
THE POLYA-TCHEBOTAREV
PROBLEM FOR 4 POINTS

Recall the following theorem ([Lav34]).

Theorem 1 (Laurentiev). Given a finite number of points E = {a1, · · · , an, an+1 =∞} ⊂
C∞, there exists a unique extremal domain Ω = f(D) for the problem 2 and it is
characterized by the following properties:

1. Each point of the plane belongs to either Ω or Γ := ∂Ω.

2. The boundary Γ consists of finitely many simple arcs of analytic curves. The
points ai are endpoints of n distinct arcs. Every point of Γ different from the
ai (i = 1, · · · , n+ 1) either belongs to a unique arc and is a regular point of Γ,
or is the common end of at least threee arcs.

3. If k distinct analytic arcs belonging to Γ emanate from some point of Γ, then
two adjacent curves form an angle of 2π/k.

4. To any arc αβ consisting of regular points of Γ there correspond under the
conformal mapping f−1 two arcs of the same length on the unit circle.

Laurentiev also proved that the extremal function f : D → Ω must satisfy the
following differential equation(

zf ′(z)

f(z)

)2

= C

∏n
i=1(f(z)− ai)∏n−1
j=1 (f(z)− bj)

where the parameters bj are unknown (they can get repeated) and C is the following
constant

C =

∏n−1
j=1 (−bj)∏n
i=1(−ai)

.

Moreover, Ω \ E is the closure of the critical orbits of(
f ′(z)

f(z)

)2

= −C
∏n

i=1(f(z)− ai)∏n−1
j=1 (f(z)− bj)

.

Remark. If some point bi is a common end of m arcs, then the term f(z)− bi will
appear exactly m− 2 times in the differential equations.
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In the case of 4 points, the extremal domain can be of two types. If two of the
points are symmetric respect to the line through the other two points (there is an
explicit solution given by Fedorov in [Fed84]), the extremal domain has the structure
shown in figure 1. In a more general case the extremal domain is like in figure 2.
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Figure 1: Structure of the extremal domain in the Fedorov case

Infact, in this last case, we have two type of configurations (partitions) of the unit
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Figure 2: Structure of the extremal domain for 4 points
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where f(eiβ
j
k) = bj for j = 1, 2 and k = 1, 2, 3, f(eiαi) = ai for i = 1, 2, 3 and

f(1) =∞. Note that this two configurations are essentially the same (one is just a
rotation of the other) but topologically they give us two different types of extremal
domain. So now, we can use the same idea to solve the problem numerically. We will
assume that a4 =∞ and ai 6= 0. We have now the following differential equation

(1) f ′(z)2 = C
(f(z)− a1)(f(z)− a2)(f(z)− a3)

(f(z)− b1)(f(z)− b2)
f(z)2

z2
.

In this case we have more unknown parameters. Let’s take in mind the first configu-
ration. Using the last property of theorem 1 we can reduce the number of unknown
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parameters: β1
3 = 2π − β1

1 , β2
3 = β1

3 − (β2
1 − β1

2). So the unknown values are
f ′(0), b1, b2, β

1
1 , β

1
2 , β

2
1 , β

2
2 , that is we need a system of 10 real equations which can

be the following 

f(eiβ
1
1/2) = f(e−iβ

1
1/2)

f(ei(α1+β1
1)/2) = f(ei(α1+β1

2)/2)

f(ei(β
1
2+β2

1)/2) = f(ei(β
2
3+β1

3)/2)

f(ei(α2+β2
1)/2) = f(ei(α2+β2

2)/2)

f(ei(α3+β2
2)/2) = f(ei(α3+β2

3)/2)

Note that these are 5 complex equations. This has been implemmented and here
is one of the pictures for some set of four points (see figure 3). It represents the
conformal map g : Dc → Ω such that g(∞) =∞ (we can see the correspondence of
the arcs of the unit circle with the ones of the boundary of Ω, this also gives us the
behaviour of the harmonic measure of the arcs contained in ∂Ω).

Figure 3: Extremal domain for n = 4

Remark 1. Note that the solution of the problem depend continuously on the param-
eters ai, so if we have one solution for some given four points we can do continuation
to reach to any other set of four points. This has been used and we did the classic
continuation (i.e. for the new set of points we take as a initial condition the solution
of the last four points).

References

[Fed84] S.I. Fedorov. Chebotarev’s variational problem in the theory of the capacity
of plane sets, and covering theorems for univalent conformal mappings. Mat. Sb.
(N.S.), 124(166)(1):121-139, 1984.



4 REFERENCES

[Lav34] M. Lavrentieff. On the theory of conformal mappings. Trudy Fiz.-Mat.
Inst. Steklov. Otdel. Mat., 5:159–245, 1934.


