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Abstract

In this note we compare the frequencies of the motion of the Trojan asteroids
in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body
Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and
ERTBP are well-known academic models for the motion of these asteroids, and the
OSS is the standard model used for realistic simulations.

Our results are based on a systematic frequency analysis of the motion of these
asteroids. The main conclusion is that both the RTBP and ERTBP are not very
accurate models for the long-term dynamics, although the level of accuracy strongly
depends on the selected asteroid.
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1 Introduction

The Restricted Three-Body Problem models the motion of a particle under the gravit-
ational attraction of two point masses following a (Keplerian) solution of the two-body
problem (a general reference is [17]). The goal of this note is to discuss the degree of ac-
curacy of such a model to study the real motion of an asteroid moving near the Lagrangian
points of the Sun-Jupiter system.

To this end, we have considered two restricted three-body problems, namely: i) the
Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of
mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.

The realistic model used to test the results from the restricted models is the so-called
Outer Solar System (OSS). This can be shortly described as a restricted five-body problem,
in which the motion of the five masses (Sun, Jupiter, Saturn, Uranus and Neptune) and
the asteroid is obtained from a numerical integration of the (Newtonian) equations of
motion, starting from the present initial conditions of these bodies.
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We are interested in a qualitative comparison of the motion of the asteroids in these
three models. More concretely, we want to test whether the three models predict either
chaotic or regular behaviour and, in the regular case, we want to compare the frequencies
of the motion. The result is that the Restricted Three-Body models are not very accurate
models for the long-term motion of the Trojan asteroids, although the accuracy depends
on the concrete asteroid.

The paper is divided in several sections. Section 2 is devoted to the specific numerical
methods used in the integration of the models, Section 3 contains the frequency analysis
for the OSS model, Section 4 discusses the frequency analysis for the Restricted Three-
Body Problems and the conclusions can be found in Section 5.

2 Symplectic integrators

In this section, we describe a particular (high order) symplectic integrator. We adapt
this integrator to the case of N planets and n particles revolving in quasi-Kepler orbits
around the Sun, and we use it for the simulation of the Trojan motion in the Outer Solar
System (OSS).

2.1 The general method

The symplectic integrator method of high order that we are going to use is due to J. Laskar
and P. Robutel and it can be found in [8]. In this section, for completeness, we give a
brief description of it.

Let be the Hamiltonian H = A + εB, where A and B are integrable and ε is a small
parameter (the meaning of “small” will become clear later on). Let us suppose that we
want to do one integration step of time τ . That is, we are interested in computing eτLH ,
where Lξ(·) is the classical Lie operator, Lξf = {ξ, f}. The well known Baker-Campbell-
Hausdorff formula (BCH) ensures that

eτLH = eτLAeτLεB + o(τ).

Note that the operator S1 = eτLAeτLεB gives us the simplest integration method.
It is, then, straightforward to construct an integration scheme of n steps with the

following operator:

Sn(τ) = ec1τLAed1τLεB · · · ecnτLAednτLεB ,

where, of course,
∑

ci =
∑

di = 1.
It is also easy (using the BCH Theorem and the linearity of the Lie operator) to see

that there exists a formal operator K such that

Sn(τ) = eτK .

In general, a symplectic integrator for H = A+ εB of order p is obtained if K = A+ εB +
O(τ p).
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If we restrict to symmetric integrators, that is integrators such that Sn(τ)−1 = Sn(−τ),
we obtain four different symmetric symplectic integration schemes (see [8]):

SABA2k : ec1τLAed1τLεB · · · edkτLεBeck+1τLAedkτLεB · · · ed1τLεBec1τLA ,

SABA2k+1 : ec1τLAed1τLεB · · · eck+1τLAedk+1τLεBeck+1τLA · · · ed1τLεBec1τLA ,

SBAB2k−1 : ed1τLεBec2τLAed2τLεB · · · edkτLεBeck+1τLAedkτLεB · · · ec2τLAed1τLεB ,

SBAB2k : ed1τLεBec2τLA · · · eck+1τLAedk+1τLεBeck+1τLA · · · ec2τLAed1τLεB . (1)

Now, we take into account that the initial Hamiltonian H is a perturbation of an in-
tegrable one (ε is “small”). This will help us to obtain higher order symplectic integration
schemes. Actually, we will be interested in finding integrators of the type SABAn and
SBABn for which the associated Hamiltonian KSn verifies

KSn = A + εB + O(τ 2nε + τ 2ε2).

