum of Mω. If Λ
has eigenvalues in the unit circle, but they satisfy Diophantine conditions,
then (10.3) (or similar) can be solved, but the solution ∆ is not in the same
space as the known term R. At it happens in small divisor problems, we
loose some degree of smoothness. This appears all the time in KAM theory.
See [dlL01b].

Remark 10.12. In the theory of reducibility of real cocycles over rota-
tions is usual considering covering tori (2Td) = Rd/(2Z)d of the base torus
Td, if one does not want to complexify the system. (This is similar to the
well known Floquet theory). In Part 2 was proved that lifting a cocycle to
a covering bundle does not change the spectrum.

It is obvious from the definition that reducibility is closely related with
the existence of point spectrum in C0.

Proposition 10.13. Let Mω be a Cr cocycle over an ergodic rotation
ω. Suppose that it is C0 reducible to the constant cocycle Λω. Then:

(10.4) Spec(Mω,ΓC0(E)) = {zeαi | z ∈ Eig(Λ) , α ∈ R} .

Moreover, SpecP (Mω,ΓC0(E)) is dense in Spec(Mω,ΓC0(E)).

Proof: We have to compute the spectrum on C0 of the transfer operator
 Lω associated to the constant vector bundle automorphism Λω. If λ is an
eigenvalue of Λ, whose eigenvector is v0, then, for each k ∈ Zd, the section

vk(θ) = e2πik·θv0

is an eigensection whose eigenvalue is z = e−2πik·ωλ. Then, we produce a set
of eigenvalues filling densely a circle of radius |λ|. This proves one inclusion
of the theorem.

To prove the other inclusion, we will see that if z ∈ C satisfies |z| 6= |λ| for
all λ ∈ Eig(Λ), then z is in the resolvent set Res( Lω,ΓC0). We assume that
Λ is a Jordan normal form. Given a continuous section η : Td → Cn, we have
to compute a continuous section v : Td → Cn such that Λv(θ−ω)− zv(θ) =
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η(θ). For each Jordan block we have to solve an equation like
λ 1 0 . . . 0
0 λ 1 . . . 0
...

. . .
...

... 1
0 . . . λ




v1(θ − ω)
v2(θ − ω)

...

vm(θ − ω)

− z


v1(θ)
v2(θ)

...

vm(θ)

 =


η1(θ)
η2(θ)

...

ηm(θ)

 .

Since |z| 6= |λ|, this equation has a continuous solution. tu

Remark 10.14. Notice that C0 reducibility implies that Spec(Mω,ΓC0)
consists of a finite number of circles (the spectral circles):

Spec(Mω,ΓC0(E)) =
k⋃

i=1

Sρi ,

where the ρi’s are the moduli of the eigenvalues of Λ. Of course, since we
have equality of spectra for all Cr (and for bounded sections), we obtain the
same equality (10.4) for Spec(Mω,ΓCr) (that, of course, does not mean Cr

reducibility).
We obtain then a Cr invariant splitting E = E1 ⊕ · · · ⊕Ek. The multi-

plicity of each spectral circle Sρi (the rank of the corresponding bundle) is
the sum of the (algebraic) multiplicities of the eigenvalues of Λ with modu-
lus ρi. Notice also that these Cr spectral subbundles contain C0 invariant
subbundles corresponding to the eigenvalues.

Remark 10.15. In the terminology of Sacker and Sell [SS75], a reducible
cocycle has pure point spectrum, that is to say, the spectrum is a set of
circles. If the number of circles is the rank of the bundle, then it is said that
the cocycle satisfies the full spectrum property.

Remark 10.16. We also point out that there are topological obstructions
to reducibility which depend only on the topology of the embedding M :
Td → GLn(C). We claim that if Mω is reducible then M retracts to the
identity. Indeed, if Λt is an homotopy of invertible matrices from Λ0 = Λ
and Λ1 = Id, then Mt(θ) = P (θ + (1 − t)ω)ΛtP (θ)−1 defines a homotopy
between M0(θ) = M(θ) and M1(θ) = Id. Notice also that this topological
obstruction to reducibility holds in an open set.

It is not difficult to produce cocycles Mω : T → GLn(C) which are not
retractable to the identity since they have positive index around the zero
matrix. These cycles can not be reducible. A family of examples is

(10.5) Mω,λ(θ) =
(

cos(2πθ) − sin(2πθ)
sin(2πθ) cos(2πθ)

)
·
(
λ 0
0 λ−1

)
where λ ≥ 1, and ω ∈ R. Herman [Her83] minorated the maximal Lya-
punov multiplier by λ

2 + 2
λ , incidentally proving that they have not a hyper-

bolic structure. In the language of spectral theory, the spectrum in the case
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λ > 1 is a “fat” annulus containing the unit circle, while in the case λ = 1
it is the unit circle.

Young [You97] proved that if the rotation number ω satisfies the Br-
juno condition then, Mω,λ is non uniformly hyperbolic and has Lyapunov
multipliers close to λ, provided that λ is large enough.

Remark 10.17. Herman [Her83] produced examples of homotopically
trivial vector bundle automorphisms over rotations on R2 (and preserving
the standard symplectic structure) with “fat” spectrum.

Other obstructions to reducibility that happen in open sets of maps are
considered in [Eli02].

On the other hand, results on the abundance of reducibility on cocy-
cles taking values on compact groups can be found in [Kri99b, Kri99a].
Relations of reducibility with renormalization group have been studied in
[Ryc92, KLD05].

Remark 10.18. Numerical evidence of non uniform hyperbolicity (i.e.
“fat” spectrum) appears also in [BS98, HdlL05a, HdlLa].

In [BS98] there is an exhaustive numerical investigation of the linear
system given Hill’s equation with quasi-periodic forcing.

In [HdlL05a, HdlLa], the study is based on continuation of invariant
tori in quasi-periodically forced systems (either conservative such as the
quasi-periodic standard map or dissipative such as the quasi-periodic Hénon
map). The cocycles studied in [HdlL05a, HdlLa] are not explicit, but
rather appear as the linearized dynamics around an invariant torus. In
[HdlL05a, HdlLa] it is argued that the spectral properties of these cocycles
are closely related to the breakdown of the exponential dichotomies (or the
normal hyperbolicity) of the invariant torus.

In [HdlLa] it is observed that the appearance of fat spectrum is ac-
companied by very remarkable universal properties. We believe that this is
something that deserves a more detailed mathematical study.

Another important concept related to this circle of ideas is almost or
quasi reducibility. This concept was introduced by Bylov [Byl62] for linear
differential equations.

Definition 10.19. Let Mf a linear skew product over f : P → P, in
the trivial bundle E = P × Cn. We say that it is C0 almost reducible if it
is almost reducible to a a constant matrix Λ. That is to say, for all ε > 0
there exists an isomorphism (over the identity) Pε such that

||Pε(f(θ))−1M(θ)Pε(θ)− Λ||C0 ≤ ε .

Remark 10.20. The following example clarifies the definition. Consider
a 1-dimensional cocycle Rω,α(θ) = e2πiα in Td × C over an ergodic rotation
ω ∈ Rd, and α ∈ R. We will see that it is almost reducible to Rω,0. To do so,
consider the bundle transformations Pk(θ) = e2πik·θ, where k ∈ Zd. Then,

Pk(θ + ω)−1Rω,α(θ)Pk(θ) = e−(2πik·(θ+ω))e2πiαe2πik·θ = e2πi(α−k·ω) .
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Since ω is ergodic, we can make k · ω as close as we want to α (in T), and
so Pk(θ + ω)−1Rω,α(θ)Pk(θ) and Rω,0 can be arbitrarily close.

Theorem 10.4 in Section 10.1 asserts that almost reducibility has the
same spectral implications of reducibility, that is to say that Mf has pure
point spectrum (the spectrum of Mf is a set of circles whose radii are the
moduli of the eigenvalues of Λ).

Remark 10.21. If Mω is almost reducible to a constant cocycle Λω, then

Spec(Mω,ΓC0(E)) =
k⋃

i=1

Sρi ,

where the ρi’s are the moduli of the eigenvalues of Λ. Let ni the rank of the
spectral bundle Ei associated to Sρi . As a result of the Remarks 10.3 and
10.20 we can almost reduce the system to the diagonal cocycle ∆ω, where
∆ = diag(ρ1Idn1 , . . . , ρkIdnk

).

In [Cop77, Wan90] there are spectral conditions for almost reducibil-
ity for the case of non autonomous linear differential equations: these cor-
respond to the pure point spectrum property. The results belong to the
continuous category (and work for time-continuous systems). For results on
almost reducibility in the analytic category, see [Eli01] and the references
therein.

Remark 10.22. An almost reducible cocycle over a rotation can not be
non homotopically trivial. We repeat the arguments of Remark 10.16. If
Pε(θ + ω)−1M(θ)Pε(θ) = Λ +Rε(θ), we write

M(θ) = Pε(θ + ω)Λ(Id + Λ−1Rε(θ))Pε(θ)−1 ,

and we connect it with the identity via

Mt(θ) = Pε(θ + (1− t)ω)Λt(Id + (1− t)Λ−1Rε(θ))Pε(θ)−1 ,

provided that ||Rε|| ≤ ε is small enough.
So, the cocycle (10.5) for λ = 1 is not almost reducible, although the

spectrum is concentrated in the unit circle. This is an example of cocycle
with pure point spectrum that is not almost reducible. This makes a dif-
ference between the theory of almost reducibility of non autonomous linear
differential equations [Cop77, Wan90] and the discrete version.

Remark 10.23. For numerical applications of both concepts of reducibil-
ity and almost reducibility to the computation of invariant tori, see [HdlL04].
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10.3. Reducibility to triangular systems

Another important class of cocycles are those that have triangular form,
that is M : E → E over f : P → P of the form

(10.6) M(θ) =


a1(θ) b12(θ) . . . b1n(θ)

0 a2(θ) . . . b2n(θ)
... 0

. . .
...

0 . . . an(θ)

 .

If f is uniquely ergodic then

Spec(Mf ,ΓB(E)) =
n⋃

i=1

Sρi

where
ρi = exp

∫
P

log |ai(θ)| dµ .

See Proposition 3.47.

Definition 10.24. We say that Mf is triangular if it is reducible to a
triangular form like in (10.6). We say that Mf is almost triangular if it is
almost reducible to a triangular form like in (10.6).

As a consequence of Theorem 10.4, the (almost) triangular transfer op-
erators over a uniquely ergodic homeomorphism have pure point spectrum.

The notion of (almost) triangular vector bundle automorphisms extend
that of (almost) reducibility to constant coefficients. Notice that in this case
the bundle E does not need to be trivial. Moreover, the natural condition
on the dynamics on the base manifold is that of unique ergodicity (in the
case of rotations, these are ergodic), while in the theory of reducibility to
constant coefficients the rotations have to satisfy Diophantine conditions.



Part 4

Interactions with Geometry



In this part we study the interactions of the spectrum with the geometry.
In a first chapter we consider multilinear transfer operators, acting on

tensor fields, that appear, when constructing invariant manifolds.
In a second part we study the consequences on the spectrum of the

preservation of a geometrical structure (such as symplectic or volume, that
appear in Hamiltonian mechanics and fluid mechanics, respectively) or a
symmetry (if the cocycle is reversible).

In a third part we study the spectral consquences when one considers
transfer operators acting on a space of functions that satisfy some differential
constraint (e.g. vector fields that are zero divergence, symplectic or forms
which are closed or exact). We show that in all those cases, we obtain a
non-gaps phenomenon.



CHAPTER 11

Multilinear transfer operators

In this section we analyze the spectrum of transfer operators acting
on tensor bundles. We consider purely contravariant tensors and purely
covariant tensors. In particular, if E is a vector bundle over P, and Mf is
a vector bundle automorphism in E, we consider the induced vector bundle
automorphisms on the bundles T `

0(E) ' L`(E∗; C) and T 0
` (E) ' L`(E; C),

that we will call push-forward vector bundle automorphisms and pull-back
bundle automorphisms, respectively (see definitions below). A particular
important case is the dual vector bundle automorphism. We also analyze
the action on symmetric tensors and antisymmetric tensors.

We also study certain operators arising from the study of high order
expansions of invariant manifolds attached to a compact invariant manifold,
such as the stable manifolds and unstable manifolds. These studies play an
important role in the computation of whiskers of invariant tori undertaken
in [HdlLb, HdlL04]. In this case, the transfer operators act on multilinear
sections. That is, the underlying vector bundle is L`(F ;E), where E and F
are vector bundles over P.

The goal of this section is to investigate the spectrum of those transfer
operators and their relation with the spectrum of the transfer operators
acting on E-sections (and F -sections).

Of course, since tensor bundles and multilinear bundles have finite rank,
all the results of this paper apply, in particular, the invariance of the spec-
trum under rotations in the APD case and the equality of the spectrum for
different spaces.

11.1. Tensor bundles and multilinear bundles

Given a vector bundle E of rank n over a manifold P, we will consider,
for l ∈ N:

• The `-contravariant tensor bundle T `(E) ' L`(E∗; C) and the `-
covariant tensor bundle T`(E) ' L`(E; C), that have rank n`;

• The `-contravariant symmetric tensor bundle S`(E) ' L`
s(E

∗; C)
and the `-covariant symmetric tensor bundle S`(E) ' L`

s(E; C),

that have rank
(
n+ `− 1

`

)
;
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• The `-contravariant alternate tensor bundle
∧`(E) ' L`

a(E∗; C)
and the `-covariant alternate tensor bundle

∧
`(E) ' L`

a(E; C),

that have rank
(
n
`

)
.

If E is Finslered, and we will suppose it is, we construct Finsler metrics on
all of these vector bundle automorphisms, using the standard constructions
of tensor norms fiberwise.

As usual, we will denote vectors with subindices and 1-forms with su-
perindices.

The permutation group of order `, S`, acts on T `(E) fiberwise. That is,
for σ ∈ S` and wθ ∈ T `(Eθ), we define

σwθ(v1, . . . , v`) = wθ(vσ(1), . . . , vσ(`)) ,

for all v1, . . . , v` ∈ E∗
θ . The symmetrization map Sym and alternation map

Alt are also defined fiberwise, by

Sym(wθ) =
1
`!

∑
σ∈S`

σwθ , Alt(wθ) =
1
`!

∑
σ∈S`

sign(σ) · σwθ ,

where sign(σ) denotes the signature of the permutation σ. Both are projec-
tions in T `(E). Obviously S`(E) = Sym(T `(E)) and

∧`(E) = Alt(T `(E)).
As usual, the tensor product is denoted by ⊗, the symmetric product is · and
the alternate product is ∧. Recall that for e1, . . . , e` ∈ Eθ ' E∗∗

θ = L(E∗
θ ; C),

e1 ⊗ · · · ⊗ e` ∈ T `(E) is defined by

e1 ⊗ · · · ⊗ e` (v1, . . . , v`) =
∑
i,j

vi(ej) ,

where v1, . . . , v` ∈ E∗
θ = L(Eθ; C). Recall also that

e1 · · · · · e` = Sym(e1 ⊗ · · · ⊗ e`) , e1 ∧ · · · ∧ e` = Alt(e1 ⊗ · · · ⊗ e`) .

Similar definitions and constructions work for covariant tensor bundles.
A vector bundle automorphism M : E → E over a homeomorphism f

induces a push-forward vector bundle automorphism on T `(E) over f by

M(θ)wθ(e1, . . . , e`) = wθ(e1◦M(θ), . . . , e`◦M(θ)) ,

for e1, . . . , e` ∈ E∗
f(θ), and a pull-back vector bundle automorphism on T`(E)

over f−1 by

M(θ)∗w∗θ(e1, . . . , e`) = w∗θ(M(f−1(θ))e1, . . . ,M(f−1(θ))e`) ,

for e1, . . . , e` ∈ Ef−1(θ). Notice that the symmetrization and the alternation
maps commute with push-forward and pull-back vector bundles maps.

A notation that will be useful is the product of sets:

Definition 11.1. Given sets Σ1,Σ2, . . . ,Σ` ⊂ C, we denote

Σ1 · Σ2 · · ·Σ` = {z = z1 · z2 · · · z` ∈ C | z1 ∈ Σ1, . . . , z` ∈ Σ`} .
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Given a set Σ ⊂ C, we also write

Σ` = {z` | z ∈ Σ} ,

for l ∈ Z.
Given a set Σ ⊂ C, a partition A = {Ai}k

i=1 of Σ in k subsets, and a
sequence ν = (n1, . . . , nk) of natural numbers, we denote

Σ`;A,ν = {z = zs1
1 · · · zsk

k | zi ∈ Ai,
k∑

i=1

si = `, si ≤ ni} ⊂ Σ` .

The motivation of this notation is given by the following elementary
result of linear algebra, that we will extend to bundles.

Proposition 11.2. Let M : E → E be an endomorphism in an n-
dimensional complex vector space E. Let Eig(M,E) = {λ1, . . . , λk} be the
set of eigenvalues of M acting on E, the eigenvalue λi having multiplicity
ni. We consider the push-forward M on T `(E) and the pull-back M∗ on
T`(E). Then:

a) On T `(E), M(e1 ⊗ · · · ⊗ e`) = Me1 ⊗ · · · ⊗Me`, and

Eig(M,T `(E)) = (Eig(M,E))` ,

and the multiplicity of λ = λs1
1 . . . λsk

k is ns1
1 . . . nsk

k ;
b) On S`(E), M(e1 · · · · · e`) = Me1 · · · · ·Me`, and

Eig(M,S`(E)) = (Eig(M,E))` ,

and the multiplicity of λ = λs1
1 . . . λsk

k is
(
n1+s1−1

s1

)
. . .

(
nk+sk−1

sk

)
.

c) On
∧`(E), M(e1 ∧ · · · ∧ e`) = Me1 ∧ · · · ∧Me`, and

Eig(M,
∧`(E)) = {λ = λs1

1 . . . λsk
k |

k∑
i=1

si = `, si ≤ ni} ,

and the multiplicity of λ = λs1
1 . . . λsk

k is
(
n1

s1

)
. . .

(
nk

sk

)
.

Similar equalities work for the pull-back M∗ on T`(E), S`(E) and
∧

`(E).

Remark 11.3. Notice that Eig(M,
∧`(E)) = (Eig(M,E))l;A,ν , where

A = {{λi}}k
i=1 and ν = (n1, . . . , nk).

The following objects are very useful in the construction of invariant
manifolds (whiskers) attached to a compact invariant manifold. The case of
quasi-periodic systems is undertaken in [HdlLb, HdlL04, HdlL05a].

Given vector bundle automorphisms E,F over the same base manifold
P, we consider the bundle of multilinear maps L`(F ;E), for which the fiber
in θ is just the space of `-multilinear maps from Fθ to Eθ. Given two vector
bundle automorphisms Mf : E → E and Nf : F → F over the same
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homeomorphism f : P → P, we construct a vector bundle automorphism
Sf : L`(F ;E) → L`(F ;E), by

(S(θ)Wθ)(v1, . . . , v`) = M(θ)Wθ(N(θ)−1v1, . . . , N(θ)−1v`) ,

where Wθ ∈ L`(Fθ;Eθ), and v1, . . . , v` ∈ Ff(θ). We will refer to this action as
the Sylvester vector bundle automorphism (this nomenclature comes from
[BK98, CFdlL03a, CFdlL03b]).

In this section we will analyze the spectrum of push-forward, pull-back
and Sylvester transfer operators.

11.2. Spectrum of push-forward and pull-back transfer operators

The results on the spectrum of transfer operators acting on contravariant
and covariant tensor sections are summarized in the following theorem.

Theorem 11.4. Let Mf : E → E be vector bundle automorphism. Let

ASpec(Mf ,ΓB(E)) =
k⋃

i=1

Ai

be the annular hull of the spectrum, where each spectral annulus Ai = Aλ−i ,λ+
i

has multiplicity ni. Let A = {Ai}k
i=1 and ν = (n1, . . . , nk). Then, the spectra

of the push-forward and pull-back transfer operators satisfy:
a) ASpec(Mf ,ΓB(T `(E))) = ASpec(M∗

f ,ΓB(T`(E)))
⊂ (ASpec(Mf ,ΓB(E)))` ;

b) ASpec(Mf ,ΓB(S`(E))) = ASpec(M∗
f ,ΓB(S`(E)))

⊂ (ASpec(Mf ,ΓB(E)))` ;
c) ASpec(Mf ,ΓB(

∧`(E))) = ASpec(M∗
f ,ΓB(

∧
`(E)))

⊂ (ASpec(Mf ,ΓB(E)))`;A,ν ;
d) ASpec(Mf ,ΓB(E)) = ASpec(M∗

f ,ΓB(E∗)).

Remark 11.5. If f is APD, all the spectrum involved in Theorem 11.4
is rotationally invariant, and the A can drop.

Remark 11.6. If f is chain-recurrent, the previous inclusions also work
for Weyl spectrum. In fact, the inclusions in this case also work in general
(see Section ).

Remark 11.7. The above result implies similar results for spaces of
continuous and Lp tensor sections (under the assumption that the invariant
measure is topological). The proofs are easier on spaces of bounded tensor
sections.

Proof: Let

(11.1) E =
k⊕

i=1

Ei .
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be the corresponding spectral splitting. The rank of the each subbundle Ei

is ni, and it is characterized, according to Theorem 2.18, by the rates of
growth under iteration:

(11.2) vθ ∈ Ei
θ ⇐⇒ ∀m ≥ 0

{
|M(θ,m)vθ| ≤ Cε(λ+

i + ε)m|vθ| ,
|M(θ,−m)vθ| ≤ Cε(λ−i − ε)−m|vθ| ,

where ε > 0 is small enough.
The decomposition (11.1) induces another splitting in T `(E)

(11.3)
⊗̀
i=1

E =
⊕

i1,··· ,i`∈{1,··· ,k}

Ei1 ⊗ · · · ⊗ Ei` .

The splitting (11.3) is clearly invariant under the push-forward Mf . It is
also very easy to see that if wθ = w1 ⊗ · · · ⊗ w` ∈ Ei1

θ ⊗ · · · ⊗ Ei`
θ , then for

all m ≥ 0:

|M(θ,m)wθ| ≤ C`
ε(λ+

i1
+ ε)m . . . (λ+

i`
+ ε)m|wθ| ,

|M(θ,−m)wθ| ≤ C`
ε(λ−i1 − ε)−m . . . (λ−i` − ε)−m|wθ| .

We note that

(11.4) Spec(Mf ,ΓB(Ei1 ⊗ · · · ⊗ Ei`)) ⊂ Aλ−,λ+ ,

where λ− = λ−i1 . . . λ
−
i`

and λ+ = λ+
i1
. . . λ+

i`
. Therefore, from (11.3),(11.4) we

obtain that

ASpec(Mf ,ΓB(T `(E))) ⊂ (ASpec(Mf ,ΓB(E)))` .

To prove the corresponding inclusion for the pull-back operator, notice
that (11.8) induces again another splitting in T`(E)

(11.5)
⊗̀
i=1

E∗ =
⊕

i1,··· ,i`∈{1,··· ,k}

Ei1∗ ⊗ · · · ⊗ Ei`∗ .

In this case, Ei1∗ ⊗ · · · ⊗ Ei`∗ ' L`(Ei1 , . . . , Ei` ; C) is invariant under M∗
f ,

and if w∗θ ∈ L`(Ei1 , . . . , Ei` ; C), then for all m ≥ 0:

• for v1 ∈ Ei1
f−m(θ)

, . . . , v` ∈ Ei`
f−m(θ)

s.t. |v1| = · · · = |v`| = 1:

|M∗(θ,m)w∗θ(v1, . . . , v`)|
= |w∗θ(M(f−m(θ),m)v1, . . . ,M(f−m(θ),m)v`)|
≤ |w∗θ | · C`

ε · (λ+
i1

+ ε)m . . . (λ+
i`

+ ε)m ;

• for v1 ∈ Ei1
fm(θ), . . . , v` ∈ Ei`

fm(θ) s.t. |v1| = · · · = |v`| = 1:

|M∗(θ,−m)w∗θ(v1, . . . , v`|
= |w∗θ(M(fm(θ),−m)v1, . . . ,M(fm(θ),−m)v`)|
≤ |w∗θ | · C`

ε · (λ−i1 − ε)−m . . . (λ−i` − ε)−m .
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The rest of the proof of the inclusion for the pull-back follows the same lines
of that for the push-forward. So, a) is proved.

