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The aim of this paper is to provide the state of the art on libration point
orbits. We will focus in the Dynamical Systems approach to the problem, since

we believe that it provides the most global picture and, at the same time,
allows to do the best choice of both strategy and parameters in several mission

analysis aspects.

I. Dynamics and phase space around the Libration

Points

1. Equations of motion and Libration Points

1.1. The Restricted Three Body Problem and its

perturbations

It is well known that several very simple models, such as the Two Body

Problem or the Restricted Three Body Problem (RTBP), are suitable for

spacecraft mission design, since they give good insight of the dynamics

in many real situations. In this section we will review some of the most
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relevant restricted models for the analysis of the motion in the vicinity of

the libration points.

Most of the well known restricted problems take as starting point the

circular RTBP, that models the motion of a massless particle under the

gravitational attraction of two punctual primaries revolving in circular or-

bits around their center of mass. In a suitable coordinate system and with

adequate units, the Hamiltonian of the RTBP is (Szebehely 70)

H(x, y, z, px, py, pz) =
1

2
(p2x + p

2
y + p

2
z) + ypx − xpy

− 1− µ

((x− µ)2 + y2 + z2)1/2
− µ

((x− µ+ 1)2 + y2 + z2)1/2
,

being µ = m2/(m1+m2), where m1 > m2 are the masses of the primaries.

In order to get closer to more realistic situations, or simplifications, this

model is modified in different ways. For instance,

(1) Hill’s problem. Is useful for the analysis of the motion around m2. Can

be obtained setting the origin at m2, rescaling coordinates by a factor

µ1/3 and keeping only the dominant terms of the expanded Hamiltonian

in powers of µ1/3. The Hamiltonian function is

H =
1

2
(p2x + p

2
y + p

2
z) + ypx − xpy −

1

(x2 + y2 + z2)1/2
− x

2 +
1

2
(y2 + z

2).

This Hamiltonian corresponds to a Kepler problem perturbed by the

Coriolis force and the action of the Sun up to zeroth-order in µ1/3. Hill’s

model is the appropiate first approximation of the RTBP for studying

the neighborhood of m2 which takes into consideration the action of

the primary m1 (Simó & Stuchi 68). This model has a remarcable set

of solutions known as the Variation Orbit Family. This is a family of

2πm–periodic solutions (m is the parameter of the family) which serves

as the first approximation in the modern theory of lunar motion.

(2) Restricted Hill four body problem. This is a time–periodic model that

contains two parameters: the mass ratio µ of the RTBP and the period

parameter m of the Hill Variation Orbit. The RTBP is recovered as

m→ 0, and the classical Hill model is recovered as µ→ 0, both in the

proper reference frames (Scheeres 60).

(3) The elliptic RTBP. It is a non–autonomous time–periodic perturbation

of the RTBP in which the primaries move in an elliptic orbit instead

of a circular one (Szebehely 70).
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(4) The Bicircular Restricted Problem. Is one of the simplest restricted

problems of four bodies, obtained from the RTBP by adding a third

primary. It can be also considered a periodic perturbation of the the

RTBP in which one primary has been splitted in two that move around

their common center of mass. This model is suitable to take into account

the gravitational effect of the Sun in the Earth–Moon RTBP or the

effect of the Moon in the Sun–Earth RTBP. In a coordinate system

revolving with Earth and Moon, the Hamiltonian of this problem is

(see Simó et al. 65)

H =
1

2
(p2x + p

2
y + p

2
z) + ypx − xpy

− 1− µ

((x− µ)2 + y2 + z2)1/2
− µ

((x− µ+ 1)2 + y2 + z2)1/2

− mS

((x− aS cos θ)2 + (y + aS sin θ)2 + z2)1/2
− mS

a2S
(y sin θ − x cos θ),

with θ = wSt+ θ0, where wS is the mean angular velocity of the Sun,

mS its mass and aS the distance from the Earth–Moon barycenter to

the Sun.

(5) Coherent models. They are restricted four body problems in which the

three primaries move along a true solution of the three body prob-

lem. These models have been introduced for the study of the motion

around the geometrically defined collinear and triangular equilibrium

points of the Earth–Moon system (Andreu 1, Howell et al. 40) and the

Sun–Jupiter system perturbed by Saturn (Gabern and Jorba 19). The

Hamiltonian of these problems can be written as

H =
1

2
α1(p

2
x + p

2
y + p

2
z) + α2(ypx − xpy)

+α3(xpx + ypy + zpz) + α4x+ α5y

−α6
(

1− µ

((x− µ)2 + y2 + z2)1/2
+

µ

((x− µ+ 1)2 + y2 + z2)1/2

+
mS

((x− α7)2 + (y − α8)2 + z2)1/2

)

,

where the αi are time–periodic functions, with the same basic frequency

as the Bicircular Problem.

