The coarse-grained Gibbs entropy in dynamical problems

$\underline{D. Treschev^1}$

1 Moscow State University (Russia)

Abstract

Consider a dynamical system (for example, a flow) on a phase space Γ . Let μ be an invariant measure on Γ and let ν be another measure with density $\rho: \Gamma \to [0, +\infty)$: $(d\nu = \rho d\mu)$. If ν is a probability measure, we can define the Gibbs entropy $s = s(\nu) = -\int_{\Gamma} \rho \log \rho d\mu$.

The flow moves the measure $\nu: \nu \mapsto \nu^t, \rho \mapsto \rho^t$. Hence we can consider the entropy $s_t = s(\nu^t)$. According to physical intuition s_t should be an increasing function. However Poincare noticed that s_t is constant. At first glance this means that the Gibbs entropy is "not physical". But a slight modification of the construction (the so-called coarse-grained entropy) corrects the situation. I plan to discuss the definition and some properties of the coarse-grained entropy as well as its relation with the ordinary Gibbs entropy.