Let us remark that in order to construct the operator KSn , we just have to compute the
constants (ci, di) of any integration scheme in (1). The details on how to obtain them can
be found in [8].

2.2 Application to the (N planets + n particles) problem

We turn now the sight into the question of the integration of the problem consisting of the
mutual gravitational attraction of the Sun, N planets and n massless particles (asteroids,
for instance). We will assume that the planets and the particles move in slightly perturbed
Keplerian orbits around the Sun.

The Hamiltonians of this problem written in the Jacobi coordinates are essentially
the addition of an integrable Keplerian Hamiltonian, let’s say A, and a perturbation, εB,
consisting in the attraction of the pairs planet-planet and planet-particle:

HPLA =
N∑

i=1

(
ηi

ηi−1

||Ṽi||2

2mi

−G
miηi−1

||Vi||

)

+G
N∑

i=2

mi

(
ηi−1

||Vi||
− m0

||Ri||

)
−G

∑
0<i<j≤N

mimj

||Ri −Rj||

HPAR =
n∑

i=1

(
||ṽi||2

2
−G

ηN

||vi||

)
+ G

n∑
i=1

(
ηN

||vi||
−

N∑
j=1

mj

||ri −Rj||

)

where (Vi, Ṽi)i=0,...,N and (vi, ṽi)i=0,...,n are, respectively, the canonical Jacobi coordinates
for the planets and the particles, ηi =

∑i
j=0 mj, mj is the mass of the j-th planet, and Ri

and rk are the heliocentric vector positions, respectively, of the i-th planet and the k-th
particle. G is the universal constant of gravitation.

The non-perturbative part of the Hamiltonians is the addition of N Kepler problems
corresponding, respectively, to a body of mass mi attracted by the center of masses of the
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i preceding bodies, and n Kepler problems corresponding to a massless body attracted by
the center of masses of the system:

APLA =
N∑

i=1

(
ηi

ηi−1

||Ṽi||2

2mi

−G
miηi−1

||Vi||

)
,

APAR =
n∑

i=1

(
||ṽi||2

2
−G

ηN

||vi||

)
.

Due to the relative smallness of the masses of the planets with respect to the mass of the
Sun, the perturbative part of the Hamiltonians are:

εBPLA = G
N∑

i=2

mi

(
ηi−1

||Vi||
− m0

||Ri||

)
−G

∑
0<i<j≤N

mimj

||Ri −Rj||
,

εBPAR = G

n∑
i=1

(
ηN

||vi||
−

N∑
j=1

mj

||ri −Rj||

)
.

2.3 The Outer Solar System model

We focus now on the integration of the five body problem consisting in the Sun and the
four main outer planets of the Solar System (Jupiter, Saturn, Uranus and Neptune). This
model is known in the literature as the Outer Solar System (OSS, for short). In the
frequency analysis that is performed in Section 3, we use the OSS as the basis model for
the Trojan motion.

The initial conditions for the planets are taken from the JPL Ephemerides DE405 at
the Julian date 2452200.5 (October 10th, 2001). In order to take into account the (small)
effect of the inner planets, their masses are added to Sun’s one. In Table 1, we show
the numerical values of the masses of the bodies that are used in the integration of the
OSS. The unit of mass is such that Sun’s mass is equal to one. The units of time and
length used in the computations are years and A.U., respectively. The chosen integration
method for this problem is the symplectic integrator SABA4 with a fixed time step of
1/2 year.

We also study the performance of the integrator SABA4 in this problem by computing
the relative variation of the energy HPLA in a long integration. In Figure 1, we have plotted
the logarithm of the variation of the system’s energy for a time span of 5 Million years
for the integrators SABA4. We can see that we have a relative error in the preservation
of the energy which is approximately 10−11. In fact, we integrate exactly a Hamiltonian
“close” to the one we want to integrate.

