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1 The codeword is a sequence of bits of a code repres
bit identifies the membership of the class for a given b
a b s t r a c t

Error-correcting output codes (ECOC) represent a successful framework to deal with multi-class catego-
rization problems based on combining binary classifiers. With the extension of the binary ECOC to the
ternary ECOC framework, ECOC designs have been proposed in order to better adapt to distributions of
the data. In order to decode ternary matrices, recent works redefined many decoding strategies that were
formulated to deal with just two symbols. However, the coding step also is affected, and therefore, it
requires to be reconsidered. In this paper, we present a new formulation of the ternary ECOC distance
and the error-correcting capabilities in the ternary ECOC framework. Based on the new measure, we
stress on how to design coding matrices preventing codification ambiguity and propose a new sparse ran-
dom coding matrix with ternary distance maximization. The results on a wide set of UCI Machine Learn-
ing Repository data sets and in a real speed traffic sign categorization problem show that when the coding
design satisfies the new ternary measures, significant performance improvement is obtained indepen-
dently of the decoding strategy applied.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the literature, one can find several powerful types of binary
classifiers. However, when one needs to deal with multi-class
classification problems, many learning techniques fail to manage
this information. Instead, it is common to construct the classifiers
to distinguish between just two classes, and to combine them. In
this sense, error-correcting output codes were born as a general
framework to combine binary problems to address the multi-class
problem. The strategy was introduced by Dietterich and Bakiri
(1995). Based on the error-correcting principles (Dietterich and
Bakiri, 1995) and because of its ability to correct the bias and var-
iance errors of the base classifiers (Kong and Dietterich, 1995),
ECOC has been successfully applied to a wide range of Computer
Vision applications, such as face recognition (Windeatt and
Ardeshir, 2003), face verification (Kittler et al., 2001), text recogni-
tion (Ghani, 2001) or manuscript digit classification (Zhou and
Suen, 2005).

The ECOC technique can be broken down into two general
stages: encoding and decoding. Given a set of classes, the coding
stage designs a codeword1 for each class based on different binary
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problems. The decoding stage makes a classification decision for a gi-
ven test sample based on the value of the output code.

At the coding step, given a set of N classes to be learnt, n different
bi-partitions (groups of classes) are formed, and n binary problems
(dichotomizers) are trained. As a result, a codeword of length n is ob-
tained for each class, where each bit of the code corresponds to the
response of a given dichotomizer (coded by +1, �1, according to its
class set membership). Arranging the codewords as rows of a matrix,
we define a coding matrix M, where M 2 f�1;1gN�n in the binary
case. The most well-known binary coding strategies are the one-ver-
sus-all strategy (Nilsson, 1965), where each class is discriminated
against the rest of classes, and the dense random strategy (Allwein
et al., 2002), where a random matrix M is generated maximizing
the rows and columns separability in terms of the Hamming dis-
tance (Dietterich and Bakiri, 1995). In Fig. 1a, the one-versus-all
ECOC design for a 4-class problem is shown. The white regions of
the coding matrix M correspond to the positions coded by 1, and
the black regions to �1. Thus, the codeword for class c1 is
f1;�1;�1;�1g. Each column j of the coding matrix codifies a binary
problem learnt by its corresponding dichotomizer hi. For instance,
dichotomizer h1 learns c1 against classes c2; c3 and c4, dichotomizer
h2 learns c2 against classes c1; c3 and c4, etc. An example of a dense
random matrix for a 4-class problem is shown in Fig. 1c.

It was when Allwein et al. (2002) introduced a third symbol
(the zero symbol) in the coding process that the coding step re-
ceived special attention. This symbol increases the number of par-
titions of classes to be considered in a ternary ECOC framework by
allowing some classes to be ignored. Then, the ternary coding
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Fig. 1. One-versus-all (a), one-versus-one (b), dense random (c), and (d) sparse random ECOC designs.
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matrix becomes M 2 f�1;0;1gN�n. In this case, the symbol zero
means that a particular class is not considered by a certain binary
classifier. Thanks to this, strategies such as one-versus-one (Hastie
and Tibshirani, 1998) and sparse random coding (Allwein et al.,
2002) have been formulated in the ECOC framework. Fig. 1b shows
the one-versus-one ECOC configuration for a 4-class problem. In
this case, the grey positions correspond to the zero symbol. A pos-
sible sparse random matrix for a 4-class problem is shown in
Fig. 1d. Recently, new improvements in the ternary ECOC coding
demonstrate the suitability of the ECOC methodology to deal with
multi-class classification problems (Pujol et al., 2006; Escalera
et al., 2007). These recent designs use the knowledge of the prob-
lem-domain to learn relevant binary problems from ternary codes.
The basic idea of these methods is to use the training data to guide
the training process, and thus, to construct the coding matrix M
focusing on the binary problems that better fits the decision
boundaries of a given data set.

The decoding step was originally based on error-correcting prin-
ciples under the assumption that the learning task can be modeled
as a communication problem, in which class information is trans-
mitted over a channel (Dietterich and Bakiri, 1995). During the
decoding process, applying the n binary classifiers, a code is ob-
tained for each data point in the test set. This code is compared to
the base codewords of each class defined in the matrix M, and the
data point is assigned to the class with the closest codeword. The
most frequently applied decoding strategies are the Hamming
(HD) (Nilsson, 1965) and the Euclidean (ED) decoding distances
(Hastie and Tibshirani, 1998). With the introduction of the zero
symbol, Allwein et al. (2002) showed the advantage of using a
Loss-based function of the output margin of the base classifier. Re-
cently, Escalera et al. (2008) proposed a loss-weighted strategy to
decode, where a set of probabilities based on the performances of
the base classifiers is used to weight the final classification decision.
In Fig. 1, each ECOC codification is used to classify an input object X.
The input X is tested with each dichotomizer hi, obtaining an output
Xi; i 2 f1; ::;ng. The final code fX1; . . . ;Xng of the test input X is used
by a given decoding strategy to obtain the final classification deci-
sion. Note that in both, the binary and the ternary ECOC framework,
the value of each position Xj of the test codeword can not take the
value zero since the output of each dichotomizer is hj 2 f�1;þ1g,
meaning the automatical increasing of distance/error.

To deal with multi-class categorization problems in the ternary
ECOC framework, recent works redefined decoding strategies that
were formulated to deal with just two symbols (Escalera et al.,
2008; Allwein et al., 2002). However, the influence of the zero sym-
bol to the error-correction capabilities and the design of the coding
strategies have not been taken into account. In this paper, we for-
mulate the ternary distance and the ternary error-correcting capa-
bilities in the ternary ECOC framework. We propose a new sparse
coding design based on maximizing the new ternary distance.
We evaluate the methodology on a wide set of UCI Machine Learn-
ing Repository data sets and in a real Computer Vision problem:
speed traffic sign categorization. The results show that when the
new ternary distance is considered on sparse designs, significant
performance improvement is obtained.

The paper is organized as follows: Section 2 overviews the ECOC
random designs and presents a new sparse coding design based on
ternary distance maximization. Section 3 presents the experimen-
tal results. Finally, Section 4 concludes the paper.

2. Random ECOC designs

In this section, we overview both dense and sparse random
ECOC designs (Allwein et al., 2002). We show the inconsistency



Fig. 2. Wrong binary and ternary ECOC designs. (a) Wrong hypothesis h3. (b)
Redundant hypotheses h1 and h4. (c) Repeated codewords y1 and y3 for classes c1

and c3. (d) Codification error between classes c1 and c3.
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of the classical sparse random design and introduce a new measure
for sparse coding designs.

2.1. Dense random design

Let us consider a binary ECOC matrix M 2 f�1;1gN�n, where N is
the number of classes and n the codeword length. Based on Eq. (6)
in (Allwein et al., 2002), the minimum Hamming distance dr

among all pairs of rows can be defined as follows (Allwein et al.,
2002):

dr ¼ min
i1 ;i2

Xn

j¼1

1� sign yj
i1
� yj

i2

� �� �
=2

( )

for i1; i2 2 f1; . . . ;Ng; i1–i2, being yj
i1

the jth position of the codeword
for class ci1 . Suppose that two codewords coded using f�1;þ1g val-
ues have a Hamming distance of three. Then, it means that even if
we fail in a bit, we still are able to obtain the correct classification.
It suggests that a distance dr in a binary ECOC matrix M can correct
½dr � 1�=2 codeword errors at the decoding step (Dietterich and
Bakiri, 1995). Because of these binary error-correction capabilities,
many ECOC designs, such as random ECOC strategies, base the de-
sign of the ECOC coding matrix on maximizing the value dr (Allwein
et al., 2002).