Notice that d) follows immediately from the fact that E∗∗ ' E, M∗∗
f =

Mf and E∗ = T1(E). We have just to apply a) twice.
We will prove the inclusions b) and c) for the push-forward operator,

because the other inclusions follow from duality and d).
Since the push-forward Mf commutes with the projections Sym and Alt,

then we apply Theorem A.9 to obtain the inclusions

(11.6) Spec(Mf ,ΓB(S`(E))) ⊂ Spec(Mf ,ΓB(T `(E)))

and

(11.7) Spec(Mf ,ΓB(
∧`(E))) ⊂ Spec(Mf ,ΓB(T `(E))) .

This proves b), but c) has to be proved with a more specific argument.
Point c) follows directly from the invariant splitting∧`(E) =

⊕
s1+. . .+sk = l
∀i si ≤ ni

∧s1(E1) ∧ · · · ∧
∧s`(E`)

and (11.7) applied to each
∧si(Ei). tu

Remark 11.8. From Functional Analysis (Theorem A.11) we have the
equality

Spec((Mf )∗, (ΓB(E))∗) = Spec(Mf ,ΓB(E)) .

Nevertheless, notice that the dual space of bounded sections (ΓB(E))∗ is a
huge Banach space that has nothing to do with ΓB(E∗), and in this case
(Mf )∗ means the dual linear operator of Mf . However, there are spaces in
which both definitions (functional and dynamical) coincide: these are the
spaces of L2-sections. This is an immediate consequence of Riesz’s repre-
sentation theorem.

A purely functional proof of Theorem 11.4 (d) works if f preserves a
topological measure µ:

ASpec(Mf ,ΓB(E)) = ASpec(Mf ,ΓL2(µ)(E))

= ASpec(M∗
f ,ΓL2(µ)(E))

= ASpec(M∗
f ,ΓB(E)) .

Notice also that the condition on f implies that f is chain recurrent, and
then the previous equalities also work for the Weyl spectrum.

11.3. Spectrum of Sylvester transfer operators

The result we obtain for the spectrum of Sylvester transfer operators is
the following.
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Theorem 11.9. Let Mf : E → E, Nf : F → F two vector bundle
automorphisms. Let Sf be the corresponding Sylvester vector bundle auto-
morphism on L`(F ;E). Then:

ASpec(Sf ,ΓB(L`
s(F ;E))) ⊂ ASpec(Sf ,ΓB(L`(F ;E)))

⊂ ASpec(Mf ,ΓB(E)) · (ASpec(Nf ,ΓB(F )))−l .

Proof: The first inclusion is a direct consequence of the fact that Sym com-
mutes with the Sylvester vector bundle automorphism. Of course, the same
inclusion works for alternate multilinear maps.

For the second inclusion, we consider the spectral decompositions

ASpec(Mf ,ΓB(E)) =
k⋃

i=1

Ai , ASpec(Nf ,ΓB(F )) =
h⋃

j=1

A′j ,

in spectral annuli Ai = Aλ−i ,λ+
i

, A′j = Aµ−j ,µ+
j

, and the corresponding bundle
splittings

(11.8) E =
k⊕

i=1

Ei , F =
h⊕

j=1

F j ,

that are characterized by rates of growth like (11.2).
These splittings induce the splitting

L`(F ;E) =
k⊕

i=1

⊕
j1,...,j`∈{1,...,h}

L(F j1 , . . . , F j` ;Ei) ,

that is obviously invariant under Sf . We analyze now each subbundle of
multilinear maps.

For each wθ ∈ L(F j1 , . . . , F j` ;Ei), for m ≥ 0, we have:
• for v1 ∈ F j1

fm(θ), . . . , v
` ∈ F j`

fm(θ) s.t. |v1| = . . .= |v`| = 1:

|S(θ,m)wθ(v1, . . . , v`)|
= |M(θ,m)wθ(N(fm(θ),−m)v1, . . . , N(fm(θ),−m)v`)|
≤ Cε · (λ+

i + ε)m · |wθ| · C`
ε · (µ−j1 − ε)−m . . . (µ−j`

− ε)−m ;

• for v1 ∈ F j1
f−m(θ)

, . . . , v` ∈ F j`

f−m(θ)
s.t. |v1| = . . .= |v`| = 1:

|S(θ,−m)wθ(v1, . . . , v`)|
= |M(θ,−m)wθ(N(f−m(θ),m)v1, . . . , N(f−m(θ),m)v`)|
≤ Cε · (λ−i − ε)−m · |wθ| · C`

ε · (µ+
j1

+ ε)m . . . (µ+
j`

+ ε)m .

From these rates of growth, Spec(Sf ,ΓB(L(F j1 , . . . , F j` ;Ei)) ⊂ Aρ−,ρ+ ,
with

ρ− =
λ−i

µ+
j1
. . . µ+

j`

, ρ+ =
λ+

i

µ−j1 . . . µ
−
j`

,

and the proof of Theorem 11.9 follows immediately. tu





CHAPTER 12

Spectrum, symmetry and geometry

In this section we obtain a few results on the spectrum of a transfer
operator whose generator preserves a given geometric structure on the bun-
dle. As we will see, the spectrum inherits some properties. In particular, we
consider here symplectic and volume structures, that appear very often in
the literature, specially in applications. We also consider the case in which
the cocycle is reversible.

There are reasons why transfer operators which preserve the above geo-
metric structures appear in applications. We just note that these operators
appear often as the linearization of vector fields that preserve the corre-
sponding geometric structure. Reversibility is a property of many equations
of Physics, roughly all physical systems without dissipation are reversible.
For example, all equations describing circuits ignoring resistance are re-
versible. The Hamilton’s canonical equations of mechanics preserve a sym-
plectic structure and, as a consequence, conserve a volume. The motion of
particles in an incompressible fluid, preserve the volume.

12.1. Reversible transfer operators

Along this section, π : E → P is a vector bundle over the manifold P.

Definition 12.1. A vector bundle automorphism Ig : E → E is an
involution iff I◦I = Id|E, that is to say, for all θ ∈ P

I(g(θ))◦I(θ) = IdEθ
.

In particular, g is an involution in P: g◦g = IdP .

Definition 12.2. Given an involution Ig : E → E over g : P → P,
a vector bundle automorphism Mf : E → E over f : P → P is said to be
Ig-reversible iff I◦M◦I = M−1, that is to say, for all θ ∈ P

I(f◦g(θ))◦M(g(θ))◦I(θ) = M(f−1(θ))−1 .

In particular, f is g-reversible in P: g◦f◦g = f−1.

Remark 12.3. If f : P → P is a g-reversible diffeomorphism, where
g : P → P is an involutive diffeomorphism, then the push forward f∗ :
TP → TP is a reversible vector bundle automorphism with respect to g∗ :
TP → TP, and the pull back f∗ : TP → TP is a reversible vector bundle
automorphism with respect to g∗ : T ∗P → T ∗P.

161



162 12. SPECTRUM, SYMMETRY AND GEOMETRY

For a Ig-reversible vector bundle automorphism Mf : E → E, the action
on sections of the transfer operator is also reversible

I2g = Id , Ig◦Mf ◦Ig = M−1
f .

As a result, we have the following.

Proposition 12.4. Let Mf : E → E be a Ig-reversible vector bundle
automorphism. Then:

• z ∈ SpecW (Mf ,ΓB(E)) ⇒ 1
z ∈ SpecW (Mf ,ΓB(E)).

• z ∈ Spec(Mf ,ΓB(E)) ⇒ 1
z ∈ Spec(Mf ,ΓB(E)).

Proof: Is an immediate consequence of the fact that Mf and M−1
f are

conjugated with respect to Ig: I−1
g ◦Mf ◦Ig = M−1

f . tu

The following result is also straightforward.

Proposition 12.5. Let Mf : E → E be a Ig-reversible vector bundle
automorphism. Let F ⊂ E be an invariant subbundle. Then, the subbundle
IgF is also invariant.

Proof: Let vθ ∈ Fθ and wg(θ) ∈ I(θ)Fθ. Then

M(g(θ))wg(θ) = M(g(θ))I(θ)vθ = I(f◦g(θ))−1M(f−1(θ))−1vθ

= I(f−1(θ))M(f−1(θ))−1vθ .

Since M(f−1(θ))−1vθ ∈ Ff−1(θ), then M(g(θ))wg(θ) ∈ I((f−1(θ))Ff−1(θ).
That is to say, since MfF = F then MfIgF = IgF . tu

As a corollary we obtain the structure of the spectrum of a reversible
transfer operator.

Theorem 12.6. Let Mf : E → E be a Ig-reversible vector bundle auto-
morphism. Then, the annular hull of the spectrum is like

ASpec(Mf ,ΓB(E)) =
l⋃

i=1

A[λi, µi] ∪ A[ρ, ρ−1] ∪
l⋃

i=1

A[µ−1
i , λ−1

i ]

where l ≥ 0, λ1 ≤ µ1 < λ2 ≤ µ2 < · · · < λl ≤ µl < 1, and µl < ρ (if ρ > 1
we assume A[ρ, 1

ρ ] = ∅). Let

E =
l⊕

i=1

Es,i ⊕ Ec ⊕
l⊕

i=1

Eu,i

be the corresponding spectral decomposition. Then
• for each i = 1, . . . , l Eu,i = IEs,i;
• Ec = IEc.

Proof: We have to prove that if a vector vθ satisfies a rate of growth in
positive (negative) time, then its symmetric satisfies a rate of growth in
negative (positive) time.
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For instance, assume that vθ ∈W≤λ (see Definition 2.1), and let wg(θ) =
I(θ)vθ be its symmetric image. We will see that wg(θ) ∈ W≥λ−1

. Since
vθ ∈W≤λ, there exist a positive constant C such that for all m ≥ 0 we have
|M(θ,m)vθ| ≤ Cλm|vθ|. Then, for all m ≤ 0:

|M(g(θ),m)wg(θ)| = |M(g(θ),m)I(θ)vθ| = |I(f−m(θ))M(θ,−m)vθ|
≤ ||I||∞Cλ−m|vθ| .

So we are done with the prove of Theorem 12.6. tu
Henceforth, for reversible systems we have the following situation:
• Each stable subbundle has a symmetric unstable subbundle;
• The central subbundle, if exists, is symmetric.

Remark 12.7. Reversible vector bundle automorphisms in vector bun-
dles with odd rank are not hyperbolic.

12.2. Symplectic transfer operators

Now, we start to discuss the effect of a symplectic structure on the
spectrum of transfer operators.

12.2.1. Some standard constructions in symplectic geometry.
First, we collect some standard definitions on symplectic vector bundles (see,
for instance, [Wei77, LM87, MS95]).

Definition 12.8. A symplectic vector bundle is a real vector bundle E
over a manifold P equipped with a section Ω : P → L2

a(E; R) of the bundle
of skew-symmetric bilinear forms non degenerate on each fiber Eθ.

It will be important to note that, in order to have a non-degenerate
2-form, the rank of E is even. Henceforth, we will write n = 2d.

We also note that, since the 2-form Ω is nondegenerate, it induces a
musical isomorphism Ω[ of E onto E∗ by

(Ω[
θvθ)wθ = −Ωθ(vθ, wθ) ,

whose inverse is denoted by Ω].

Example 12.9. In the trivial bundle E = P × R2d we can define a
standard symplectic structure using the standard symplectic matrix

J =
(

0 Idd

−Idd 0

)
.

That is, the symplectic form is defined for vθ = (θ, v), wθ = (θ, w) ∈ P×R2n

by
Ωθ(vθ, wθ) = v>Jw .

As it is well known, Darboux theorem implies that given any vector
bundle and a sufficiently small neighborhood, there is a transformation that
maps the given symplectic structure into the standard one in Example 12.9.
See, any of the references [Wei77, LM87, MS95]) for more details.



164 12. SPECTRUM, SYMMETRY AND GEOMETRY

Example 12.10. If P is a manifold, a symplectic vector bundle structure
on TP is a non degenerate 2-form Ω is sometimes called almost symplectic
structure on P.

If Ω is closed, we say that the manifold P is symplectic and that Ω is
a Symplectic form on the manifold or that it defines a Symplectic structure
on P

As we will see in Chapter 13, there will be important differences in the
spectral theory of almost symplectic structures and symplectic structures.

The central object in our discussion are the vector bundle automor-
phisms that preserve a symplectic structure on the bundle. We will see that
the preservation of this symplectic structure has important consequences on
the spectral theory.

Definition 12.11. A vector bundle automorphism Mf : E → E is sym-
plectic iff

M(θ)∗Ωf(θ) = Ωθ ,

that is:

∀vθ, wθ ∈ Lθ, Ωf(θ)(M(θ)vθ,M(θ)wθ) = Ωθ(vθ, wθ) .

The main goal of this section is to analyze the spectrum of the transfer
operator associated to a symplectic vector bundle automorphism Mf . Of
course, even if the geometric objects we consider are real valued, but we
will apply the complexification trick described in Remark 1.2 and study the
spectrum in the complex vector space obtained by complexifying the real
bundle.

The first result we discuss is the following:

Proposition 12.12. Let Mf : E → E be a symplectic vector bundle
automorphism. Then:

(12.1) z ∈ ASpec(Mf ,ΓB(E)) ⇔ 1
z
∈ ASpec(Mf ,ΓB(E)) .

Proof: The proof is an immediate consequence of

Ω]
θM(θ)∗Ω[

f(θ) = M−1(θ) ,

and Proposition 11.4. tu

Our next goal is to clarify the geometrical properties of the invariant
subbundles associated to spectral projections.

First, we recall some standard definitions in symplectic geometry.

Definition 12.13. Let E be a symplectic vector bundle of rank n = 2d.
A vector subbundle L is said to be isotropic if every fiber Lθ has that

property relative to the symplectic form Ωθ. More explicily,

∀vθ, wθ ∈ Lθ Ωθ(vθ, wθ) = 0 .
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We note that a consequence of the definition is that if L is an isotropic
subbundle, the rank of L is not bigger than d. If L is isotropic and its rank
is d, then L is to said to be Lagrangian .

A vector subbundle S is said to be symplectic if every fiber Sθ has the
same property relative to the symplectic form Ωθ.

That is, Ωθ defines a nondegenerate skew-symmetric 2-form in Sθ.

Remark 12.14. Although a symplectic vector space admits Lagrangian
subspaces, a symplectic vector bundle may fail to admit Lagrangian sub-
bundles. For example, the tangent bundle to the sphere S2, endowed with
the area form, contains no vector subbundle of rank 1 and therefore no La-
grangian subbundle. Besides this elementary obstruction (which only uses
that a Lagrangian subbundle is a subbundle), there are more subtle obstruc-
tions which indeed use the symplectic geometry [LM87].

We will also use the concept of symplectic orthogonality.

Definition 12.15. Let E be a symplectic vector bundle of rank n = 2d.
Two vectors vθ, wθ ∈ E are Ω-orthogonal if Ωθ(vθ, wθ) = 0.
If F ⊂ E is a subbundle, we define the symplectic orthogonal subbundle

FΩ = {wθ ∈ E | Ωθ(vθ, wθ) = 0 for all vθ ∈ F} .
Remark 12.16. Notice that dimFΩ = 2d − dimF , but it is not true

in general that E = F ⊕ FΩ. The symplectic orthogonal FΩ complements
F if and only if F is a symplectic vector subbundle. Notice that L is an
isotropic subbundle if and only if L ⊂ LΩ. Coisotropic subbundles are those
subbundles L for which LΩ ⊂ L.

12.2.2. Invariant subbundles. Now, we start the charaterization of
invariant subbundles under symplectic transfer operators. The main result
of this section will be Theorem 12.21.

The following result shows that given an invariant subbundle, its sym-
plectic orthogonal is also invariant. It also gives a relation between the
linear mappings. These properties are very important for the parameteri-
zation method for invariant manifolds, specially in the cases that the dy-
namics on the manifold is particularly easy (e.g. rotations). See for ex-
ample [HdlLb, HdlL04, HdlL05a]. It is also important in KAM theory
[dlLGJV05, dlL01b]

Proposition 12.17. Let Mf : E → E be a symplectic vector bundle
automorphism. Let F ⊂ E be an invariant subbundle. Then, the symplectic
orthogonal subbundle FΩ is also invariant. In particular:

a) If L is an invariant isotropic subbundle, then LΩ is an invariant
coisotropic subbundle (and L ⊂ LΩ).

b) If L is an invariant coisotropic subbundle, then LΩ is an invariant
isotropic subbundle (and LΩ ⊂ L).

c) If F is an invariant symplectic subbundle, then FΩ is an invariant
symplectic subbundle (and E = F ⊕ FΩ).
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Proof: Let F be an invariant subbundle. Given wθ ∈ FΩ
θ , we have to see

that M(θ)wθ ∈ FΩ
f(θ). For all v̄f(θ) ∈ Ff(θ), there exists an unique vθ ∈ Fθ

such that v̄f(θ) = M(θ)vθ, so

Ω(v̄f(θ),M(θ)wθ) = Ω(M(θ)vθ,M(θ)wθ) = Ω(vθ, wθ) = 0 .

Given the above considerations, items a), b) and c) are just an immediate
consequence of the definitions. tu

Proposition 12.17 does not assume that the invariant spaces considered
are spectral subbundles. The next result makes this more precise in the
case that the invariant spaces are spectral and that the transfer operator is
symplectic.

Proposition 12.18. Let Mf : E → E be a symplectic vector bundle
automorphism. Suppose that the spectrum Spec(Mf ,ΓB(E)) has a gap in
the circle of radius λ < 1. Then, there is another gap in the circle of
radius λ−1 > 1. Let Ess = E<λ, Euu = E>λ−1

and Ecc = E>λ ∩ E<λ−1

be the corresponding spectral subbundles (some of the above spaces in the
assumption may be just the trivial zero section). Then:

a) Ecc and Ess ⊕ Euu are symplectic subbundles, and

(Ecc)Ω = Ess ⊕ Euu .

b) Ess and Euu are isotropic subbundles of the same rank.
c) In particular, if ASpec(Mf , ,ΓB(E))∩A[λ, λ−1] does not have gaps

(it could be empty), then Ess = Es is the stable subbundle, Euu =
Eu is the unstable subbundle and Ecc = Ec is the central subbundle
(it could be E0).

Proof: a) Since dim(Ess ⊕ Euu) = 2d − dimEc = dim(Ecc)Ω, we have to
prove that Ess ⊕ Euu ⊂ (Ecc)Ω. We will see that Ess ⊂ (Ecc)Ω, and an
analogous proof works for Euu ⊂ (Ecc)Ω.

For vθ ∈ Ecc and wθ ∈ Ess, and m > 0,

|Ωθ(vθ, wθ)| ≤ |Ωfm(θ)||M(θ,m)vθ||M(θ,m)wθ|
≤ C2

ε ||Ω||∞(λ−1 − ε)m(λ− ε)m|vθ||wθ|
= C2

ε ||Ω||∞(1− (λ−1 + λ)ε+ ε2)m|vθ||wθ| ,

and the last term tends to zero when m → +∞ if ε is small enough. So
Ωθ(vθ, wθ) = 0.

The above argument proves that Ess ⊕ Euu = (Ecc)Ω. It also proves
that both subbundles Ess ⊕ Euu and (Ecc)Ω are symplectic.

b) The proof of the fact that Ess and Euu are isotropic follows similar
lines.

For vθ, wθ ∈ Ess, and m > 0,

|Ωθ(vθ, wθ)| ≤ (λ− ε)2m|vθ||wθ|,
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and the right hand side tends to zero because λ < 1. So Ess is isotropic,
and a similar proof works for Euu.

Notice that Spec(Mf ,ΓB(Ess⊕Euu)) does not intersect the unit circle,
that is to say (Mf )|Ess⊕Euu is hyperbolic. Notice also that Ω|Ess⊕Euu is
symplectic, and then both subbundles Ess and Euu are isotropic in Ess ⊕
Euu. Since the dimension of an isotropic bundle is not bigger than half the
dimension of the symplectic bundle (in this case, Ess⊕Euu), then both Ess

and Euu are Lagrangian in Ess ⊕ Euu, so they have the same rank.
c) is and immediate consequence of the previous arguments. tu

Using the same arguments, we an establish the following result:

Proposition 12.19. Let Mf be a symplectic transfer operator. Let E
be a an invariant subbundle – not necessarily a spectral subbundle. Assume
that the spectrum of Mf restricted to E is strictly inside (or outside) of the
unit circle.

Then, E is isotropic.

Remark 12.20. As a corollary, we obtain that a symplectic vector bun-
dle without Lagrangian subbundles does not admit hyperbolic symplectic
vector bundles automorphisms, that is to say, the spectrum of the corre-
sponding transfer operator contain points of the unit circle. This provides
with a method of excluding the existence of Anosov symplectic systems on
some manifolds.

Using induction from the previous results, we obtain the following char-
acterization of the spectral subbundles of a symplectic vector bundle auto-
morphism.

Theorem 12.21. Let Mf : E → E be a symplectic vector bundle auto-
morphism. Then, the annular hull of the spectrum is of the form:

ASpec(Mf ,ΓB(E)) =
l⋃

i=1

A[λi, µi] ∪ A[ρ, ρ−1] ∪
l⋃

i=1

A[µ−1
i , λ−1

i ]

where l ≥ 0, λ1 ≤ µ1 < λ2 ≤ µ2 < · · · < λl ≤ µl < 1, and µl < ρ (if ρ > 1
we understand that A[ρ, ρ−1] = ∅). Let

E =
l⊕

i=1

Es,i ⊕ Ec ⊕
l⊕

i=1

Eu,i

be the corresponding spectral decomposition. Then
• for each i = 1, . . . , l dimEs,i = dimEu,i, and Es,i ⊕ Eu,i is an

invariant symplectic subbundle;
• Es =

⊕l
i=1E

s,i and Eu =
⊕l

i=1E
u,i are the stable and unstable

subbundles, respectively;
• Ec is an invariant symplectic subbundle, whose orthogonal is (Ec)Ω =
Es ⊕ Eu.
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12.2.3. Complex structures. To analyze further geometrical proper-
ties of invariant subbundles we will use some objects (Lagrangian comple-
ments, complex structures), which we now recall.

If a symplectic vector bundle E admits a Lagrangian subbundle L, then
there exists a Lagrangian complement L̂, such that E = L⊕ L̂. This can be
proved by using this property for symplectic vector spaces and partitions of
the unity. A cleaner construction is using adapted complex vector bundle
structures, which we now recall.

Definition 12.22. An adapted complex vector bundle structure on a real
symplectic vector bundle E is given by an automorphism over the identity
J : E → E, satisfying the following properties:

• J is symplectic. That is

Ω(u, v) = Ω(Ju, Jv) ∀u, v

• Jθ◦Jθ = −Id|Eθ
;

• The section G : P → L2
s(E; R) of the bundle of symmetric bilinear

forms, defined by

Gθ(vθ, wθ) = Ωθ(vθ, Jθwθ) ,

defines a Riemannian structure on the bundle E (that is to say, Gθ

is positive definite, and defines a scalar product on each fiber).
Every real symplectic vector bundle admits an adapted complex vector

bundle structure (see [Wei77, LM87, MS95]). The relation between the
metric G and the complex structure J is often described as saying that the
metric G tames the symplectic structure. The metric, complex structure,
and symplectic form are often called Khaler structures .

Remarkable geometric applications of the complex structures to symplec-
tic geometry can be found in [MS98, HZ94].

We just sketch the construction and refer to the above references for
more details. A similar construction in more general circumstances occurs
also in [AM78, p. 178].

We will just construct the J and G fiberwise and check that the argument
depends smoothly on all the elements and can be extended to the whole bundle
by using partitions of unity etc.

Given a metric Ĝ, there is a unique automorphism A defined by

Ĝ(Au, v) = Ω(u, v)

Because Ω is skew-symmetric and Ĝ is symmetric, we obtain

Ĝ(Au, v) = Ω(u, v) = −Ω(v, u) = −Ĝ(Av, u)

= −Ĝ(u,Av).

Therefore,

Ĝ(A2u, v) = −Ĝ(Au,Av) = Ĝ(u,A2v)
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We conclude that A2 is symmetric. Taking u = v above and using that
the metric Ĝ is positive definite, we obtain that A2 is negative definite for
the inner product given by Ĝ. We can find a unique matrix, which we denote
by
√
−A2 which is positive definite for the inner product given by Ĝ and such

that (
√
−A2)2 = −A2.