3 Frequency analysis

In this section, the refined Fourier analysis (see [6], [7], [14] or [4]) is used in order to study
the dynamics of the Trojan swarms. We obtain the basic frequencies of the planets in the
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Body Mass

Sun + inner planets 0.1000005976999797× 10+1

Jupiter (p = 5) 0.9547919384243266× 10−3

Saturn (p = 6) 0.2858859806661309× 10−3

Uranus (p = 7) 0.4366244043351564× 10−4

Neptune (p = 8) 0.5151389020466116× 10−4

G 39.476926421373

Table 1: Masses of the bodies used in the Outer Solar System computations. The mass
unit is Sun’s mass. In the last row, the value of the constant of gravitation is given.
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Figure 1: Logarithm of the relative variation of the energy during the integration of the
OSS with the SABA4 method. We can see that there is a random variation of the relative
error around a fixed energy.
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OSS and the proper frequencies of the Trojan asteroids in the same model (obviously, we
suppose that the motion of the particles do not affect the motion of the planets).

3.1 Refined Fourier analysis

Let
f(t) =

∑
k∈Zm

ake
i<k,ω>t , ak ∈ C,

be a quasi-periodic function for which we know a table of equidistant values in the time
span [−T, T ]. The frequency analysis algorithm given by Laskar will provide the values of
the frequencies ωk and the amplitudes ãk of a function f̃(t) =

∑
ãke

iωkt that approximates
f(t) in [−T, T ]. The iterative scheme goes as follows: First, the frequency ω1 is found by
looking for the maximum amplitude of

Φ(σ) =< f(t), eiσt >:=
1

2T

∫ T

−T

f(t)e−iσtχ(t)dt,

where χ(t) = 1 + cos(πt/T ) is a Hanning window filter (see [7] or [4]). Second, the
corresponding amplitude itself, ã1, is computed by orthogonal projection of f(t) on eiω1t.
Then, the process is restarted again with the function f1(t) = f(t) − ã1e

iω1t in order to
obtain the pairs (ωk, ãk)k>1. In every step, the set (eiωkt)k should be orthogonalized when
projecting the functions fi. See [7], for details.

Another method for approximating the frequencies is the one given by [4]. Their
procedure consists, basically, in equating the discrete Fourier transforms of the sampled
initial data and of the quasi-periodic approximation. This alternative method is used in
further computations in order to check the results.

3.2 Basic frequencies of the OSS

It is known that the basic frequencies of the planets play an important role when studying
the proper elements and the proper frequencies of any group of asteroids in the Solar
System (there is an endless list of references on this topic; see for example [11], [5], [12]
and references therein).

For the motion of a planet, we basically have to deal with three basic frequencies: one
related with the mean motion (the fast one) and two secular ones, related with perihelion
and node precessions. They appear as basic frequencies (in most cases with the biggest
amplitude) when we apply the frequency analysis to the following three complex functions:

αp(t) = ap(t) exp(iλp(t)),

βp(t) = ep(t) exp(i$p(t)),

γp(t) = sin

(
ip(t)

2

)
exp(iΩp(t)), (2)

where the symbols denoting the osculating elliptic elements at time t for a planet p are:
ap the semi-major axis, ep the eccentricity, ip the inclination, λp the mean longitude (λp =
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Planet νp gp sp Sidereal Orbit
(deg) (sec) (sec) Period (yr)

Jupiter (p = 5) 5.2968048× 10−1 4.24512464 0.0 11.862
Saturn (p = 6) 2.1329183× 10−1 28.2468157 −26.3382192 29.458
Uranus (p = 7) 7.4782874× 10−2 3.08791946 −2.99175127 84.019
Neptune (p = 8) 3.8134035× 10−2 0.67409606 −0.70379108 164.766

Table 2: Basic frequencies of the planetary orbits in the Outer Solar System.

$p +Mp, with Mp the mean anomaly), $p the longitude of the perihelion ($p = Ωp +ωp,
with ωp the argument of the perihelion) and Ωp the longitude of the ascending node.