In a different approach, instead of taking as starting equations those of

the RTBP, we can consider Newton’s equations for the motion of an in-
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finitesimal body in the force field created by the bodies of the Solar System

R′′ = G
∑

i

mi
Ri −R

‖R−Ri‖3
.

Performing a suitable change of coordinates (see Gómez et al. 26,32), the

above equations can be written in Hamiltonian form with the following

Hamiltonian function

H = β1(p
2
x + p

2
y + p

2
z) + β2(xpx + ypy + zpz) + β3(ypx − xpy) +

+β4(zpy − ypz) + β5x
2 + β6y

2 + β7z
2 + β8xz +

+β9px + β10py + β11pz + β12x+ β13y + β14z +

+β15

(

1− µ

[(x− µ)2 + y2 + z2]1/2
+

µ

[(x− µ+ 1)2 + y2 + z2]1/2
+

+
∑

i∈S∗

µi

[(x− xi)2 + (y − yi)2 + (z − zi)2]1/2

)

,

where S∗ denotes the set of bodies of the Solar System except the two se-

lected as primaries, and the βi are time dependent functions that can be

computed in terms of the positions, velocities, accelerations and overaccel-

erations of the two primaries. Notice that this Hamiltonian is, formally, a

perturbation of the RTBP one. Most of all the intermediate models that

have been mentioned are particular cases of this one. Once two primaries

have been selected, a Fourier analysis of the βi functions (Gómez et al. 32)

allows the explicit construction of a graded set of models with an increasing

number of frequencies, that can be considered between the RTBP and the

true equations.

1.2. Libration Points and dynamical substitutes

As it is well known, the RTBP has five equilibrium points: three (L1, L2,

L3) are collinear with the primaries and the other two (L4 and L5) form

an equilateral triangle with them. Although the models introduced in the

preceding section are close to the RTBP, all of them, except Hill’s model,

are non autonomous, so they do not have any critical point. If the model

is time–periodic, under very general non–resonance conditions between the

natural modes around the equilibrium points and the perturbing frequency,

the libration points can be continued to periodic orbits of the model. In

the continuation process, the periodic orbit can go through bifurcations

to end up in more than a single periodic orbit or reach a turning point
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and dissapear. These periodic orbits, which have the same period as the

perturbation, are the dynamical substitutes of the equilibrium points. For

models with a quasi–periodic perturbation the corresponding substitutes

will be also quasi–periodic solutions (see Figure 1).
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Fig. 1. Dynamical substitutes for the L1 point in the Earth–Moon system for a time–

periodic (left) and a quasi–periodic (right) model.

Dynamical substitutes of the triangular points, for several of the models

already mentioned, have been studied in Gómez et al. 24, Simó et al. 65

and Jorba et al. 44. For the collinear points of the Sun–Earth system, the

dynamical substitutes of L2 for time–periodic models have been given by

Farquhar 17, Howell 40. Andreu 1 does a complete study of the substitutes

of the collinear libration points for a coherent model close to the Earth–

Moon problem and compares some of the results obtained with the ones

corresponding to a bicircular model. For models depending in more than

one frequency one can find results in these Proceedings.

2. The phase space about the Libration Points

In this section we will describe the dynamics near the collinear equilib-

rium points L1, L2, always in the framework of the RTBP. Since we are

interested in the motion in the vicinity of a given libration point, following

Richardson 58, we set the origin of coordinates at a given libration point

and scale variables in such a way that the distance from the smallest pri-

mary to the selected equilibrium point will be equal to one. Expanding

r1 = ((x− µ)2 + y2 + z2)1/2 and r2 = ((x− µ+ 1)2 + y2 + z2)1/2 in power
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series, one gets

H =
1

2

(

p
2
x + p

2
y + p

2
z

)

+ ypx − xpy −
∑

n≥2

cn(µ)ρ
n
Pn

(

x

ρ

)

, (1)

where ρ2 = x2+y2+ z2, the cn are constants depending on the equilibrium

point and the mass ratio µ, and Pn is the Legendre polynomial of degree

n. With a linear symplectic change of coordinates (Gómez et al. 23), the

second order part of the Hamiltonian is set into its real normal form,

H2 = λxpx +
ωp

2
(y2 + p

2
y) +

ωv

2
(z2 + p

2
z),

where, for simplicity, we have kept the same notation for the variables.