Let us consider the distance dc between all pairs of columns and
their opposites:

dc ¼ min
j1 ;j2
fminðAðj1; j2Þ; Bðj1; j2ÞÞg

being
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where j1; j2 2 f1; . . . ; ng; j1–j2. High value of dc contributes to con-
sider different sub-partitions of classes and to increase the variabil-
ity of the knowledge of the classifiers. Note that in Eq. (1) the factor
(�1) is used to take into account the independence of the class
ordering, i.e. the base classifier learns the same problem from the
partition C1 versus C2 and from C2 versus C1.

The dense random ECOC strategy (Allwein et al., 2002) tries to
maximize simultaneously both previous dr and dc distances to de-
sign matrices where the decoding strategies are able to obtain a
correct classification still when there exist failures in some bits
of the tested codewords. The dense random strategy generates a
high number of random coding matrices M of length n, where
the values fþ1;�1g have a certain probability to appear (usually
Pð1Þ ¼ Pð�1Þ ¼ 0:5). Studies on the performance of the dense ran-
dom strategy suggest a length of n ¼ 10 log N (Allwein et al., 2002).
In order to assure optimal performance of ECOC classification, for
the set of generated dense random matrices, the optimal one
should maximize the Hamming decoding measure between rows
dr and columns dc (also considering the opposites), taking into ac-
count that each column of the matrix M must contain both differ-
ent symbols f�1;þ1g.

In Fig. 2 some coding errors are shown. Fig. 2a has a dichotom-
izer ðh3Þ with all the elements coded by �1. In this case, we do not
have two groups of classes to split. Fig. 2b has the hypotheses h1

and h4 splitting the same sub-groups of classes in opposite order,
which exactly learns the same problem. The coding matrix M of
Fig. 2c is not able to distinguish between classes c1 and c3 since
their respective codewords y1 and y3 are the same. The three pre-
vious problems in the ECOC designs do not occur when we use
standard coding strategies such as one-versus-one or one-versus-
all. When we use the dense random strategy defined in (Allwein
et al., 2002), one needs to consider each dichotomizer to have posi-
tions coded by +1 and �1 in order to maximize the Hamming
decoding measure among the columns and their opposites; and
to have a high Hamming decoding value between rows, which pre-
vents the errors produced in Fig. 2a–c, respectively. As commented
in the Allwein’s paper (Allwein et al., 2002): ‘‘For each problem, we
picked a code with high value of q and did not have any identical
columns.”

2.2. Classical sparse random design

One of the main limitations of the binary ECOC framework is the
need of considering all classes for each binary classifier. Although a
high distance dr and dc can be computed, the selection of the most
relevant sub-partition of classes for different multi-classification
problems is not assured in the coding design. This fact implies
the need of designing large codes to increase the discriminating
ability of the combined set of binary problems. Moreover, taking
into account the whole set of classes for each classifier significantly
reduces the number of possible sub-partitions of classes to
consider.

To take into account a higher number of possible classifiers, a
third symbol was introduced in the ECOC framework (Allwein
et al., 2002). In this sense, the sparse random strategy is designed
in the same way than the Dense design, but it includes the third
symbol zero with another probability to appear, given by Pð0Þ ¼
1� Pð�1Þ � Pð1Þ. Studies suggest a sparse code length of 15 log N
(Allwein et al., 2002).

We consider that to increase the class separability in the ternary
ECOC framework, the distance dc of the binary case can be main-
tained since all three symbols f�1;0;þ1g have influence on the
information learnt by each dichotomizer. It means that the dis-
tance between columns produced by the positions coded by zero
increases the variability of the classifiers. However, we argue that
the use of the codewords separability maximizing the measure dr

to design a sparse random matrix may contain inconsistency.

2.2.1. Sparse random design with ternary separability
Let us show an example to analyze sparse designs. A zero symbol

in a class code introduces one degree of freedom, that means that
both +1 and �1 are possible values during the test classification
since the class has not been taken into account to train the corre-
sponding dichotomizer. Any codeword yi containing the zero sym-
bol defines an extended set of possible codewords that could be
obtained by examples of the class ci. In this sense, a possible code-



2 We realize that the error-correcting capability also depends on the way that the
decoding strategies are applied.

3 The regularization parameter C is set to 1 for all the experiments. We selected this
parameter after a preliminary set of experiments. We decided to keep the parameter
fixed for the sake of simplicity and easiness of replication of theexperiments, though
we are aware that this parameter might not be optimal for all data sets. Nevertheless,
since the parameters arethe same for all the compared methods any weakness in the
results will also be shared.

4 Osu-svm-toolbox. URL http://svm.sourceforge.net.
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word y1 ¼ f1;0;0g can be disambiguated into its extended set of
codewords Ye

1 ¼ ff1;1;1g; f1;1;�1g; f1;�1;1g; f1;�1;�1gg,
where each of the four codewords of y1 is a possible representation
of the same codeword y1, and possible representation means that
any test example of class c1 would give a codeword from Ye

1. Now,
a possible codeword for a second class y2 ¼ f1;1;1g corresponds
to one of the four possible representations of y1ðy2 2 Ye

1Þ.
Let us consider another example of codewords of length six. Sup-

pose that we randomly define two codewords y1 ¼ f1;1;1;0;0;0g
and y2 ¼ f0;0;0;1;1;1g in a sparse random design. If we use the
classical distance dr between y1 and y2, we obtain a class separabil-
ity of three. However, based on the previous example, if we disam-
biguate y1 and y2, we obtain that Ye

1 \ Ye
2 ¼ f1;1;1;1;1;1g. Thus, an

input test codeword X ¼ f1;1;1;1;1;1g belongs to both previous
codewords, which implies a wrong sparse design.

Finally, observe the ternary coding matrix M of Fig. 2d. Suppose
that the matrix M of the figure receives an input test data sample
which codeword corresponds to X ¼ f�1;1;1;1;1g. This codeword
matches with the four positions different of zero from class c1 and
the three from class c3. In this case, X 2 Ye

1 and X 2 Ye
3. Thus, both

classes can be a possible solution. However, the HD between code-
words y1 and y3 produces a value of 1.5. Note that in the literature
(Allwein et al., 2002), a sparse random matrix is generated by
selecting the matrix from a previous set of matrices that maxi-
mizes the distances dr and dc . As commented, the HD between col-
umns containing the third symbol is still useful since the zero
positions help to create a rich set of partitions to be learnt. How-
ever, the measure dr for the row separability in terms of the HD,
as claimed, is inconsistent. Instead, to assure that the coding ma-
trix M splits all pairs of classes, each pair of codewords of M should
be split by at least one hypothesis.

Definition 1. The ternary separability condition of a matrix M is
fulfilled if for any two codewords there exists a dichotomizer that
discriminate them, that is

8ðyi1
; yi2
Þji1; i2 2 f1; . . . ;Ng; i1–i2; 9hjjðci1 2 Cj

1; ci2 2 Cj
2Þ_

ðci2 2 Cj
1; ci1 2 Cj

2Þ

where Cj
1 and Cj

2 are the two subsets of classes for hypothesis hj,
respectively. Then, we can define the distance between two code-
words in a ternary symbol-based ECOC:

Definition 2. The ternary distance between two codewords ðy1; y2Þ
is defined as

dðy1; y2Þ ¼
Xn

j¼1

1
2

yj
1

��� ��� yj
2

��� ��� 1� yj
1yj

2

� �

It defines the number of different bits between two codewords
without taking into account the positions coded by zero. Note that
the term 1

2 ð1� y1y2Þ is equivalent to the standard Hamming dis-
tance estimated in the binary case expressed in a more compact
way. Thus, the weighting term jyj

1jjy
j
2j makes the distance to ignore

the zero positions which do not give information about the classes
separability. Then, the pair of codewords ðyi1 ; yi2 Þ that are split by
the minimum number of hypothesis in a ternary ECOC matrix M de-
fines the new distance dt:

Definition 3. The distance dt of a coding matrix M is defined as
follows:

dt ¼ argmin
i1 ;i2

Xn

j¼1

1
2

yj
i1

��� ��� yj
i2

��� ��� 1� yj
i1

yj
i2

� �

where the term dt defines the distance between the pair of code-
words that are split by the minimum number of binary problems
in a ternary symbol-based ECOC matrix.
Based on the new ternary distance, we can define the error-cor-
recting capabilities in the ternary ECOC framework. As the distance
in the ternary case has been reformulated, the new measure of er-
ror-correction also changes. Having a N-multi-class classification
problem in the binary ECOC framework, a distance dr between
rows of M can correct ½dr � 1�=2 bits errors. In the ternary case,
the maximum class separability is defined by the measure dt . Thus,
on a sparse ECOC matrix, ½dt � 1�=2 bits errors can be corrected.2

As the use of the distance dr applied to the classical design of
the sparse random matrix M produces inconsistencies, we suggest
to redefine the coding stage of the sparse random designs. A good
codification of a ternary matrix should assure the highest number
of codeword bits splitting each pair of rows; that is to maximize
the value dt . Therefore, we propose to use the new measure of ter-
nary separability for the sparse random design. In this case, the se-
lected random matrix should be that one which maximizes
simultaneously dc and dt .
3. Results

We discuss the data, comparatives, and measurements of the
experiments before the results are presented.