Thus, we integrate the OSS with the symplectic integrator SABA4 (see Section 2)
for a time span of 5 Million years with a time step of 1/2 year. We tabulate the elliptic
elements of the orbits of the planets in a mesh of approximately 100, 000 points and use
them to make the frequency analysis of the functions (2). Finally, we obtain the basic
frequencies of the planets: νp (proper mean motion), gp (perihelion frequency) and sp

(node frequency). Their values for Jupiter, Saturn, Uranus and Neptune can be found in
Table 2. In order to check this computation, we can compare this basic set of frequencies
with others obtained in prior works (such as [6] or [13]) or we can repeat the computations
by halving the integration step. We also have tested it by using the method of the running
box (see [9]). The agreement, in all the cases, is good enough for our purposes.

3.3 Basic frequencies of the Trojan orbits

The computation of asteroid proper elements and basic frequencies for the Trojan case is
a topic of research that has already been considered by many authors. See, for example,
the works of Bien and Schubart ([15], [1] and [16]), or the papers by Milani ([9] and [10]).

In this section, we are interested in finding the basic frequencies that arise from the
analysis of the orbits of the Trojan asteroids when we integrate them in the OSS with
the same conditions as in 3.2. That is, we integrate the OSS together with 420 Trojans
with the symplectic integrator SABA4 for a time span of 5 Million years. We tabulate
the osculating elliptic elements of the Trojan orbits in a mesh of approximately 100, 000
equidistant points. We evaluate the functions

αk(t) = ak(t) exp(i(λk(t)− λ5(t))),

βk(t) = ek(t) exp(i$k(t)),

γk(t) = sin

(
ik(t)

2

)
exp(iΩk(t)), (3)

in this mesh of points for every asteroid (where (ak, ek, ik, λk, $k, Ωk) are the osculating
orbital elements at time t of the Trojan asteroid with catalog number k and λ5 is the
mean longitude of Jupiter) and we use the refined Fourier analysis to obtain the firsts
10 frequencies that have maximum amplitude. From them, after removing the basic
frequencies of the planets, we obtain the Trojans proper frequencies. The results for the
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C.N. Name ν (deg) g (sec) s (sec)
588 Achilles 2.434 344.40 -11.02
617 Patroclus 2.350 310.62 -6.76
624 Hektor 2.316 335.74 -12.99
659 Nestor 2.467 355.01 -16.48
884 Priamus 2.424 353.41 -12.24
911 Agamemnon 2.290 317.35 -8.69

1143 Odysseus 2.439 365.38 -10.91
1172 Aneas 2.366 331.54 -7.92
1173 Anchises 2.371 378.19 -23.67
1208 Troilus 2.199 258.54 -0.45
1404 Ajax 2.310 334.43 -15.15
1437 Diomedes 2.213 331.25 -20.05
1583 Antilochus 2.181 282.18 -10.79
1647 Menelaus 2.438 359.34 -9.96
1749 Telamon 2.421 366.33 -13.79
1867 Deiphobus 2.233 286.24 -5.76
1868 Thersites 2.316 345.09 -20.48
1869 Philoctetes 2.382 388.78 -20.44
1870 Glaukos 2.429 363.50 -9.48
1871 Astyanax 2.311 401.29 -25.28

Table 3: Basic frequencies of the Trojan asteroids in the Outer Solar System model. In
the first column we display the catalog number of the asteroid and in the second one the
asteroid’s name. The frequency of libration can be seen in the third column, while in the
fourth and fifth columns the two secular frequencies are shown.

20 firsts numbered Trojan asteroids can be seen in Table 3, where the first column is
the catalog number (C.N.) of the asteroid and the second contains its name. The third,
fourth and fifth columns are the three basic frequencies (ν, g and s, respectively). For a
complete list of the 420 Trojans studied, see [3].

ν is the frequency of libration. It appears (usually when the frequencies of the planets
are removed) as one of the basic frequencies of the function αk(t) and its related period
is about 150 years. g and s are known as the secular frequencies and they correspond,
respectively, to the secular motion of the asteroid’s perihelion and node.

