Quantitative evaluation of non-verbal communication for competence analysis

Alvaro CEPERO, Albert CLAPÉS, Sergio ESCALERA

CCIA 2013

Introduction	System 00000000	Results 0000000000	Conclusions and future work

Outline

2 System

Low-level features

High-level features

- Data, settings, and validation
- Qualitative results
- Quantitative results

Introduction	System 00000000	Results 0000000000	Conclusions and future work
Motivation			

- The **communication skills** are among the most relevant competences in everyone's life.
- The non-verbal communication
 - is quite subtile to a human observer and often the signals are not interpreted consciously.
 - often determines the quality of the whole communicative act.
- Psychologists vastly studied non-verbal communication, but from the point of view of **Artificial Intelligence** we are at the beginning of a long way to go.
- It would be interesting to have an intelligent system capable to:
 - Evaluate non-verbal communication competences objectively.
 - Provide feedback to train the non-verbal skills.

Results 00000000000 Conclusions and future work

Proposal and goals

The proposal

A multi-modal Audio-RGB-Depth system for non-verbal communication analysis by means of computer vision and machine learning techniques.

The goals

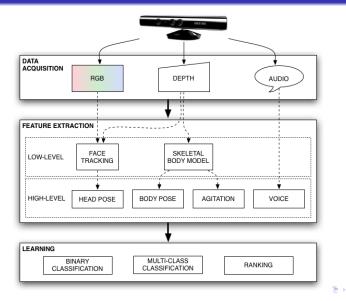
- To define a set of high-level behavioral indicators and to determine their relevance.
- To be able to measure quantiatively the oral communication level of quality using state-of-the-art statistical classifiers.

Int		

Results 00000000000 Conclusions and future work

Outline

2 System


- Low-level features
- High-level features

Results 00000000000 Conclusions and future work

System

6/31

Introduction	System ●00000000	Results 0000000000	Conclusions and future work
Low-level features			
Outline			

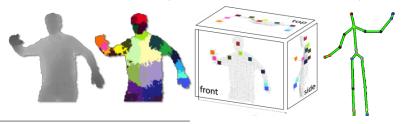
1 Introduction

Low-level features

• High-level features

- Data, settings, and validation
- Qualitative results
- Quantitative results

Introduction	System 00000000	Results 0000000000	Conclusions and future work
Low-level features			
Low-level fea	tures		


- A set of low-level features has been used:
 - RGB-Depth
 - Skeletal joints' positions
 - Face tracking
 - Audio
 - Voice activity detection (VAD)
- The low-level ones are extracted in each frame.

★ロト ★課 ト ★注 ト ★注 ト 一注

Introduction	System oo●oooooo	Results 0000000000	Conclusions and future work
Low-level features			

RGB-Depth features: skeletal joints' positions

- The method to compute the **skeletal model** is based on a previous **body part segmentation** (at pixel level) by means of a Random Forest classifier¹.
- Each depth pixel is featured by depth differences in pairs of random offsets.
- Mean-shift is used to estimate the **joint positions** from the segmented body parts (and implicitly the skeletal form).

¹Shotton, Jamie, et al. "Real-time human pose recognition in parts from single depth images." Communications of the ACM 56.1 (2013): 116-124.

Introduction

System 000●00000

Results 00000000000 Conclusions and future work

Low-level features

RGB-Depth features: face tracking

A **face tracking** algorithm² detects and tracks 121 facial landmarks using both RGB and Depth information.

Figure : The face is detected (marked as a pink rectangle) and the 3D model mesh is fit (in yellow).

Introduction System Results Conclusions and future work

Audio features: voice activity

In order to **detect voice activity** in a given frame, three types of low-level audio features are computed³.

- Short-term energy.
- Spectral flatness.
- Most dominant frequency component.

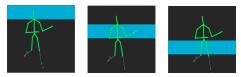
³Moattar, Mohammad H., Mohammad M. Homayounpour, and Nima Khademi Kalantari. "A new approach for robust realtime voice activity detection using spectral pattern." Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on. IEEE, 2010.

Introduction	System ○○○○○●○○○	Results 0000000000	Conclusions and future work
High-level features			
Outline			

- Low-level features
- High-level features

From those low-level features extracted in each frame, **one feature vector of high-level features describing each presentation** is computed.

Concretely, **9 high-level features** have been defined. Some of them are the result of combining low-level features from different modalities.


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Facing towards Average number of frames looking at the audience. The nose pointing direction vector n can be obtained from the fit facial 3D mesh.
- Crossed arms Average number of frames crossing the arms. The arms are crossed when hands' joints are in the opposite sides and they are at a distance greater than half of forearm's length.
- **9 Pointing** Average number of frames pointing 'towards the presentation screen'.
- Speaking Average number of frames with voice activity. Using the VAD algorithm, frames are marked as speech/not speech. It is considered to be voice activity after having *N* successive speech frames.

- **Opper agitation** The average displacement of arms, wrists, and hands, when performing above the neck.
- Middle agitation The average displacement of arms, wrists, and hands, when performing below the neck and above the hip center.
- **Bottom agitation** The average displacement of arms, wrists, and hands, when performing below the hip center.

- Output Set in the average of the
- Agitation while not speaking The average number of frames not speaking but agitating.