� Data: The data used for the experiments consists of 16 multi-
class data sets from the UCI Machine Learning Repository data-
base (Asuncion and Newman, 2007). The details of the data sets
are shown in Table 1.We also use the video sequences obtained
from a Mobile Mapping System (Casacuberta et al., 2004) to test
the methods in a real traffic sign categorization problem.

� Comparative: For the comparative, we use the classical sparse
random (Allwein et al., 2002), dense random, one-versus-all,
and the new sparse random design with ternary distance maxi-
mization. To decode, we use 13 state-of-the-art decoding strate-
gies: Hamming decoding (HD) (Dietterich and Bakiri, 1995),
Euclidean decoding (ED) (Hastie and Tibshirani, 1998), inverse
Hamming decoding (IHD) (Windeatt and Ghaderi, 2003), attenu-
ated Euclidean decoding (AED) (Escalera et al., 2007), loss-based
decoding with linear (LLB) and exponential (ELB) loss-functions
(Allwein et al., 2002), probabilistic decoding (PD) (Passerini
et al., 2004), Laplacian decoding (LAP) (Escalera et al., 2006), pes-
simistic b-density distribution decoding (b-DEN) (Escalera et al.,
2006), linear loss-weighted (LLW) with discrete and continuous
outputs of the classifier (Escalera et al., 2008), and the exponen-
tial loss-weighted (ELW) with discrete and continuous outputs of
the classifier (Escalera et al., 2008). The base classifiers used for
the experiments are Gentle Adaboost with 50 runs of decision
stumps (Friedman et al., 1998), the linear support vector
machines (SVM),3 and a tuned Support Vector Machines with
Radial Basis Function kernel (Vapnik, 1995).4

� Measurements: The data used in the experiments is normalized
to an hypercube with a side length of one. To measure the per-
formance of the different strategies we apply stratified tenfold
cross-validation and test for confidence interval at 95% with a
two-tailed t-test.

http://mlearn.ics.uci.edu/MLRepository.html


Fig. 3. Absolute (light lines) and relative (dark lines) improvements for the sparse random designs compared with classical sparse random using ternary distance
maximization for Gentle Adaboost (left) and Linear SVM (right) on the UCI experiments, respectively.

Table 1
UCI repository data sets characteristics.

Problem Train Features Classes Problem Train Features Classes

Dermathology 366 34 6 OptDigits 5620 64 10
Iris 150 4 3 Shuttle 14,500 9 7
Ecoli 336 8 8 Vehicle 846 18 4
Wine 178 13 3 Segmentation 2310 19 7
Glass 214 9 7 Pendigits 10,992 16 10
Thyroid 215 5 3 Letter 20,000 16 26
Vowel 990 10 11 Satimage 6435 36 7
Balance 625 4 3 Yeast 1484 8 10
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3.1. UCI classification

In this experiment, we classify the 16 multi-class UCI Machine
Learning Repository data sets of Table 1. To test the sparse random
strategies, we generated a set of 20000 arbitrary random matrices
with a length of the codewords of N, where the probabilities of
appearance of each symbol are Pð0Þ ¼ Pð1Þ ¼ Pð�1Þ ¼ 1=3. From
exactly the same set of generated matrices, we selected the classi-
cal sparse random matrix by the one which maximizes dr and dc ,
and the new sparse random matrix by selecting the one which
maximizes dt and dc. To decode, the commented 13 decoding strat-
egies are applied over the sparse random designs for Gentle Ada-
boost and Linear SVM as the base classifiers.

Tables 2 and 3 of Appendix A show the performance results and
confidence intervals applying stratified tenfold cross-validation for
Gentle Adaboost and Linear SVM, respectively. To show the perfor-
mance improvements by selecting the new sparse random matrix,
the absolute and relative improvements are shown in Fig. 3. The
relative improvement is computed as the division between the
performance of the new sparse design and the classical one, and
the absolute improvement corresponds to the direct difference of
performances. The light bars correspond to the absolute improve-
ment, and the dark lines to the relative one. Note that simply
changing the decision on the selection of the sparse matrix from
the same set of generated random matrices, the performance sig-
nificantly increases independently of the decoding strategy ap-
plied. It is produced since the maximization of dt assures us to
select the matrix with the higher number of bits splitting code-
words (and thus, classes).

The same experiment is also computed for the dense random
design. In this case, the probabilities of appearance of each symbol
are Pð1Þ ¼ Pð�1Þ ¼ 1=2. Tables 4 and 5 of Appendix B show the
performance results and confidence intervals applying stratified
tenfold cross-validation for Gentle Adaboost and Linear SVM,
respectively. The absolute and relative improvements are shown
in Fig. 4. In this case, though the absolute and relative improve-
ments have less impact compared to the previous experiment,
one can observe that our approach performs better for most of
the decoding strategies.

3.2. Real multi-class traffic sign categorization

For this experiment, we use the video sequences obtained from
a Mobile Mapping System (Casacuberta et al., 2004) to test the
methods in a real traffic sign Computer Vision problem. In this sys-
tem, the position and orientation of the different traffic signs are



Fig. 4. Absolute (light lines) and relative (dark lines) improvements for the sparse random designs compared with classical dense random using ternary distance
maximization for Gentle Adaboost (left) and Linear SVM (right) on the UCI experiments, respectively.

Fig. 5. (a) Samples from the road video sequences. (b) Speed data set samples.
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measured with video cameras fixed on a moving vehicle. The sys-
tem has a stereo-pair of calibrated cameras, which are synchro-
nized with a GPS/INS system. The result of the acquisition step is
a set of stereo-pairs of images with their position and orientation
information. We choose the speed data set since the low resolution
of the images, the non-controlled conditions, and the high similar-
ity among classes make the categorization a difficult task. Fig. 5
shows examples of video sequences and samples of the speed data-
base used in the experiments. The database contains a total of 2500
samples divided in nine classes. Each sample is composed by 1200
pixel-based features after smoothing the image and applying histo-
gram equalization. For this experiment, we applied the same ran-
dom criteria than at the previous experiment, with a length of
codewords of nine bits (equal to the number of classes).

Table 6 of Appendix C shows the performance results and con-
fidence intervals applying stratified tenfold cross-validation. To
show the performance improvements by selecting the new sparse
random matrix, the absolute and relative improvements are shown
in Fig. 6 for Gentle Adaboost and Linear SVM, respectively. The light
bars correspond to the absolute improvement, and the dark lines to
the relative one. In this experiment, one can see that the ternary
sparse maximization criterion also obtains performance improve-
ments for all decoding strategies.

3.3. UCI classification using RBF SVM

In the previous experiments, the parameters for the Linear SVM
classifier were fixed by default to compare the performance of the
different coding and decoding strategies at the same conditions.
However, complex classifiers and optimizations can improve the
results of the strategies. In particular, the authors of Rifkin and
Klautau (2004) show that the simple one-versus-all scheme is as
accurate as any other schemes when complex base classifiers are
applied. In this sense, we include a brief experiment considering
a SVM with Radial Basis Function kernel optimized via cross-vali-
dation applied over the new sparse random design and the one-



Fig. 6. Absolute (light lines) and relative (dark lines) improvement for the sparse random designs using ternary distance maximization for Gentle Adaboost (left) and Linear
SVM (right) on the Traffic sign categorization experiment, respectively.

Fig. 7. Absolute (light lines) and relative (dark lines) improvements for the new
sparse random design compared to the one-versus-all strategy using RBF SVM on
the UCI data sets.
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versus-all strategies using the set of decoding strategies and UCI
data sets to look for the behavior of the new sparse design when
a more complex base classifier is applied.

For this experiment, the sigma and regularization parameters
were tested from 0.1 increasing per 0.05 up to one and from one
increasing per five up to 150, respectively. The design of the sparse
random matrix is done at same condition than at the previous
experiments, and considering a length of the codeword of 2N,
being N the number of classes. The UCI data sets used correspond
to the eight data sets described in the first column of Table 1: Der-
mathology, Iris, Ecoli, Wine, Glass, Thyroid, Vowel, and Balance.
The performances obtained in this experiment are numerically
shown in Table 7 of Appendix D. To show the performance
improvements by selecting the new sparse random matrix, the
absolute and relative improvements are shown in Fig. 7 for RBF
SVM. The light bars correspond to the absolute improvement, and
the dark lines to the relative one. In Table 7 one can see that the
performances obtained using RBF SVM are superior to the ones ob-
tained at the previous experiments for Gentle Adaboost and Linear
SVM as the base classifiers. Fig. 7 shows that the absolute and rel-
ative improvements in this case are less significant in this experi-
ment, but still in most cases we outperform the results obtained by
the one-versus-all strategy using RBF SVM. In the cases where we
obtain inferior results, these differences are not significant.