In Figure 2, the Trojan swarm is plotted in the frequency space. The projection into
the ν-g plane is given in the first plot and into the g-s plane in the second one.

As a first test of this computation, we have repeated the integration with a time step
of 0.25 years. The agreement of the frequencies computed in this case and in the prior
one is good enough for the precision required. As a second check, we have compared the
values in Table 3 with the ones obtained by Milani [9]. The differences are quite small and
can come from the fact that we possibly use slightly different values for the parameters
and for the initial conditions.
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Figure 2: Distribution of the Trojan asteroids in the frequency space. Left: g in sec/yr
versus ν in deg/yr. Right: s versus g, both in sec/yr.

4 Frequency analysis in three-body models

In this section, we describe the results of a Fourier analysis of the Trojan orbits in the
RTBP and its elliptic version, the ERTBP. The goal of these computations is to study the
performance of these restricted three body models to predict the dynamics of the Trojan
asteroids.

In order to achieve this, we can compute the three basic frequencies ν, g and s for
every Trojan orbit in the two models by making a Fourier analysis of the functions (3).
Afterwards, we compare the results of these computations with the ones obtained with
the OSS model (that will be considered close to the reality).

4.1 The Restricted Three Body Problem

First, the initial conditions for the 420 Trojan asteroids are taken from the Bowell Cata-
log [2] at the Julian date 2452200.5 (October 10th, 2001), in the same way as in 3.3.
Second, we recompute these initial conditions in the RTBP frame of coordinates. Finally,
we integrate the orbit of each Trojan in the circular RTBP for a time span of 2 Myr. and
tabulate the functions (3) in a net of approximately 100, 000 equidistant points. Finally,
in order to obtain the basic frequencies ν, g and s, a Fourier analysis is performed.

In this case, some asteroids escape from the system before ending a 4 Myrs. trajectory
(we follow the integration in a second interval of 2 Myrs.). For some other asteroids,
the frequency analysis of the orbits does not give a precise enough result; thus they are
skipped over. The asteroids Catalog Numbers (C.N.) for the escaped ones are 3801, 7815,
15440, 15539, 16956, 24449 and 24471, and for the chaotic ones are 1868, 2146, 2895,
4060, 5264, 7641, 12444, 12916, 12929, 18046, 19844, 23694 and 24531. Recall that none
of these asteroids escape in the OSS under the same conditions.

In Table 4, the three proper frequencies of 20 asteroids, are shown. For the complete
frequency catalog, see [3].

Let us make a side comment: It is usual in the literature to study the dynamics
near the triangular points of the Sun-Jupiter RTBP by using some normal form of the
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C.N. Name ν (deg) g (sec) s (sec)
588 Achilles 2.370 320.95 -2.97
617 Patroclus 2.394 327.13 -4.53
624 Hektor 2.349 375.03 -12.79
659 Nestor 2.369 312.65 -5.72
884 Priamus 2.294 318.32 -10.13
911 Agamemnon 2.378 361.83 -7.02

1143 Odysseus 2.238 294.05 -4.61
1172 Aneas 2.169 246.16 2.39
1173 Anchises 2.264 306.65 -7.64
1208 Troilus 2.308 303.50 1.04
1404 Ajax 2.397 345.87 -7.24
1437 Diomedes 2.252 352.93 -14.89
1583 Antilochus 1.978 152.22 10.90
1647 Menelaus 2.200 289.80 -7.75
1749 Telamon 2.354 326.43 -3.65
1867 Deiphobus 2.202 263.21 3.47
1869 Philoctetes 2.269 326.03 -9.94
1870 Glaukos 2.208 272.46 0.84
1871 Astyanax 2.061 250.42 -15.12
1872 Helenos 2.039 202.41 -4.38

Table 4: Basic frequencies of the Trojan asteroids in the circular Restricted Three Body
Problem. In the first column we display the catalog number of the asteroid and in the
second one the asteroid’s name. The frequency of libration can be seen in the third
column, while in the fourth and fifth columns the two secular frequencies are shown.
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Hamiltonian. This normal form can be written as

H(I, θ) = ω1I1 + ω2I2 + ω3I3 +R(I, θ),

where I = (I1, I2, I3) and θ ∈ T3 are the usual action-angle variables, R(I, θ) = O(||I||2)
and I1 = I2 = I3 = 0 corresponds to the triangular point L4 or L5. Thus, the “frequencies”
ω1, ω2 and ω3 can be taken as the frequencies of the fixed point L4 or L5 and their concrete
numerical values for the Sun-Jupiter RTBP are:

ω1 = -0.080463875837,

ω2 = 0.99675752552,

ω3 = 1.0.