The desired complex structure is

J = (
√
−A2)−1A = A(

√
−A2)−1

and the desired metric G is

G(u, v) = Ω(u, Jv)

Clearly J2 = −Id. Also, using that A2 is self-adjoint and commutes with√
−A2 we have:

Ω(Ju, Jv) = Ω(A(
√
−A2)−1u,A(

√
−A2)−1v)

= Ĝ(A2(
√
−A2)−1u,A(

√
−A2)−1v)

= Ĝ(u, (
√
−A2)−1A3(

√
−A2)−1v)

= Ĝ(u,Av)

= Ω(u, v)

The only thing that remains to be checked is that G is positive definite,
and hence, it is a metric. Note that

G(u, u) = ω(u, Ju) = −Ĝ(u,AJu)

= Ĝ(u,
√

(−A2)u

�

Remark 12.23. Notice that, of course, once we fix two elements of the
structure, the third is determined uniquely. On the other hand, the problem
is somewhat flexible. If we change the metric a small amount, we still can
find a J .

Since the construction is so explicit we note that J depends smoothly
on the metric and on the symplectic structure Ω.

Therefore, given a metric Ĝ in the bundle and a symplectic structure in
the bundle which are smooth, if we perform the construction fiberwise, we
obtain a metric G and a J which also depend smoothly on the fibers.

Since the 2-form G is nondegenerate, it induces also musical isomor-
phisms G[ : E → E∗, given by

(G[
θvθ)wθ = Gθ(vθ, wθ) ,

and G] = (G[)−1.

Remark 12.24. From the construction, notice that J non only preserves
the symplectic form but also the scalar product:

Ωθ(Jθvθ, Jθwθ) = Ωθ(vθ, wθ) , Gθ(Iθvθ, Iθwθ) = Gθ(vθ, wθ) ,
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for all vθ, wθ ∈ E.

Using the metric G we have also a notion of metric orthogonality.

Definition 12.25. Let E be a symplectic vector bundle of rank n = 2d.
Two vectors vθ, wθ ∈ E are G-orthogonal if Gθ(vθ, wθ) = 0. If F ⊂ E is a
subbundle, we define the orthogonal subbundle

FG = {wθ ∈ E | Gθ(vθ, wθ) = 0 for all vθ ∈ F} .

Remark 12.26. Notice that dimFG = 2d − dimF , and E = F ⊕ FG.
The relation between both notions of symplectic and metric orthogonality
is summarized by the formula

(12.2) FΩ = (JF )G

The G-orthogonal projection on the subbundle F is the morphism PG
F :

E → F given by
PG

F = (ν∗FG)] ν∗F Gb .

where νF : F → E is the inclusion of F in E.
In coordinates, if dimF = m < dimE = n, and F is the n ×m matrix

whose columns are given by a basis in F , then for a vector e ∈ Rn ' E its
projection in F , given by f̄ ∈ Rm ' F , is:

f̄ = (F>GF )−1F>Ge ,

where G is the positive definite symmetric matrix given the scalar product.
This are just the well known normal equations.

The following result demonstrates the usefulness of the adapted complex
structure for the study of subbundles.

Proposition 12.27. Let L ⊂ E be an isotropic subbundle of the sym-
plectic bundle E. Then:

a) L̂ = JL is an isotropic subbundle such that L ∩ L̂ = E0;
b) F = L ⊕ L̂ is a symplectic subbundle. It admits a complementary

symplectic subbundle given by

FΩ = (L⊕ L̂)Ω = (L⊕ L̂)G = FG

= LΩ ∩ L̂Ω = LG ∩ L̂G ;

c) LΩ = L ⊕ FΩ = L̂G and L̂Ω = FΩ ⊕ L̂ = LG are coisotropic
subbundles;

d) E = L⊕ FΩ ⊕ L̂.
e) In particular, if L is a Lagrangian subbundle, then L̂ = JL is a

complementary Lagrangian subbundle.

Proof: Since the objects are defined on each fiber, we will suppress the
subindex θ that fixes the fiber.

Notice that L̂ = IL is isotropic because L is an isotropic subbundle and
I is symplectic.
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Let v ∈ L ∩ L̂, and w ∈ L such that v = Iw. Then

G(v, v) = Ω(v, Iv) = Ω(Iw, Iv) = Ω(w, v) = 0 ,

because L is isotropic. Since G is definite positive, v = 0. This proves
L ∩ L̂ = E0.

We are going now to analyze the symplectic product in F = L⊕ L̂. For
v + Iw, v̄ + Iw̄ ∈ F ,

Ω(v + Iw, v̄ + Iw̄) = G(v, w̄)−G(v̄, w) .

From this,

Ω(v + Iw, Iv) = G(v, v) ,Ω(v + Iw,w) = −G(w,w) ,

and as a result Ω is non degenerate in F .
The rest of the proof is straightforward. tu

Coming back to our main problem of spectral properties, we use the geo-
metric structures above to obtain properties of the symplectic vector bundle
automorphism from the existence of an an invariant isotropic vector subbun-
dle. This result is important for the properties on perturbations of invariant
manifolds and for KAM theory. The paper [dlLGJV05] uses a coordinate
version of these properties in KAM theory. Similar properties occur in the
study of perturbation of invariant manifolds in [Sau01, LMS03].

Proposition 12.28. Let Mf : E → E be a symplectic vector bundle
automorphism. Let L ⊂ E be an invariant isotropic subbundle. Then, Mf

is upper triangular with respect to the splitting E = L ⊕ FG ⊕ IL, where
F = L ∩ JL.

Let

M(θ) =

 Λ(θ) B(θ) C(θ)
0 MF G

(θ) D(θ)
0 0 Λ̂(θ)


be the block representation of Mf with respect to such a splitting.

That is to say:
• Λf : L→ L satisfies Mf ◦νL = νL◦Λf ;
• MF G

f = PG
F G◦Mf ◦νF G is a vector bundle automorphism in FG;

• Λ̂f = PG
IL

◦Mf ◦νIL is a vector bundle automorphism in L̂ = IL.
Then:

a) MF G

f is a symplectic vector bundle automorphism, so

ASpec(MF G

f ,ΓB(FG)) =
(
ASpec(MF G

f ,ΓB(FG))
)−1

;

b) Λ̂f is conjugated to (Λ−1
f )∗, so

ASpec(Λ̂f ,ΓB(IL)) = (ASpec(Λf ,ΓB(L)))−1 .
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Proof: Since L is invariant, LΩ is invariant. Since L is isotropic then L ⊂ LΩ.
Notice also that LΩ = L⊕ (LΩ ∩ (IL)Ω) = L⊕ (L⊕ IL)Ω = L⊕ FG.

Let v, v̄ ∈ FG
θ = (Lθ ⊕ ILθ)G ⊂ LΩ

θ . Notice that Mv,Mv̄ ∈ LΩ
f(θ).

Moreover, for w ∈ LΩ
θ , PG

F w = PG
L w ∈ Lθ. Then, PG

F Mv,PG
F Mv̄ ∈ Lf(θ).

From these observations, we see that Ωf(θ)(MF G
(θ)v,MF G

(θ)v̄) = Ωθ(v, w).
Indeed:

Ω(MF G
v,MF G

v̄) = Ω(PG
F GMv,PG

F GMv̄) = Ω(Mv − PG
F Mv,Mv̄ − PG

F Mv̄)

= Ω(Mv,Mv̄) + Ω(PG
F Mv,PG

F Mv̄)

− Ω(Mv,PG
F Mv̄)− Ω(PG

F Mv,Mv̄)

= Ω(v, v̄) .

This proves that MF G

f is symplectic in FG.
We are going to compute now Λ̂f : IL → IL. We denote i = I|L : L →

IL, the restriction of I to L, and −i : IL→ L. So, νIL◦i = I◦νL. Then,

−i◦Λ̂f ◦i = −i◦PG
IL◦Mf ◦νIL◦i

= −i◦(ν∗ILG)]◦ν∗IL◦Gb◦Mf ◦νIL◦i

= i◦(ν∗ILG)]◦i∗◦ν∗L◦I∗◦Gb◦Mf ◦I◦νL

(12.3)

defines a vector bundle automorphism in L, over f . We split −i◦Λ̂f ◦i =
B◦Af , where

Af = ν∗L◦I∗◦G[◦Mf ◦I◦νL : L→ L∗ , B = i◦(ν∗ILG)]◦i∗ : L∗ → L .

Firstly, we analyze B : L∗ → L. For ϕ ∈ L∗θ and l ∈ Lθ,

B(ϕ) = l⇔ (ν∗ILG)]◦i∗(ϕ) = −i(l)
⇔ i∗ϕ = −(ν∗ILG)[i(l)

⇔ ∀l̄ ∈ L ϕ(l̄) = −i∗ϕ(il̄) = ((ν∗ILG)[i(l))(il̄) = G(i(l), i(l̄)) = G(l, l̄) .

So,

(12.4) B = i◦(ν∗ILG)]◦i∗ = (ν∗LG)] .

Secondly, we compute Af : L→ L∗. For all lθ ∈ Lθ and l̄f(θ) ∈ Lf(θ),

(Af l)(l̄) = (ν∗L◦I∗◦G[◦Mf ◦I◦νL(l))(l̄) = G(MfIνL(l), IνL(l̄))

= −Ω(MfIνL(l), νL(l̄)) = −Ω(IνL(l),M−1
f νL(l̄))

= −Ω(IνL(l), νLΛ−1
f (l̄)) = G(νL(l), νLΛ−1

f (l̄))

=
((

Λ−1
f

)∗
◦(ν∗LG)[(l)

)
(l̄) .

Then,

(12.5) Af =
(

Λ−1
f

)∗
◦(ν∗LG)[ .
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From (12.5) and (12.4) we obtain that (12.3) is

−i◦Λ̂f ◦i = (ν∗LG)]◦
(

Λ−1
f

)∗
◦(ν∗LG)[ ,

and with this formula we finish the proof of Proposition 12.28. tu

12.3. Conformally symplectic vector bundle automorphisms

Many of the results of this section can be generalized to conformally
symplectic vector bundle automorphisms in a complex symplectic vector
bundle. The following is a brief summary of conformally symplectic vector
automorphisms.

These automorphisms appear naturally in several models of statistical
mechanics systems that at the same time are forced and dissipate. See, for
example [WL98]. Indeed, the paper [WL98] observed that the existence of
the conformal symplectic structure explained the so-called Pairing rule for
Lyapunov exponents which had been observed empirically in [DM96]. This
paring rule for Lyapunov exponents, can be generalized to other spectral
properties as we will see.

Definition 12.29. Let σ : P → C be a non-vanishing function. A vector
bundle automorphism Mf : E → E is conformally symplectic with factor σ
iff

M(θ)∗2Ωf(θ) = σ(θ)Ωθ ,

that is to say,

∀vθ, wθ ∈ Eθ Ωf(θ)(M(θ)vθ,M(θ)wθ) = σ(θ)Ωθ(vθ, wθ) .

We say that Mf is conformally symplectic. If σ = 1, we say that Mf is
symplectic.

Remark 12.30. One of the natural places where these conformally sym-
plectic vector bundles appear is when E is the tangent bundle of a symplectic
manifold with symplectic form Ω, M is f∗ and it satisfies f∗Ω = σΩ for some
function σ.

This situation, appears in practical problems [WL98] such as the Gauss-
ian thermostat, but it is quite rigid.

Note that
0 = f∗dΩ = dσΩ = dσ ∧ Ω

Hence, if the dimension of the manifold is larger than 2, we obtain dσ = 0.
Hence, for dimensions greater than 2, the only conformal factors possible
are constants.

We note that, besides the conformally symplectic systems in the sense
mentioned above, in the literature, one can find the name conformal sym-
plectic structure in different meanings, which we will not discuss here, even
if they lead also to very interesting geometries [Vai85, DO98, Ban02].

For our purposes in this section, we will not be assuming that the bundle
is a tangent bundle and that the structures on it correspond to structures on
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the manifold. Hence, these considerations do not play a role in this section
and the results apply also to the linearization of the maps preserving some
of the conformal structures mentioned above. The effect of assuming that
the things come from the lift of structures on a manifold will be considered
in Chapter 13.

We summarize now the results for the spectrum of conformally symplec-
tic vector bundle automorphisms.

Theorem 12.31. Let Mf : E → E be a conformally symplectic vector
bundle automorphism with factor σ. Assume one of the following hypotheses:

• The modulus of σ is constant, with σ̂ = |σ(θ)| for all θ ∈ P;

• f is uniquely ergodic and σ̂ = exp
(∫

log |σ(θ)| dµ
)

, where µ is the
invariant measure.

Then:

a) z ∈ ASpec(Mf ,ΓB(E)) ⇔ σ̂

z
∈ ASpec(Mf ,ΓB(E)).

b) The symplectic orthogonal subbundle FΩ of an invariant subbundle
F ⊂ E is also invariant. (In fact, this works without assumptions
on the factor σ).

c) Define γ =
√
σ̂. Suppose that the spectrum Spec(Mf ,ΓB(E)) has a

gap in the circle of radius λ < γ. Then, there is another gap in the
circle of radius µ = σ̂λ−1 > γ. Then, E>λ ∩ E<µ and E<λ ⊕ E>µ

are complementary invariant symplectic subbundles, and E<λ and
E>µ are isotropic subbundles of the same rank.

d) The annular hull of the spectrum is of the form

ASpec(Mf ,ΓB(E)) =
l⋃

i=1

A[λi, µi] ∪ A[ρ, ρ−1σ̂] ∪
l⋃

i=1

A[σ̂µ−1
i , σ̂λ−1

i ]

where l ≥ 0, λ1 ≤ µ1 < λ2 ≤ µ2 < · · · < λl ≤ µl < γ =
√
σ̂, and

µl < ρ (if ρ > γ we assume A[ρ, σ̂ρ−1] = ∅). Let

E =
l⊕

i=1

Eγs,i ⊕ Eγc ⊕
l⊕

i=1

Eγu,i

be the corresponding spectral decomposition. Then
– for each i = 1, . . . , l dimEγs,i = dimEγu,i, and Eγs,i ⊕ Eγu,i

is an invariant symplectic subbundle;
– Eγs =

⊕l
i=1E

γs,i and Eγu,i =
⊕l

i=1E
γu,i are the γ-stable and

γ-unstable subbundles E<γ and E>γ, respectively;
– Eγc is an invariant symplectic subbundle, whose orthogonal is

(Eγc)Ω = Eγs ⊕ Eγu.
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Remark 12.32. Recall that under the assumption of the existence of
an unique invariant measure the homeomorphism f is APD, and so the
spectrum involved is rotationally invariant.

Proof: The proof of a) is an immediate consequence of

Ω]
θM(θ)∗Ω[

f(θ) = σ(θ)M−1(θ) ,

and Propositions 2.44,11.4.
To prove b), just notice that the relation of symplectic orthogonality is

preserved by conformally symplectic vector bundle maps.
The proof of c) is again similar to the corresponding result in Proposi-

tion 12.18. For instance, for vθ, wθ ∈ E<λ, and m > 0,

|Ωθ(vθ, wθ)| ≤ 1
|σ(θ,m)|

|Ωfm(θ)||M(θ,m)vθ||M(θ,m)wθ|

≤ C2
ε ||Ω||∞

(λ− ε)2m

|σ(θ,m)|
|vθ||wθ| ,

and the last term tends to zero when m→ +∞ if ε is small enough, because
λ2 < σ̂. So then, Ωθ(vθ, wθ) = 0.

The rest of the proof follow similar lines. tu

12.4. Volume preserving transfer operators

In this section we assume that Mf preserves a volume element defined
on each fiber of the vector bundle E, whose rank is n.

Definition 12.33. A volume vector bundle is a vector bundle E over
a manifold P equipped with a section V : P → Ln

a(E; C) of the bundle of
skew-symmetric n-linear forms that is non degenerate on each fiber Eθ.

Definition 12.34. A vector bundle automorphism Mf : E → E is vol-
ume preserving automorphism iff

M(θ)∗nVf(θ) = Vθ ,

that is to say,

∀v1
θ , . . . , v

n
θ ∈ Eθ Vf(θ)(M(θ)v1

θ , . . . ,M(θ)vn
θ ) = Vθ(v1

θ , . . . , v
n
θ ) .

Proposition 12.35. Let Mf : E → E be a volume preserving vector
bundle automorphism. Let

ASpec(Mf ,ΓB(E)) =
k⋃

i=1

Ai

be the annular hull of the spectrum, where each spectral annulus Ai = Aλi,µi

has multiplicity ni. Then:

λn1
1 . . . λnk

k ≤ 1 ≤ µn1
1 . . . µnk

k .
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Proof:
Let

(12.6) E =
k⊕

i=1

Ei .

be the corresponding spectral splitting. The rank of the each subbundle Ei

is ni, and it is characterized, according to Theorem 2.18, by the rates of
growth under iteration:

(12.7) vθ ∈ Ei
θ ⇐⇒ ∀m ≥ 0

{
|M(θ,m)vθ| ≤ Cε(µi + ε)m|vθ| ,
|M(θ,−m)vθ| ≤ Cε(λi − ε)−m|vθ| ,

where ε > 0 is small enough.
Fixed θ ∈ P, for each i = 1, . . . , k we consider a vector base of Ei

θ given
by vi

1, . . . , v
i
ni

. Then, for ε > 0 small enough,

0 6= |Vθ(v1
1, . . . , v

1
ni
, . . . , vk

1 , . . . , v
k
nk

)|
= |Vfm(θ)(M(θ,m)v1

1, . . . ,M(θ,m)v1
ni
, . . . ,M(θ,m)vk

1 , . . . ,M(θ,m)vk
nk

)|
≤ ||V ||∞Cn

ε (µ1 + ε)mn1 . . . (µk + ε)mnk ,

and then

1 = lim
m→∞

|Vθ(v1
1, . . . , v

1
ni
, . . . , vk

1 , . . . , v
k
nk

)|
1
m

≤ (µ1 + ε)n1 . . . (µk + ε)nk .

Therefore,
1 ≤ µn1

1 . . . µnk
k .

The second inequality follows using similar arguments. tu

Remark 12.36. If the annuli are in fact circles, i.e. λi = µi = ρi, then
we have the equality

1 = ρn1
1 . . . ρnk

k .



CHAPTER 13

Spectrum in locally constrained spaces

13.1. Introduction

In several applications, it is natural to consider transfer operators acting
on vector fields which satisfy some constraints of a local nature. The pre-
cise definitions will follow later, but we anticipate that (locally) constrained
spaces are spaces of vector fields (or sections) whose derivatives have to sat-
isfy some relations. Examples to keep in mind, are spaces of vector fields
which have zero divergence or spaces of forms which are exact. The name
(locally) constrained makes a reference to the fact that the nature of the con-
strain is a relation on derivatives. By examining an arbitrarily small enough
region, we may conclude that the space does not satisfy the constraint.

There are many situations where these local considerations are impor-
tant. Let us just anticipate two examples, which will be discussed in more
detail in Section 13.2.

In hydrodynamics, it is natural to consider the evolution equations acting
on volume preserving vector fields. In hydrodynamics parlance, the push
forward on vector fields is just the transport operator of vector quantities.

It is well known that Euler equations are just the transportation of the
velocity vector. So that the variational equations of Euler equations is just
the transportation of the small perturbations.

The push-forward also appears naturally in the magneto-hydrodynamics
of perfectly conducting fluids. The fact that the conductivity is perfect
means that the magnetic fields generate currents, which in turn generate
magnetic fields. If we ignore the effect of the currents on the velocities of
the fluid (a natural assumption for small magnetic fields) it is a standard
calculation, that the magnetic vector field is transported by the velocity field.
Since, by Maxwell’s equations the magnetic fields have zero divergence, it
is natural to consider the push-forward acting on this space. For a reviews
of the physical discussions of this motivation, we refer to [RS92, Chi92,
Mof95, FMN03, Gil03]. Applications in hydrodynamics are in [VF93,
SV04, SF05].

Another motivation from the field of pure mathematics is the study the
effect on dynamical systems on topology (e.g. we want to study the effect
in homology), it is natural to study the spectrum on closed forms. When
studying regularity of solutions of invariance equations, it is natural to study
the spectrum in spaces of jets.

177
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We can consider spaces in which the divergence zero constrain is defined
in a weak sense (the flux over every small enough ball vanishes). With this
definition, the space of continuous zero divergence vector fields is a closed
subspace of the space of continuous vector fields. Similarly, the space of
forms such that the integral is zero over any small enough boundary, is
a closed space of the set of forms. Of course, both subspaces are strict
subspaces for non-trivial manifolds.

If Y ⊂ X is a closed linear subspace and A : X → X is a linear operator
such that A(Y ) = Y , one can guess that Spec(A, Y ) ⊂ Spec(A,X). Indeed,
such inclusion is true in finite dimensional spaces or in the case of self-adjoint
or normal operators, which dominates the treatments of spectral theory in
the literature. Generally speaking, the inclusion follows if there exists a
projection P of X over Y that commutes with A, see Theorem A.9. As it
turns out, we will see that in the case of transfer operators acting locally
constrained spaces the opposite inclusion is true!

Indeed, one can be very precise about the way that the spectrum grows.
The precise result is the No Gaps Theorem, see Theorem 13.11.

Of course, the reason why the spectrum grows is that, restricting the
space, may generate residual spectrum. See Section A.1.0.1. Some simple
examples of the growth of the spectrum by restricting the space can be found
in [HP69].

This No Gaps Theorem was proved first in [dlL93] in the context of the
dynamo problem. See also [CLMS95, CLMS96].

In this chapter, we will show that this phenomenon happens not only for
zero divergence vector fields, but also for spaces of forms. As we will see this
has several consequences for dynamical systems. In particular, we will find
relations between this phenomenon and some global properties of dynamical
systems, in particular, we will find a relation with a famous conjecture of
R. Bowen about the homology of Anosov systems and we will also find
some relations with regularity theory of homology equations and with the
integrability of intermediate foliations.

13.2. Spaces of sections: vector fields, forms and jets with
constrains

We will denote by χ1
C0 , χ1

B, χ∗1C0 , χ∗1B the Banach spaces obtained by
complexifying the spaces of continuous vector fields, bounded vector fields,
continuous forms, and bounded forms on a manifold P, equipped with the
supremum norm.

These are, of course, the same as taking sections of the complexification
of the tangent and cotangent bundle.

Other well known examples are tensor fields of covariance (n,m) and
we will denote by χn,m

C0 , χn,m
B the Banach spaces of C0, and bounded tensor

fields. (Again, in this chapter we will always consider complexification.)
Of course, n forms can be identified with antisymmetric tensor fields of
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covariance (0, n). The space of n forms is a closed subspace of the space of
tensor fields of covariance (0, n)

We will also consider spaces of sections in a jet bundle. There are many
equivalent definitions of n-jets of functions at a point. The most common
one is equivalence classes of C∞ functions under the equivalence relation

Φ ≈ Φ̃ ⇔ DiΦ(x0) = DiΦ̃(x0) i ≤ n .

We can think of them as the set of Taylor polynomials of order n after we
take coordinates. (By Borel’s theorem given any symmetric polynomial we
can find a C∞ function which has it a Taylor polynomial.) Of course, jets
at a point are a linear space, which can be given a canonical norm if there
is a metric in the tangent space – as we will assume is the case –. We will
denote by Jn

C0 and by Jn
B the spaces of continuous and bounded sections in

the n-jet bundle equipped with the supremum norm. We note that if the
function f is Cn, there is a natural push-forward in the space of jets which
corresponds to considering associating to the function Φ the function Φ ◦ f .
It is easy to note that if Φ and Φ̃ agree to order n at x, then, Φ◦f and Φ̃◦f
agree to order n at f(x). Hence, the operation projects down to the space
of jets.

Similarly, we will consider other spaces of jets and their corresponding
spaces of sections. For example, we can consider the jets of sections of a
vector bundle E, which we will denote by Jn(E). Again, we will denote by
a subindex the regularity we are considering.

Particular cases of this situation will be jets of vector fields and forms
or, more generally jets of tensor fields of type k, l. We will denote by Jn,k,l

C0

Jn,k,l
B the spaces of sections of n-jets to tensor fields of type k, l, continuous

and bounded, respectively. Of course, the jets of functions can be considered
a particular case of those. The jets of forms can be considered as a closed
subspace.