As a conclusion of the experiments, we can state that the dis-
tance dt based on maximizing the ternary separability allows high
splitting of the classes codewords. In the previous experiments sig-
nificant performance improvements are obtained, independently
of the decoding strategy applied, when the sparse matrix is se-
lected by maximizing the dt criterion. Note that the classical sparse
matrix is selected from the same set of matrices as the new sparse
matrix, but it obtains very inferior results. This suggests that for
designs that consider the new measures, class separability is in-
creased. Thus, the decoding strategies are able to distinguish
among different codewords with higher confidence. Moreover,
the ternary distance can be applied to problem-dependent ECOC
schemes, assuring the consistence of the designs. At the same time,
the new measures can also help the decoding strategies to evaluate
those positions of codewords that directly affect class separability.

Note that this measure corresponds to the attenuated Euclidean
decoding (AED), as described in (Escalera et al., 2007), which is in-
cluded in the experimental evaluation of the paper. This method
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and the rest of strategies designed to deal with a ternary decoding
obtain robust results. However, the best results are obtained by
Table 2
Sparse random results using Gentle Adaboost on the UCI data sets.

HD IHD ED AED LLB ELB PD

Derma 0.588 0.634 0.636 0.647 0.549 0.587 0.444
0.027 0.012 0.011 0.009 0.017 0.021 0.035
0.926 0.923 0.926 0.923 0.896 0.926 0.945
0.017 0.018 0.017 0.015 0.024 0.021 0.013

Iris 0.933 0.933 0.933 0.933 0.953 0.953 0.953
0.019 0.019 0.019 0.019 0.014 0.014 0.014
0.926 0.926 0.926 0.926 0.960 0.960 0.960
0.020 0.020 0.020 0.020 0.014 0.014 0.014

Ecoli 0.373 0.379 0.367 0.533 0.284 0.302 0.493
0.017 0.016 0.021 0.014 0.019 0.020 0.017
0.373 0.379 0.367 0.533 0.284 0.302 0.493
0.017 0.016 0.021 0.014 0.019 0.020 0.017

Wine 0.943 0.943 0.943 0.943 0.960 0.954 0.954
0.018 0.018 0.018 0.018 0.011 0.013 0.013
0.949 0.949 0.949 0.949 0.960 0.960 0.954
0.012 0.012 0.012 0.012 0.011 0.011 0.013

Glass 0.592 0.569 0.592 0.588 0.486 0.598 0.614
0.037 0.040 0.037 0.036 0.036 0.039 0.032
0.655 0.646 0.645 0.645 0.626 0.640 0.643
0.026 0.025 0.032 0.033 0.031 0.028 0.034

Thyroid 0.907 0.907 0.907 0.907 0.921 0.921 0.911
0.026 0.026 0.026 0.026 0.027 0.027 0.026
0.898 0.898 0.898 0.898 0.921 0.921 0.911
0.025 0.025 0.025 0.025 0.027 0.027 0.026

Vowel 0.382 0.279 0.441 0.430 0.362 0.396 0.439
0.020 0.012 0.022 0.025 0.023 0.024 0.020
0.443 0.373 0.452 0.441 0.449 0.465 0.452
0.023 0.021 0.025 0.023 0.031 0.029 0.023

Balance 0.425 0.425 0.801 0.801 0.481 0.639 0.785
0.020 0.020 0.040 0.040 0.027 0.048 0.037
0.504 0.504 0.504 0.504 0.730 0.721 0.800
0.061 0.061 0.061 0.061 0.079 0.079 0.077

Yeast 0.433 0.402 0.435 0.393 0.421 0.415 0.345
0.021 0.011 0.020 0.008 0.014 0.015 0.008
0.435 0.408 0.436 0.454 0.429 0.425 0.464
0.012 0.011 0.012 0.013 0.014 0.013 0.010

Satimage 0.795 0.766 0.814 0.639 0.766 0.787 0.637
0.019 0.018 0.018 0.014 0.025 0.026 0.021
0.789 0.776 0.814 0.807 0.814 0.820 0.829
0.019 0.017 0.021 0.020 0.019 0.019 0.017

Letter 0.803 0.821 0.823 0.841 0.821 0.828 0.812
0.016 0.016 0.018 0.018 0.017 0.017 0.017
0.839 0.840 0.850 0.863 0.836 0.845 0.834
0.016 0.018 0.016 0.017 0.017 0.017 0.016

Pendigits 0.839 0.818 0.858 0.889 0.836 0.857 0.848
0.011 0.010 0.009 0.010 0.009 0.007 0.011
0.859 0.848 0.883 0.921 0.872 0.889 0.869
0.010 0.010 0.010 0.010 0.009 0.007 0.011

Segment 0.921 0.922 0.921 0.891 0.711 0.863 0.920
0.010 0.009 0.010 0.012 0.016 0.006 0.010
0.939 0.933 0.938 0.933 0.897 0.919 0.938
0.009 0.010 0.009 0.009 0.015 0.014 0.008

Optdigits 0.753 0.716 0.796 0.740 0.787 0.795 0.783
0.018 0.016 0.022 0.023 0.026 0.025 0.024
0.769 0.651 0.811 0.779 0.685 0.724 0.810
0.022 0.016 0.025 0.030 0.018 0.019 0.023

Shuttle 0.658 0.703 0.702 0.710 0.653 0.669 0.716
0.023 0.024 0.023 0.036 0.021 0.022 0.027
0.723 0.724 0.723 0.724 0.730 0.734 0.727
0.033 0.029 0.033 0.032 0.031 0.029 0.025

Vehicle 0.850 0.849 0.998 0.998 0.854 0.859 0.944
0.000 0.000 0.000 0.000 0.002 0.004 0.008
0.998 0.989 0.998 0.998 0.779 0.957 0.853
0.000 0.003 0.000 0.000 0.067 0.020 0.152
Laplacian, b-density, and loss-weighted decoding variants, which,
as can be easily shown, subsume the AED approach but also include
LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.636 0.636 0.650 0.452 0.650 0.436
0.011 0.011 0.008 0.051 0.008 0.042
0.926 0.926 0.929 0.920 0.929 0.940
0.017 0.017 0.017 0.015 0.017 0.015

0.933 0.933 0.933 0.953 0.933 0.953
0.019 0.019 0.019 0.014 0.019 0.014
0.926 0.926 0.933 0.960 0.933 0.960
0.020 0.020 0.019 0.014 0.019 0.014

0.370 0.357 0.539 0.443 0.551 0.477
0.018 0.021 0.015 0.033 0.011 0.029
0.370 0.357 0.539 0.443 0.551 0.477
0.018 0.021 0.015 0.033 0.011 0.029

0.943 0.943 0.943 0.960 0.943 0.960
0.018 0.018 0.018 0.011 0.018 0.011
0.949 0.949 0.949 0.954 0.949 0.960
0.012 0.012 0.012 0.013 0.012 0.011

0.592 0.592 0.592 0.530 0.592 0.605
0.037 0.037 0.037 0.028 0.037 0.036
0.645 0.645 0.645 0.579 0.645 0.625
0.032 0.032 0.032 0.035 0.032 0.032

0.907 0.907 0.907 0.921 0.907 0.921
0.026 0.026 0.026 0.027 0.026 0.027
0.898 0.898 0.898 0.921 0.898 0.921
0.025 0.025 0.025 0.027 0.025 0.027

0.443 0.443 0.451 0.405 0.449 0.431
0.021 0.021 0.024 0.022 0.025 0.019
0.454 0.454 0.441 0.472 0.441 0.481
0.026 0.026 0.024 0.027 0.024 0.027

0.801 0.801 0.788 0.710 0.788 0.735
0.040 0.040 0.051 0.050 0.051 0.052
0.504 0.504 0.809 0.756 0.809 0.756
0.061 0.061 0.082 0.077 0.082 0.077

0.435 0.435 0.395 0.401 0.402 0.403
0.019 0.019 0.013 0.020 0.016 0.018
0.435 0.435 0.447 0.413 0.447 0.425
0.012 0.012 0.014 0.015 0.014 0.014

0.814 0.814 0.673 0.638 0.656 0.705
0.018 0.018 0.025 0.034 0.015 0.030
0.814 0.814 0.818 0.832 0.818 0.833
0.021 0.021 0.019 0.020 0.019 0.020

0.834 0.838 0.848 0.855 0.862 0.880
0.017 0.015 0.014 0.015 0.015 0.016
0.860 0.876 0.872 0.885 0.874 0.889
0.017 0.016 0.014 0.015 0.014 0.015

0.927 0.932 0.932 0.940 0.932 0.947
0.010 0.010 0.008 0.009 0.007 0.010
0.942 0.942 0.952 0.953 0.960 0.967
0.009 0.011 0.007 0.008 0.006 0.011

0.921 0.921 0.927 0.865 0.928 0.925
0.010 0.010 0.010 0.008 0.009 0.008
0.939 0.938 0.938 0.935 0.938 0.941
0.009 0.009 0.009 0.009 0.009 0.009

0.795 0.796 0.769 0.794 0.773 0.809
0.023 0.022 0.021 0.025 0.021 0.020
0.811 0.811 0.815 0.772 0.815 0.803
0.026 0.026 0.023 0.025 0.023 0.024

0.702 0.702 0.702 0.691 0.702 0.699
0.023 0.023 0.023 0.019 0.023 0.019
0.723 0.723 0.727 0.730 0.729 0.730
0.033 0.033 0.033 0.034 0.032 0.030

0.998 0.998 0.998 0.936 0.998 0.990
0.000 0.000 0.000 0.022 0.000 0.006
0.998 0.998 0.998 0.817 0.998 0.967
0.000 0.000 0.000 0.078 0.000 0.021
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a more complex weighting procedure in order to obtain more pre-
cise results.
Table 3
Sparse random results using Linear SVM on the UCI data sets.

