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Abstract

For nonlinear conservative Hamiltonian systems, the evolution of phase
space as energy inceases involve appearance of chains of islands corresponding
to periodic orbits or classical resonances. For 2 degrees of freedom systems,
we can characterize a resonance by means of its order of resonance ωx:ωy,
where ωi is the frecuency for i-coordinate. Then, as energy increases, we can
observe a sequence of appearance of resonances ωx1:ωy1, ωx2:ωy2, ωx3:ωy3, . . .

On the other hand, in quantum mechanics we can represent the corre-
lation diagram of eigenenergies versus a system parameter, obtaining dif-
ferent avoided crossings or quantum resonances. For 2 degrees of freedom
systems, we can characterize a resonance by means of its order of resonance
ωx:ωy = |∆ny|:|∆nx|, where ∆ni is the difference between quantum numbers,
for i-coordinate, of both eigenstates involved in avoided crossing.

In this context we have found, in a model of Li-CN molecule, series
of quantum resonances in the correlation diagram of eigenenergies versus
Planck’s constant. As energy (and ~) increases we observe the next sequence
of appearance of series of resonances: 1:6, 2:14, 1:8, 2:18, 1:10, 1:10, 1:8.
Moreover, we observe a similar sequence of appearance of classical reso-
nances: 1:6, 1:7, 1:8, 1:9, 1:10, 1:10, 1:8 . . . This is a very interesting result
that shows the importance of periodic orbits in quantum-classical correspon-
dence. This result also shows the power of correlation diagram E-~ as a tool
for understanding quantum chaos.


