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Abstract

Most applications in image segmentation requires from
user interaction in order to achieve accurate results. How-
ever, user wants to achieve the desired segmentation accu-
racy reducing effort of manual labelling. In this work, we
extend standard multi-labelα-expansion Graph Cut algo-
rithm so that it analyzes the interaction of the user in order
to modify the object model and improve final segmentation
of objects. The approach is inspired in the fact that fast user
interactions may introduce some pixel errors confusing ob-
ject and background. Our results with different degrees of
user interaction and input errors show high performance of
the proposed approach on a multi-label human limb seg-
mentation problem compared with classicalα-expansion
algorithm.

1. Introduction

Object segmentation in images is still a challenging
problem that requires from user interaction in order to ob-
tain efficient and successful results. Objects in images use
to have different visual structure at different parts. More-
over, same objects suffer from visual changes because of
illumination or changes in the point of view, which makes
difficult full precision of automatic object segmentation.
The basic case of object segmentation consists on a binary
labelling –foreground, background– of the pixels of an im-
age. In this scope several algorithms have been proposed.
Many recent approaches, formulate image segmentation as
an energy minimization problem [2, 3, 9, 6]. These meth-
ods define an energy function whose minimum value cor-
responds to the optimal segmentation, and this energy is
optimized via graph optimization. Following this graph-
based methods, works like [5, 8] also introduce spectral
clustering theory in the framework, which uses eigenvectors
and eigenvalues of the similarities between pixels. Some
of these techniques have been also developed in order to
deal with multi-label image segmentation, where more than

one objects (or parts of objects) are segmented at the same
time. Some techniques start oversegmenting small uniform
regions, called superpixels [4, 10, 7], which preserve the
contours of the objects. Then, final segmentation is applied
over these dense regions in order to reduce computation
time.

One of the main problems we can find when trying to
segment an object in an image, is the complexity of the
background. In many cases, we have to deal with the prob-
lem of camouflage, i.e., some parts of the object –or the ob-
ject itself– could be confused with the background in terms
of colour similarity. Furthermore, we also have to face prob-
lems like changing illumination conditions or occlusions,
just to mention a few. Because all of these problems, the
user is asked to give some clue about the location of the ob-
ject he/she wants to segment in the scene in order to reduce
segmentation ambiguities of the segmentation algorithm.

There are many ways in which the user can interact in or-
der to provide useful information about the desired object to
segment. In [9] we can find a brief list of well-known inter-
active approaches for object segmentation, each one of them
with a different kind of human interaction. On one hand,
some approaches like Magic Wand, just expect the user to
click some points or small regions inside the object. On the
other, there also exist some other approaches like Intelligent
Scissors or Bayes matting, which ask the user to draw a
rough approximation of the contour of the object instead of
regions inside it. One method which has been proved to get
successful results in image segmentation is Graph-cuts [3].
This method, which was originally designed to work only
with gray-scale images, expects the user to draw some small
strokes in both the object to segment and the background,
similarly as in the case of Magic Wand. An extension to
this Graph-cuts method is GrabCut [9], which works with
RGB images instead of just gray-scale ones. Furthermore,
GrabCut proposes a new interaction system consisting in
just selecting a bounding box enclosing the object to seg-
ment. However, this method is iterative, and lets the user
to interact after each iteration, drawing the same kind of
strokes as in the original Graph-cuts in order to correct pos-



sible wrong segmented parts.
Going more in detail, Graph-cut and GrabCut methods,

the strokes the user draws in order to mark foreground and
background pixels are supposed to not contain any errors,
i.e., the pixels the user marks as foreground do not con-
tain any pixel of the background, and vice-versa. Making
this assumption, the algorithm fixes those pixels to the class
the user specified, without any chance of changing their la-
bels during the execution of the algorithm. However, the
user could eventually make some mistakes when drawing
the initial strokes, resulting in an uncorrectable wrong seg-
mentation. This case, is even more plausible when thinking
of a scenario where the user has to segment several images
with several objects, eventually increasing the tirednessof
the user, and decreasing the attention he/she pays. As a re-
sult, the user would probably make some mistakes after a
while.

In this work, we extend standard multi-labelα-
expansion Graph Cut algorithm by analyzing the interaction
of the user in order to modify the object model and improve
final segmentation of objects. The approach is inspired
in the fact that fast user interactions may introduce some
pixel errors confusing between object and background. We
present both quantitative and qualitative comparison of the
original approach and our proposal on the Human Limb data
set [1]. Our results with different degrees of user interaction
and input errors show higher performance of the proposed
approach on a multi-label human limb segmentation prob-
lem compared with classicalα-expansion algorithm.