Here, λ, ωp and ωv are positive real numbers. From H2, it is clear that

the linear behaviour near the collinear equilibrium points is of the type

saddle×centre×centre. Hence, one can expect families of periodic orbits

which in the limit have frequencies related to both centers: ωp and ωv

(called planar and vertical frequencies, respectively). This is assured by

the Lyapunov center theorem, unless one of the frequencies is an integer

multiple of the other (which only happens for a countable set of values of

the mass ratio (see Siegel and Moser 62)). Near the libration points we can

also expect 2D tori, with two basic frequencies which tend to ωp and ωv

when the amplitudes tend to zero. The rigorous existence of these tori is

more problematic. First, the basic frequencies at the collinear point can

be too close to resonant. Furthermore, the frequencies change with their

amplitudes and so, they go across resonances when the amplitudes are

changed. This leads to a Cantor set of tori. The proof of the existence

of these tori follows similar lines to the proof of the KAM theorem (see

Jorba and Villanueva 46).

Close to the L1 and L2 libration points, the dynamics is that of a strong

unstable equilibrium, because of the saddle component of the linear approx-

imation. This is the reason why is not feasible to perform a direct numerical

simulation of the Poincaré map in order to get an idea of the phase space.

Due to the center × center part, and when we consider all the energy

levels, there are 4D center manifolds around them (they are also called

neutrally stable manifolds). On a given energy level this is just a 3D set

where dynamics have a “neutral behavior”. On it there are periodic orbits

and 2D invariant tori. The L3 point has the same linear behavior, however

the instability is quite mild. Nevertheless, the long term effects associated

to the unstable/stable manifolds of L3 or to the ones of the central manifold
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around L3 are extremely important (see Gómez et al. 24,26). In this section

we will show results about the phase space in a large neighbourhood of the

collinear libration points and will see how all the mentioned invariant sets

(periodic orbits and tori) are organized.

2.1. Local (semi–analytical) approach

The analysis of the dynamics in the center manifold for values of the energy

close to the one of the equilibrium point can be done in a semi–analytical

way using different strategies. One consists in performing a reduction of the

Hamiltonian that decreases the number of degrees of freedom, removes the

hyperbolic directions and allows the numerical study of the Poincaré map

in a vicinity of the equilibrium points (see Gómez et al. 23 and Jorba and

Masdemont 45). This approach is usually known as the reduction to the

center manifold. Note that, generically, the expansions required for these

computations cannot be convergent in any open set, because of the crossing

of resonances. Another procedure consists in the use of Lindstedt-Poincaré

methods to explicitly compute the periodic orbits the invariant tori (see

Richardson 57 and Gómez et al. 23,26,33). It looks for analytical expressions

for them in terms of suitable amplitudes and phases. Both approaches are

limited by the convergence of the expansions used for the changes of coor-

dinates and the Hamiltonian, in the first case, and for the periodic orbits

and invariant tori, in the second one, which is discussed in the mentioned

papers. The general ideas and main results obtained with both procedures

will be discussed in the next two sections.

Reduction to the center manifold

The reduction to the center manifold is similar to a normal form computa-

tion. The objective is to remove not all the monomials in the expansion H

(up to a given order) but to remove only some, in order to have an invariant

manifold tangent to the elliptic directions of H2. This is done through a

series of changes of variables which can be implemented by means of the

Lie series method (Deprit 12).

The Hamiltonian of the RTBP, with the second order terms in normal
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form, can be written, in a suitable set of coordinates and momenta, as

H(q, p) =
√
−1ωvq1p1 +

√
−1ωpq2p2 + λq3p3 +

∑

n≥3

Hn(q, p), (2)

where Hn denotes an homogeneous polynomial of degree n.

To remove the instability associated with the hyperbolic character of

H, we first note that, in the second order part of the Hamiltonian, H2, the

instability is given by the term λq3p3. Thus, in the linear approximation of

the equations of motion, the central part is obtained setting q3 = p3 = 0.

If we want the trajectory to remain tangent to this space when adding the

nonlinear terms, this is, with q3(t) = p3(t) = 0 for all t > 0 once we set

q3(0) = p3(0) = 0, we need to have q̇3(0) = ṗ3(0) = 0. Then, because of the

autonomous character of the system, we will obtain q3(t) = p3(t) = 0 for

all t ≥ 0.