Intro		

Results 00000000000 Conclusions and future work

Outline

2 System

- Data, settings, and validation
- Qualitative results
- Quantitative results

Introduction	System 00000000	Results ●000000000	Conclusions and future work
Data, settings, and validation			
Outline			

Introduction

2 System

Low-level features

• High-level features

3 Results

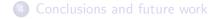
• Data, settings, and validation

- Qualitative results
- Quantitative results

Data, settings, and validation

Data, settings, and validation

• Data


- RGB-D dataset recorded with a Kinect $^{\text{TM}}$.
- 24 recorded videos (13 bachelors' thesis and 11 bachelors' regular presentations in class).
- 15000 RGB-D frames at 640 \times 480 resolution.
- Groundtruth: 3 teachers graded the non-verbal communication quality in each presentation. Since they correlated, we averaged the grades.
- **Experiments** (1) Binary classification, (2) multi-class classification, (3) feature analysis, and (4) ranking.
- Settings (Learning algorithm dependent)
- Validation procedure Leave-One-Out Cross-Validation (LOOCV) in classification and in feature selection experiments. k-Fold Cross-Validation in ranking, k = {2,3,5}.

Introduction	System 00000000	Results ○○●○○○○○○○	Conclusions and future work
Qualitative results			
Outline			

2 System

- Data, settings, and validation
- Qualitative results
- Quantitative results

Introduction	System 00000000	Results	Conclusions and future work
Qualitative results			
Outline			

・ロト ・ 一 ト ・ モト ・ モト

3

Introduction

2 System

Low-level features

• High-level features

3 Results

• Data, settings, and validation

Qualitative results

Quantitative results

4 Conclusions and future work

Results

Conclusions and future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Qualitative results

The recorded data

Figure : Examples of the recorded Bacherlor students' presentations.

Results

Conclusions and future work

Qualitative results

RGB-D features

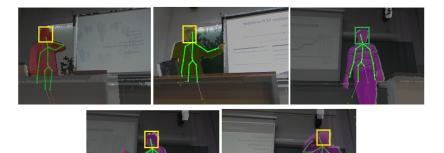


Figure : Examples of the extracted RGB-D features (low-level).

Introduction	System 00000000	Results 0000000000	Conclusions and future work
Quantitative results			
Outline			

Introduction

2 System

Low-level features

• High-level features

3 Results

• Data, settings, and validation

- Qualitative results
- Quantitative results

Introduction	System 00000000	Results ○○○○○○●○○○	Conclusions and future work
Quantitative results			
Classification			

In **binary classification**, the usual domain of marks (6 to 10) is divided in 2 classes ([6.0, 7.9] and [8.0, 10.0]), whereas in **multi-class classification** that range is splitted up to 3 or 4 classes.

The evaluation measure in here is the accuracy: $\frac{\#hits}{N}$.

#Classes	AdaBoost	SVM-RBF
2	83.3%	91.6%
3	75.0%	83.3%
4	-	67%

Table : Accuracy results.

Results ○○○○○○○○●○○

Quantitative results

Feature selection and relevance (I)

In **binary classification**, the **feature weights** determined by each classifier are averaged from the different iterations of the LOOCV. The averaged weights are normalized dividing by the sum of weights in each classifier.

Feature	Meaning	Adaboost	SVM-RBF
1	Facing towards	21.23%	22.47%
2	Crossed arms	2.12%	4.87%
3	Pointing	1.99%	0.75%
4	Speaking	20.71%	24.21%
5	Upper agitation	23.71%	1.37%
6	Middle agitation	0.77%	14.89%
7	Bottom agitation	0.71%	19.21%
8	Agitation while speaking	28.77%	6.12%
9	Agitation while not speaking	0.00%	6.12%

Table : Percentage of relevance of high-level features.

In binary classification, but keeping the set of r more relevant features, $r \in \{2, 4, 9\}$.

Table : Accuracy results.

#Features	AdaBoost	SVM-RBF
9	83.3%	91.6%
4	83.3%	83.3%
2	79.1%	75.0%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	System 00000000	Results ○○○○○○○○○	Conclusions and future work
Quantitative results			
Ranking			

- RankSVM predicts multivariate structured outputs.
- Ranks the presentations in a test set by their quality.
- Error of a predicted test rank:

$$E_{\epsilon} = \frac{m}{2(\sum_{i=0}^{n/2-1} N - (2i+1)) - N + n} \cdot 100,$$

Table : Ranking of presentation results.

2-f	old	3-f	old	5-f	old
E_{ϵ}	ζ	E_{ϵ}	ζ	E_{ϵ}	ζ
25%	75%	33%	67%	18%	82%

Introduction	System 00000000	Results 0000000000	Conclusions and future work
Outline			

Introduction	System 00000000	Results 0000000000	Conclusions and future work
Conclusions			

- Presented an automatic system for evaluating the non-verbal communication competence.
- The analysis is performed in multi-modal (RGB, depth, and audio) data.
- Defined a set of high-level indicators.
- Recorded a novel data set of oral presentations (with groundtruth of marks).
- 90%, 80%, and upon 70% in 2, 3, and 4 classes categorization respectively.

Introduction	System 00000000	Results 0000000000	Conclusions and future work

Future work

- Record more data.
- Define more indicators.
- Extending the analysis on categorization (incrementing the number of classes) and performing regression.

- Other classifiers.
- Implement the proposed system.

luctior

Results 000000000000 Conclusions and future work

Thank you for you attention!