The rest of the paper is organized as follows: Section 2
introduces the Multi-label Graph-cuts segmentation frame-
work, Section 3 presents our proposal, Section 4 contains
the experimental setup we conducted, and finally, Section 5
concludes the paper.

2. Multi-label Graph-cuts Segmentation

Graph-cuts is an energy minimization framework which
has successfully been applied to the problem of image seg-
mentation, in both binary and multi-label cases. This frame-
work defines an energy function specific to the problem we
want to solve, in such a way that the minimum value of this
energy corresponds to the optimal solution. Therefore, in
our case Graph-cuts will find the optimal segmentation.

Given a color image, let us consider the arrayz =
(z1, .., zn, .., zN ) of N pixels wherezi = (Ri, Gi, Bi),
i ∈ [1, .., N ] in RGB space. The segmentation is defined
as an arrayα = (α1, ..αN ), αi ∈ {1, .., L}, assigning a la-
bel to each pixel of the image indicating the class it belongs
to. L is the total number of classes of our problem.

An initial labelling T = {T1, .., TL} is defined by the
user strokes, consisting onL sets of marked pixels –one for
each possible label–. These pixels the user has marked, are
clamped as their corresponding label –that means Graph-

cuts will not be able to modify these labels–, while the rest
of unlabelled pixels are actually the ones the algorithm will
be able to label.

Color information is introduced by GMMs. A full co-
variance GMM ofK components is defined for each group
of pixels labelled as each one of the possible classes, pa-
rameterized as follows,

θ = {π(α, k), µ(α, k),Σ(α, k), α ∈ [1, .., L], k ∈ [1, ..,K]},
(1)

being π the weights,µ the means andΣ the covari-
ance matrices of the model. We also consider the array
k = {k1, .., ki, ..kN}, ki ∈ {1, ..K}, i ∈ [1, .., N ] indi-
cating the component of the corresponding GMM (accord-
ing toαi) the pixelzi belongs to. The energy function for
segmentation is then,

E(α,k, θ, z) = U(α,k, θ, z) +V(α, z), (2)

whereU is the likelihood potential, based on the probability
distributionsp(·) of the GMM:

U(α,k, θ, z) =
∑

i

−log p(zi|αi, ki, θ)− log π(αi, ki)

(3)
andV is a regularizing prior assuming that segmented re-
gions should be coherent in terms of color, taking into ac-
count a neighborhoodC around each pixel,

V(α, z) = γ
∑

{m,n}∈C

Ω (αn, αm) exp(−β‖zm − zn‖
2),

(4)
beingΩ (αn, αm) a function that penalizes relations be-

tween pixelszn andzm depending on their labellings, as-
signing some pre-set costs to each possible combination of
labels. With this energy minimization scheme and given the
initial labellings by the user, the final segmentation is per-
formed using an optimization algorithm. In the case of bi-
nary segmentation –L = 2–, the min-cut algorithm [2] can
be applied in order to find the optimal solution. However,
whenL > 2, min-cut cannot be applied directly and the op-
timal solution cannot be found. Instead of that, two differ-
ent algorithms based on min-cut can be applied depending
on the nature of the energy function [3]. On one hand,α -
β swap algorithm can be applied when the defined energy
function is semi-metric. On the other hand,α-expansion
can find a better approximation of the minimum, but only
when the energy function ismetric. In our case, we base
onα-expansion algorithm for our proposal. The method is
summarized in Algorithm 1.

3. Human interaction correction

Our proposed interaction correction algorithm acts be-
fore initializing theα vector with the initial labellingT



Algorithm 1 Original Graph-cuts algorithm.
1: T initialization with manual annotation.
2: Initialize ai = l for zi ∈ Tl, l ∈ [1, .., L].
3: Initialize GMMs from setsan = l , l ∈ [1, .., L], with

k-means clustering.
4: Assign GMM components to pixels.
5: Learn GMM parameters from data z.
6: Estimate segmentation:α-expansion.

performed by the user. The method basically checks the
“fitness” of the pixels selected by the user for each label
against the GMMs of the remaining labels. This way, if we
find some inconsistencies between the probabilistic models
and the labels for any pixel, we remove it from the set of
marked pixels. GivenT , we check the pixels marked by the
user and compare them to the learnt GMMs for each label.
For each pixel in regionTl, we compute its probabilities of
belonging to each GMM as follows,

p
(

zi|αi = l, ki, θ
k
)

