Quantum-Classical Correspondence in the Appearance of Resonances

<u>F. J. Arranz¹</u> R. M. Benito² F. Borondo³

- 1 Grupo de Sistemas Complejos. Departamento de Ingeniería Rural. ETSI Agrónomos. Universidad Politécnica de Madrid. 28040 Madrid (Spain).
- 2 Grupo de Sistemas Complejos. Departamento de Física y Mecánica. ETSI Agrónomos. Universidad Politécnica de Madrid. 28040 Madrid (Spain).
- 3 Departamento de Química C-IX. Universidad Autónoma de Madrid. Cantoblanco, 28049 Madrid (Spain).

Abstract

For nonlinear conservative Hamiltonian systems, the evolution of phase space as energy increases involve appearance of chains of islands corresponding to periodic orbits or *classical resonances*. For 2 degrees of freedom systems, we can characterize a resonance by means of its order of resonance $\omega_x:\omega_y$, where ω_i is the frecuency for *i*-coordinate. Then, as energy increases, we can observe a sequence of appearance of resonances $\omega_{x1}:\omega_{y1}, \omega_{x2}:\omega_{y2}, \omega_{x3}:\omega_{y3}, \ldots$

On the other hand, in quantum mechanics we can represent the correlation diagram of eigenenergies versus a system parameter, obtaining different avoided crossings or quantum resonances. For 2 degrees of freedom systems, we can characterize a resonance by means of its order of resonance $\omega_x:\omega_y = |\Delta n_y|:|\Delta n_x|$, where Δn_i is the difference between quantum numbers, for *i*-coordinate, of both eigenstates involved in avoided crossing.

In this context we have found, in a model of Li-CN molecule, series of quantum resonances in the correlation diagram of eigenenergies versus Planck's constant. As energy (and \hbar) increases we observe the next sequence of appearance of series of resonances: 1:6, 2:14, 1:8, 2:18, 1:10, 1:10, 1:8. Moreover, we observe a *similar* sequence of appearance of classical resonances: 1:6, 1:7, 1:8, 1:9, 1:10, 1:10, 1:8 ... This is a very interesting result that shows the importance of periodic orbits in quantum-classical correspondence. This result also shows the power of correlation diagram $E-\hbar$ as a tool for understanding quantum chaos.