HD IHD ED AED LLB ELB PD

Derma 0.374 0.382 0.440 0.868 0.456 0.623 0.853
0.005 0.007 0.024 0.017 0.042 0.027 0.030
0.936 0.847 0.936 0.939 0.950 0.950 0.961
0.011 0.028 0.011 0.011 0.010 0.010 0.009

Iris 0.666 0.666 0.973 0.973 0.666 0.920 0.773
0.010 0.010 0.010 0.010 0.010 0.019 0.019
0.720 0.720 0.720 0.720 0.926 0.926 0.826
0.025 0.025 0.025 0.025 0.020 0.020 0.022

Ecoli 0.684 0.269 0.726 0.723 0.699 0.743 0.275
0.022 0.025 0.031 0.030 0.026 0.031 0.029
0.758 0.726 0.758 0.737 0.770 0.761 0.766
0.026 0.029 0.026 0.023 0.029 0.027 0.031

Wine 0.932 0.932 0.932 0.932 0.955 0.955 0.949
0.016 0.016 0.016 0.016 0.013 0.013 0.009
0.932 0.932 0.932 0.932 0.955 0.955 0.949
0.016 0.016 0.016 0.016 0.013 0.013 0.009

Glass 0.438 0.460 0.446 0.457 0.428 0.456 0.452
0.024 0.029 0.033 0.023 0.025 0.029 0.022
0.503 0.509 0.503 0.484 0.552 0.523 0.524
0.028 0.019 0.028 0.029 0.028 0.030 0.028

Thyroid 0.814 0.814 0.943 0.943 0.818 0.948 0.897
0.009 0.009 0.021 0.021 0.007 0.015 0.023
0.916 0.916 0.916 0.916 0.934 0.934 0.855
0.026 0.026 0.026 0.026 0.025 0.025 0.019

Vowel 0.343 0.308 0.341 0.301 0.313 0.298 0.241
0.018 0.018 0.017 0.021 0.021 0.020 0.025
0.382 0.376 0.366 0.314 0.365 0.367 0.269
0.026 0.029 0.018 0.010 0.027 0.022 0.018

Balance 0.855 0.855 0.855 0.855 0.833 0.833 0.822
0.041 0.041 0.041 0.041 0.035 0.035 0.040
0.855 0.855 0.855 0.855 0.833 0.833 0.822
0.041 0.041 0.041 0.041 0.035 0.035 0.040

Yeast 0.380 0.385 0.380 0.378 0.379 0.390 0.217
0.012 0.013 0.012 0.013 0.016 0.012 0.005
0.491 0.476 0.493 0.489 0.492 0.495 0.506
0.018 0.015 0.019 0.018 0.014 0.019 0.016

Satimage 0.718 0.710 0.726 0.615 0.670 0.725 0.634
0.016 0.014 0.014 0.019 0.048 0.019 0.021
0.724 0.626 0.734 0.732 0.656 0.750 0.739
0.014 0.009 0.013 0.014 0.014 0.011 0.012

Letter 0.632 0.637 0.648 0.662 0.648 0.652 0.643
0.010 0.009 0.008 0.009 0.014 0.009 0.010
0.642 0.653 0.663 0.675 0.649 0.660 0.648
0.010 0.009 0.007 0.008 0.006 0.007 0.008

Pendigits 0.878 0.887 0.893 0.912 0.902 0.902 0.897
0.008 0.007 0.008 0.009 0.009 0.010 0.009
0.897 0.908 0.917 0.932 0.910 0.912 0.901
0.010 0.009 0.008 0.009 0.014 0.013 0.011

Segment 0.706 0.627 0.838 0.800 0.475 0.849 0.716
0.013 0.015 0.006 0.005 0.010 0.007 0.003
0.793 0.727 0.800 0.810 0.727 0.843 0.751
0.005 0.012 0.005 0.006 0.010 0.007 0.006

Optdigits 0.710 0.664 0.767 0.738 0.616 0.763 0.719
0.019 0.021 0.017 0.021 0.029 0.012 0.020
0.795 0.573 0.797 0.785 0.664 0.845 0.832
0.030 0.016 0.029 0.027 0.021 0.030 0.025

Shuttle 0.520 0.722 0.703 0.702 0.670 0.730 0.620
0.011 0.016 0.022 0.022 0.026 0.017 0.029
0.728 0.728 0.728 0.730 0.742 0.781 0.763
0.025 0.025 0.025 0.027 0.026 0.018 0.018

Vehicle 0.977 0.977 0.977 0.977 0.892 0.977 0.969
0.003 0.003 0.003 0.003 0.014 0.003 0.007
0.977 0.977 0.977 0.977 0.902 0.977 0.971
0.003 0.003 0.003 0.003 0.013 0.003 0.008
Concerning to the decoding step, note that the use of the pro-
posed ternary distance dt makes sense in the case that two ternary
LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.440 0.719 0.870 0.766 0.870 0.835
0.024 0.024 0.015 0.060 0.015 0.041
0.936 0.936 0.936 0.953 0.933 0.953
0.011 0.011 0.011 0.010 0.012 0.010

0.973 0.973 0.973 0.780 0.973 0.933
0.010 0.010 0.010 0.023 0.010 0.016
0.720 0.720 0.973 0.940 0.973 0.933
0.025 0.025 0.010 0.020 0.010 0.021

0.726 0.726 0.683 0.413 0.613 0.411
0.031 0.031 0.038 0.033 0.058 0.042
0.758 0.758 0.667 0.616 0.711 0.610
0.026 0.026 0.037 0.044 0.026 0.047

0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.013 0.016 0.013
0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.013 0.016 0.013

0.452 0.446 0.443 0.457 0.427 0.458
0.028 0.033 0.021 0.030 0.031 0.033
0.503 0.503 0.504 0.517 0.504 0.534
0.028 0.028 0.043 0.031 0.043 0.036

0.943 0.943 0.943 0.856 0.943 0.948
0.021 0.021 0.021 0.011 0.021 0.020
0.916 0.916 0.943 0.934 0.943 0.934
0.026 0.026 0.021 0.025 0.021 0.025

0.352 0.352 0.357 0.328 0.359 0.360
0.018 0.018 0.025 0.029 0.025 0.023
0.360 0.362 0.368 0.334 0.364 0.379
0.016 0.017 0.018 0.021 0.020 0.015

0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.045 0.041 0.041
0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.045 0.041 0.041

0.380 0.381 0.341 0.210 0.346 0.221
0.012 0.013 0.017 0.009 0.021 0.006
0.493 0.493 0.484 0.472 0.483 0.497
0.018 0.018 0.024 0.024 0.024 0.031

0.726 0.726 0.618 0.403 0.638 0.660
0.014 0.014 0.019 0.028 0.030 0.021
0.734 0.734 0.776 0.489 0.776 0.782
0.013 0.013 0.017 0.037 0.017 0.018

0.671 0.672 0.702 0.705 0.703 0.710
0.011 0.009 0.010 0.008 0.009 0.009
0.678 0.692 0.708 0.717 0.718 0.729
0.010 0.008 0.007 0.008 0.008 0.010

0.913 0.916 0.917 0.921 0.918 0.927
0.008 0.009 0.008 0.014 0.013 0.013
0.938 0.939 0.941 0.944 0.948 0.953
0.010 0.009 0.008 0.014 0.009 0.010

0.837 0.837 0.837 0.700 0.837 0.851
0.007 0.007 0.007 0.030 0.007 0.007
0.840 0.840 0.844 0.791 0.844 0.856
0.005 0.005 0.006 0.014 0.006 0.007

0.769 0.769 0.769 0.620 0.768 0.813
0.016 0.016 0.015 0.047 0.018 0.024
0.797 0.797 0.812 0.719 0.812 0.847
0.029 0.029 0.031 0.023 0.031 0.030

0.703 0.703 0.703 0.704 0.703 0.728
0.022 0.022 0.022 0.025 0.022 0.014
0.728 0.728 0.736 0.751 0.736 0.776
0.025 0.025 0.025 0.026 0.025 0.021

0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.003 0.003
0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.003 0.003
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codewords are compared (as in the case of comparing two code-
words of two classes), since the terms jyj

1j and jyj
2j may take the
Table 4
Sparse random and dense random results using Gentle Adaboost on the UCI data sets.