Recalling the form of the Hamiltonian equations of motion, q̇i = Hpi
,

ṗi = −Hqi
, one can get the required condition, q̇3(0) = ṗ3(0) = 0 for

q3(0) = p3(0) = 0, when, in the series expansion of the Hamiltonian, H,

all the monomials hijq
ipj with i3 + j3 = 1 have hij = 0 (i and j stand

for (i1, i2, i3) and (j1, j2, j3), respectively). This happens if there are no

monomials with i3 + j3 = 1. Of course, other expansions could give us the

same required tangency condition, but this is the one that needs to cancel

less monomials in (2) and, in principle, it is better behaved both in terms

of convergence and from a numerical point of view.

All the computations can be implemented using specific symbolic ma-

nipulators that can carry out the full procedure up to an arbitrary or-

der (see Jorba 45). In this way, we end up with a Hamiltonian H(q, p) =

HN (q, p) + RN (q, p), where HN (q, p) is a polynomial of degree N in (q, p)

without terms with i3+ j3 = 1, and RN (q, p) is a remainder of order N +1

that is skipped in the computations.

In order to reduce the number of degrees of freedom, after setting q3 =

p3 = 0 in the initial conditions we look only for orbits in the same energy

level; in this way only three free variables remain. A further reduction is

obtained by looking not at the full orbits, but just at their crossings of a

surface of section. Now, all the libration orbits with a fixed Hamiltonian

value can be obtained just varying two variables in the initial conditions. For

instance, the initial conditions can be chosen selecting arbitrary values for
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Fig. 2. Poincaré maps on the section z = 0 (in RTBP coordinates) of the orbits in the
central manifold of L1 (two top figures) and L2 (two bottom figures) for the following
values of the Jacobi constant: 3.00085, and 3.00078515837634. RTBP mass parameter of

the Earth+Moon–Sun system, µ = 3.040423398444176× 10−6.

q2 and p2, setting q1 = 0 (the surface of section), and finally computing p1
in order to be in the selected level of Hamiltonian energy. The propagation

of this initial condition, looking when and where it crosses the surface of

section again and again, gives what is called the images of the Poincaré map

on the Poincaré section q1 = 0. Alternatively, the plane z = 0 (in RTBP

coordinates) can be used to get a more familiar picture. Note that, due

to the linear part of the RTBP equations of motion around the collinear

equilibrium points (3), z = 0 is a surface of section for all the libration

orbits in a neighbourhood of the equilibrium point except for the planar

ones, which are contained in the z = 0 plane.

This is the procedure used to get Figure 2, where the libration orbits

around L1 and L2 are displayed for two different values of the Jacobi con-

stant, CJ , of the RTBP. From Figure 2, we note that for each level of CJ

there is a bounded region in the Poincaré section. The boundary of the

region is the planar Lyapunov orbit of the selected energy (related to the

planar frequency ωp of H2), and is completely contained in the surface of
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section. The fixed point, in the central part of the figures, corresponds to

an almost vertical periodic orbit, related to the vertical frequency ωv. Sur-

rounding the central fixed point, we have invariant curves corresponding

to Lissajous orbits. The motion in this region is essentially quasi-periodic

(except for very small chaotic zones that cannot be seen in the pictures).

Depending on the value of the Jacobi constant, there appear two ad-

ditional fixed points close to the boundary. These points are associated to

halo orbits of class I (north) and class II (south). Surrounding the fixed

points corresponding to the halo orbits, we have again invariant curves re-

lated to quasi-periodic motions. These are Lissajous orbits around the halos

that we call quasi-halo orbits (see Gómez et al. 33).

Finally, in the transition zone from central Lissajous to quasi-halo orbits

there is an homoclinic connection of the planar Lyapunov orbit. We note

that the homoclinic trajectory that goes out from the orbit and the one

that goes in do not generally coincide; they intersect with a very small

angle. This phenomenon is known as splitting of separatrices. We also note

in this case, that the planar Lyapunov orbit is unstable even in the central

manifold.

Lindstedt-Poincaré procedures: halo, quasi-halo, and Lissajous orbits

The planar and vertical Lyapunov periodic orbits, as well as the Lissajous,

halo, and quasi-halo orbits, can be computed using Lindstedt–Poincaré pro-

cedures and ad–hoc algebraic manipulators. In this way one obtains their

expansions, in RTBP coordinates, suitable to be used in a friendly way. In

this section we will give the main ideas used for their computation.