If a Trojan asteroid move quasi-periodically (or almost quasi-periodically) “near” one of
the triangular points, it is natural to think that the basic frequencies of the motion of the
Trojan should be related, in some way, with a perturbation of these ω1, ω2 and ω3. Let
be ω̃1, ω̃2 and ω̃3 these perturbations (they normally appear when a Fourier analysis of

the functions fx = x2+p2
x

2
, fy =

y2+p2
y

2
and fz = z2+p2

z

2
is performed). Then, it turns out

that this three basic frequencies seem to be related with the three proper frequencies ν,
g and s in the following manner:

ν ≈ ω̃1
2π

T5

180

π
, (4)

g ≈ (1− ω̃2)
2π

T5

180

π
3600,

s ≈ (1− ω̃3)
2π

T5

180

π
3600,

where T5 = 11.862 is the sidereal period (in years) of Jupiter’s orbit.
In Table 5, we show the values of ω̃1 for the different models. The differences between

these values and ω1 gives us an idea of “how far”, in the RTBP, is the asteroid from the
librating point. For the other models, we should compare them with the frequency of the
corresponding invariant object.

4.2 The Elliptic Restricted Three Body Problem

We integrate the ERTBP with the same conditions as in the former sections. The phase of
the time-dependent perturbation is obtained by computing the actual perihelion argument
of Jupiter’s orbit in the Julian date 2452200.5.

In this case, there are also some asteroids that escape from the Solar System before
ending a 4 Myr. integration. The Catalog Numbers of the escaped particles are 1868,
1873, 3801, 4946, 15440, 15539, 24471 and 24531. There are some cases for which the
proper frequencies cannot be well determined. The corresponding C.N. are 2146, 2363,
7641, 7815, 11395, 12444, 12916, 12929, 15527, 15977, 16956, 18046, 19844, 24449 and
24587. Thus, in a similar way to the Circular RTBP, the behaviour of some asteroids is
qualitatively very different of what happens in the OSS.



12 On the accuracy of the RTBP for the Trojan motion

Asteroid ω̃1

C.N. Name OSS RTBP ERTBP
588 Achilles 0.080195 0.078084 0.078524
617 Patroclus 0.077431 0.078879 0.079341
624 Hektor 0.076299 0.077394 0.077441
659 Nestor 0.081280 0.078065 0.077198
884 Priamus 0.079874 0.075595 0.077358
911 Agamemnon 0.075440 0.078353 0.078122
1143 Odysseus 0.080375 0.073745 0.074371
1172 Aneas 0.077967 0.071468 0.071942
1173 Anchises 0.078138 0.074612 0.075012
1208 Troilus 0.072473 0.076044 0.076437
1404 Ajax 0.076125 0.078972 0.077430
1437 Diomedes 0.072922 0.074216 0.074698
1583 Antilochus 0.071864 0.065181 0.065448
1647 Menelaus 0.080348 0.072482 0.072651
1749 Telamon 0.079785 0.077557 0.077767

Table 5: ω̃1 values for the OSS and the three-body models. They are computed from (4).

The concrete values of the proper frequencies of the rest 397 Trojan asteroids can be
found in [3].

5 Conclusions

We have computed the proper frequencies of 420 Trojan asteroids in the Outer Solar
System. For every asteroid, there are 14 frequencies that seem to play some role: we have
11 proper frequencies (four fast and seven secular ones) coming from the planets and the
three asteroid proper ones. The proper frequencies of the asteroid are the frequency of
libration (around the corresponding triangular point) and two secular ones (corresponding
to node and perihelion precessions).