HD IHD ED AED LLB ELB PD

Derma 0.910 0.923 0.910 0.910 0.940 0.940 0.926
0.047 0.037 0.047 0.047 0.035 0.035 0.043
0.926 0.923 0.926 0.923 0.896 0.926 0.945
0.017 0.018 0.017 0.015 0.024 0.021 0.013

Iris 0.933 0.933 0.933 0.933 0.953 0.953 0.953
0.043 0.043 0.043 0.043 0.027 0.027 0.027
0.926 0.926 0.926 0.926 0.960 0.960 0.960
0.020 0.020 0.020 0.020 0.014 0.014 0.014

Ecoli 0.373 0.379 0.367 0.533 0.284 0.302 0.493
0.017 0.016 0.021 0.014 0.019 0.020 0.017
0.373 0.379 0.367 0.533 0.284 0.302 0.493
0.017 0.016 0.021 0.014 0.019 0.020 0.017

Wine 0.949 0.949 0.949 0.949 0.960 0.954 0.954
0.025 0.025 0.025 0.025 0.023 0.027 0.027
0.949 0.949 0.949 0.949 0.960 0.960 0.954
0.012 0.012 0.012 0.012 0.011 0.011 0.013

Glass 0.560 0.451 0.560 0.560 0.578 0.583 0.577
0.099 0.106 0.099 0.099 0.085 0.085 0.094
0.655 0.646 0.645 0.645 0.626 0.640 0.643
0.026 0.025 0.032 0.033 0.031 0.028 0.034

Thyroid 0.907 0.907 0.907 0.907 0.921 0.921 0.911
0.052 0.052 0.052 0.052 0.054 0.054 0.053
0.898 0.898 0.898 0.898 0.921 0.921 0.911
0.025 0.025 0.025 0.025 0.027 0.027 0.026

Vowel 0.274 0.241 0.274 0.274 0.323 0.332 0.315
0.041 0.037 0.041 0.041 0.045 0.047 0.045
0.443 0.373 0.452 0.441 0.449 0.465 0.452
0.023 0.021 0.025 0.023 0.031 0.029 0.023

Balance 0.504 0.504 0.504 0.504 0.730 0.721 0.800
0.123 0.123 0.123 0.123 0.159 0.159 0.155
0.504 0.504 0.504 0.504 0.730 0.721 0.800
0.061 0.061 0.061 0.061 0.079 0.079 0.077

Yeast 0.468 0.224 0.468 0.468 0.481 0.479 0.415
0.026 0.031 0.026 0.026 0.024 0.024 0.025
0.435 0.408 0.436 0.454 0.429 0.425 0.464
0.012 0.011 0.012 0.013 0.014 0.013 0.010

Satimage 0.799 0.765 0.799 0.799 0.840 0.842 0.839
0.049 0.048 0.049 0.049 0.038 0.037 0.036
0.789 0.776 0.814 0.807 0.814 0.820 0.829
0.019 0.017 0.021 0.020 0.019 0.019 0.017

Letter 0.843 0.833 0.845 0.845 0.837 0.845 0.827
0.031 0.034 0.033 0.033 0.033 0.031 0.034
0.839 0.840 0.850 0.863 0.836 0.845 0.834
0.016 0.018 0.016 0.017 0.017 0.017 0.016

Pendigits 0.903 0.921 0.932 0.932 0.913 0.923 0.918
0.019 0.024 0.022 0.022 0.020 0.015 0.020
0.859 0.848 0.883 0.921 0.872 0.889 0.869
0.010 0.010 0.010 0.010 0.009 0.007 0.011

Segment 0.930 0.934 0.930 0.930 0.945 0.945 0.942
0.016 0.019 0.016 0.016 0.016 0.015 0.013
0.939 0.933 0.938 0.933 0.897 0.919 0.938
0.009 0.010 0.009 0.009 0.015 0.014 0.008

Optdigits 0.805 0.665 0.805 0.805 0.859 0.851 0.853
0.020 0.019 0.020 0.020 0.015 0.014 0.016
0.769 0.651 0.811 0.779 0.685 0.724 0.810
0.022 0.016 0.025 0.030 0.018 0.019 0.023

Shuttle 0.640 0.656 0.640 0.640 0.717 0.721 0.725
0.025 0.020 0.025 0.025 0.036 0.037 0.029
0.723 0.724 0.723 0.724 0.730 0.734 0.727
0.033 0.029 0.033 0.032 0.031 0.029 0.025

Vehicle 0.997 0.997 0.997 0.997 0.998 0.998 0.979
0.001 0.001 0.001 0.001 0.001 0.001 0.031
0.998 0.989 0.998 0.998 0.779 0.957 0.853
0.000 0.003 0.000 0.000 0.067 0.020 0.152
one and zero values. However, the test codeword takes binary val-
ues, and thus, the use of the factor jyj

2j does not make sense at the
LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.910 0.910 0.915 0.937 0.915 0.940
0.047 0.047 0.047 0.039 0.047 0.035
0.926 0.926 0.929 0.920 0.929 0.940
0.017 0.017 0.017 0.015 0.017 0.015

0.933 0.933 0.933 0.953 0.933 0.953
0.043 0.043 0.043 0.027 0.043 0.027
0.926 0.926 0.933 0.960 0.933 0.960
0.020 0.020 0.019 0.014 0.019 0.014

0.370 0.357 0.539 0.443 0.551 0.477
0.018 0.021 0.015 0.033 0.011 0.0293
0.370 0.357 0.539 0.443 0.551 0.477
0.018 0.021 0.015 0.033 0.011 0.029

0.949 0.949 0.949 0.960 0.949 0.960
0.025 0.025 0.025 0.023 0.025 0.023
0.949 0.949 0.949 0.954 0.949 0.960
0.012 0.012 0.012 0.013 0.012 0.011

0.560 0.560 0.527 0.578 0.532 0.578
0.099 0.099 0.080 0.079 0.085 0.079
0.645 0.645 0.645 0.579 0.645 0.625
0.032 0.032 0.032 0.035 0.032 0.032

0.907 0.907 0.907 0.921 0.907 0.921
0.052 0.052 0.052 0.054 0.052 0.054
0.898 0.898 0.898 0.921 0.898 0.921
0.025 0.025 0.025 0.027 0.025 0.027

0.274 0.274 0.297 0.332 0.297 0.331
0.041 0.041 0.041 0.049 0.041 0.048
0.454 0.454 0.441 0.472 0.441 0.481
0.026 0.026 0.024 0.027 0.024 0.027

0.504 0.504 0.809 0.756 0.809 0.756
0.123 0.123 0.164 0.154 0.164 0.154
0.504 0.504 0.809 0.756 0.809 0.756
0.061 0.061 0.082 0.077 0.082 0.077

0.468 0.468 0.469 0.452 0.468 0.454
0.026 0.026 0.036 0.026 0.036 0.026
0.435 0.435 0.447 0.413 0.447 0.425
0.012 0.012 0.014 0.015 0.014 0.014

0.799 0.799 0.807 0.838 0.807 0.838
0.049 0.049 0.047 0.039 0.047 0.040
0.814 0.814 0.818 0.832 0.818 0.833
0.021 0.021 0.019 0.020 0.019 0.020

0.857 0.882 0.878 0.894 0.885 0.907
0.035 0.029 0.030 0.036 0.031 0.030
0.860 0.876 0.872 0.885 0.874 0.889
0.017 0.016 0.014 0.015 0.014 0.015

0.947 0.947 0.948 0.953 0.950 0.955
0.020 0.018 0.017 0.017 0.013 0.020
0.942 0.942 0.952 0.953 0.960 0.967
0.009 0.011 0.007 0.008 0.006 0.011

0.930 0.930 0.939 0.951 0.939 0.951
0.016 0.016 0.018 0.017 0.018 0.017
0.939 0.938 0.938 0.935 0.938 0.941
0.009 0.009 0.009 0.009 0.009 0.009

0.835 0.835 0.844 0.868 0.844 0.868
0.020 0.020 0.021 0.016 0.021 0.016
0.811 0.811 0.815 0.772 0.815 0.803
0.026 0.026 0.023 0.025 0.023 0.024

0.640 0.640 0.714 0.724 0.714 0.723
0.025 0.025 0.041 0.044 0.041 0.044
0.723 0.723 0.727 0.730 0.729 0.730
0.033 0.033 0.033 0.034 0.032 0.030

0.997 0.997 0.997 0.998 0.997 0.998
0.001 0.001 0.001 0.001 0.001 0.001
0.998 0.998 0.998 0.817 0.998 0.967
0.000 0.000 0.000 0.078 0.000 0.021
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decoding step. In this case, the distance should omit this factor, and
becomes:
Table 5
Sparse random and dense random results using Linear SVM on the UCI data sets.