We will start with the computation of the Lissajous trajectories (2D

tori) and halo orbits (1D tori or periodic orbits). The RTBP equations of

motion can be written as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑

n≥3

cnρ
n
Pn

(

x

ρ

)

,

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑

n≥3

cnρ
n
Pn

(

x

ρ

)

, (3)

z̈ + c2z =
∂

∂z

∑

n≥3

cnρ
n
Pn

(

x

ρ

)

,
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with cn, ρ and Pn as in (1). The solution of the linear part of these equations

is

x(t) = α cos(ωpt+ φ1),

y(t) = κα sin(ωpt+ φ1), (4)

z(t) = β cos(ωvt+ φ2),

where ωp and ωv are the planar and vertical frequencies and κ is a constant.

The parameters α and β are the in-plane and out-of-plane amplitudes of

the orbit and φ1, φ2 are the phases. These linear solutions are already

Lissajous trajectories. When we consider the nonlinear terms, we look for

formal series solutions in powers of the amplitudes α and β of the type










x

y

z











=
∞
∑

i,j=1









∑

|k|≤i,|m|≤j











x

y

z











ijkm











cos

sin

cos











(kθ1 +mθ2)









α
i
β
j
, (5)

where θ1 = ωt + φ1 and θ2 = νt + φ1 . Due to the presence of nonlinear

terms, the frequencies ω and ν cannot be kept equal to ωp and ωv, and they

must be expanded in powers of the amplitudes

ω = ωp +

∞
∑

i,j=1

ωijα
i
β
j
, ν = ωv +

∞
∑

i,j=1

νijα
i
β
j
.

The goal is to compute the coefficients xijkm, yijkm, zijkm, ωij , and νij
recurrently up to a finite order N = i + j. Identifying the coefficients of

the general solution (5) with the ones obtained from the solution of the

linear part (4), we see that the non zero values are x1010 = 1, y1010 = κ,

z1010 = 1, ω00 = ωp and ν00 = ωv. Inserting the linear solution (4) in the

equations of motion, we get a remainder for each equation, which is a series

in α and β beginning with terms of order i + j = 2. In order to get the

coefficients of order two, this known order 2 terms must be equated to the

unknown order 2 terms of the left hand side of the equations. The general

step is similar. It assumes that the solution has been computed up to a

certain order n − 1. Then it is substituted in the right hand side of the

RTBP equations, producing terms of order n in α and β. This known order

n terms must be equated with the unknown terms of order n of the left

hand side.

The procedure can be implemented up to high orders. In this way we

get, close to the equilibrium point, a big set of KAM tori. In fact, between

these tori there are very narrow stochastic zones (because the resonances are
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dense). Hence we will have divergence everywhere. However, small divisors

will show up only at high orders (except the one due to the 1:1 resonance),

because at the origin ωp/ωv is close to 29/28. The high order resonances

have a very small stochastic zone and the effect is only seen after a big time

interval.

Halo orbits are periodic orbits which bifurcate from the planar Lyapunov

periodic orbits when the in plane and out of plane frequencies are equal.

This is a 1:1 resonance that appears as a consequence of the nonlinear terms

of the equations and, in contrast with the Lissajous orbits, they do not

appear as a solution of the linearized equations. Of course, we have to look

for these 1-D invariant tori as series expansion with a single frequency. In

order to apply the Lindstedt-Poincaré procedure, following Richardson 57,

we modify the equations of motion (3) by adding to the third equation a

term like ∆ · z, where ∆ is a frequency type series

∆ =

∞
∑

i,j=0

dijα
i
β
j
,

that must verify the condition ∆ = 0. We start looking for the (non trivial)

librating solutions with frequency ωp

x(t) = α cos(ωpt+ φ1),

y(t) = κα sin(ωpt+ φ1), (6)

z(t) = β cos(ωpt+ φ2).

We note that after this step, halo orbits are determined up to order 1, and

∆ = 0 is read as d00 = 0. Halo orbits depend only on one frequency or one

amplitude since they are 1-D invariant tori, so we have not two independent

amplitudes α and β. The relation between α and β is contained in the

condition ∆ = 0 which implicitly defines α = α(β).

When we consider the full equations, we look for formal expansions in

powers of the amplitudes α and β of the type










x

y

z











=
∞
∑

i,j=1









∑

|k|≤i+j











x

y

z











ijk











cos

sin

cos











(kθ)









α
i
β
j
,

where θ = ωt+ φ and, as in the case of 2-D invariant tori, the frequency ω

must be expanded as ω =
∑∞

i,j=0 ωijα
iβj . The procedure for the compu-

tation of the unknown coefficients xijk, yijk, zijk, ωij and dij is similar to

the one described for the Lissajous trajectories.
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Quasi-halo orbits are quasi-periodic orbits (depending on two basic fre-

quencies) on two dimensional tori around a halo orbit. Given a halo orbit

of frequency ω, the series expansions for the coordinates of the quasi-halo

orbits around it will be of the form










x

y

z











=

∞
∑

i=1









∑

|k|<i,|m|<i











x

y

z











km

i











cos

sin

cos











(k(ωt+ φ1) +m(νt+ φ2))









γ
i
.