, l ∈ [1, .., L]. (5)

Furthermore, for each pixel we also compare the weight
π(α, k) of the actual label GMM component this pixel be-
longs to, and the corresponding weight in the rest of GMMs
for all the labels. This comparison is a simple threshold
τ over the difference in probabilities, and a direct compar-
ison over GMM component weights. If this difference is
greater thanτ for at least one of the labels, then this pixel is
taken away from its correspondingTi set, i.e., the user is not
trusted for this pixel, and the segmentation algorithm willbe
free to label this pixel with the appropriate label. Moreover,
the GMMs are recomputed with the new reduced set of ini-
tial labels in order to remove false positives when building
the probabilistic model based on color. The method is sum-
marized in Algorithm 2.

Fig. 1 shows an example of applying Graph-cuts seg-
mentation without and with the proposed human interaction
correction method. One can see how the user initially la-
belled the image. Specifically, we will focus on the labelling
of the lower-body. The user has taken a short-cut, and in-
cluded some background pixels as lower-body. This error
results in a wrong segmentation as can be seen in the cor-
responding resulting mask (top row). When applying our
interaction correction approach, not only we delete these
wrongly labelled pixels from the interaction, but we also re-
move them for the estimation of the corresponding GMM.
Taking a look at the GMM component coloured in red in
Fig. 1 (c) top, we can see it has a significant overlap with
the background GMM –Fig. 1 (d) top–, so we can expect
this component has been estimated with the erroneous back-
ground pixels. Indeed, we can see how this component dis-
appears when applying our correction approach, resulting
in a more accurate probabilistic color model.

Algorithm 2 Multi-label Graph-cuts with interaction
correction proposal.

1: T initialization with manual annotation.
2: Initialize ai = l for zi ∈ Tl, l ∈ [1, .., L].
3: Initialize GMMs from setsan = l , l ∈ [1, .., L], with

k-means clustering.
4: for l = 1 → L do
5: for zi ∈ Tl do
6: for m 6= αi do
7: if p(zi|αi = l, ki, θ

k) <
(

p(zi|αi = m, ki, θ
k) + τ

)

and π(αi = l, ki) < π(α = m, ki) then
8: Tl = Tl \ {zi}
9: end if

10: end for
11: end for
12: end for
13: Reinitializeai = l for zi ∈ Tl, l ∈ [1, .., L].
14: Renitialize GMMs from new setsan = l , l ∈ [1, .., L],

with k-means clustering.
15: Assign GMM components to pixels.
16: Learn GMM parameters from data z.
17: Estimate segmentation:α-expansion.

4. Experimental section

We performed several experiments to evaluate our pro-
posal and compare it with the original Graph-cuts segmen-
tation algorithm. Our objective is to see the reliability ofthe
methods for different degree of interaction. In order to do
that, we simulated human interactions by randomly choos-
ing a set of points from each label looking at the ground-
truth. This random selection is performed several times in
order to get a bank of different interactions, and the number
of points selected for each label is a fixed proportion of the
number of pixels from that class in the ground-truth.

On one hand, we considered the case where the user does
not make any mistake, i.e., there are no errors in the initial
labelling. On the other, we also marked some erroneous
pixels, in a fixed proportion over the number of previously
selected correct pixels. Each one of the computed inter-
actions for each image is then used to compute their corre-
sponding segmentations. Additionally, we also define a new
bank of interactions by incrementally combining the previ-
ously computed ones. This way, we can see the effect of the
complexity of the interactions in the segmentation results.
An example of different interactions can be seen in Fig. 4.

Next, we describe the data, methods, and validation pro-
tocol of the experiments.

Data: For the evaluation of our method we used the Hu-
man Limb data set [1], which contains images from 25 dif-
ferent people in complex backgrounds. This data set pro-
vides a ground-truth with the labelling of 14 different body



(a) (b) (c) (d)
Figure 1. An example of interaction correction. (a) Initialpixel labelling by the user for the 4 labels, (b) Final segmentation mask, (c)
GMM for the lower-body, (d) GMM for the background. First rowshows an example using the original Graph-cuts approach, and second
row shows the same example with or proposal.

parts for each image, as shown in Fig. 2(a). From the total
227 images, we randomly selected 10 of them –assuring we
take only one image from each person– to make the com-
parison. Moreover, we re-grouped the original labels of the
ground-truth in 4 groups: upper-body, lower-body, head &
hands, and background, as shown in Fig. 2(b).