We note that if we have a vector bundle map Mf acting on sections of
tensor fields χk,l and if Mf and f are Cn, it is possible to define an operator
on Jn,k,l associated to it. If Ψ and Ψ̃ agree to order n at x, then T Ψ and
T Ψ̃ will agree to order n at f(x). Hence, the operation can be defined on
jets. This is a very common construction when we try to consider regularity
properties of invariant objects. We will refer to these operators as derived
operators.

In geometry, it is also customary to think about jets of other objects
such as submanifolds. Since the goal of this paper is to consider spectral
properties of linear operators, we will need that the spaces of jets we consider
have a linear structure. Hence, we will consider the jets motioned above.
Nevertheless, we will point out that the analysis in the space of linear jets can
be used as a tool for the study of non-linear objects via linearization, implicit
function theorems, etc. Indeed we have included a section on applications
to dynamical systems.
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Note that since there is a natural way of considering Jn as containing
in Jn−1 we can consider J=n = Jn/Jn−1 and therefore, Jn =

⊕n
i=0 J

=i.
This corresponds to sections of Taylor homogeneous polynomials of order
n, and each J=i can be identified with sections of symmetric i multilinear
operators, see Chapter 11. Identical considerations can, of course, be made
for the spaces of jets of tensor fields and derived operators.

An important assumption that we will make about operators acting on
spaces of jets is that they are upper triangular with respect to the above
decomposition on degrees. This assumption is satisfied by all the geometric
operators that we will consider in our applications.

We call attention to the fact that a section of the space of jets means
choosing a jet at each point. Note that a section of the jet bundle does not
need to agree at each point with the jet of a single function. For example,
the space of 1-jets in a manifold is just space of vector fields — any vector at
a point can be the gradient at a function –. Nevertheless, to be the gradient
at a function on an open set requires extra conditions such as zero curl and
that the integral over a homologically non-trivial path vanishes. Moreover,
if we consider also second jets of a single function, taking the derivative of
the first jet, we can recover the second one. If we choose a section of the
2-jet bundle that does not preserve this constraint, it cannot be the second
jet of a function. These observations will become very important later.

Besides the above spaces of sections of vector bundles we will be inter-
ested in some of their closed subspaces. For example we will consider spaces
of continuous vector fields with zero divergence or spaces of 1-forms which
are closed or exact as well as spaces of jets that are locally, or globally, the
jet of a single function. As we mentioned before, one motivation for the
study of zero divergence is magneto-hydrodynamics and a motivation for
closed forms is the study of transfer operators on differentiable functions.

The definitions that we will find useful in our study for zero divergence
vector fields and for closed and exact forms are in a weak sense.

Definition 13.1. We will consider the following spaces:

χ1
nd = {v ∈ χ1

C0 | FluxΣ(v) = 0 ∀ Σ C1 boundariless surface},
χ1

lnd = {v ∈ χ1
C0 | FluxΣ(v) = 0 ∀ Σ, C1 surface Σ = ∂V

for V a region in space contractible to a point.},

χ∗1e = {γ ∈ χ∗1C0 |
∫

β
γ = 0 , ∀ β C1 path.},

χ∗1c = {γ ∈ χ∗1C0 |
∫

β
γ = 0 , ∀ β C1 path homologous to zero}.

Note that χ1
nd ⊂ χ1

lnd ⊂ χ1
C0 , χ∗1e ⊂ χ∗1c ⊂ χ∗1C0 and the inclusions are,

in general, non trivial (χ∗1c /χ
∗1
e is of course, the first cohomology of the

manifold and the others are significantly subtler except in the case of one-
dimensional manifolds). Moreover all the inclusions are closed subspaces
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since the definitions make it clear that the spaces are the intersection of
closed conditions.

Remark 13.2. We point out that the definition of zero divergence as
the zero flux is more natural not only from the mathematics point of view
but also from the physical point of view. When we consider magnetic fields
in a region that contains two media, the H magnetic field (independent of
the media) is continuous, but the B magnetic field, which is affected by the
permeability of the media may be discontinuous. Nevertheless, the condition
of zero flux is always enforced.

We will also consider Jn
c , Jn

e the complexified Banach spaces of C0 sec-
tions of n-jets which agree with the jet of a Cn function in a sufficiently
small neighborhood of any point and in the whole manifold. respectively.
We have Jn

c ⊂ Jn
e and the quotient of the two spaces is the homology of the

manifold. The spaces Jn
c and Jn

e are closed subspaces of Jn
C0 ⊂ Jn

B.
If we recall that a 1-jet is the value of the function and its differential

and that if we fix the value of the function at one point and have given the
differential function we can recover the function at any point, we see that
we have a natural identification

χ∗1e ⊕ C ≈ J=1
e ⊕ C ≈ J1

e ≈ C1

We will add a subindex c to denote jets that are locally the jet of a
function or tensor field and an e to denote those that are the jet of a function
or tensor field defined globally. Similar identifications occur for functions
with a higher number of derivatives or for the spaces of jets of tensor fields.
When we consider geometrically natural operators such as the push forward,
they act independently on the constant part and on the one form part. So
that the decomposition of the spectrum is block diagonal. (In more common
language, to know the derivatives of a transported function ϕ ◦ f , we do
not need to know the values of the function. It suffices to know the values
of the derivatives.)

When we consider higher order jets similar phenomena occur. If we are
reconstructing a function – or a tensor field – from its jet, it suffices to
consider only the higher order jet and a finite dimensional space of initial
data that allow us to perform the integrations. Hence, when discussing
the effect of the local constraints, it makes sense to consider only the the
components of maximal order. That is,

J=k
e ⊕ Cs(k,d) ≈ Ck

where s(k, d) is a combinatorial number depending on the degree and the
dimension of the manifold, that is the dimension of the space of jets at a
point of degree smaller than k.

For n ≥ 2 there are two complications with this identification. The first
one is that it forces us to consider non-local operators. Even for the push
forward, we note that D2(ϕ◦f) = (D2ϕ)◦f Df⊗2+(Dϕ◦f)D2f . If we decide
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to express the RHS only in terms of D2ϕ and the initial values, we have to
express Dϕ in terms of D2ϕ using an integral. The second complication is
that the decomposition of the action on Jn by degree is not block diagonal
but only upper triangular.

This considerations suggest that we consider J=n as the unconstrained
space of integrable n-jets. Of course, a better justification will come from
the statements of the theorems. In dealing with them we will have to take
into account the peculiarities.

From now on, when dealing with exact forms, zero divergence filed, we
will make the standing assumption that the manifold M we are considering
has dimension greater or equal than two. In one dimensional manifolds, zero
divergence vector fields are constants, all one forms are closed, and therefore
the results we present here become trivially true or trivially false and it is
quite easy to figure out which one is which and it would be space consuming
to deal with this special case. We leave the case of the dimension equal to
one to the exceedingly meticulous reader.

Definition 13.3. We will refer to the spaces

χ1
nd, χ

1
lnd, χ

∗1
c , χ

∗1
e , J

=n
c , J=n

e , J=n
c (E), J=n

e (E)

as “locally constrained” spaces, since they have to satisfy some relations
around each point and we will refer to

χ1
B, χ

1
B, χ

∗1
B , χ

∗1
B , J

=n
B , J=n

B , J=n
B (E), J=n

B (E)

as the corresponding unconstrained spaces, respectively.

Remark 13.4. We can take the unconstrained spaces with C0 regular-
ity. The spectral implications are the same, since considering C0 or bounded
sections do not change the spectrum and Weyl spectrum of transfer opera-
tors.

Many operators – indeed most of the operators of geometric interest –
have the property that, even if defined in the unconstrained space preserve
the constrained space. Important examples of maps over a diffeomorphism
are the geometric push forward and pull back. On vector fields, the push
forward is defined by

(f∗v)(x) = (Df(f−1(x))v(f−1(x))

and, on forms, the push forward is

(f∗u)(x) = (Df−1(x))>u(f−1(x))

where ( )> denotes the adjoint with respect to the metric.
For diffeomorphisms the pull back f∗ is just the inverse of the push

forward. We remark that for maps that are not injective it is possible to
define the pull-back for forms and the push-forward for vector fields. Some
of the arguments that we develop here works in this generality. For example,
the invariance of the spectrum under rotations, but other arguments that
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depend on the existence of complementary splittings with contraction in the
future or in the past does no.

We also point out that if f is volume preserving map f∗ preserves the
spaces of zero divergence vector fields: f∗χ1

nd = χ1
nd. Any diffeomorphism

preserves the space of closed and exact forms: f∗χ∗1c = χ∗1c , f∗χ∗1e = χ∗1e .
In all those cases, we will show that the Weyl spectrum agrees with that

of the unconstrained spaces. (We call attention that we will not make any
assumptions on the dynamics of the map, in contrast with the results in
[dlL93] which assumed APD.) That is, we will show that

(13.1) SpecW (f∗, χ1
nd) = SpecW (f∗, χ1

C0),

and analogously for closed and exact 1-forms and for closed and exact n-jets.
In fact,

(13.2) SpecW (f∗, χ∗1e ) = SpecW (f∗, χ∗1c ) = SpecW (f∗, χ∗1C0)

so that the Weyl spectra in (13.1) and (13.2) are identical. The results in
spaces of n-jets with n ≥ 2 are somewhat more complicated to state since
they require the consideration of what is the appropriate local model. We
will postpone a precise statement.

We will also show that the spectrum in all of those constrained spaces
does not contain a gap which includes a circle centered at the origin. If
the map is APD, and therefore the spectrum is rotationally invariant, we
conclude that, for some 0 < λ− ≤ λ+

Spec(f∗, χ̃) = Aλ−,λ+ ,

where χ̃ is any of the locally constrained spaces mentioned above. This
has the corollary that in all these constrained spaces, the push forward has
residual spectrum filling the gaps of the spectrum in an unconstrained space.

Even if we will not discuss it in this paper, we point out that there is
a generalization of this theory for vector fields. From the point of view of
many applications to rates of growth it suffices to take time one maps and
apply the theory presented here. Nevertheless it is interesting to develop the
theory of vector fields in its own. Many of the techniques we present here
work, mutatis mutandis, but the unboundedness of the vector field makes it
significantly more complicated since one has to take into consideration do-
mains, the fact that applying the operator to an approximate eigenfunction
may render it not an approximate eigenfunction etc. One interesting ques-
tion is to prove that the spectrum of the time one map is the exponential of
the flow and – much more difficult – to show that the spectrum of the flow is
the full inverse image under the exponential of the spectrum of the time one
map. Other questions of interest for dynamical systems include the study of
the dependence of the spectrum on the map, and its stability with respect
to random perturbations, the study of operators acting of Hölder sections,
etc. We plan to come back to these questions, but we cannot include them
here.
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13.3. Mather theory in locally constrained spaces

13.3.1. Definition of locally constrained space of sections. In
this section we will study the spectrum of bundle maps on constrained spaces
of sections (see Definition 13.5 below), keeping in mind the spaces χ1

nd, χ∗1c ,
χ∗1e , Jn

c , Jn
e , Jn,i,j

e introduced in the previous section.
For all of them, we will establish several results that can be described

informally as follows. Assume f is APD.

i) The Weyl spectrum of the operator M in a constrained space is
the same as in the corresponding unconstrained space.

ii) Annular gaps in the spectrum of M acting in a locally constrained
space exist also in the spectrum of M acting on the corresponding
unconstrained space. Moreover, they correspond to local projec-
tions.

The point of ii) is that there are no local projections that leave
invariant the constrained spaces. So that ii) is only an intermediate
result along the way to show that its hypothesis do not hold. Hence,

iii) There are no annular gaps on the spectrum of M in the locally
constrained spaces.

Therefore, when the Weyl spectrum is invariant under rotation the lo-
cally constrained spaces can be obtained by “filling in” the gaps of the
spectrum in the unconstrained spaces. Since the Weyl spectrum is the same
for the locally constrained and the unconstrained spaces, we conclude that
the regions that have been filled in are residual spectrum.

We point out that the arguments employed are rather general (as it is
made plain by the fact that we can deal with 5 or 10 different constrained
spaces). We only need that functions with a well defined direction can be
approximated in the locally constrained space after changing the modulus
— but not the direction — and that these spaces are not invariant under
local projections.

This “no gap phenomenon” was discovered in [dlL93] for the space
of zero divergence vector fields, an example motivated by applications to
magneto-hydrodynamics. The arguments were streamlined and extended in
[CLMS95, CLMS96, CL99].

It seems quite plausible that the arguments presented here can be adapted
to other problems, e.g., spectra of differentiable tensor fields and may be to
other regularity classes such as Sobolev spaces. This could be interesting
for the hydrodynamic applications. Nevertheless, we did not consider it in
this paper.

A formalization of the idea of locally constrained space of sections fol-
lows.

Definition 13.5. Let E be a Finslered vector bundle on a base manifold
P. Let Γ ⊂ ΓB(E) be a closed Banach subspace (with norm ||||∞). We
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will say the the space of sections Γ is locally constrained iff the following
properties hold:

(a) Fattening condition: vectors are well approximated by sections in
Γ. That is, given v0 = vθ0 ∈ E \ E0 and a continuous extension
v ∈ ΓC0(E) with v(θ0) = v0, for all σ > 0 there exist a section
w ∈ Γ and a function ρ ∈ B(P) such that:

(a.1) suppw ⊂ Bσ(θ0), w(θ0) = v0;
(a.2) supp ρ ⊂ Bσ(θ0), ρ(θ0) = 1, 0 ≤ |ρ(θ0)| ≤ 1;
(a.3) |w(θ)− ρ(θ)v(θ)| < σ|v0|.

(b) Constraining condition: Γ is not stable by projection on proper sub-
bundles. That is, for all F ⊂ E proper subbundle, with projection
ΠF , there exists a locally constrained section v ∈ Γ whose projection
on F is not locally constrained, i.e. ΠF v /∈ Γ.

Remark 13.6. The role played by the continuous extension in condition
(a) above is just to capture the idea that w is “almost parallel” to v0. In a
trivialization, we can use the statement |w(θ)− ρ(θ)v0| < σ|v0|. Notice also
that the result is independent of the extension we choose, because if v1, v2
are continuous extensions and w is close to ρv1, then

||w − ρv2||∞ ≤ ||w − ρv1||∞ + ||ρ(v1 − v2)||∞ ≤ σ|v0|+ η(σ) ,

where η(σ) is the modulus of continuity of v1 − v2.
Instead of using trivializing neighborhoods to fattening up v0 to v, we can

also use a connector. This device define a parallel transport Tθ0,θ between
close fibers Eθ0 and Eθ (see [HPPS70, HdlL03a]). Then, we can define v
in Bσ(θ0) by v(θ) = ρ(θ)Tθ0,θv0.

13.3.2. Equality of Weyl spectra. In this subsection we show that
in locally constrained spaces the Weyl spectrum is the same as in the non-
constrained spaces. In this subsection we state the abstract result, that will
be applied later to the locally constrained spaces considered in the previous
section (zero divergence vector fields, closed forms, exact forms, integrable 1-
jets) the Weyl spectrum is the same as in the non-constrained spaces. For the
n-jet spaces we will also have some results, but they are more complicated
to state – due mainly to the difficulty of selecting a local model –,hence, we
will state them carefully in a subsequent subsection.

The result of equality of Weyl spectrum holds under the assumption that
vectors are well approximated by locally constrained sections.

Theorem 13.7. Let Mf : E → E be a vector bundle automorphism.
Let Γ ⊂ ΓB(E) be a closed Banach subspace (with norm ||||∞) satisfying the
fattening condition (a) of Definition 13.5. Assume that Γ is invariant under
Mf . Then:

SpecW (Mf ,Γ) = SpecW (Mf ,ΓB(E)) .

Proof: Since SpecW (Mf ,Γ) ⊂ SpecW (Mf ,ΓB(E)) follows from Functional
Analysis, it suffices to establish the opposite inclusion to prove the first part
of Theorem 13.7.
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Let z ∈ SpecW (Mf ,ΓB(E)). Given an approximate eigensection v ∈
ΓB(E) we will produce another one w ∈ Γ. Notice that we can assume
that the bounded approximate eigensection is of a particularly simple kind,
that is satisfying one of the set of properties (a) and (b) of Lemma 3.1.
Then, we will fatten up this localized approximate eigensection to produce
an approximate eigensection in Γ.
(a) In this case we have obtained a bounded approximate eigensection v
supported in a finite segment of orbit {f i(θ0)}N

i=−N , with f i(θ0) 6= f j(θn)
for i 6= j with |i| ≤ N, |j| ≤ N , with N = [1/ε]. The error as approximate
eigensection is smaller than 2ε|z|.

Moreover, if we denote vi = v(f i(θ0)), we have chosen those vectors in
such a way that

vi+1 =
γi

z
M(f i(θ0))vi

for i = −N, . . . , N − 1. The γ’s are constants in
[

1
2 ,

3
2

]
, and satisfy

(13.3)
∣∣∣∣ 1
γi−1

− 1
∣∣∣∣ |vi| ≤ 2ε ,

that follows from the construction that makes v an approximate eigensection.
We use the cocycle notation for γ(i) = γi−1 . . . γ1γ0 if i > 0, γ(0) = 1 and
γ(i) = γ−1

i . . . γ−1
−2γ

−1
−1 if i < 0. Notice that

vi =
γ(i)
zi

M(θ0, i)v0 ,

for i = −N, . . . , N .
We will replace each of the vectors on the orbit by a function that has

support in a small neighborhood chosen in such a way that it is still an
approximate eigensection. Notice that we can pick coordinates around each
of the points in the finite segment {f i(θ0)}N

i=−N in such a way that the
bundle is trivialized.

Let σ > 0 be small enough so that the neighborhoods f i(Bσ(θ0)) with
i = −N, . . . , N are disjoint and included in trivializing neighborhoods, and
σ satisfies other smallness conditions that will be specified later. Then, we
construct the section w ∈ Γ and the function ρ ∈ B(P) satisfying properties
(a.1),(a.2),(a.3) of Definition 13.5. We denote δ(θ) = w(θ) − ρ(θ)v0, that
satisfies ||δ||∞ < σ|v0|.

We extend the definition of w = w0 in Bσ(θ0) around the points of the
finite segment of orbit. So, if θ ∈ f i(Bσ(θ0)) with i = −N, . . . , N we set

w(θ) = wi(θ) =
γ(i)
zi

M(f−i(θ), i)w0(f−i(θ)) ,

and w(θ) = 0 otherwise.
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Then, for θ ∈ f i(Bσ(θ0)) and working in coordinates,

|M(f−1(θ))w(f−1(θ))− zw(θ)|
=

1
|z|i−1

∣∣(γ(i− 1)− γ(i))M(f−i(θ), i)w0(f−i(θ0))
∣∣

≤ |(γ(i− 1)− γ(i))|
|z|i−1

(
||M(·, i)||∞||δ||∞ + |ρ(f−i(θ))M(f−i(θ), i)v0|

)
≤ |(γ(i− 1)− γ(i))|

|z|i−1

(
σ||M(·, i)||∞|v0|+ |ρ(f−i(θ))||M(θ0, i)v0|

+ |ρ(f−i(θ))||(M(f−i(θ), i)−M(θ0, i))v0|
)

≤ |(γ(i− 1)− γ(i))|
|z|i−1

(
σ||M(·, i)||∞ + ηi(σ) +

∣∣∣∣ zi

γ(i)
vi

∣∣∣∣)
≤ |(γ(i− 1)− γ(i))|

|z|i−1
(σ||M(·, i)||∞ + ηi(σ)) + 2ε|z| ,

where ηi is the modulus of continuity of M(·, i). Notice that by taking σ
small we make the first two terms arbitrarily small. Clearly, outside of the
neighborhoods the difference is zero. So, we can make w an approximate
eigensection in Γ, and we are able of fattening up localized approximate
bounded eigensections under the alternative (a).
(b) The second alternative is that the approximate eigensections are sup-
ported on periodic orbits of minimal period N . Moreover, the points around
the periodic point θ0 of the approximate eigensection are also periodic, with
period a multiple of N .

Much more, the approximate eigensection that is given by the vectors
v(f i(θ0)) = vi, satisfies

vi+1 =
1
z0
M(f i(θ0))vi

for all i ∈ Z (that means zN
0 is an eigenvalue of M(θ0, N) with eigenvector

v0), and |z − z0| < ε.
Proceeding analogously to the analysis of the previous alternative, we

define for θ ∈ f i(Bσ(θ0)) with i = 0, . . . , N − 1

w(θ) = wi(θ) =
1
zi
0

M(f−i(θ), i)w0(f−i(θ)) ,

and w(θ) = 0 otherwise. The section is well defined because the points
around θ0 have period multiple of N . The rest of the analysis follows the
lines of the alternative (a). tu

Remark 13.8. We call attention to the fact that Theorem 13.7 does not
include any hypothesis on the dynamics of f .

Remark 13.9. Notice that the fattening condition (a) in Definition 13.5
implies that evaluation of locally constrained sections at points are well de-
fined operations, see hypothesis (b) in Theorem 3.14. Moreover, the equality
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of Weyl spectrum in Theorem 13.7 implies the inclusion (c) in Theorem 3.14.
As a result, we have the inclusion

(13.4) ASpec(Mf ,ΓB(E)) ⊂ ASpec(Mf ,Γ) .

Remark 13.10. If f is APD then all the spectrum involved is rota-
tionally invariant and the A can drop from (13.4). We have just to apply
the equality of Weyl spectrum of Theorem 13.7 and the invariance of the
spectrum under rotations of Theorem 3.11.

We point out, however, that the invariance under rotations could be
done directly using the methods used in the proof of Theorem13.7, based
strongly in the Mather localization arguments of Lemma 3.1. This is what
was done in [dlL93].

13.3.3. Absence of gaps in the spectrum in locally constrained
spaces. Now we can establish the No Gaps Theorem

Theorem 13.11. Let Mf : E → E be a vector bundle automorphism.
Let Γ ⊂ ΓB(E) a locally constrained space of sections, invariant under Mf .
Then, there are no annular gaps in Spec(Mf ,Γ). That is, it is impossible
to find ρ > 0 such that we have

{z | |z| = ρ} ∩ Spec(Mf ,Γ) = ∅ ;

{z | |z| > ρ} ∩ Spec(Mf ,Γ) 6= ∅ ;

{z | |z| < ρ} ∩ Spec(Mf ,Γ) 6= ∅ .
(13.5)

Proof: If ρ as in (13.5) existed, we could find nontrivial spectral projections
P<ρ, P>ρ. Since by 13.7 we know that

SpecP (Mf ,ΓB) ⊂ SpecW (Mf ,ΓB) = SpecW (Mf ,Γ) ⊂ Spec(Mf ,Γ),

so we can apply Theorem 3.14 and conclude that there should be a non-
trivial splitting of the bundle E = E<ρ⊕E>ρ that corresponds to the spec-
tral projections P<ρ, P>ρ. That is if Π<ρ,Π>ρ are the bundle projections,
then there are functional-geometrical identities

(P<ρv)(θ) = Π<ρ
θ v(θ) , (P>ρv)(θ) = Π>ρ

θ v(θ) .

for all v ∈ Γ.
On the other hand, we note that for a given a non-trivial subbundle it

is always possible to find a section in Γ whose projection is not in Γ.
We conclude that no such projections P<ρ, P>ρ can exist and, therefore,

that a ρ satisfying (13.5) cannot exist. tu

As an easy corollary we obtain

Corollary 13.12. Let Mf : E → E be a vector bundle automorphism
over an APD homeomorphism. Let Γ ⊂ ΓB(E) a locally constrained space
of sections, invariant under Mf . Then, for some 0 < ρ− ≤ ρ+ we have

Spec(Mf ,Γ) = Aρ−,ρ+
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The proof consists in observing that, since f is APD, by Theorem 3.11,
the only gaps in the spectrum that could occur are precisely annular gaps
that are excluded by 13.11.

Note that the inner and outer boundaries {z | |z| = ρ−, ρ+} are in the
Weyl spectrum and hence in the spectrum of Mf in the unconstrained space
ΓB(E). Conversely, the inner and outer boundaries of the spectrum in the
unconstrained space are also in the spectrum in the constrained space.