These expansions depend on two frequencies (ω, ν) and one amplitude, γ

(related to the size of the torus around the halo orbit). The frequency ν

is the second natural frequency of the torus, and it is close to the normal

frequency around the base halo orbit. The amplitude, γ, is related to the

size of the torus around the “base” halo orbit which is taken as backbone.

In order to apply the Lindstedt-Poincaré method to compute the quasi-

halo orbits, it is convenient to perform a change of variables transforming

the halo orbit to an equilibrium point of the equations of motion. Then,

orbits librating around the equilibrium point in the new coordinates cor-

respond to orbits librating around the halo orbit in the original ones. The

details of the procedure for their computation can be found in Gómez et

al. 33.

In Figure 2 we display a sample of the different kind of orbits computed

using the Lindsted-Poincaré procedure according to the previous explana-

tions.

2.2. Numerical approach

In this section we will show how, with a numerical approach, the analysis of

the phase space using semi-analytical methods, can be extended to a wider

range of energy values, including several bifurcations and also to the L3
libration point. The approach is based in the computation of the families

of periodic orbits and 2D invariant tori of the center manifolds of the three

collinear libration points.

Numerical methods have been widely used to compute fixed points and

periodic orbits and we will nor enter into the details for their computation

here. The reader can find an excellent exposition in the paper by Doedel et

al. 13. There are not many papers dealing with the numerical computation
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Fig. 3. 3D representation of several types of orbits around L1. Upper left: vertical
periodic orbit with α = 0.0 and β = 0.1 (obtained as a Lissajous orbit with α = 0).
Upper right: Lissajous orbit with α = 0.05 and β = 0.15. Lower left: halo orbit with

β = 0.1. Lower right: quasi-halo orbit with β = 0.2 and γ = 0.067.

of invariant tori. For this purpose, there are mainly two different methods:

one is based in looking for a torus as a fixed point of a power of the Poincaré

map, P x, with x being a real number and where P x is obtained by inter-

polation. The details of the method, as well as some numerical examples,

can be found in Simó 63. The second procedure, introduced in Castellà and

Jorba 8, is based on looking for the Fourier series of the parametrization of

an invariant curve on a torus, asking numerically for quasi-periodic motion.

This has been the approach, combined with a multiple shooting procedure,

that we have used to study the quasi–periodic motions in a neighbourhood

of the collinear libration points (Mondelo 55, Gómez et al. 34).

As a first step of the numerical approach, the study of the families of

periodic orbits around the libration points and their normal behavior must

be done.

Normal behavior around a periodic orbit
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Let ϕt(x) be the flow of the RTBP. The normal behavior of a T–periodic

orbit through x0 is studied in terms of the time–T flow around x0, whose

linear approximation is given by the monodromy matrix M = DϕT (x0)

of the periodic orbit. As the monodromy matrix M is symplectic, we have

that

SpecM = {1, 1, λ1, λ
−1
1 , λ2, λ

−1
2 }.

The stability parameters of the periodic orbit, that are defined as sj =

λj + λ−1j for j = 1, 2, can be of one of the following kinds:

• Hyperbolic: sj ∈ R, |sj | > 2. It is equivalent to λj ∈ R\{−1, 1}.
• Elliptic: sj ∈ R, |sj | < 2. It is equivalent to λj = eiρ with ρ ∈ R (if

|sj | = 2, then it is said to be parabolic).

• Complex unstable: sj ∈ C\R. It is equivalent to λj ∈ C\R, |λj | 6= 1.

If sj is complex unstable, then s3−j is also complex unstable and, in fact,

s3−j = sj . After the complex unstable bifurcation, following a Hamiltonian

Hopf pattern, there appear invariant tori, as is shown in Pacha 56. If sj is

hyperbolic, then the periodic orbit has stable and unstable manifolds, whose

sections at x0 through the {λj , λ
−1
j }–eigenplane of M are tangent to the

{λj , λ
−1
j }–eigenvectors at x0. If sj is elliptic, the {λj , λ

−1
j }–eigenplane of

M through x0 is foliated (in the linear approximation) by invariant curves

of the restriction to this eigenplane of the linearization of ϕT (that is, the

map x → x0 +M(x − x0)), which have rotation number ρ. For the full

system, some of these invariant curves subsist and give rise to 2D tori.