Method: We evaluated the performance of the origi-
nalα-expansion method, and our interaction correction ap-
proach previous to segmentation. In both cases we set the

(a) (b)
Figure 2. Label rearrangement of Human Limb data set.

λ parameter to 50, and the number of GMM components to
K = 5. TheΩ (αn, αm) function was defined as follows:

Ω (αn, αm) =

{

0 for αn = αm

1 for αn 6= αm
(6)

This considers the basic case in which the inter-label costs
are the same for all the possible combinations of different
labels. Moreover, we pre-processed the images comput-
ing superpixels with the method of [7] in order to reduce
computation time and memory requirements. Once com-
puted the superpixels, we take the mean RGB value of each
one of them as the information used for the computation
of the Graph-cuts potentials. Finally, the best threshold we
found for the comparison of GMM pixel probabilities was
τ = 0.1.

Validation: As a measurement for the validation of the
method, we evaluated the mean average overlap accuracy
for the 4 defined labels. For all the interaction scenarios
–with and without error, single and combined interaction
masks– we used a bank of 10 different interactions. At each
one of these interactions, we randomly selected for each la-
bel the 0.2% of the total number pixels for that label in the
ground-truth. In the case of erroneous interactions, we addi-



tionally selected the 25% of correctly marked pixels as new
erroneous interactions, choosing a random label different
from the actual one.

In Fig. 3 we can see some quantitative results corre-
sponding to different levels of erroneous interactions. We
can firstly see how, when no errors exist in the interac-
tions, our proposal gets similar results –96.71% accuracy
in combined mode, 94.04% in single mode– as the classical
approach where no correction is performed –97.44% com-
bined, 94.21% single–. This small decrease in the accuracy
is caused by the possible erasing of correctly labelled pixels,
resulting in a poorer interaction and thus, in a slightly worse
result. Apart from that, we can see how the addition of
pixels in the interactions –combined mode– incrementally
improves the segmentation results compared to the single
mode.

Taking a look at the case where errors are introduced in
the interactions, one can see that our approach gets better
results in almost all the levels of interaction, specially in the
case of the combined mode. Moreover, the improvements
in the obtained results are higher in the case of 25% of error
rather than in the case of 45%. This tells us that the method
can deal with a small quantity of incorrectly labelled pix-
els, but when this error is high, the method cannot work as
expected.

More specific qualitative results can be found in Fig. 4.
In these examples we can clearly see how the method can
correct some erroneous labelled pixels, which can lead to
bigger wrongly segmented areas, as in the two first exam-
ples. Although the proposed method is able to correct a high
number of mistaken interactions, we can see in those spe-
cific examples how some of them still remain uncorrected.
Furthermore, we can appreciate how the massive addition
of wrong interactions –last 4 columns, combined mode of
interactions– leads to noisy segmentations in the classic ap-
proach, and how they can be smothered with our proposal.

5. Conclusion

We proposed a method for the correction of wrong hu-
man interactions in the problem of multi-label image seg-
mentation, and applied it to the segmentation of human
body parts in the Human Limb data set. The interaction
correction is based on analyzing, for each pixel, the proba-
bilities of belonging to each one of the GMMs correspond-
ing to each existing label together with the GMM density
information. The proposed approach reassign GMM com-
ponents based on low confidence probabilities and recom-
pute RGB models to improve final segmentation.

Results are presented both qualitative and quantitatively,
showing the improvement of our proposal when erroneous
labellings are present. Moreover, an extensive validation
has been performed by automatically generating random
initial labellings simulating human interaction, and combin-

(a)

(b)

(c)
correction, combined correction, single

no correction, combined no correction, single

Figure 3. Mean Average Accuracy: (a) No errors, (b) 25% of error,
(c) 45% of error. X axis represents the different interactions from
the bank, Y axis shows the mean average accuracy for all labels.

ing them in order to see the influence of the addition of cor-
rect and incorrect initial labellings in the results obtained
with the Graph-cuts segmentation framework.



Figure 4. Qualitative results. First row shows the originalimages with the initial interaction. Second and Third rows show the obtained
results for the classical Graph-cuts approach without and with our interaction correction proposal, respectively. Results in columns 1 to 4
correspond to the simple interactions mode, and columns 4 to8 show results using the combined interactions mode.
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