Hence for all APD maps, Spec(Mf ,Γ) is obtained just by filling in the
gaps of Spec(Mf ,ΓB(E)), the spectrum in the corresponding unconstrained
space. Since the Weyl spectrum cannot increase, we conclude that the filling
is in residual spectrum (see A.1.0.1).

13.4. Examples of locally constrained spaces of sections

In this section we will prove that the locally constrained spaces of sec-
tions χ1

nd, χ
∗1
e satisfy indeed Definition 13.5.

Lemma 13.13. The spaces χ1
nd, χ

∗1
e are locally constrained, that is, they

satisfy the fattening condition and the constraining condition of Defini-
tion 13.5.

Proof: The proof of Lemma 13.13 will have to be different for each of the
constrained spaces considered in it. Notice that they satisfy the constraining
condition of Definition 13.5, so we have to prove the fattening condition.

The case of zero-divergence vector fields was already considered in [dlL93]
where a procedure to construct the approximate eigenfunctions was de-
scribed in detail. Independently, and roughly at the same time, the paper
[Núñ94] contained explicit formulas for approximate eigenfunctions of vol-
ume preserving vector fields, even if it did not draw conclusions about the
spectrum. The work [CLMS95, CL99] contains very explicit formulas for
the constructions sketched in [dlL93].

We will not repeat all the details here and we refer to the above literature
for more details. Nevertheless, we will describe informally the idea. We
consider two thin tubes of flow which widen at the ends. The wide sides
start to turn around till they connect. A divergence free flow of a physical
fluid in such a configuration will have a high velocity in the thin part of the
tubes and its direction will be, very closely, in direction of the tubes. As
the tubes are getting wider the flow is slowing so that when it starts to turn
around its magnitude is very small.

Now we consider the case of χ∗1e . Even if this is a particular case of the
case Jn

e and could be done by the same methods, it is instructive to give an
independent proof.

Working in a trivialization it suffices to produce a function with compact
support and whose gradient is roughly in the direction of x1. (We can
without loss of generality assume that in the trivialization chosen the vector
ν lies along the x1 axis.)
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The idea behind the construction is to obtain functions whose depen-
dence in the x1 variable is much stronger than that in the other variables.
This can be easily achieved but taking a regular cut-off function and scaling
it by very different factors.

If ϕ is a C∞ cut-off function on the real line ϕ(t) = 1, t ∈ [−1/2, 1/2];
ϕ(t) = 0, |t| > 1; 0 ≤ ϕ ≤ 1; |ϕ′| ≤ 4, we set:

(13.6) u(x) =
∫ x1

−∞
ϕ(s2/ε4 + (x2

2 + · · ·+ x2
d)/ε2) ds.

We denote ρ(x) = ϕ(s2/ε4+(x2
2+· · ·+x2

d)/ε2) the integrand in (13.6). From
the fact that 0 ≤ ϕ ≤ 1 and that the support of ρ is in |x1| ≤ ε2 we obtain
that 0 ≤ u(x) ≤ 2ε2. Note that in fact the support of the integrand is in
|x1| ≤ ε2, |x2|2 + · · ·+ |xd|2 ≤ ε2 (and then in |xj | ≤ ε for j 6= 1), and that
the dependence on the x2, . . . , xd variables is much smaller than on the x1

variable.
Note that

∂u

∂x1
(x) = ϕ(x2

1/ε
4 + (x2

2 + · · ·+ x2
d)/ε2)

∂u

∂xj
(x) =

∫ x1

−∞
2xj/ε

2 ϕ′(s2/ε4 + (x2
2 + · · ·+ x2

d)/ε2) ds, j 6= 1,
(13.7)

from where we obtain ∣∣∣∣ ∂u∂xj
(x)
∣∣∣∣ ≤ 16ε, j 6= 1.

Notice that w(x) = ∇u(x) satisfy all the desired properties in the fat-
tening condition of Definition 13.5, except that its support is not small.
Unfortunately, working in a trivialization we need to ensure that we work
in a sufficiently small system of coordinates.

We just set

(13.8) ũ(x) = ϕ((x2
1 + · · ·+ x2

d)/ε2) u(x)

and w = ∇ũ(x). Its support is in |xj | ≤ ε, for j = 1, . . . , d. Then

(13.9)
∂ũ

∂xj
(x) = ϕ(|x|2/ε2)

∂u

∂xj
(x) + 2xj/ε

2 ϕ′(|x|2/ε2)u(x) .

Since we had already established |u(x)| ≤ 2ε2, we have that the last term in
the RHS of (13.9) can be bounded by 16ε. Hence

∂ũ

∂x1
(x) = ϕ(|x|2/ε2)ρ(x) +O(ε)∣∣∣∣ ∂ũ∂xj
(x)
∣∣∣∣ = O(ε), j 6= 1.

(13.10)

The function ũ has arbitrarily small compact support and hence, it is
possible to lift it to the manifold in such a way that the properties are not
disturbed. This finishes the proof of 13.13 for χ∗1e . tu
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As a corollary, we obtain the following theorem.

Theorem 13.14. (a) Let Tf be a geometrically natural operator on χ1
B

leaving χ1
nd,χ1

lnd invariant. Then:

SpecW (Tf , χ
1
nd) = SpecW (Tf , χ

1
lnd) = SpecW (Tf , χ

1
B).

Moreover, the spectra Spec(Tf , χ
1
nd), Spec(Tf , χ

1
lnd) have no gaps.

(b) Let Tf be a geometrically natural operator on χ∗1B leaving χ∗1e ,χ∗1c

invariant. Then

SpecW (Tf , χ
∗1
e ) = SpecW (Tf , χ

∗1
c ) = SpecW (Tf , χ

∗1
B ).

Moreover, the spectra Spec(Tf , χ
∗1
e ),Spec(Tf , χ

∗1
c ) have no gaps.

Remark 13.15. Notice that from the inclusions χ1
nd ⊂ χ1

lnd ⊂ χ1
B we

obtain the corresponding inclusions for the Weyl spectra. Notice also that
Theorem 13.7 applied to χ1

nd shows the equality of Weyl spectra in χ1
nd and

in χ1
B, incidentally proving the equality for χ1

lnd.
The same remark works for χ∗1e ⊂ χ∗1c ⊂ χ∗1B .
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Applications





CHAPTER 14

Structural stability and shadowing

14.1. Introduction

In this chapter we apply the previous results to prove some results in
dynamical systems.

We will prove several variants of results on structural stability and in
shadowing. The common theme of these results is that they amount to
showing that some functional equation has a solution. The transfer opera-
tors which we have considered in this chapter will appear as the linearized
version. Hence, the desired results will follow from an application of appro-
priate implicit function theorems. One important side effect of this approach
is that we will obtain differentiability with respect to parameters.

Also, by considering weighted spaces, we will obtain results on the local-
ization of perturbations. These results are important in the theory of Livsic
on solutions of cohomology equations.

Finally, a very similar approach to that in this chapter is applied to
some results on invariant manifolds, based on the recent developments on
the parameterization method, which relies heavily on the spectral properties
[CFdlL03a, CFdlL03b, CFdlL05].

The first result we present is the celebrated result on structural stability
of Anosov (or Axiom A) systems. This result was the main motivation for
[Mat68].

We recall that structural stability for Anosov systems shows that given
f Anosov diffeomorphism (several characterizations of Anosov are shown to
be equivalent in Proposition 14.1) then, for all g C1 close, there exists a
homeomorphism h in such a way that

(14.1) h ◦ f = g ◦ h.

Structural stability for Anosov systems was first proved in [Ano69].
The functional analysis proof (initiated in [Mos69]) is very straightforward
after the material we have developed. Indeed, historically, this proof was
the main motivation for [Mat68], which was the basis of the theory.

In this chapter, we will follow and approach different from that of [Mos69].
Following [dlLMM86] we will use an implicit function theorem. This ap-
proach gives easily that, when we consider f fixed, the map g → h is Cr

if the g are given the Cr topology and the h are given the Cr topology.
The regularity of the dependence of h on f is significantly more delicate

195
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and we will discuss it later using a more sophisticated argument. A func-
tional analysis approach using the implicit function theorem was suggested
in [Mat97]. We will discuss [Mat97] in Remark 14.12.

Actually, it was remarked by one of us that one could also obtain that
the map g → h is Cr−1 when r is given the Cr topology and h is given
the Hölder Cα topology for 0 < α ≤ α0 for some α0 sufficiently small.
An analogous result for flows implies smooth dependence of the topological
entropy of Anosov flows [KKPW89, KKPW90, KKW91].

In Theorem 14.2 we present the result on structural stability with de-
pendence on parameters and Hölder dependence on the space.

From the smooth dependence of the conjugating diffeomorphism on the
perturbation we can easily deduce a result of [Mañ90] which establishes
the smooth dependence of stable bundles on the corresponding points of
structural stability. See Theorem 14.3.

Since thermodynamic formalism relates several ergodic theoretic prop-
erties to properties of the map with respect to a potential formed out of the
stable and unstable Jacobians, this result tells us that these ergodic proper-
ties can be considered as properties of a fixed dynamics when one changes
the potential. This is a much easier problem than the original one since
the dependence on the potential is very easy to study. Hence, following this
route one can obtain results on smooth dependence on several quantities in
smooth ergodic theory. Several implementations of these strategy occur in
[Mañ90, Wei92, Con95, Rue97, Rue03].

One advantage of the functional analysis approach to structural stability
is that it adapts to coupled map lattices with fast enough decay in the
couplings.

In [JdlL00], there is a treatment of smooth dependence on structural
stability and other ergodic properties applying the functional analysis ap-
proach to the whole couple map lattice without using finite approximation.
In [JdlL04],there is is a treatment of the approximations by systems of finite
sites.

In Section 14.3 we consider the shadowing property.
Functional analysis proofs of shadowing for hyperbolic orbits appear in

[Shu78, MS87].
In Theorem 14.16, we present a proof of the shadowing theorem which

is specially geared towards numerical applications. We recall that a good
numerical computation produces just a sequence of points that are a pseudo-
orbit with a small error.

The theorems which are most useful from the point of view of validat-
ing numerics are those which make only assumptions on the pseudo-orbit,
which very often is the only piece of information accessible. For example,
the assumption that the pseudo-orbit is close to a hyperbolic set – which is
very common in more theoretical applications – is not very easy to verify
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for a numerical application. Certainly, it does not follow from the numer-
ical pseudo-orbit. Results similar to the ones we consider here as well as
applications to problems in celestial mechanics are found in [KS04].

In the case that we consider a hyperbolic orbit and that the perturbation
depends smoothly on parameters, we also obtain the smooth dependence on
parameters.

This allows us to recover the smooth dependence on parameters for
structural stability.

One advantage of this approach is that it also applies to non-uniformly
hyperbolic systems and, therefore we obtain a shadowing theorem for non-
uniformly hyperbolic systems without zero Lyapunov exponents. Of course,
the allowed strength for the perturbations around each orbit is very non-
uniform.

14.2. Structural stability

We start by recalling the following characterization of Anosov diffeo-
morphisms. This was started in [Mat68] but it includes some refinements
developed in the previous chapters. Recall that χ1

b = ΓB(TM) and χ1
C0 =

ΓC0(TM) (see Chapter 13).

Proposition 14.1. Let M be a compact manifold. Let f : M → M be
a C1 diffeomorphism on M . The following are equivalent

i) 1 /∈ Spec(f∗, χ1
C0)

ii) 1 /∈ Spec(f∗, χ1
B)

iii) There exists δ > 0,

A1−δ, 1+δ ∩ Spec(f∗, χ1
C0) = ∅

iv) There exist C > 0, λ < 1 so that for all x ∈M , we can write

TxM = Es
x ⊕ Eu

x

where

v ∈ Es
x ⇔ |Dfn(x)v| ≤ Cλ|n||v| n ≥ 0

v ∈ Eu
x ⇔ |Dfn(x)v| ≤ Cλ|n||v| n ≤ 0

v) Same as iv) but the splitting are continuous (i.e., the mapping x→
Es

x, x→ Eu
x are continuous).

In the case that f ∈ C1+β with β > 0, we have furthermore the equivalence
with the following properties:

vi) Same as iv) but the splitting is Cα for some α > 0.
vii) There exists δ̃, α∗ > 0 such that for 0 < α < α∗

A1−δ̃, 1+δ̃ ∩ Spec(f∗, χ1
Cα) = ∅.

When one—and hence all— of the above properties hold, we say f is an
Anosov diffeomorphism.
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Proof: We have already shown in Theorem 3.25 that

Spec(f∗, χ0
B) = Spec(f∗, χ0

C0)

hence, i) ⇔ ii).
We have also shown in Proposition 4.3 that if x is such that fn(x) = x

and λ is an eigenvalue of Dfn(x), then any z ∈ C such that zn = λ, belongs
to Spec(f∗, χ0

B). Therefore i) implies that if fn(x) = x, then 1 /∈ EigDfn(x).
By the implicit function theorem, this implies that for a fixed n, {x | fn(x) =
x} is nowhere dense.

By the Baire category theorem, we conclude that the set of aperiodic
points is dense. Using Theorem 3.11, we conclude that the spectrum is
invariant under rotations. Hence i) ⇒ iii). (The converse is, of course,
trivial.)

The fact that the bundles are continuous was proved in Theorem 2.4 and
the fact that they are Cα is a consequence of the Invariant Section Theorem.

From the fact that the bundles are Cα, we obtain that there is a spectral
gap. tu

The following is our first result towards the full result of structural stabil-
ity. We will show the existence of a semiconjugacy with smooth dependence
on parameters.

Later, we will show that the mapping is a conjugacy and we will show
the persistence of the Anosov property under C1 perturbations.

These different results have different regularity assumptions on the maps
considered and obtain different regularity conclusions. Hence, it is better to
prove them in different stages.

Theorem 14.2. Let f be a Cr+α diffeomorphism r ≥ 1, α ≥ 0.
Assume that 1 /∈ Spec(f∗, χ1

Cα). Then, there exists a Cr+α neighborhood
U of f and a Cα neighborhood V of the identity such that given g ∈ U , there
exists a unique h ∈ V such that

(14.2) g ◦ h = h ◦ f.
Moreover, the mapping that to g applies the corresponding h is Cr when

we give g the Cr+α topology and h the Cα topology.

We will write h(g, f) for the map that satisfies (14.2) given by Theo-
rem 14.2.
Proof: We will assume, without loss of generality that the manifold is en-
dowed with an analytic Riemannian metric.

We recall that a neighborhood of the identity in the space mappings
from a manifold to itself can be identified with the set of vector fields by
associating to a map h the unique section v such that

h(x) = expx v(x) ∀x ∈M,

where exp denotes the Riemannian metric exponential mapping. It is an easy
consequence of the implicit function theorem that all h can be written in this
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way. If we assume that the metric is sufficiently regular – as we will assume –
the implicit function theorem establishes that the identification of maps has
the same regularity. Hence, the procedure above produces an identification
of a neighborhood of the identity in C0, Cα, Cr, Cr+α maps of a manifold
with a neighborhood of the zero section in the spaces of C0, Cα, Cr, Cr+α

sections.
Since an open ball the space of Cα (resp. C0) section is an open set in a

Banach space, we can talk about derivatives etc. with respect to functions.
The tangent space of Cα (resp. C0) mappings on the identity mapping

can be identified with the space of sections

TIdC
α(M,M) = χ1

Cα(M).

We emphasize that, so far, we have not tried to give the space of Cα

mappings the structure of a manifold. We are just using a coordinate patch
near the identity. Describing neighborhoods requires that the composition
mapping is somewhat regular.

A Cr+α neighborhood of f can be parameterized by sections by associ-
ating to g the section v given by

g = expf(x) v(x) ∀x ∈M.

With these identifications, we can transfer the functional equations be-
tween mappings to functional equations among sections so that all the tools
from calculus in Banach space, notably implicit function theorems, are avail-
able.

We define the operator T : Cr+α × Cα → Cα defined by

(14.3) T (g, h) = g ◦ h ◦ f−1

so that the equation (14.2) is just the fixed point equation T (g, h) = h.
Since

T (f, Id) = Id ,

it is natural to try to obtain Theorem 14.2 from the implicit function theorem
in Banach spaces. A version that we have found useful is Theorem 14.13.

The fact that the implicit function theorem does apply follows from the
following considerations.

The fact that T is a Cr function in the indicated topologies follows from
the results of [dlLO99]. The derivative D2T (f, Id) is not difficult to guess
heuristically by writing h = Id + ∆ and expanding the expression for T in
(14.3). The results of [dlLO99] justify that indeed

D2T (f, Id) = f∗.

Since we are assuming that 1 /∈ Spec(D2T (f, Id), Cα) the desired result
follows from the standard implicit function theorem in Banach spaces. tu

So far, we have not argued whether h is a homeomorphism. In the
next paragraphs, we will argue that indeed h is a homeomorphism. This



200 14. STRUCTURAL STABILITY AND SHADOWING

turns out to be closely related to showing that, under the assumptions of
Theorem 14.2, we have that g is also Anosov.

We first observe that h(M) = M . This follows when M is a manifold
from index arguments and that h is a small perturbation of the identity.

We note however, that the results we will present, will just show that
h(M) is a hyperbolic set. This applies also to the case that M is a perfect
set and f is an axiom-A diffeomorphism.

The following result shows that the perturbed maps g are also hyperbolic
and also to get some regularity on the dependence on the map.

The key observation, which appeared in [Mañ90] is that hyperbolicity
of g is related to the cocycle of linear operator Dg covering the map g, but
if we study it at a carefully chosen point, it will become easy to analyze.

That is, we consider

Mg(x, n) = Dg ◦ gn−1(x) · · ·Dg ◦ g(x)Dg(x)

Using (14.2) we note that

Mg(h(x), n) = Dg ◦ gn−1 ◦ h(x) · · ·Dg ◦ g ◦ h(x)Dg ◦ h(x)

= Dg ◦ h ◦ fn−1(x) · · ·Dg ◦ h ◦ f(x)Dg ◦ h(x)
(14.4)

Therefore Mg(h(x), n) is a cocycle over f .
Therefore, we can study the spectral properties of the cocycleMg(h(x), n)

by studying the cocycle over f generated by the bundle automorphismDg◦h.
This observation is very useful because we have already studied in Sec-

tion 2.5 the dependence of the invariant splittings on the matrix when the
dynamics on the base is left fixed.

Note that when we give g the Cr topology, h — given the C0 topology
— depends in a Cr fashion.

When we give g the Cr topology, h the C0 topology and Dg ◦ h the C0

topology, we obtain that
g −→ h is Cr

g −→ Dg is Cr

(Dg, h) −→ Dg ◦ h is Cr−1 .

Since the dependence of the spectral bundles on the transfer operator is
analytic, we obtain:

Theorem 14.3. In the conditions of Theorem 14.2 we have
i) the mappings

g −→ Es
h(x)

g −→ Eu
h(x)

(14.5)

are Cr−1 when the stable and unstable bundles are given the C0

topology.
ii) The mappings in (14.5) are Cr−q−α when the bundles are given the

Cα topology.
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ii) The spectral radii of the spectral gaps (i.e. the radii of the spectral
annuli) in C0-sections are Cr−1 as a function of g.

As a consequence, we obtain that

Corollary 14.4. There is a C1 neighborhood V of f for which all the
diffeomorphism g ∈ V are Anosov.

Out of Theorem 14.3 we obtain

Lemma 14.5. In the conditions of Theorem 14.2 there is an open set V
and α0 > 0, C > 0 such that if f̃ ∈ V , α ≤ α0, then

‖(f̃∗ − Id)−1‖Cα ≤ C

From Lemma 14.5 we obtain that if we have g is sufficiently small neigh-
borhood of f we can apply the Theorem 14.2 and obtain

(14.6) g ◦ ĥ = ĥ ◦ f
Out of Theorem 14.3 we obtain

Lemma 14.6. Let β ≥ 0. Assume that f ∈ C1+α is Anosov.
Then, there is α0 depending on the C1 properties of f such that there is

an open set in C1+α around f for which (g∗ − Id)−1 is uniformly bounded
as an operator from Cα to Cβ, 0 ≤ β ≤ min(α0, α).

Observing that the invertibility of (g∗−Id) is one of the characterization
of Anosov systems, we obtain that, as a consequence of Lemma 14.6 we have:

Corollary 14.7. If f is Anosov, there is an open C1 neighborhood of
f such that all the maps in this neighborhood are Anosov.

We note that, provided that f, g, k are C1 diffeomorphisms so that The-
orem 14.2 applies to all their pairs, we have the cocycle property

(14.7) h(f, g) ◦ h(g, k) = h(f, k)

In particular, taking f = g and noting that h(f, f) = Id, we obtain that

(14.8) h(f, g) = h−1(g, f)

Now, we are ready to tackle the dependence of h(f, g) solving (14.1) on
f .

The following example will be very illustrative. It will show that the de-
pendence cannot be expected to be even Lipschitz no matter what topology
we impose on the f, g. It will also show that the regularity on the depen-
dence on f is tied up to the regularity of the conjugacy, something that will
show up in the proof.

Example 14.8. We denote by Tα the translation by α in T2, by A =
( 2 1

1 1 ).
We fix close enough to A but such that the fixed point has eigenvalues

different to those of A.
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We denote by h the solution close to the identity of

g ◦ h = h ◦A
produced in Theorem 14.2.

Then, denoting by Tξ(x) = x+ ξ we have that h(g, TξA) is only Hölder
as a function of ξ.

Proof: We note that

g ◦ h ◦ Tξ = h ◦ Tξ ◦ T−1
ξ ◦A ◦ Tξ

Hence h ◦ Tξ is the conjugacy corresponding to

T−1
α A ◦ Tξ = TAξ−ξA

We see that this depends in an analytic way on ξ even in an analytic topology.
On the other hand, the map R2 → C0 given by ξ → h ◦ Tξ cannot be

more than Cα since the regularity of ξ → h ◦ Tξ implies regularity of h.
tu

Remark 14.9. If we give h Hölder topologies the dependence may be
worse.

If we take α to be the largest α such that h ∈ Cα, the dependence of h
on parameters may be discontinuous. For example, if ϕ(x) = |x|α we have
that ‖ϕ ◦ Tξ − ϕ‖Cα = 2 no matter how small is ξ.

For smaller α, we may obtain that the map h depends on f on a Hölder
fashion but not any better. As the example shows, this does not improve if
we take a finer topology in f .

The previous Example 14.8 shows that there is a very close relation
between the modulus of continuity of the conjugacy and the dependence on
parameters of the conjugacy.

Denote by Ωf , the modulus of continuity of all h(f, g) for g in a Cr+α

neighborhood of f .
So far, we have shown Ω(t) = Ctβ for some β > 0 when α > 0.
Following ideas in [Ano69], it is possible to show that indeed we have

Ω(t) = tβ for some explicit β > 0 related to the spectrum of f . This β is
bounded away from 0 uniformly even as α approaches 0. This result does
not follow straightforwardly from the spectral results we have discussed and
it requires a deeper geometric insight. We have, therefore, stated our main
dependence result in a conditional manner that will allow to graft easily
geometric arguments in functional analysis conclusions.

Theorem 14.10. In the conditions and the notations of Theorem 14.2,
denote by h(g, f) the mapping that to the f, g associates the unique h close
enough to the identity solving (14.2) produced in Theorem14.2.

Let Ω(t) be the modulus of continuity of h(g, f) as g ranges over a Cr+α

neighborhood of f .
Then, we have that h(g, f) has modulus of continuity Ω considered as a

function of f .
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Note that Example 14.8 shows that it is impossible to obtain a substan-
tially better modulus of continuity since by conjugating f with translations,
we can transfer statements about dependence on the function f to regularity
of the conjugating function.
Proof: The proof we present is inspired by the proof presented in [Mos69].

We note that we have already established as a corollary of the smooth
dependence on parameters, Theorem 14.2

dC0(h(f, g), h(k, g)) ≤ CdC1(f, k)

Because of (14.7), we have that h(g, f) = h(g, k) ◦ h(k, f).
Hence,

dC0(h(g, f), h(g, k)) = dC0(h(g, k) ◦ h(k, f), h(g, k))

≤ Ωh(g,k)(dC0(h(k, f), Id))

≤ Ωh(g,k)(dC1(f, k))

where Ωh(g,k) denotes the modulus of continuity of Ωh(g,k). tu

Remark 14.11. We point out that the proof presented in [Mos69] con-
tains a mistake in p. 420.