In what follows, we will say that a periodic orbit has central part if one

of the stability parameters s1, s2 is elliptic. The tori of the central manifolds

will be computed starting from the central part of such orbits.

Numerical computation of invarian tori

We look for a parametrization of a 2-dimensional torus ψ : T2 = R2/2πZ →
R6, satisfying

ψ(θ + ωt) = ϕt

(

ψ(θ)
)

, ∀θ ∈ T2, ∀t ∈ R, (7)

where ω = (ω1, ω2) ∈ R2 are the frequencies of the torus and ϕt(x) is the

flow associated to the RTBP. Let us denote by Ti the period corresponding
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to the ωi frequency, that is Ti = 2π/ωi, and θ = (ξ, η). In order to reduce

the dimension of the problem, instead of looking for the parametrization of

the whole torus, we can look for the parametrization of a curve {η = η0}

(or {ξ = ξ0}) on the torus, which is invariant under ϕT2
, namely

ϕT2

(

ψ(ξ, η0)
)

= ψ(ξ + ω1T2, η0), ∀ξ ∈ T1. (8)

Then, we look for a parametrization ϕ : T1 → Rn satisfying

ϕ(ξ + ρ) = φδ
(

ϕ(ξ)
)

, ∀ξ ∈ T1, (9)

where δ = T2 and ρ = δω1. Note that ρ is the rotation number of the curve

we are looking for. We assume for ϕ a truncated Fourier series representa-

tion

ϕ(ξ) = A0 +

Nf
∑

k=1

(

Ak cos(kξ) +Bk sin(kξ)
)

, (10)

with Ak, Bk ∈ Rn. This representation of the geometrical torus {ψ(θ)}θ∈T2

is non unique for two reasons: (1) For each choice of η0 we have a differ-

ent ϕ in (10), i.e., a different invariant curve on the torus. (2) Given the

parametrization (10), for each ξ0 ∈ T1, ϕ(ξ− ξ0) is a different parametriza-

tion with a different Fourier expansion of the same invariant curve of the

torus. In order to overcome both indeterminations, some components of the

Fourier coeficients Ak must be fixed.

Finally, and in order to deal with high instabilities, a multiple shooting

procedure is used. It consists in looking for several invariant curves on the

torus {ψ(θ)}θ∈Td instead of just one, in order to reduce the maximum time

of integration to a fraction of δ. Concretely, we will look for m parametriza-

tions ϕ0, ϕ1, . . . , ϕm−1 satisfying for all ξ ∈ T1: ϕj+1(ξ) = φδ/m
(

ϕj(ξ)
)

, for

j = 0÷m− 2 and ϕ0(ξ + ρ) = φδ/m
(

ϕm−1(ξ)
)

.

The details of the computational aspects (implementation, computing

effort, parallel strategies, etc.) of this procedure are given in Gómez et al. 34.

As a sample of the tori that can be computed with this procedure, in Fig.

4 we display families around bifurcated halo-type orbits of L1 and L2 with

central part.

Invariant tori starting around vertical orbits

In Fig. 5 we have displayed the region (in the energy–rotation number

plane) covered by the 2–parametric family of tori computed starting from
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Fig. 4. Tori around the bifurcated halo-type orbits. The two on the top are in the

families around L1 and have energy h = −1.501. The two on the bottom are in the

families around L2 and have energy h = −1.507.

the vertical L1 Lyapunov families of periodic orbits with central part. The

diagrams corresponding to L2 and L3 are similar (see Gómez et al. 34). The

boundary has different pieces:

• The lower left piece α (from vertex 1 to 2) is related to the the planar

Lyapunov family. The orbits of this family represented in the curve

are just the first piece of the family with central part. The horizontal

coordinate is the energy level h of the curve and the vertical coordinate

is ρ = (2π)2/(2π − ν) − 2π, where 2 cos ν is the stability parameter of

the orbit.

• The upper piece β (from vertex 2 to 3) is strictly related to the vertical

Lyapunov family. The points on this curve are (h, ρ) where h is the

energy of the orbit and the rotation number ρ is such that the ellip-

tic stability parameter of this orbit is 2 cos ρ. Note that this relation

between ρ and ν is different from the previous item, and this is so in

order to have continuity of ρ along an isoenergetic family of tori.