Moreover, we have performed a similar analysis in the Circular RTBP and in the
Elliptic RTBP.

The main qualitative difference between these models is that there are some asteroids
that escape in the three-body problems and do not escape in the OSS. It is clear that, for
these bodies, the three-body models are not suitable to study its dynamics.

In Table 6, the relative differences between the frequencies ν and g of the three models
are shown. We see that the restricted three-body models simulate in an acceptable way
the librational motion around the (corresponding) triangular point, since the relative
differences between the frequencies corresponding to this motion in the OSS and in the
models is less than 10%. For what concerns the secular motion, the analytic models
simulate it in a worse way. In fact, we do not show the values corresponding to the secular
frequency s, because of the big differences between the restricted three-body models and
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Asteroid Freq. of libration (ν) Perihelion’s freq. (g)
C.N. Name OSS RTBP ERTBP OSS RTBP ERTBP
588 Achilles 2.434 0.026 0.021 344.40 0.07 0.07
617 Patroclus 2.350 0.019 0.025 310.62 0.05 0.05
624 Hektor 2.316 0.014 0.015 335.74 0.12 0.12
659 Nestor 2.467 0.040 0.050 355.01 0.12 0.10
884 Priamus 2.424 0.054 0.031 353.41 0.10 0.12
911 Agamemnon 2.290 0.039 0.036 317.35 0.14 0.16
1143 Odysseus 2.439 0.082 0.075 365.38 0.20 0.20
1172 Aneas 2.366 0.083 0.077 331.54 0.26 0.26
1173 Anchises 2.371 0.045 0.040 378.19 0.19 0.19
1208 Troilus 2.199 0.049 0.055 258.54 0.17 0.17
1404 Ajax 2.310 0.037 0.017 334.43 0.03 0.08
1437 Diomedes 2.213 0.018 0.024 331.25 0.07 0.06
1583 Antilochus 2.181 0.093 0.089 282.18 0.46 0.46
1647 Menelaus 2.438 0.098 0.096 359.34 0.19 0.19
1749 Telamon 2.421 0.028 0.025 366.33 0.11 0.11

Table 6: Relative differences between the frequencies of libration and the Perihelion’s
frequencies of the 15 firsts numbered Trojan asteroids computed in the different models.
In the first and second columns we display the catalog number and the name of the
asteroid. The frequencies for the OSS model can be seen in the third and sixth column.
Finally, in columns four and five, and seven and eight, the relatives differences are shown.

More concretely, we compute respectively
∣∣∣νOSS−νmodel

νOSS

∣∣∣ and
∣∣∣gOSS−gmodel

gOSS

∣∣∣.
the OSS. This was expected, since the Trojan secular frequencies mainly come from the
indirect action of the perturbative planets (Saturn, Uranus and Neptune) to Jupiter’s
motion that, of course, is not present in the restricted three body models.

From these calculations, it is clear that the results obtained by means of Restricted
Three-Body models cannot be used, in general, to derive conclusions about the real motion
of a Trojan. On the other hand, there are asteroids for which either the Circular or the
Elliptic RTBP give reasonable dynamical predictions. Therefore, we want to stress that
the level of accuracy of these models is not uniform but it strongly depends on the asteroid
considered.

Acknowledgements

The authors thank J. Laskar and J.M. Mondelo to let them use their frequency analysis
programs. F.G. and A.J. have been supported by the Spanish CICYT grant BFM2000–
0623, the Catalan CIRIT grant 2001SGR–70 and DURSI.



14 On the accuracy of the RTBP for the Trojan motion

References

[1] R. Bien and Schubart J. Three characteristic orbital parameters for the Trojan group
of asteroids. Astron. Astrophys., 175:292–298, 1987.

[2] E. Bowell. The asteroid orbital elements database. Project funded principally by
NASA grant NAG5-4741, and in part by the Lowell Observatory endowment. For
more information, visit the URL http://www.naic.edu/~nolan/astorb.html.

[3] F. Gabern. On the dynamics of the Trojan asteroids. PhD thesis, Univ. Barcelona,
2003. http://www.maia.ub.es/dsg/2003/.
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