In the line 4, it is used that

dC0(u, u0) = dC0(u−1 ◦ u0, Id)

This leads to the conclusion that the modulus of continuity of h(g, f) with
respect to f is Lipschitz, which, as we have seen in Example 14.8 cannot
happen.

The correct inequality is, of course

dC0(u, u0) = Ω(dC0(u−1 ◦ u0, Id))

where Ω is the modulus of continuity of u. This is what we have used in the
above proof.

Remark 14.12. The work [Mat97] proposes to obtain a result similar to
Theorem 14.2 and Theorem 14.10 by applying an implicit function theorem
to

A(g, h, t) = g ◦ h− h ◦ f
(We abuse slightly the notation to use additive.) Really what we mean is

exp−1
f(x) g ◦ h(x)− exp−1

f(x) h ◦ f(x)

One observes that

D2A(gh, f) = g′ ◦ h− h ◦ f
and

D2A(f, Idf)∆ = ∆−∆ ◦ f
Hence D2A(f, Idf) is invertible when f is Anosov.

Unfortunately, the derivative D2A is discontinuous as a function of its
arguments when we give it the topology of linear operators from C0 → C0

0 .
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If f, f̃ are different, we can find ∆ such that ‖∆‖C0 = 1 and

‖∆ ◦ f −∆ ◦ f̃‖C0 ≥
1/2
‖

∆‖C0 .

Hence, the operators of composition on the right are highly discontinuous,
since ‖f∗ − f̃∗‖ ≥ 1/2 when f 6= f̃ , irrespective of how close they are.

We also note that the discontinuity of the linear operator given by com-
position in the left translates into the discontinuity of the operator f∗ acting
on C0 sections. This is the reason why the results on continuity of the
spectrum for transfer operators developed in Section 2 required somewhat
elaborate arguments.

As we have shown before, following [dlLMM86], if one considers f fixed,
there is no dependence of the derivative in g is indeed regular and one can
obtain smoothness of h with respect to g.

We are grateful to J. Mather, who pointed out to one of use in private
conversations the gap in [Mat97].

14.2.1. An abstract implicit function theorem. We recall the fol-
lowing result from functional analysis, which is a slightly sharpened version
from the most standard implicit function theorem one finds in all textbooks,
e.g., [Nir01, Sch69].

The proof is exactly the same as that of the more standard theorem.

Theorem 14.13. Let X,Y be Banach spaces, U a neighborhood of (0, 0)
on X × Y , F : U → X be a continuous function.

Assume
H1

F (0, 0) = 0

H2 D2F (x, y) − Id is invertible for all x, y in a neighborhood and the
bound is uniform.

We note that the hypothesis H2 above is implied by
H2’.1 D2F (0, 0)− Id is invertible.
H2’.2 D2F (x, y) is continuous at (0, 0).

Then, there exist open sets o ∈ Ũ ⊂ X, o ∈ Ṽ ⊂ Y such that for every
y ∈ Ṽ , there is one and only one x ∈ Ũ such that

F (x, y) = 0

Moreover, the mapping that to y sends x is continuous.

Proof: Let M denote (D2F (0, 0))−1 and consider for fixed y, the following
fixed point problem

(14.9) x = x−MF (x, y) ≡ Ty(x)

We observe that
DTy(x) = Id−MD2F (x, y)
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Since D2F (x, y) is continuous, there is a neighborhood V̂ of (0, 0) in such a
way that ‖DTy(x)‖ ≤ 1/2.

By the continuity properties in the assumption, we can find ρ, δ > 0 such
that

‖|y| ≤ ρ, |x| ≤ 5δ} ⊂ V̂

|y| ≤ ρ =⇒ |τy(0)| ≤ δ

Then, for any |y| < ρ, the ball B3δ(τy(0)) of radius 3δ around Ty(0)
satisfies

B3δ(Ty(0)) ⊂ V̂

and, therefore
Ty(B3δ(Ty(0))) ⊂ B3δ(Ty(0)) ⊂ V̂

The contraction mapping principle implies that there is a unique fixed point
of Ty in B3δ(Ty(0)).

Moreover, the fact that Ty is continuous in y implies that the fixed point
depends continuously on y.

tu

14.3. Shadowing theorems

We recall that “shadowing” is jargon originating in detective stories.
The detective follows a person so closely and so reliably that he becomes a
shadow of that person.

Then “shadow” came mean staying close for a long time.
Hence, the shadowing theorems always say that there is an orbit close

to another one, no matter what the suspect tries to do to avoid it.
We recall the following definition

Definition 14.14. We say that {xn}n∈Z is a δ-pseudo-orbit for the map
f when

(14.10) d(f(xn), xn+1) ≤ δ ∀n ∈ Z.

In particular, when δ = 0, it is an orbit. We will say that a sequence y
ε-shadows another sequence x when

(14.11) d(xn, yn) ≤ ε ∀ n ∈ Z

Shadowing theorems always say that, under certain extra hypothesis,
the δ-pseudo-orbits are ε shadowed.

In this chapter we will discuss shadowing theorems that follow from
hyperbolicity properties. We should mention that, besides shadowing theo-
rems based on hyperbolicity there are important shadowing theorems based
on topological methods (well aligned windows, Conley index etc.) [Eas75,
EM79, Eas89, ZG04, GZ04] or in variational methods [Ang90, Mat93,
Sli99].



206 14. STRUCTURAL STABILITY AND SHADOWING

Shadowing theorems have many applications. We have already men-
tioned that one application of the sharp shadowing theorems imply struc-
tural stability. Often shadowing theorems can be used to produce interesting
orbits, taking as an intermediate step the — somewhat easier — construc-
tion of pseudo-orbits.

For example, much of the work in Arnold diffusion is based on con-
structing approximate orbits, using invariant objects and then using different
techniques to construct real orbits. Unfortunately, in many of these cases,
one does not have full hyperbolicity and one has to supplement the results
with topological arguments [DdlLS04, DdlLS03, FM00, FM01, FM03].
Methods based on the broken geodesics method appear in [Bes96, BBB03,
BCV01] among others.

One application which has attracted considerable interest is that shad-
owing theorems can serve as justification of numerical results.

Note that a computer only produces δ-pseudo-orbits, where δ is a result
of the roundoff and different truncation errors of the computer. If there is
a good shadowing theorem available for the system we are studying, we can
be sure that the orbits produced by the computer have real counterparts.

We refer to [Pal00, Pil99] for surveys on shadowing methods based on
hyperbolicity as well as applications.

The most standard hyperbolic shadowing result is the following

Theorem 14.15. Let f be an Anosov system. Then, given ε > 0, ∃ δ > 0
such that if x is a δ-pseudo-orbit, then, there exists an orbit y it ε-shadows
x. Moreover, if f is C2 we can choose δ = Kε.

We will deduce Theorem 14.15 from a more flexible Theorem 14.16. The
argument that goes from Theorem 14.16 to 14.15 will also lead to applica-
tions in numerical analysis.

In order to formulate the results for manifolds, we will use the connectors
of Definition 1.23. We just indicate that, if the dynamical system is defined
in a subset of Rd, they are not needed.

Theorem 14.16. Let M be a compact manifold, f : M → M be a C1

map. Let x ∈MZ be a sequence.
Assume

1) x is a δ pseudo-orbit for f
2) δ is small enough so that the connectors Ex,y can be defined for

points x, y at a distance 2δ.
3) Denote

(14.12) An = Ef(xn),xn+1
Df(xn)

Assume that the cocycle

Mn =

{
An · · ·A0 n ≥ 0
A−1

n · · ·A−1
−1 n ≤ 0
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is hyperbolic. That is, we can write

TxnM = Es
n ⊕ Eu

n

in such a way that
a) The angle between Es

n, Eu
n is bounded uniformly away from

zero. Equivalently, denoting by Πs
n, Πu

n the projections, we
have

‖Πs
n‖, ‖Πu

n‖ ≤ α

b) ∃ C > 0, λ < 1 such that

v ∈ Es
n ⇔ |An+k · · ·Anv| ≤ Cλk k ≥ 0

v ∈ Eu
n ⇔ |A−1

n−k · · ·A
−1
n−1A

−1
n v| ≤ Cλ|k| k ≥ 0

4) Assume that δ is small enough depending on the constants α,C, λ
and the modulus of continuity of f . Then, there exists an orbit y
which Kδ shadows x.

The main conceptual difference between Theorem 14.15 and Theorem 14.16
is that the former assumes hyperbolicity properties in all the exact orbits.
Whereas the second assumes hyperbolicity properties only on the approxi-
mate solution.
Proof: Following [Shu78, MS87, Kat, Lan85] we formulate the problem
as a fixed point problem in space of sequences.

If we fix yn we can consider the space X =
∏

n∈Z TynM endowed with
the supremum norm. We define Ty : X → X by

(Ty∆)n+1 = exp−1
yn+1

f(expyn
∆n)

Heuristically
T (∆)n+1 = f(yn + ∆n)− yn+1

Note that ∆n is a fixed point of T if and only if xn = expyn
∆n (heuris-

tically xn = yn + ∆n) is an orbit of the dynamical system.
We also observe that T is continuously differentiable and, moreover, we

have

(14.13) Eyn+∆n, yn+1Df(yn + ∆n)σn − σn+1

where E is, as before the connector, which was a linear operator.
Similarly there is a C > 0 such that xn = expyn

∆n is a δ-pseudo-orbit
if

|T (∆n)| ≤ Cδ

and if
|T (∆n)| ≤ C−1δ

then xn as above is a δ-pseudo-orbit.
A consequence of (14.13) is that DT is uniformly continuous and we can

estimate the modules of continuity of T by the modules of continuity of f .
In particular if f is C2, we obtain that DT is Lipschitz.
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Finally, we observe that hypothesis 1) of Theorem 9.1 implies (actually
we showed that it was equivalent to)

‖DT (0)− Id)−1‖ <∞ .

Here, we will just go quickly over the arguments to show that indeed
one can estimate ‖(DT (0)− Id)−1‖ in terms of the geometric quantities in
2).

We note that
(DT (0)− Id)σ = η

amount to the infinite set of equation

(14.14) Anσn − σn+1 = ηn

Using the invariance under An of the splitting Es
n ⊕Eu

n in 2) we obtain
that (14.14) is equivalent to:

An(Πs
nσn)−Πs

n+1σn+1 = Πs
n+1ηn+1

An(Πu
nσn)−Πu

n+1σn+1 = Πu
n+1ηn+1

(14.15)

The equations (14.15) about the explicit solution
Πs

n+1σn+1 = Πs
n+1ηn+1 +AnΠs

nηn +AnAn−1Πs
n−1ηn−1 + · · ·+

AnAn−1 · · ·An−kΠs
n−1ηn−k + · · ·

Πu
nσn = A−1

n Πu
n+1ηn+1 +A−1

n A−1
n+1Πu

n+2ηn+2 + · · ·+
A−1

n A−1
n+1 · · ·A

−1
n+kΠ−1

n+k+1Πu
n+k+1ηn+k+1

(14.16)

The right hand side of (14.16) can be readily estimated by a geometric
series yielding

(14.17) ‖(DT (0)− Id)−1‖ ≤ αC(1− λ)−1

Since the hypothesis give us bounds on ‖T (0)−0‖, ‖(DT (0)−Id)−1‖ and
the modulus of continuity of T , the standard Newton-Kantorovich theorem
produces the existence of a fixed point close to zero, which using the remarks
is precisely the shadowing theorem we want. tu



CHAPTER 15

Invariant tori and their whiskers
in quasi periodic maps

In this chapter we present several results on persistence of invariant
tori and their asymptotic invariant manifolds, commonly referred to as the
whiskers, in quasi periodic systems. The proofs are based on the parameter-
ization method of [CFdlL03a, CFdlL03b], and can be found in [HdlLb].

The results we obtain on regularity of the invariant tori and their whiskers
are very optimal, in the sense that the objects we find are as smooth as the
system. These regularity results come from the spectral theory of transfer
operators over rotations of Part 3.

The results for invariant manifolds include as particular cases the usual
(strong) stable and (strong) unstable manifolds, but also include other non-
resonant manifolds. The non-resonant conditions to construct the whiskers
are based on the spectral theory of Sylvester transfer operators of Sec-
tion 11.3.

All these results take advantage of the special skew-product structure of
the systems at hand, and the quasi-periodicity.

The method lends itself to numerical implementations whose analysis
and implementation is studied in [HdlL04, HdlL05a]. The theorems can
also be used to validate the results of numerical computation, since they are
stated as a posteriori results.

The approach can be extended to cover the theory of existence and
persistence of normally hyperbolic manifolds and laminations [HdlL05b],
and the theory of hyperbolic invariant sections of general bundle maps.

15.1. Quasi periodic maps and their invariant manifolds

The systems we consider are quasi periodic maps

(15.1) x̄ = F (x, θ) ,
θ̄ = θ + ω ,

where x ∈ Rn and θ ∈ Td are variables, and ω ∈ Rd is the rotation vector.
Systems of the form (15.1) are called skew-products in the mathematical

literature, and are bundle maps over rotations.
In applications they appear when one forces a system with a quasi-

periodic external perturbation. That is, the system (15.1) has the form

(15.2) F (x, θ) = F0(x) + F1(x, θ) ,

209
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where F1 is small. For F1 ≡ 0 the dynamics of x and θ are uncoupled and
for a fixed point x0 of F0 the torus

K0 = {x0} × Td

is invariant for the whole system (15.1) given by (15.2). It is then natural
to look for an invariant torus close to K0 in the perturbed system. If x0

had invariant manifolds, we can consider whether there are corresponding
objects for the quasi-periodically excited problem.

We will consider two types of problems for quasi-periodic systems (15.1):
a) Existence of invariant tori (of dimension d) which are (normally)

hyperbolic, and persistence of such tori under perturbations;
b) Existence of asymptotic invariant manifolds attached to an invari-

ant torus.

Remark 15.1. We consider here the problems a) and b) for discrete
time systems. For a discussion for continuous time systems, see [HdlLb].

Our approach differs from the classical approach of normal hyperbol-
icity [Fen72, Fen74, Fen77, HP69, HPS77], and thanks to the special
structure of the system, it also has some mathematical advantages over the
general theory.

a) The invariant tori are as smooth as the system (including analytic)
and that they depend smoothly (including analytic) on parameters.
Such results are false for more general systems (see e.g. [dlL01b]
for explicit examples).

b) The asymptotic manifolds associated to non-resonant parts of the
linearization include as particular cases the strong stable and the
strong unstable manifolds, but it also include other cases. For
instance, we can consider slow manifolds that correspond to the
slowest directions, that are important in applications because they
dominate the asymptotic behavior of the systems. (See [dlL97,
ElB01, CFdlL03a, CFdlL03b, dlL03] for non-resonant invari-
ant manifolds for fixed points.)

The proofs we present are based on the parameterization method, in
which it is formulated a functional equation for both the parameterization
of the invariant manifold and the dynamics on it. The fact that the motion
in the angle variables variables is a rotation with the frequency of the exter-
nal perturbation simplifies substantially the functional equations considered
and eliminates the main source of difficulties in the analysis considered in
[CFdlL03a, CFdlL03b], namely, the existence of unknown functions that
appear as composition in the right.

The functional equations give rise to differentiable operators in Cr spaces
that can be studied with the regular implicit function theorem in Banach
spaces. These regularity properties of the functional equations are better
than those that appear in the graph transform method, and they seem to
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translate into good stability properties of the numerical methods [HdlL04,
HdlL05a].

15.2. Existence and persistence of invariant tori

The existence and persistence of invariant tori for (15.1) is based on the
equation

(15.3) F (K(θ − ω), θ − ω)−K(θ) = 0 ,

where F : Rn ×Td → Rn and ω ∈ Rd are given and we are supposed to find
K : Td → Rn. Notice that for a solution K of (15.3) the set of points

(15.4) K = {Kθ = (K(θ), θ) | θ ∈ Td}

is invariant under the dynamical system (15.1). Indeed, K is a parameteri-
zation of a torus in which the dynamics is a rotation.

It is quite important to notice that provided F ∈ Cr+1(Rn × Td,Rn),
the operator T : Cr(Td,Rn) → Cr(Td,Rn) defined by

(15.5) T (K)(θ) ≡ F (K(θ − ω), θ − ω)−K(θ)

is a differentiable operator when Cr(Td,Rn) is given the Cr topology. See
[dlLO99]. Hence we can study (15.3) using standard implicit function theo-
rems in Cr spaces in the case that the invariant torus is normally hyperbolic.

Note that a formal calculation – which is justified in [dlLO99] – gives

(15.6) DT (K)∆(θ) = DxF (K(θ − ω), θ − ω)∆(θ − ω)−∆(θ) .

Hence, once we show that DT is invertible as an operator in Cr, it is clear by
the Implicit Function Theorem that the existence of approximate solutions
implies existence of true solutions.

In particular, if we have a true solution for a certain F , for which DT
is invertible, it will be an approximate solution if we modify F slightly and,
hence, we have a true solution for the modified F .

For an invariant torus, the invertibility of DT in C0 is closely related
to the fact that the torus is normally hyperbolic. Notice also that the
invertibility of DT comes from properties of the spectrum of the transfer
operator Mω associated to the monodromy matrix M(θ) = DxF (K(θ), θ),
which gives a vector bundle map Mω over the rotation ω. Much more, one
of the main developments in Part 3 is that invertibility of DT in C0 spaces
is equivalent to invertibility of DT in Cr spaces, r ∈ N ∪ {∞, a} (where
a means analytic). This is not true in systems which are not of the form
(15.1).

From this circle of ideas we obtain the following result (see [HdlLb]).

Theorem 15.2. Let U ⊂ Rn be an open set. Let F : U×Td ⊂ Rn×Td →
Rn be a map of class Cr+1, with r ≥ 0 – including Cr+1 = Ca in the analytic
case r = a –, such that for all θ ∈ Td the map F (·, θ) : U → Rn is a local
diffeomorphism. Let ω ∈ Rd be a rotation.
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We consider the skew product

x̄ = F (x, θ) ,
θ̄ = θ + ω ,

that is a bundle map on the bundle E = Rn × Td.
Let K : Td → U ⊂ Rn be a Cr map such that:
• K is an approximate invariant torus, that is

(15.7) ||F (K(θ), θ)−K(θ + ω)||Cr < ε .

• For the Cr matrix valued map M : Td → GLn(R), defined by

M(θ) = DxF (K(θ), θ) ,

the corresponding transfer operator Mω satisfies the spectral gap
condition

(15.8) Spec(Mω,Γb(E)) ∩ {z ∈ C | |z| = 1} = ∅ .

Then:
• If ε is small enough, there exists a Cr map KF : Td → U ⊂ Rn

such that

(15.9) F (KF (θ), θ) = KF (θ + ω) ,

and ||KF −K||Cr = O(ε).
• The solution KF above is the only C0 solution of (15.9) in a C0

neighborhood of K.
• The torus KF is normally hyperbolic.

Moreover, the map F → KF is C1 when F is given the Cr+1 topology
and KF the Cr topology.

Remark 15.3. Notice that the spectral gap assumption (15.8) for an
invariant torus implies normal hyperbolicity ([Mn78, HPS77, Swa83]),
because the motion on the manifold is a rotation, which has zero Lyapunov
exponents.

Remark 15.4. Notice that the spectral gap assumption (15.8) is formu-
lated in the space of bounded sections – not necessarily continuous –. Using
the results in Chapter 3 about the spectrum of transfer operators over ro-
tations, we obtain that the spectrum over bounded sections is the same as
that over Cr sections. This is what allows to obtain Cr regularity in the
conclusions. Of course, these results depend very heavily on the fact that
the motion on the torus is a rotation.

Remark 15.5. It is clear from the proof of Theorem 15.2 that one de-
rivative of the system F is lost in the result K. So, if F is Cr+1 then K is
Cr. Notice also that Theorem 15.2 gives also some control of the errors in
solving the functional equations in the Cr norms. But it is also proved in
[HdlLb] that the torus is in fact Cr+1!
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Much more, there is a bootstrap on the regularity of the torus, in such a
way that a C0 hyperbolic invariant torus is in fact as smooth as the system,
i.e. Cr+1 in Theorem 15.2. Notice, however, that in such a result we loose
the control on derivatives.

Remark 15.6. One can state an optimal hypothesis in which the system
F is differentiable with respect to x, and the differential is Cr with respect
to both x and θ.

In particular, one can obtain continuous invariant tori from systems that
are C1 with respect to x but only continuous with respect to θ. It does not
follow from the general theory of normally hyperbolic manifolds, for which
some smoothness is necessary.

The key point is that there is a natural transversal bundle to any torus
defined by a section (which in the general theory is a normal bundle com-
plementary to the tangent bundle).

Remark 15.7. The formulation we have presented of Theorem 15.2,
implies the more commonly formulated result on the persistence of normally
hyperbolic invariant tori.

If KF is a parameterization of a torus invariant under a map F , it
will be smooth and it will satisfy (15.7) for all the maps G close to F .
Furthermore, if the torus is normally hyperbolic for F , then, the operator
M(θ) = DxF (K(θ), θ) is hyperbolic. By the stability of the spectrum under
perturbations, we will obtain that (15.8) will be satisfied for G close to F .

Hence, we have verified that, given a normally hyperbolic invariant torus,
if we perturb the map slightly, we have all the assumptions of Theorem 15.2
for the perturbed map and the original invariant torus. The conclusions of
Theorem 15.2 give the persistence of the invariant torus.

Remark 15.8. We call attention to the fact that the proof works for
ω resonant or non-resonant (ergodic). For ω irrational, the spectral gap
condition is equivalent to 1 /∈ Spec(Mω,Γb(E)), since in such a case the
spectrum is rotationally invariant.

Hence, we can obtain rather easily results on smooth dependence on pa-
rameters, just using the trick of considering such parameters as new variables
and adding extra equations to the system (15.1).

Remark 15.9. The formulation of Theorem 15.2 is very similar to the a-
posteriori estimates of numerical analysis. A numerical method can produce
an approximate solution that satisfies (15.7) up to a few units of round–off
error. It is also possible to verify the other hypothesis of Theorem 15.2 on the
computed solution. These issues of numerical analysis, as well and results
of implementations are discussed in more detail in [HdlL04, HdlL05a].

Remark 15.10. One can obtain a similar theorem in the generality of
hyperbolic invariant sections of bundle maps F : E → E over f : P → P. A
section K : P → E is invariant if F ◦K = K◦f . The hyperbolicity property
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is just a spectral condition

(15.10) Spec(Mf ,Γb(NK)) ∩ {z ∈ C | |z| = 1} = ∅ ,

where NK = V TKE is the vertical tangent bundle on the manifold K =
{K(θ) | θ ∈ P}, and Mf = DF|NK. Notice that the hyperbolic assumption
involves only the dynamics along the transversal directions, while in the
general theory of normally hyperbolic manifolds involves also the dynamics
along the tangential directions, namely that the growth in the transversal
directions dominate that on tangential directions.

This formulation gives a theory of existence and persistence of hyper-
bolic continuous sections of bundle maps. The persistence has to do with
perturbations that preserve the skew product structure of the bundle maps,
and if this structure is lost in the perturbation, say tangent and transversal
directions are fully coupled, then the invariant manifolds can be destroyed.

Notice also that the regularity of the invariant section produced depends
heavily on the dynamics f on the base manifold P, which implies spectral
inclusions between spaces of sections with different regularities.

Remark 15.11. Equation (15.3) can also be used to find invariant tori
in some cases where K is not normally hyperbolic.

Notably, in the case of Hamiltonian systems, equations very similar to
(15.3) has been used to compute KAM tori or lower dimensional tori, in-
cluding also their existence under quasi-periodic perturbations.

A version of KAM theory related to the theory developed here is found
in [Rüs76, CC97, JdlLZ99, dlL01b, GJdlLV00] (see also [JS92] for
perturbative results in the context of lower dimensional tori).

15.3. Asymptotic invariant manifolds

In this section, given an invariant torus, we consider the existence of
other invariant manifolds so that the motion on them converges to the torus.
The presentation includes all the essential ideas of the problem but avoids
some of the technical complications. The discussion will be informal and we
will not keep track of what are the differentiability assumptions, etc. This
is left to the statement of Theorem 15.14, whose complete proof appears in
[HdlLb].