HD IHD ED AED LLB ELB PD

Derma 0.808 0.306 0.808 0.808 0.814 0.814 0.808
0.012 0.001 0.012 0.012 0.011 0.011 0.010
0.936 0.847 0.936 0.939 0.950 0.950 0.961
0.011 0.028 0.011 0.011 0.010 0.010 0.009

Iris 0.720 0.720 0.720 0.720 0.926 0.926 0.826
0.025 0.025 0.025 0.025 0.020 0.020 0.022
0.720 0.720 0.720 0.720 0.926 0.926 0.826
0.025 0.025 0.025 0.025 0.020 0.020 0.022

Ecoli 0.681 0.721 0.681 0.681 0.764 0.764 0.785
0.033 0.028 0.033 0.033 0.034 0.034 0.018
0.758 0.726 0.758 0.737 0.770 0.761 0.766
0.026 0.029 0.026 0.023 0.029 0.027 0.031

Wine 0.932 0.932 0.932 0.932 0.955 0.955 0.949
0.016 0.016 0.016 0.016 0.013 0.013 0.009
0.932 0.932 0.932 0.932 0.955 0.955 0.949
0.016 0.016 0.016 0.016 0.013 0.013 0.009

Glass 0.400 0.327 0.400 0.400 0.349 0.349 0.334
0.030 0.015 0.030 0.030 0.032 0.032 0.054
0.503 0.509 0.503 0.484 0.552 0.523 0.524
0.028 0.019 0.028 0.029 0.028 0.030 0.028

Thyroid 0.916 0.916 0.916 0.916 0.934 0.934 0.855
0.026 0.026 0.026 0.026 0.025 0.025 0.019
0.916 0.916 0.916 0.916 0.934 0.934 0.855
0.026 0.026 0.026 0.026 0.025 0.025 0.019

Vowel 0.281 0.228 0.281 0.281 0.332 0.329 0.324
0.031 0.016 0.031 0.031 0.025 0.027 0.023
0.382 0.376 0.366 0.314 0.365 0.367 0.269
0.026 0.029 0.018 0.010 0.027 0.022 0.018

Balance 0.855 0.855 0.855 0.855 0.833 0.833 0.822
0.041 0.041 0.041 0.041 0.035 0.035 0.040
0.855 0.855 0.855 0.855 0.833 0.833 0.822
0.041 0.041 0.041 0.041 0.035 0.035 0.040

Yeast 0.278 0.169 0.278 0.278 0.265 0.266 0.336
0.015 0.016 0.015 0.015 0.015 0.014 0.012
0.491 0.476 0.493 0.489 0.492 0.495 0.506
0.018 0.015 0.019 0.018 0.014 0.019 0.016

Satimage 0.720 0.702 0.720 0.720 0.773 0.774 0.748
0.012 0.018 0.012 0.012 0.014 0.014 0.009
0.724 0.626 0.734 0.732 0.656 0.750 0.739
0.014 0.009 0.013 0.014 0.014 0.011 0.012

Letter 0.657 0.667 0.672 0.672 0.652 0.662 0.658
0.008 0.008 0.008 0.008 0.008 0.008 0.009
0.642 0.653 0.663 0.675 0.649 0.660 0.648
0.010 0.009 0.007 0.008 0.006 0.007 0.008

Pendigits 0.921 0.917 0.932 0.932 0.917 0.921 0.903
0.009 0.010 0.009 0.009 0.010 0.010 0.010
0.897 0.908 0.917 0.932 0.910 0.912 0.901
0.010 0.009 0.008 0.009 0.014 0.013 0.011

Segment 0.818 0.807 0.818 0.818 0.851 0.848 0.732
0.006 0.005 0.006 0.006 0.006 0.007 0.006
0.793 0.727 0.800 0.810 0.727 0.843 0.751
0.005 0.012 0.005 0.006 0.010 0.007 0.006

Optdigits 0.820 0.766 0.820 0.820 0.874 0.876 0.872
0.028 0.031 0.028 0.028 0.027 0.028 0.025
0.795 0.573 0.797 0.785 0.664 0.845 0.832
0.030 0.016 0.029 0.027 0.021 0.030 0.025

Shuttle 0.712 0.744 0.712 0.712 0.748 0.749 0.742
0.029 0.021 0.029 0.029 0.018 0.017 0.018
0.728 0.728 0.728 0.730 0.742 0.781 0.763
0.025 0.025 0.025 0.027 0.026 0.018 0.018

Vehicle 0.962 0.956 0.977 0.977 0.909 0.947 0.939
0.006 0.004 0.003 0.003 0.010 0.008 0.008
0.977 0.977 0.977 0.977 0.902 0.977 0.971
0.003 0.003 0.003 0.003 0.013 0.003 0.008
dðy; xÞ ¼
Xn

j¼1

1
2

yj
�� �� 1� yjxj
� �
LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.808 0.808 0.808 0.814 0.808 0.814
0.012 0.012 0.012 0.011 0.012 0.011
0.936 0.936 0.936 0.953 0.933 0.953
0.011 0.011 0.011 0.010 0.012 0.010

0.720 0.720 0.973 0.940 0.973 0.933
0.025 0.025 0.010 0.020 0.010 0.021
0.720 0.720 0.973 0.940 0.973 0.933
0.025 0.025 0.010 0.020 0.010 0.021

0.681 0.681 0.715 0.704 0.677 0.703
0.033 0.033 0.027 0.052 0.034 0.048
0.758 0.758 0.667 0.616 0.711 0.610
0.026 0.026 0.037 0.044 0.026 0.047

0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.013 0.016 0.013
0.932 0.932 0.932 0.955 0.932 0.955
0.016 0.016 0.016 0.013 0.016 0.013

0.400 0.400 0.377 0.414 0.373 0.415
0.030 0.030 0.028 0.038 0.037 0.034
0.503 0.503 0.504 0.517 0.504 0.534
0.028 0.028 0.043 0.031 0.043 0.036

0.916 0.916 0.943 0.934 0.943 0.934
0.026 0.026 0.021 0.025 0.021 0.025
0.916 0.916 0.943 0.934 0.943 0.934
0.026 0.026 0.021 0.025 0.021 0.025

0.281 0.281 0.311 0.385 0.311 0.362
0.031 0.031 0.030 0.029 0.030 0.023
0.360 0.362 0.368 0.334 0.364 0.379
0.016 0.017 0.018 0.021 0.020 0.015

0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.045 0.041 0.041
0.855 0.855 0.855 0.845 0.855 0.855
0.041 0.041 0.041 0.045 0.041 0.041

0.278 0.278 0.405 0.451 0.407 0.448
0.015 0.015 0.012 0.017 0.010 0.017
0.493 0.493 0.484 0.472 0.483 0.497
0.018 0.018 0.024 0.024 0.024 0.031

0.720 0.720 0.795 0.617 0.795 0.806
0.012 0.012 0.026 0.024 0.026 0.025
0.734 0.734 0.776 0.489 0.776 0.782
0.013 0.013 0.017 0.037 0.017 0.018

0.687 0.703 0.712 0.718 0.716 0.721
0.010 0.009 0.009 0.009 0.009 0.009
0.678 0.692 0.708 0.717 0.718 0.729
0.010 0.008 0.007 0.008 0.008 0.010

0.936 0.938 0.936 0.940 0.942 0.956
0.009 0.009 0.008 0.011 0.014 0.012
0.938 0.939 0.941 0.944 0.948 0.953
0.010 0.009 0.008 0.014 0.009 0.010

0.818 0.818 0.857 0.867 0.857 0.865
0.006 0.006 0.006 0.005 0.006 0.007
0.840 0.840 0.844 0.791 0.844 0.856
0.005 0.005 0.006 0.014 0.006 0.007

0.820 0.820 0.845 0.879 0.845 0.877
0.028 0.028 0.029 0.029 0.029 0.027
0.797 0.797 0.812 0.719 0.812 0.847
0.029 0.029 0.031 0.023 0.031 0.030

0.712 0.712 0.737 0.742 0.737 0.747
0.029 0.029 0.027 0.027 0.027 0.020
0.728 0.728 0.736 0.751 0.736 0.776
0.025 0.025 0.025 0.026 0.025 0.021

0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.003 0.003
0.977 0.977 0.977 0.977 0.977 0.977
0.003 0.003 0.003 0.003 0.003 0.003
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4. Conclusions

In this paper, we introduced a new formulation of the ternary
distance that defines the classes separability in the ternary ECOC
framework. We showed that the rows separability in terms of
the Hamming distance of the binary ECOC framework can not be
applied in the ternary case. Based on the new measure, we illus-
trated that the design of the standard sparse random strategy is
inconsistent, and a new sparse random construction is presented.
The results show that the new design applied with any state-of-
the-art decoding strategy outperforms the classical approach. The
results on a wide set of UCI Machine Learning Repository data sets
and in a real speed traffic sign Computer Vision categorization
problem show that when the coding designs satisfy the new ter-
nary measures, significant performance improvements are ob-
tained independently of the decoding strategy applied.
Table 6
Classical sparse random results (performances on the top of each data set) and sparse rando
using Gentle Adaboost and Linear SVM on the speed traffic sign data set.

