On a homoclinic origination of Hénon maps.

S.V.Gonchenko¹

1 Department of Diff. Equations. Research Institute for Applied Mathematics and Cybernetics. Uljanova St. 10, 603005 Nizhni Novgorod (Russia).

Abstract

Hénon maps are called quadratic maps with constant Jacobian whose inverse are quadratic again. Any two-dimensional quadratic map with constant Jacobian can be brought to the standard form $\bar{x} = y, \bar{y} = M_1 - Bx - y^2$, where M_1 and B are parameters (B is the Jacobian). The main standard form for three-dimensional Hénon maps looks as [1, 2]

$$\bar{x} = y, \bar{y} = z, \bar{z} = M_1 + M_2^1 y + M_2^2 z + Bx + ay^2 + byz + cz^2,$$

where one of the parameters M_2^1 or M_2^2 can be nullified (when $|a| + |c| \neq 0$) and a normalization condition, like |a| + |b| + |c| = 1, is fulfilled. There are other two degenerate forms for 3D Hénon maps (see [1]).

Note that these Hénon maps (and their generalizations) can appear near homoclinic tangencies as rescaled return maps. Moreover, the dynamics of these maps can be quite non-trivial. Thus, one of the recent results in this direction – the 3D Henon map with $a = b = M_2^1 = 0$ can possess Lorenz-like wild strange attractors – was established in our joint with C.Simó paper [3].

References

- [1] H.E. Lomelí and J.D. Meiss. Nonlinearity, 11:557–574, 1998.
- [2] S.V.Gonchenko, J.D.Meiss, I.I.Ovsyannikov "Chaotic dynamics of threedimensional Hénon maps that originate from a homoclinic bifurcations".-Reg. and Chaotic Dyn., 2006 (to appear).
- [3] S.V. Gonchenko, I.I. Ovsyannikov, C. Simó, and D.V. Turaev. Int. J. of Bifurcation and Chaos, 15(11), 2005, 3493-3508.