The main geometric requirement is that there exists an invariant transver-
sal bundle around the torus such that the spectrum of the transfer operator
restricted to this bundle is contractive and satisfies some finite non-resonance
assumptions with respect to the transfer operator on the whole transversal
bundle. Then, we can find an invariant manifold tangent to this bundle. In
the case that the bundle is a spectral bundle associated to the most con-
tractive sectors – in such a case the non-resonance assumptions are satisfied
automatically, we recover the classical strong stable manifold theorem. As
indicated by the theory developed here, a smooth slow manifold may exist
or not depending on whether the resonance conditions are met.
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15.3.1. The invariance equation. Let K be an invariant torus of
(15.1) parameterized by K : Td → Rn. We note that the perturbations in
the dynamic variables propagate by the variational equations of (15.1) on
the torus K:

v̄ = M(θ)v ,

θ̄ = θ + ω ,
(15.11)

where v ∈ Rn and θ ∈ Td, and M(θ) = DF (K(θ), θ). In the language of
global differential geometry, (15.11) is a vector bundle map on the bundle
NK ' Rn ×K ' Rn × Td, whose fibbers are Rn and whose base points are
the points in K ' Td.

We show in Theorem 15.14 that given a subbundle E1 of NK invariant
under the variational equations (15.11) and such that the spectrum of the
linearization restricted to it satisfies certain non-resonance conditions, then
there is an invariant manifold tangent to this subbundle which is invariant
under the map. This manifold is referred to as a whisker of the invariant
torus.

Our study of whiskers is based on the study of the equation

(15.12) F (W (η, θ), θ) = W (Λ(η, θ), θ + ω) ,

where we are supposed to find W : Rn1 ×Td → Rn and Λ : Rn1 ×Td → Rn1 ,
where n1 ≤ n. The equation (15.12) implies that

(15.13) W = {Wθ(η) = (W (η, θ), θ) | θ ∈ Td , η ∈ Rn1} ,

is invariant under F , and Λ is the induced dynamics on the manifold.
Moreover, W (0, θ) = K(θ) is the parameterization of the invariant torus

and Λ(0, θ) = 0. That is, W extends the invariant manifold found solving
(15.3).

Notice also that

DxF (K(θ), θ)W 1(θ) = W 1(θ + ω)Λ1(θ) ,

where W 1(θ) = DηW (0, θ), Λ1(θ) = DηΛ(0, θ). This says that the bundle E1

spanned by the columns of W 1 is invariant under the variational equations
(15.11). Notice that in this formulation such a bundle is trivial, but all the
procedure works even if this is not the case. Notice, however, that even if
the bundles could be non-trivial, using a device in [HP69] one can augment
the bundles so that they become trivial.

Notice that W and Λ are not uniquely defined. Nevertheless, as we will
see, it is possible to chose normalizations that make them unique. We will
try to find simple expressions for Λ, in particular, polynomial expressions.

15.3.2. Finding the dynamics on the manifold. In this section
we show that, under suitable non-resonance hypotheses, we can solve the
invariance equation (15.30) up to order L, that is there exists a polynomial
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bundle map W≤ : E1 → E over the identity and a polynomial bundle map
Λ : E1 → E1 over ω, both of them of degree L, such that

F (W≤(η, θ), θ) = W≤(Λ(η, θ), θ + ω) + o(|η|L) .

We write

(15.14) W≤(η, θ) =
L∑

k=0

W k(η, θ) , Λ(η, θ) =
L∑

k=1

Λk(η, θ)

where Λk and W k are homogeneous polynomials in η or degree k. Substitut-
ing (15.14) into the invariance equation (15.30) and matching terms of the
same degree, we obtain that (15.14) is equivalent to a sequence of equations
for the Λk and W k, which we now study recursively.

We have already found the zero-order and first order term of W≤ and
Λ. In particular, W 1 parameterizes a vector bundle E1 on the torus W 0 =
K, whose linearized dynamics is given by Λ1. We assume we choose a
complementary bundle E2 to E1. We emphasize that this bundle E2 is not
needed to be invariant under the linearization M . Notice that M is then an
upper triangular vector bundle map with respect to the splitting E1 ⊕ E2,
so we write

(15.15) M(θ) =
(
M1(θ) B(θ)

0 M2(θ)

)
.

Notice also that, if A = ASpec(Mω,Γb(E)), Ai = ASpec(Mi,ω,Γb(Ei))
i=1,2, are the angular hulls of the spectra, we have A = A1 ∪ A2, see Sec-
tion 3.10. (If the rotation ω is irrational the spectra involved is rotationally
invariant.)

The subsequent equations matching terms of order k = 2, . . . L are to be
considered equations for W k,Λk, assuming that W 1, . . . ,W k−1, Λ1, . . . ,Λk−1

are known. More concretely, the equation for the order k is

(15.16) M(θ)W k(η, θ) = W 1(θ+ω)Λk(η, θ)+W k(Λ1(θ)η, θ+ω)+Rk(η, θ) ,

where Rk is a homogeneous polynomial of degree k over the rotation ω,
depending polynomially on W 1, . . . ,W k−1 and Λ1, . . . ,Λk−1. We rewrite
equation (15.16) as:

M(θ − ω)W k(Λ1(θ − ω)−1η, θ − ω)−W 1(θ)Λ̂k(η, θ)−W k(η, θ)

= R̂k(η, θ) ,
(15.17)

where R̂k(θ) ∈ Lk
s(E1;E) is known, defined by

R̂k(θ)(η) = R̂k(η, θ) = Rk(Λ1(θ − ω)−1η, θ − ω) ,

and the unknown terms are Λ̂k(θ) = Λk(θ − ω)◦Λ1(θ − ω)−1 ∈ Lk
s(E1;E1)

and W k(θ) ∈ Lk
s(E1;E).

We now indicate how to solve (15.17).
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Taking projections over E1, E2 in equation (15.17), and taking into ac-
count that W 1 = I1, we obtain:

R̂k
1(η, θ) = M1(θ − ω)W k

1 (M1(θ − ω)−1η, θ − ω)−W k
1 (η, θ)(15.18)

+B(θ − ω)W k
2 (M1(θ − ω)−1η, θ − ω)− Λ̂k(η, θ) ,

R̂k
2(η, θ) = M2(θ − ω)W k

2 (M1(θ − ω)−1η, θ − ω)−W k
2 (η, θ) .(15.19)

(15.18) is an equation for W k
1 (θ), Λ̂k

1(θ) ∈ Lk
s(E1;E1) and and (15.19) is an

equation for W k
2 (θ) ∈ Lk

s(E1;E2). We solve first (15.19), and then solve
(15.18). The operators that appear in both equation are a generalization
of the Sylvester operators in [BK98, dlLW95, CFdlL03a], and have been
studied in great detail in Chapter 11, see Theorem 11.9.

Hence, introducing the Sylvester vector bundle maps Sk
1 = Sk

ω,M1,M1
,

Sk
2 = Sk

ω,M2,M1
and Sk

B = Sk
ω,B,M1

, (15.18) and (15.19) can be rewritten as

Sk
1W

k
1 −W k

1 − Λ̂k = R̂k
1 − Sk

BW
k
2 ,(15.20)

Sk
2W

k
2 −W k

2 = R̂k
2 ,(15.21)

respectively.
Equation 15.21 can be solved under the assumption that

1 /∈ ASpec(Sk
2 ,Γb(L

k
s(E2;E1))) ,

which, since by Theorem 11.9

ASpec(Sk
2 ,Γb(L

k
s(E2;E1))) ⊂ A2 · A−k

1 ,

it is satisfied if Ak
1 ∩ A2 = ∅ for k = 0, . . . , L (see H.3. of Theorem 15.14).

Notice that the spectrum does not depend on the regularity of the sections,
and so it coincides with that on acting on smooth sections. Hence, the
regularity of R̂k

2 is inherited by the unique solution W k
2 of (15.21).

We solve (15.20) as follows. If A1 ∩ Ak
1 = ∅ we conclude that

1 /∈ Spec(Sk
1 ,Γb(L

k
s(E1;E1))) ,

and we take Λk = 0 and W k
1 solving Sk

1W
k
1 −W k

1 = R̂k
1 −Sk

BW
k
2 . Otherwise

we will choose W k
1 = 0 and Λ̂k = −R̂k

1 + Sk
BW

k
2 .

The construction above let us to find the parameterization of the mani-
fold up to a certain order, and a polynomial expression for the dynamics on
it (see claim b of Theorem 15.14). It remains to find the higher order terms
of the parameterization.

Remark 15.12. Notice that solutions of (15.20) are not unique. We
could choose W k

1 = 0 and Λ̂k = −R̂k
1 + Sk

BW
k
2 (and then we compute Λk),

for which we do not need non-resonance condition such as A1 ∩ Ak
1 = ∅.

Notice that this election corresponds to find the invariant manifold as a
graph (over E1).
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Remark 15.13. When

|DηΛ(0, θ)| ≤ λ < 1

or, more generally, that for some m ∈ N,

|DηΛ(0, θ + (m− 1)ω) · · ·DηΛ(0, θ)| ≤ λ < 1

we obtain that the points of W close to K converge to K upon iteration of the
map. In other words, when Λ(·, θ) is a contraction for all θ, all η sufficiently
small, the manifolds that we obtain are submanifolds of the usual stable
manifold.

15.3.3. The equation for the higher order terms. Once we have
obtained the polynomial vector bundle map Λ over the rotation ω and the
L-order approximation W≤ of the invariant manifold W , we have to find the
higher order terms of the parameterization of the invariant manifold, W>.
We will write

W = W≤ +W>,

whereW> : E1 → E is a bundle map over the identity such that Dj
ηW

>(0, θ) =
0 for every j ≤ L.

The invariance equation (15.30) is reformulated in terms of W> as

M(θ)
[
W≤(η, θ) +W>(η, θ)

]
+N

(
W≤(η, θ) +W>(η, θ), θ

)
= W≤(Λ(η, θ), θ + ω) +W>(Λ(η, θ), θ + ω)

or, with more compact notation,

W>
θ −M−1

θ ·W>
θ+ω

◦Λθ =− (W≤
θ −M−1

θ ·W≤
θ+ω

◦Λθ)

−M−1
θ ·Nθ◦(W

≤
θ +W>

θ ) .
(15.22)

(15.22) is an equation for W> to be solved in a suitable space of bundle maps
from E1 to E, over the identity, whose L first vertical derivatives vanish on
the zero section of E1.

Notice that the way we have constructed W≤ and Λ ensures that, if W>

satisfies the conditions above, then the right hand side of (15.22) satisfies
also the same conditions.

If we define the operator S by

(15.23) (SH)θ = Hθ −M−1
θ Hθ+ω◦Λθ ,

then (15.22) reduces to the fixed point equation

(15.24) W>
θ = −S−1(W≤

θ −M−1
θ ·W≤

θ+ω
◦Λθ +M−1

θ ·Nθ◦(W
≤
θ +W>

θ )) ,

provided that S−1 exists and it is continuous in suitable spaces.
The existence of S−1 is equivalent to solve the linearized equation

(15.25) (SH)θ = Hθ −M−1
θ ·Hθ+ω◦Λθ = Rθ .

Formally, the solution of (15.25) is

(15.26) Hθ =
∞∑

k=0

M−k
θ+kωRθ+kω◦Λk

θ .
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To prove the existence of S−1, it is analyzed the convergence of (15.26) is
suitable spaces. Then one shows that (15.24) defines a solution W>. Notice
that in this procedure one derivative is lost, but there is a bootstraps for
which the regularity of the solution W> is optimal.

15.3.4. Statement of results. In order to obtain sharp results on
regularity of the invariant manifolds, it will be very important for us to
distinguish the regularities of the functions with respect to the horizontal
variables (θ) and the vertical variables (x, η), because the angle variables
parameterizing the torus and the real variables used to parameterize the
stable directions enter very differently in the functional equations. Hence,
when one is interested in optimal regularity it is natural to introduce spaces
in which the regularity along these two variables is not the same.

In particular, we consider CΣr,s classes of maps F = F (x, θ), for which
Di

θD
j
xF (x, θ) exists and it is continuous for (i, j) such that i ≤ r and i+ j ≤

r + s. Notice, however, that results also will work for Cr+s ⊂ CΣr,s .
We can also consider maps in the analytic category, in which the results

we present have simpler proofs. For the sake of simplicity, we will consider
functions that are analytic in both horizontal and vertical variables.

The result we obtain for existence and uniqueness of whiskers is the
following (see [HdlLb]).

Theorem 15.14. Let U ⊂ Rn be an open set. Let F : U × Td ⊂ Rn ×
Td → Rn be a map of class CΣr,s, with r ≥ 0 and s ≥ 2 – including
CΣr,s = Ca in the analytic case r = a –, such that for all θ ∈ Td the map
F (·, θ) : U → Rn is a local diffeomorphism. Let ω ∈ Rd be a rotation. Let K
be an invariant torus whose parameterization is given by K ∈ Cr(Td, U).

Let Mω be the transfer operator defined from M(θ) = DxF (K(θ), θ).
Assume that there is a decomposition

(15.27) NK = E1 ⊕ E2

into Cr subbundles such that E1 is invariant under M . Equivalently, if we
take a representation of the transfer operator in a frame associated to the
decomposition (15.27) we have

(15.28) M(θ) =
(
M1(θ) B(θ)

0 M2(θ)

)
.

We denote by M1,ω, M2,ω the transfer operators acting on sections of
E1, E2, respectively associated to M1, M2. The annular hull of the spectrum

A = ASpec(Mω,Γb) = {zeiα | z ∈ Spec(Mω,Γb), α ∈ R} ,

is then the union of the annular hulls of each M1
ω, M2

ω:

A1 = ASpec(M1,ω,Γb(E1)) , A2 = ASpec(M2,ω,Γb(E2)) ,

and A = A1 ∪ A2.
Assume that:
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H.1 A1 ⊂ {z ∈ C | |z| < 1};
H.2 AL+1

1 A−1 ⊂ {z ∈ C | |z| < 1}, for a certain L ≥ 1.
H.3 Ai

1 ∩ A2 = ∅ for every i with 2 ≤ i ≤ L (in case that L ≥ 2);
H.4 L+ 1 ≤ s.
Then:

a) We can find a polynomial bundle map Λ : E1 → E1 over the rota-
tion ω, of degree not larger than L and of class Cr,∞ with

(15.29) Λ(0, θ) = 0 , DηΛ(0, θ) = M1 ,

and a CΣr,s bundle map W : U1 ⊂ E1 → X over the identity, where
U1 is an open tubular neighborhood of the zero section of E1, such
that

(15.30) F (W (η, θ), θ) = W (Λ(η, θ), θ + ω)

holds in U1, and

(15.31) W (0, θ) = K(θ) ,
Π1DηW (0, θ) = IdE1 , Π2DηW (0, θ) = 0 ,

for all θ ∈ Td, where Π1,Π2 are the projections on E1, E2, respec-
tively.

b) In case that we further assume for ` ≥ 2 that

(15.32) Ai
1 ∩ A1 = ∅ for every integer i with ` ≤ i ≤ L ,

then we can choose Λ in a) above to be a polynomial of degree not
larger than `− 1.

In particular, if (15.32) happens for ` = 2, then

(15.33) Ai
1 ∩ A1 = ∅ for every integer i with 2 ≤ i ≤ L ,

and we can choose Λ in a) above to be linear.
c) The CΣr,s manifold produced in a) is unique among the CΣr,L+1

locally invariant manifolds tangent to E1 at K. That is, every two
CΣr,L+1 locally invariant manifolds will coincide in a neighborhood
of K in E.

Remark 15.15. Note that we do not assume that A1 ∩ A2 = ∅ since
the assumption [H.3] only requires that the intersection is empty for powers
bigger or equal that 2.

Also, E2 is not assumed invariant.
One example of this situation occurs when the linearization is a Jordan

block. The bundle E1 corresponds to the eigenspace and the bundle E2

corresponds to the generalized eigenvalues. Note that E2 is not invariant,
indeed, in this example, there are no invariant complementary bundles.

Remark 15.16. Note that a consequence of (15.30) is that W = W (U1)
is a CΣr,s manifold invariant under F and tangent to E1 at K.
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About the uniqueness statement c) of Theorem (15.14), note that the
parameterization W and the map Λ need not be unique; it is the manifold
W = W (U1) which is unique.

Remark 15.17. Theorem 15.14 includes the case in which the bundles
E1,E2 are non trivial. As we will see in [HdlL05a], the fact that the bundles
are non trivial happens very often near resonant situations.

Remark 15.18. It follows from the results in Part 2 that the spectrum
of a transfer operator changes by a small amount if the transfer operator
changes by a small amount.

Therefore, the non-resonance conditions H.1 – H.4 in Theorem 15.14
hold for open sets of transfer operators.

In particular, in case that the torus is normally hyperbolic, applying
Theorem 15.2 we obtain that the torus persists and that the linearization is
close to the original one.

Hence, if the original torus has spectral spaces which satisfy the hypoth-
esis H.1 – H.4, then, the perturbed tori will also have spectral subspaces
satisfying these hypothesis and, hence, by Theorem 15.14, it will also have
invariant manifolds associated to these spectral subspaces.





CHAPTER 16

Towards a proof of a conjecture of Bowen

In [Bow78, p. 21], R. Bowen proposed the following conjecture:

Conjecture 16.1. Let f be an Anosov system on a compact manifold
M . Let f# be the action on cohomology induced by M . Then, f# does not
have any eigenvalue of modulus 1.

The goal of this section is to present a functional analysis approach to
the proof of Bowen’s conjecture We will not succeed in proving the Con-
jecture 16.1. Nevertheless, the failure of the functional analysis approach
presented here provides with a nice illustration of several of the subtleties
about spectral properties of constrained spaces (e.g. the existence of residual
spectrum, etc. )

The idea for the strategy is very simple. We consider the decomposition

(16.1) χ∗1c = χ∗1e ⊕H

were, as in Definition 13.1, the spaces χ∗1e ,χ∗1c are the spaces of exact and
closed forms and H is a finite dimensional space spanned by closed forms
that are representatives of a basis in cohomology. We will assume that we
have picked these representatives.

Since f∗, the push-forward by f , sends closed forms into closed forms
and exact forms into exact forms, we have that we can express f∗ as an
upper triangular matrix with respect to the decomposition (16.1). Denoting
by fe

∗ , f c
∗ the restrictions of the push-forward to χ∗1e and χ∗1c respectively,

we have:

(16.2) f c
∗ =

(
fe
∗ K
0 f#

)
where K is just a mapping from the space H to the space of exact forms.

Now, we have by Theorem 13.14 that

(16.3) SpecW (fe
∗ , χ

∗1
e ) = SpecW (f c

∗ , χ
∗1
c ) = SpecW (f∗, χ∗1C0)

If Weyl spectrum behaved as the finite dimensional spectrum, Bowen’s
conjecture would follow from the observations above. In finite dimensions
we would have from the upper triangular structure (16.2) that the spectrum
would be the union of the spectrum of the diagonal blocks. Hence, from
(16.3) we would obtain that the spectrum of f# would be contained in

223
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SpecW (f∗, χ1
B) which by the characterization of Anosov systems in [Mat69]

does not contain the unit circle.
Unfortunately, in Banach spaces, we do not have these identities. In

general, the best that can be said from the upper triangular structure is
that, applying Theorem 3.44, we have:

Eig(f#,H) ∩ Res(fe
∗ , χ

∗1
e ) ⊂ SpecW (f c

∗ , χ
∗1
c ).

(Notice that H is finite dimensional, so the spectrum of f# are eigenvalues.)
Unfortunately, because of the No Gaps Theorem 13.11, Res(fe

∗ , χ
∗1
e ) lies

outside an annulus obtained closing the gaps in Spec(f∗, χ∗1B ). In particular,
we cannot produce the desired result.

The fact that the Theorem 3.44 cannot be improved in our particular
case can be clarified by explicit calculations for the problem at hand.

We first discuss the possibility that the eigenvalues of f# are in the point
spectrum of f c

∗ .
Let λ be an eigenvalue of f# and let b ∈ H be an eigenvector. Showing

that λ is an eigenvector for f c
∗ amounts to finding an exact form a ∈ χ∗1e ,

a 6= 0 such that

(16.4) fE
∗ a− λa = −Kb.

A form a in χ∗1e has a primitive A – a complex valued function at M –
defined as follows: We pick an origin x0 and a number c ∈ C and we define

(16.5) A(x) = c+
∫

γ
a,

where γ is a C1 path that joins x0 to x. Because of the definition of χ∗1e ,
the integral of a over every closed loop is zero, hence, the integral in (16.5)
is independent of the path γ chosen.

The primitives for a form differ only by a constant. Since the forms are
C0, the primitives will be C1 functions. Moreover, the primitives behave
well under transformations. It is easy to check that if A is a primitive for a,
then A ◦ f is a primitive for f∗a.

Hence a necessary condition for (16.4) is that given KB a primitive for
Kb we can find a function A that satisfies the equation

(16.6) A ◦ f − λA = KB.

If |λ| > 1, the unique continuous solution of (16.6) is

(16.7) A = −
∞∑
i=0

λ−i−1(KB) ◦ f i

Unless |λ| is larger than the spectral radius of f∗, the sum in (16.7) is, in
general, not C1. This is a variant of the classical Weierstrass analysis for non-
differentiable functions. A treatment precisely for the case at hand can be
found in [dlL92] p. XX ff. (A heuristic guide for the lack of differentiability
of (16.7) is to take derivatives term by term and observe that the general
term may grow exponentially).
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Since the function A is not C1, it cannot be a primitive of a C0 form.
Hence, we conclude that the solution (16.4) does not have a solution. Hence,
we conclude that λ is not an eigenvalue of f c

∗ .
We also note that the obstructions for the differentiability of (16.7) dis-

cussed in [dlL92] are C1 open for KB. Hence we have shown that the
range of fe

∗ − λ is not dense when λ is as we have considered. Hence
λ ∈ SpecR(fe

∗ , χ
∗1
e ) (the residual spectrum). This illustrates the no-gap

phenomena stated in Theorem 13.11.
A similar analysis can be done in the case that |λ| < 1. In that situation,

the only continuous solution is given by

(16.8) A =
∞∑
i=0

λi(KB) ◦ f−i−1.

If |λ| is smaller than the inverse of the spectral radius of f−1
∗ , the same anal-

ysis shows that (16.8) will not be differentiable for an C1 open set of KB and
that therefore, λ is not an eigenvalue. Indeed, what we have shown is that
fe
∗ − λ does not have a dense range, which implies that λ ∈ SpecR(fe

∗ , χ
∗1
e ).

The case when |λ| = 1 is even easier to discuss since there are many more
obstructions. For example, if λ = 1, we have the well known obstruction
that the sum of KB over periodic orbits of f has to add to zero. (Note that
the failure of this condition is C0 open and, a fortiori, C1 open).

The analysis above can be extended to show that from λ ∈ Eig(f#,H)
we cannot conclude that λ ∈ SpecW (f c

∗ , χ
∗1
c ). If we wanted to construct

an approximate eigenfunction we would be lead to finding a sequence of
functions En such that limn→∞ ||En||C1 = 0 An ∈ C1 such that, in analogy
with (16.6) we have:

(16.9) An ◦ f − λAn = KB + En.

The impossibility of finding such An follows because the obstructions for
differentiability of the solutions of (16.6) is C1 open and, therefore, if the
En are C1 small enough, the obstructions for KB start to work.





APPENDIX A

A summary of Spectral Theory

In this section, we collect some definitions and results of spectral theory
in Banach spaces, that will be important in the analysis of transfer oper-
ators, extending those given in Section 1.6. The reader can obtain much
more information in any book on linear functional analysis (some references
are [Kat76, DS88a, DS88b, DS88c, RS80, RS78, Heu82, Con85]).
Unfortunately, most of the references in spectral theory concentrate on the
much more extensive spectral theory for normal or self-adjoint operators.

Along this section, X is a complex Banach space with norm ||·||, and
L : X → X denotes a bounded linear operator. When the inverse of L is
needed, we will assume that it exists and it is bounded.

Remark A.1. Recall that if X̃ is a real Banach space, then we can
construct the complexification X = X̃ + iX̃, being X a complex Banach
space. The norm in X is just ||x+ iy|| =

√
||x||2 + ||y||2 for x, y ∈ X̃. We

have a complex conjugation on X: x+ iy = x− iy.

A.1. The spectrum of a bounded linear operator

In this section, we recall some standard results and definitions.