HD IHD ED AED LLB ELB PD

Adaboost 0.526 0.483 0.516 0.514 0.404 0.430 0.561
0.041 0.043 0.047 0.044 0.031 0.029 0.055
0.539 0.508 0.557 0.537 0.533 0.553 0.570
0.030 0.034 0.029 0.028 0.037 0.032 0.031

SVM 0.629 0.531 0.605 0.633 0.656 0.662 0.650
0.048 0.048 0.054 0.049 0.053 0.058 0.043
0.668 0.619 0.646 0.675 0.656 0.697 0.659
0.035 0.041 0.036 0.032 0.045 0.029 0.031

Table 7
UCI classification performances using a tuned RBF SVM. For each data set from top to botto
performance and confidence interval using the new sparse random selection based on ma

HD IHD ED AED LLB ELB PD

Derma 0.961 0.961 0.961 0.961 0.961 0.961 0.963
0.009 0.009 0.009 0.009 0.009 0.009 0.010
0.961 0.961 0.961 0.961 0.961 0.961 0.968
0.009 0.009 0.009 0.009 0.009 0.009 0.010

Iris 0.973 0.973 0.973 0.973 0.973 0.973 0.966
0.021 0.021 0.021 0.021 0.021 0.021 0.021
0.973 0.973 0.973 0.973 0.973 0.973 0.966
0.021 0.021 0.021 0.021 0.021 0.021 0.021

Ecoli 0.839 0.848 0.839 0.839 0.848 0.848 0.864
0.037 0.041 0.037 0.037 0.038 0.038 0.045
0.866 0.866 0.866 0.866 0.858 0.865 0.873
0.036 0.041 0.037 0.037 0.039 0.028 0.029

Wine 0.955 0.955 0.955 0.955 0.955 0.955 0.955
0.013 0.013 0.013 0.013 0.013 0.013 0.013
0.955 0.955 0.955 0.955 0.955 0.955 0.955
0.013 0.013 0.013 0.013 0.013 0.013 0.013

Glass 0.647 0.645 0.647 0.647 0.669 0.674 0.643
0.084 0.080 0.084 0.084 0.071 0.078 0.085
0.686 0.68 0.691 0.691 0.692 0.692 0.665
0.077 0.073 0.081 0.088 0.077 0.077 0.091

Thyroid 0.943 0.938 0.943 0.943 0.938 0.938 0.938
0.021 0.021 0.021 0.021 0.021 0.021 0.021
0.943 0.938 0.943 0.943 0.938 0.938 0.938
0.021 0.021 0.021 0.021 0.021 0.021 0.021

Vowel 0.807 0.775 0.807 0.807 0.844 0.844 0.855
0.037 0.047 0.037 0.037 0.046 0.046 0.046
0.846 0.833 0.837 0.822 0.833 0.848 0.814
0.047 0.048 0.044 0.036 0.043 0.040 0.0510

Balance 0.878 0.846 0.878 0.878 0.873 0.873 0.872
0.062 0.082 0.062 0.062 0.078 0.078 0.041
0.884 0.879 0.884 0.884 0.865 0.865 0.870
0.072 0.071 0.072 0.072 0.045 0.075 0.055
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Appendix A. Sparse random performances on UCI data sets

Tables 2 and 3 show the performance results on the UCI data
sets for the sparse random designs using Gentle Adaboost and Lin-
ear SVM, respectively. For each data set shown in Tables 2 and 3,
the results on the top correspond to the performance and confi-
dence interval using the classical sparse random strategy. The re-
sults on the bottom correspond to the results using the sparse
random selection based on maximizing the new ternary distance.
The best results for each data set are marked in bold. Note that
m with ternary distance maximization (performances on the bottom of each data set)

LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.524 0.526 0.528 0.450 0.539 0.492
0.047 0.047 0.044 0.035 0.041 0.039
0.547 0.547 0.546 0.551 0.548 0.564
0.027 0.027 0.033 0.041 0.030 0.038

0.640 0.640 0.648 0.661 0.642 0.678
0.055 0.056 0.055 0.045 0.056 0.057
0.706 0.706 0.706 0.669 0.706 0.711
0.036 0.036 0.036 0.035 0.035 0.029

m: performance and confidence interval using the classical one-versus-all design, and
ximizing the new ternary distance.

LAP b-DEN LLW disc. LLW cont. ELW disc. ELW cont.

0.968 0.968 0.968 0.968 0.968 0.968
0.010 0.010 0.010 0.010 0.010 0.010
0.968 0.968 0.968 0.968 0.968 0.968
0.010 0.010 0.010 0.010 0.010 0.010

0.973 0.973 0.973 0.973 0.973 0.973
0.021 0.021 0.021 0.021 0.021 0.021
0.973 0.973 0.973 0.973 0.973 0.973
0.021 0.021 0.021 0.021 0.021 0.021

0.839 0.839 0.851 0.861 0.848 0.858
0.037 0.037 0.036 0.042 0.038 0.043
0.866 0.866 0.866 0.862 0.866 0.865
0.036 0.036 0.036 0.036 0.036 0.024

0.955 0.955 0.955 0.955 0.955 0.955
0.013 0.013 0.013 0.013 0.013 0.013
0.955 0.955 0.955 0.955 0.955 0.955
0.013 0.013 0.013 0.013 0.013 0.013

0.647 0.647 0.646 0.654 0.646 0.668
0.084 0.084 0.078 0.066 0.078 0.075
0.691 0.691 0.695 0.664 0.695 0.673
0.081 0.081 0.077 0.077 0.077 0.072

0.943 0.943 0.943 0.938 0.943 0.943
0.021 0.021 0.021 0.021 0.021 0.021
0.943 0.943 0.943 0.938 0.943 0.943
0.021 0.021 0.021 0.021 0.021 0.021

0.807 0.807 0.807 0.844 0.807 0.844
0.037 0.037 0.037 0.046 0.037 0.046
0.837 0.837 0.837 0.851 0.837 0.848
0.0449 0.0449 0.0449 0.039 0.044 0.039

0.878 0.878 0.897 0.871 0.897 0.871
0.062 0.062 0.068 0.077 0.068 0.078
0.884 0.884 0.881 0.847 0.881 0.868
0.072 0.072 0.070 0.075 0.070 0.070
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in most cases, the new sparse design outperforms the results of the
classical one. Only in few cases, such as at the Satimage data set
with SVM or the Iris data set with Adaboost, there are some perfor-
mances inferior to the classical approach.

Appendix B. Sparse and dense random performances on UCI
data sets

Tables 4 and 5 show the performance results on the UCI data
sets for the dense random designs using Gentle Adaboost and Lin-
ear SVM, respectively. For each data set shown in Tables 4 and 5,
the results on the top correspond to the performance and confi-
dence interval using the classical dense random strategy. The re-
sults on the bottom correspond to the results using the sparse
random selection based on maximizing the new ternary distance.
The best results for each data set are marked in bold. Note that
in most cases, the new sparse design outperforms the results of
the classical dense random.

Appendix C. Sparse random performances on speed traffic sign
data set

Table 6 shows the performance results on the speed traffic data
set for the sparse random designs using Gentle Adaboost and Linear
SVM, respectively. The results on the top correspond to the perfor-
mance and confidence interval using the classical sparse random
strategy. The results on the bottom correspond to the results using
the sparse random selection based on maximizing the new ternary
distance. The best results for each data set are marked in bold. Note
that almost all cases, the results obtained by the new sparse designs
outperform the performances obtained by the classical approach.

Appendix D. Sparse random performances on UCI data sets
using RBF SVM

Table 7 shows the performance results on the UCI data sets for
the new sparse random and one-versus-all designs using RBF SVM
optimized via cross-validation. For each data set shown in Table 7,
the results on the top correspond to the performance and confi-
dence interval using the classical one-versus-all design. The results
on the bottom correspond to the results using the new sparse ran-
dom selection based on maximizing the new ternary distance. The
best results for each data set are marked in bold. Note that in most
cases, the new sparse design outperforms the results of the classi-
cal one-versus-all strategy.
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