Definition A.2. Res(L,X) denotes the resolvent set of L, this is the set
of all regular values of L, that are the complex numbers λ for which λId−L is
bijective. Banach’s isomorphism theorem implies that the resolvent operator
RλL = (λId− L)−1 is continuous.

The complement of the resolvent is Spec(L,X), the spectrum of L, that
is the set of spectral values of L.

Remark A.3. If L̃ is a bounded operator on a real Banach space X̃, we
can complexify it as acting on X = X̃ + iX̃: L(x + iy) = L̃x + iL̃y. We
define the resolvent set of L̃ as the resolvent set of its complexification L.
So, even if L̃ is real, we will consider complex regular values. Notice that, in
such a case, if λ ∈ Res(L,X), then λ̄ ∈ Res(L,X). The same considerations
we take for the spectrum.

All the spectral theory will be done for complex Banach spaces. If we
are working with real Banach spaces – which appear naturally when we
consider geometric problems – we will always understand the spectrum of
the complexification. We will mention later that some constructions such
as spectral projections of the complexification of a real operator, have a
meaning in the original real Banach space.
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Remark A.4. The next properties are straightforward, and general-
ize well known properties of finite dimensional matrices. For X,Y Banach
spaces and L : X → X bounded linear operator:

a) If α ∈ C∗ and β ∈ C, Spec(αL− βId, X) = αSpec(L,X)− β .
b) If P : Y → X is an isomorphism, Spec(P−1LP, Y ) = Spec(L,X) .
c) If L has bounded inverse, Spec(L−1, X) = Spec(L,X)−1 .

A very useful result is the Neumann series, valid for ||L|| < 1:

(A.1) (Id− L)−1 =
∞∑

k=0

Lk.

In particular (A.1) shows that Res(L,X) ⊃ {λ ∈ C
∣∣ |λ| > ||L||} and hence,

that Spec(L,X) is bounded.
The following result is the standard result on stability of the resolvent.
If λ ∈ Res(L,X) and A is a bounded linear operator, we can write

(A.2) λId− L−A = (λId− L)(Id−RλA)

Hence, when ||A|| ||Rλ|| < 1, we can apply (A.1) to obtain:

Proposition A.5. Assume that λ ∈ Res(L,X). If ||A|| ||Rλ|| < 1. Then,
λId− L−A is invertible, i.e. λ ∈ Res(L+A,X).

Moreover,

(A.3) (λId− L−A)−1 =

( ∞∑
i=0

(RλA)i

)
(λId− L)−1

As a consequence, we have:
• Res(L,X) is open. In fact:

(A.4) λ ∈ Res(L,X) , |λ− µ| < ||(L− λId)−1||−1 ⇒ µ ∈ Res(L,X) .

• Hence Spec(L,X) is closed.
• Rλ is an analytic function of λ ∈ Res(L,X).
• Rλ(L+A) is an analytic function of A.

A.1.0.1. Classification of the spectral values. The spectrum of a bounded
linear operator L is a compact subset of C, and it is decomposed in three
parts:

Spec(L,X) = SpecP (L,X) ∪ SpecR(L,X) ∪ SpecC(L,X) ,

where
• SpecP (L,X) is the point spectrum, that is the set of all λ ∈ C for

which λId − L is not injective (its elements are the eigenvalues of
L);

• SpecR(L,X) is the residual spectrum, that is the set of all λ ∈ C
for which λId− L is injective but (λId− L)(X) is not dense in X;
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• SpecC(L,X) is the continuous spectrum, that is the set of all λ ∈ C
for which λId−L is injective, (λId−L)(X) is dense but not closed
in X (that is (λId− L)(X) is a proper subset of X).

Other useful subsets of the spectrum are:
• SpecNR(L,X) = SpecP (L,X) ∪ SpecC(L,X) is the non residual

spectrum of L;
• SpecW (L,X) is the Weyl spectrum, that is the set of all λ ∈ C for

which λId− L is not injective or (λId− L)(X) is not closed in X.
Immediately from the definitions we follow that SpecNR(L,X) ⊂ SpecW (L,X),
but the Weyl spectrum can contain residual spectral values.

The spectral radius. We have seen that the spectrum is a compact
subset of C. Its bounds are given by the spectral radii.

Definition A.6. The spectral radius is

rs(L,X) = max{|λ| | λ ∈ Spec(L,X)} .
We have: rs(L,X) ≤ ||L||.

We define also

ri(L,X) = min{|λ| | λ ∈ Spec(L,X)} .
We have: ri(L,X) ≥ ||L−1||−1.

The following result is a simple version of the so called functional calcu-
lus.

Theorem A.7 (Spectral mapping theorem for polynomials). Let p be a
complex polynomial. Then:

Spec(p(L), X) = p(Spec(L,X)) .

That is to say, the spectrum of p(L) consists of those points µ such that
p(λ) = µ for some λ ∈ Spec(L,X).

As a corollary one obtains the spectral radius formula.

Theorem A.8 (Spectral radius formula).

(A.5) rs(L,X) = lim
m→+∞

m
√
||Lm|| , ri(L,X) = lim

m→−∞
m
√
||Lm|| .

A.1.1. Other results. It is well known that if Y ⊂ X is a closed
space invariant under L, then it is not necessarily true that Spec(Y, L) ⊂
Spec(X,L). One case in which this inclusion works is the following.

Theorem A.9 (Spectrum on projections). Let L : X → X a bounded
linear operator. Let P : X → X a (continuous) projection, that is, a bounded
linear operator such that P 2 = P . Let Y = P (X) the closed subspace of
points fixed by P . Suppose that L and P commute: LP = PL. Then, Y is
invariant under L and

Spec(Y, L) ⊂ Spec(X,L) .
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An important property, inherited from the spectral theory on Banach
Algebras (see [Rud73]) is the following. It is an extension of the previous
result.

Theorem A.10 (Spectrum of commuting bounded operators). Let A,B :
X → X be bounded linear operators such that AB = BA. Then,

Spec(A+B,X) ⊂ Spec(A,X) + Spec(B,X) ,
Spec(AB,X) ⊂ Spec(A,X)Spec(B,X) .

We recall an important result on duality. The dual map L∗ : X∗ → X∗

is defined on the dual space X∗, the set of the bounded linear functionals
x∗ : X → C, by the composition L∗x∗ = x∗◦L.

Theorem A.11 (Duality and spectrum). The spectrum of L∗ is

Spec(L∗, X∗) = Spec(L,X) .

A.2. Spectral sets and spectral projections

A very useful notion in our analysis is that of spectral set.

Definition A.12. A spectral set of L is a subset σ of Spec(L,X) such
that σ and Spec(L,X) \ σ are closed.

In the case that the space X is the complexification of a real space, we will
also include in the definition of spectral set that σ is closed under complex
conjugation. (i.e. λ ∈ σ =⇒ λ̄ ∈ σ ).

Note that given the compactness of the spectrum, the fact that σ and
Spec(L,X) \ σ are closed, implies that they are a finite distance apart. The
following two theorems can be found in [Kat76, Heu82].

Theorem A.13 (Spectral Decomposition). Let σ1, . . . , σm be pairwise
disjoint spectral sets of L such that Spec(L,X) = σ1 ∪ · · · ∪ σm.

Then, to each spectral set σi we can associate a continuous projection
Pi = Pσi : X → X, known as the spectral projection or Riesz projection
associated to σi, such that:

a) Xi = Pi(X) is invariant under L.
b) Spec(L,Xi) = σi,

Moreover:
c) Id = P1 + · · ·+ Pm (i.e. X = X1 + · · ·+Xm).
d) PiPj = 0 if i 6= j (i.e. Xi ∩Xj = {0} if i 6= j).

That is to say: X = X1 ⊕ · · · ⊕Xm.
In case that X is a the complexification of a real space X̃ and that L is the

complexification of an operator L̃ on X̃, since each of the σi is closed under
complex conjugation, we conclude that the spaces Xi are also closed under
complex conjugation. As a result, the spaces Xi are the complexification of
spaces X̃i and we have PiX̃ = X̃i and X̃ = X̃1 ⊕ · · · ⊕ X̃m.
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The following theorem relates the spectrum and the norms of iterated
transformations. In particular, it relates the existence of annular gaps in
the spectrum with the existence of invariant subspaces. We will denote

Aλ,µ = {z ∈ C | λ ≤ |z| ≤ µ} .
as the annulus of radii 0 < λ ≤ µ.

Theorem A.14 (Characterization of spectral projections). Suppose that
the spectrum has a gap in the annulus Aλ,µ, i.e.

Spec(L,X) ∩ Aλ,µ = ∅ .
Let σ<λ be the maximal spectral set contained in {z ∈ C | |z| < λ}, and σ>µ

be the maximal spectral set contained in {z ∈ C | |z| > µ}.
Then, the corresponding projections are given by

P<λ = lim
m→∞

(Id− (L/λ)m)−1 , P>µ = lim
m→∞

(
Id− (L/µ)−m)−1

.

Moreover, the invariant subspaces X<λ = P<λ(X) and X>µ = P>µ(X)
satisfy X = X<λ ⊕X>µ and they are characterized by

(A.6)

x ∈ X<λ ⇔ lim sup
m→∞

||Lmx||
1
m < λ ,

x ∈ X>µ ⇔ lim sup
m→∞

||L−mx||
1
m < µ−1 .

We will write L<λ = L|X<λ and L>µ = L|X>µ . We rewrite the previous
theorem in terms of rates of growth of the iterations of the vectors.

Theorem A.15 (Rates of growth in the spectral subspaces). Under the
hypothesis of Theorem A.14, for all ε > 0 small enough there exists a con-
stant Cε > 0 such that the invariant splitting X = X<λ⊕X>µ is character-
ized by

(A.7)
x ∈ X<λ ⇔ ∀m ≥ 0 ||Lmx|| ≤ Cε(λ− ε)m||x|| ,

x ∈ X>µ ⇔ ∀m ≥ 0 ||L−mx|| ≤ Cε(µ+ ε)−m||x|| .

Proof: Let ε > 0 be such that λ−2ε ≥ rs(L,X<λ) and µ+2ε ≤ ri(L,X>µ).
First, define

C<λ
ε = sup

m≥0
(λ− ε)−m||Lm

|X<λ || , C>µ
ε = sup

m≥0
(µ+ ε)m||L−m

|X>µ || ,

that are finite from the spectral radius formula applied to L|X<λ and L|X>µ ,
respectively. Finally, we have just to define

Cε = max{C<λ
ε , C>µ

ε }
to obtain the rates of growth (A.7). tu

This theorem will play an important role in the characterization of bun-
dles by the asymptotic properties of cocycles.

The following result follows immediately from the previous theorems.
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Corollary A.16. Under the hypothesis of Theorem A.14, if Y ⊂ X
is an L-invariant closed subspace that is also invariant under the spectral
projections P<λ and P>µ, then

Spec(L, Y ) ∩ Aλ,µ = ∅ .

That is to say, the spectrum of L in Y has also a gap.

A.3. Adapted norms

From the spectral radius formula we obtain that Spec(L,X) ⊂ {λ ∈
C | |λ| ≤ ρ} is equivalent to

(A.8) ∀ε > 0 ∃cε > 0 | ∀m ≥ 0 ||Lm|| ≤ cε(ρ+ ε)m .

By the uniform boundedness principle, this is equivalent to

(A.9) ∀v ∈ X ∀ε > 0 ∃cε,v | ∀m ≥ 0 ||Lmv|| ≤ cε,v(ρ+ ε)m .

In some applications it is convenient to be able to that cε in (A.8) equal to
1 by introducing an adapted norm, equivalent to the original one.

An explicit expression for an adapted norm for an operator.

||x||2ε =
∞∑

k=0

||Lkx||2(ρ+ ε)−2k .

It is easy to verify that the norms ||·|| and ||·||ε are equivalent, and ||Lx||ε ≤
(ρ+ ε)||x||ε.

Similarly, if the spectrum has a gap in the annulus Aλ,µ, it is possible to
develop norms adapted to the splitting. LetX<λ andX>µ the corresponding
invariant subspaces. Then, for all ε > 0 small enough there exist a constant
Cε > 0 such that

x ∈ X<λ ⇔ ∀m ≥ 0 ||Lmx|| ≤ Cε(λ− ε)m||x|| ,

x ∈ X>µ ⇔ ∀m ≥ 0 ||L−mx|| ≤ Cε(µ+ ε)−m||x|| .
We can obtain again an adapted norm such that Cε = 1. Given x ∈ X, let
x = x<λ + x>µ be the corresponding decomposition, with x<λ ∈ X<λ and
x>µ ∈ X>µ, then we define:

||x<λ||2ε =
∞∑

k=0

||Lkx<λ||2(λ− ε)−2k , |||x>µ|||2ε =
∞∑

k=0

||L−kx>µ||2(µ+ ε)2k ,

and
||x||2ε = ||x<λ||2ε + ||x>µ||2ε .

This norm is equivalent to the original one and satisfies ||L|X<λ ||ε ≤ λ− ε ,
||L−1

|X>µ ||ε ≤ (µ+ ε)−1.

Remark A.17. Notice that if the original norm comes from a scalar
product, then the new one also comes from a scalar product.
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A.4. Perturbation of the spectrum

The spectrum Spec(L,X) as a function of L has some continuity prop-
erties. Before stating the theorem, we recall some definitions. Given a
metric space E, let H(E) be the set of non empty compact sets of E. Given
A,B ∈ H(E) the distance from A to B is defined to be

d(A,B) = max
a∈A

min
b∈B

d(a, b) .

d does not define a distance in H(E). This is done by defining the Hausdorff
distance

h(A,B) = max(d(A,B), d(B,A)) .
Since d(A,B) < ε is equivalent to A ⊂ B + ε = {x ∈ X | ∃b ∈ B : d(x, b) <
ε}, then h(A,B) < ε is equivalent to A ⊂ B + ε,B ⊂ A + ε. It is well
know that H(E), endowed with the distance h, is complete (compact) if E
is complete (compact).

The following result is classical.

Theorem A.18 (Upper semi-continuity of the spectrum). Let L0 be a
bounded linear operator in the Banach space X. Then, for all ε > 0 there
exists δ > 0 such that if ||L− L0|| < δ then d(Spec(L,X),Spec(L0, X)) < ε
(that is to say, for all λ1 ∈ Spec(L) there exists λ ∈ Spec(L0) such that
|λ1 − λ| < ε).

Proof: We refer for more details to [Kat76, p. 208].
The result is equivalent to showing that if Γ is a closed of the resolvent

of L0, then, Γ is contained in the resolvent of all the operators L such that
||L− L0|| ≤ δ

We take

δ−1 = max{||(λ− L0)−1|| | λ /∈ Spec(L0, X) + ε} ,
Such δ exists because

lim
λ→∞

||(λ− L0)−1|| = 0 .

Then, we can use the results on stability of the resolvent in Proposi-
tion A.5 to conclude the desired result. tu

Remark A.19. Theorem A.18 shows that if we have an operator, the
spectrum in a neighborhood cannot be much bigger, but it can be signifi-
cantly smaller.

It is interesting to study what happens when we have a family of oper-
ators converging to a limit.

We note that the neighborhoods produced in Theorem A.18 are very
dependent on the operator, not just on the spectral properties. As the
operator approaches a limit, it could well happen that these neighborhoods
shrink and that therefore, the limit of the spectrum could be strictly smaller
than the spectrum of the limit.
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See [Kat76, p. 209] for an example of this phenomenon.
Another example of a related phenomenon, more motivated by dynam-

ical systems is Example 4.18.

A finer result says that each separated part of Spec(L,X) is upper semi-
continuous. For simplicity we state the result for the case in which the
spectrum has a gap (see [Kat76], p. 212, for a more general statement of
this theorem).

Theorem A.20. Let L0 be a bounded linear operator in the Banach space
X. Assume that

Spec(L0, X) ∩ Aλ,µ = ∅ ,
where 0 < λ ≤ µ. Then there exists δ > 0 with the following properties:

a) If ||L− L0|| < δ then

Spec(L,X) ∩ Aλ,µ = ∅ ,

b) Let X = X<λ[L] + X>µ[L] be the associated decomposition. Then
X<λ[L] and X>µ[L] are respectively isomorphic with X<λ[L0] and
X>µ[L0].

Moreover, the decomposition X = X<λ[L]+X>µ[L] is continuous in L in the
sense that the corresponding projections P<λ[L] and P>µ[L] tend respectively
to P<λ[L0] and P>µ[L0] in norm when ||L− L0|| → 0.

Proof: (Sketch) We refer to [Kat76, p. 212] for details.
The key ingredient is that there are explicit formulas for the spectral

projections associated to a component of the spectrum in terms of the re-
solvent.

P<λ =
1

2πi

∫
Sλ

(L− z)−1dz

The desired result follows from the continuity of the resolvent given by the
Neumann formula.

We refer to [Kat76], among others, for the details. tu

Remark A.21. As in Remark A.19, we remark that the neighborhoods
of stability depend very much on the operator.

As an operator approaches a limit, it could well happen that the neigh-
borhoods shrink so that the limit has a spectrum which is much larger than
the limit of the spectrum.

For example, it could well happen that, even if the spectrum does not
change as we approach the limit, the norms of the spectral projections grow
unbounded and this is what causes the neighborhoods of stability to shrink.

The paper [HdlLa] contains numerical evidence suggesting that this
phenomenon could happen in the context of bundle maps automorphisms. In
the examples presented in [HdlLa], the numerical calculations suggest that,
for a family of operators, even if the spectrum remains more or less constant
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in an open set of parameters, the spectral bundles approach each other. This
has the consequence that the spectral projections grow unbounded and that
in the limit of the set of parameters considered, the spectrum is significantly
larger.

In [HdlLa], it is conjectured, based on the numerical evidence that this
is a mechanism for loss of normal hyperbolicity.

The paper [HdlLa] also reports some remarkable scaling properties
found numerically. It is to be hoped that these numerical regularities will
find a mathematical explanation.

A.5. The Weyl spectrum

A notion from general spectral theory that we will find useful is the
notion of Weyl spectrum. From the definitions in Section A.1, it is obvious
that the Weyl spectrum contains the point spectrum.

In fact, the Weyl spectrum is also known as approximate point spectrum,
because
λ ∈ SpecW (L,X) ⇔ ∀ε > 0 ∃x ∈ X | ||Lx− λx|| < ε||x||

⇔ ∃{xn}n ⊂ X | ∀n ||xn|| = 1 , ||Lxn − λxn||
n→∞−−−→ 0 .

The sequence {xn}n is called an approximate eigenvector of the approximate
eigenvalue λ. This will be the property that we will use along this paper.

Remark A.22. If L̃ is a bounded operator on a real Banach space X̃,
we state the previous definitions for the corresponding complexifications.
Notice that if λ ∈ SpecP (L̃, X̃) then λ̄ ∈ SpecP (L̃, X̃). The same result
holds for SpecW (L̃, X̃).

It is obvious from the definitions that SpecW (L,X) ⊂ Spec(L,X) and
SpecW (L,X) is closed. The opposite inclusion is not true in general. Nev-
ertheless, the Weyl criterion (see [RS80] p. 237) asserts that for normal
operators (i.e. operators which commute with their adjoint) the Weyl spec-
trum is the whole spectrum.

Remark A.23. It is straightforward that if Y ⊂ X is an invariant closed
subspace, SpecW (L, Y ) ⊂ SpecW (L,X).

We emphasize that this monotonicity with respect to the spaces is not
true for the whole spectrum. Several examples of the phenomenon of growth
of the spectrum when the space decreases were studied in [dlL93]. The
examples in that paper are transfer operators similar to those considered
here. The spaces are spaces of zero divergence vector fields. In Part 4 we
will encounter more examples like that.

From the point of view of numerical analysis, the Weyl spectrum is the
easiest to compute. This is a consequence of the following proposition.

Proposition A.24. Let {Ln}n be a sequence of bounded linear operators
in the Banach space X that is convergent to L. Let {λn}n be a sequence of
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complex numbers such that for all n > 0 λn ∈ SpecW (Ln, X). Assume
furthermore, λn converges to λ.

Then, λ ∈ SpecW (L,X).

Remark A.25. Notice that any sequence {λn}n as in Proposition A.24
has a subsequence that is convergent, and so the limit is in λ ∈ SpecW (L,X).

Henceforth, in the determination of the spectrum of a linear operator,
one can produces a sequence of discretizations of the problem from where
we can determine the spectrum using finite-dimensional techniques. Unfor-
tunately, this procedure will locate only the Weyl spectrum, but will fail to
locate the full spectrum.

Some information about the spectrum can be obtained from the Weyl
spectrum. It is a standard result the points on the boundary of the spec-
trum are approximate eigenvalues (see e.g. [Con85], p. 215). This will be
important for us since the edges of the spectrum, give control on the rates
of growth.

Proposition A.26. We have

∂Spec(L,X) ⊂ SpecW (L,X) .

In particular, the points in the spectrum with moduli the spectral radii
are in the Weyl spectrum.
Proof: Let λ∗ ∈ ∂Spec(L,X). We can find a sequence {λn}n∈N ⊂ Res(L,X)
such that λn → λ∗. From (A.4) we conclude that

||(L− λnId)−1|| ≥ |λ∗ − λn|−1 .

Since ||(L− λnId)−1|| → ∞, we can obtain a sequence of vectors {wn}n∈N
satisfying

||(L− λnId)−1wn|| = 1, ||wn|| → 0 .
Therefore, since

(L− λ∗Id)(L− λnId)−1wn = (λn − λ∗)(L− λnId)−1wn + wn

we see that the (L− λnId)−1wn are approximate eigenvectors of λ∗. tu
Since we are going to be interested in rotational properties of the spec-

trum, we will need the following result, that follows directly from the previ-
ous proposition by using elementary point set topology.

Corollary A.27. If SpecW (L,X) is rotationally invariant, then Spec(L,X)
is also rotationally invariant.

Proof: We will show that it is impossible to have a circle Sρ = {z
∣∣|z| = ρ}

that intersects both Spec(L,X) and its complement.
If there was such a circle, there would have to be a point z ∈ Sρ ∩

∂Spec(L,X). Since the points in the frontier of the spectrum are Weyl,
by assumption, we have that Sρ ⊂ SpecW (A,X) ⊂ Spec(A,X). This is a
contradiction with the fact that there are points in Sρ both in the spectrum
and its complement.
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We conclude that a circle Sρ is either contained in the spectrum or in
its complement. tu
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of Hölder functions. Discrete Contin. Dynam. Systems, 5(1):157–184, 1999.

[dlLW95] Rafael de la Llave and C. Eugene Wayne. On Irwin’s proof of the pseudostable
manifold theorem. Math. Z., 219(2):301–321, 1995.

[DM96] C.P. Dettmann and G.P. Morriss. Proof of lyapunov exponent pairing for
systems at constant kinetic energy. Phys. Rev. E, 53:5541, 1996.

[DO98] Sorin Dragomir and Liviu Ornea. Locally conformal Kähler geometry, volume
155 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1998.
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[Mn78] Ricardo Mañé. Persistent manifolds are normally hyperbolic. Trans. Amer.
Math. Soc., 246:261–283, 1978.

[Mof95] H. K. Moffatt. Topological dynamics of fluids. In XIth International Con-
gress of Mathematical Physics (Paris, 1994), pages 465–473. Internat. Press,
Cambridge, MA, 1995.

[Mos69] J. Moser. On a theorem of Anosov. J. Differential Equations, 5:411–440, 1969.
[MS87] K. R. Meyer and George R. Sell. An analytic proof of the shadowing lemma.

Funkcial. Ekvac., 30(1):127–133, 1987.
[MS89] Kenneth R. Meyer and George R. Sell. Mel′nikov transforms, Bernoulli bun-

dles, and almost periodic perturbations. Trans. Amer. Math. Soc., 314(1):63–
105, 1989.

[MS95] D. McDuff and D. Salamon. Introduction to Symplectic Topology. The Claren-
don Press Oxford University Press, New York, 1995.



248 BIBLIOGRAPHY

[MS98] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology.
Oxford Mathematical Monographs. The Clarendon Press Oxford University
Press, New York, second edition, 1998.

[Nir01] Louis Nirenberg. Topics in nonlinear functional analysis, volume 6 of Courant
Lecture Notes in Mathematics. New York University Courant Institute of
Mathematical Sciences, New York, 2001. Chapter 6 by E. Zehnder, Notes
by R. A. Artino, Revised reprint of the 1974 original.
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