• The bottom boundary γ (from vertex 3 to 1), that corresponds to ρ = 0,
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begins at the value of the energy where the halo families are born. It is

related to a separatrix between the tori around the vertical Lyapunov

families and the halo ones.
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Fig. 5. Region in the energy–rotation number plane, covered by the two-parametric
family of tori computed starting at the vertical Lyapunov family of p.o. for L1. The

number of harmonics used for the computation of Fourier representation of the tori
(< 25, < 50, < 100 and > 100) is shown in the figure. Vertex 1 is at the value of the

energy at which the halo family is born. Vertex 2 is at the value of the energy of the
equilibrium point. Vertex 3 is at the value of the energy of the first bifurcation of the

vertical Lyapunov family.

There are different ways of computing the tori within the region sur-

rounded by the curves mentioned above. We always start from the pieces of

boundary formed by periodic orbits. One possibility is then to perform the

continuation procedure keeping fixed the value of the energy h. Another

one is to allow variation of the energy but keeping fixed the rotation num-

ber ρ. In this last case, and in order to be as close as possible of conditions

that guarantee the existence of tori, it is convenient to set the rotation

number “as irrational as possible”. To this end, when we have used this

second strategy, we have set the values of ρ such that 2π/ρ is an integer

plus the golden number. In both cases, and for all L1, L2 and L3 cases,

we have always reached a region where the number of harmonics is larger

than the maximum value allowed, which at most has been set equal to 100.

Larger values of this parameter make computing time prohibitive. Just to

have an idea of the computing effort, the constant rotation number family
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with ρ = 0.176 requires about 3 days of CPU time of an Intel Pentium III

at 500MHz.

A “second view” of the center manifold

Using the periodic orbits and the tori computed using the afore mentioned

strategies, we have been able to extend the Poincaré map representation

of the central manifolds around the collinear libration points. Figures 6

and 7 show the results for L1, and L3, respectively (the results for L2 are

close to the ones obatined for L1). In all these figures we have represented

the x–y coordinates at the intersections with z = 0, pz > 0. All the plots

have a similar structure. The exterior curve in each plot is the Lyapunov

planar orbit of the energy level corresponding to the plot. As this orbit is

planar, it is completely included in the surface of section, and is the only

orbit for which this happens. For the three equilibrium points, and for small

energy values, the whole picture is formed by invariant curves surrounding

the fixed point associated to the vertical orbit. They are related to the

intersections of the Lissajous type trajectories around the vertical periodic

orbit. The halo orbits appear at the energy levels corresponding to the

first bifurcation of the Lyapunov planar family. This can be seen clearly in

the Poincaré map representations, since there appear two additional fixed

points surrounded by invariant curves. Increasing the values of the energy,

the L1 and L2 families of halo orbits have two relevant bifurcations, by

period triplication and duplication (see Figure 4). Both bifurcations can be

also detected on the Poincaré representations. This additional structure has

not been detected for the L3 case. Within the bifurcated families there are

some with central part, which are surrounded by invariant tori. These tori

give rise to the typical “island chain” structure of two–dimensional area–

preserving maps. This behavior is more clearly seen in a magnification of the

figures, as is shown in Gómez et al. 34. The region between the tori around

the vertical Lyapunov orbit and the tori around the halo orbits is not empty,

as it appears in the above figures, and should contain, at least, the traces,

on the surface of section, of the invariant manifolds of the Lyapunov planar

orbit. These manifolds act as separatrices between both kinds of motion.

The same thing happens between the islands of the bifurcated halo–type

orbits and the tori around the halo orbits. In this case, the region between

both kinds of tori is filled with the traces of the invariant manifolds of the

bifurcated hyperbolic halo–type orbits. In all these boundary regions, the

motion should have a chaotic behavior. With the current tools we have not
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Fig. 6. Energy slices of the section z = 0, pz > 0 of the invariant tori around L1

been able to compute these separatrices.
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Fig. 7. Energy slices of the section z = 0, pz > 0 of the invariant tori around L3.

3. Computations in very accurate models of motion

The purpose of this section to show procedures to get solutions, close to

the ones previously obtained for the RTBP, of more realistic equations of

motion as Newton’s equations using JPL ephemeris for the motion of the
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bodies of the solar system, or some of the intermediate models mentioned

in previous sections. For these more realistic models there no complete

study of the phase space around the libration points (or their dynamical

substitutes) like the one that exists for the RTBP.

Since the solutions will be computed numerically and the equations of

motion are time dependent, an initial epoch and a fixed time span is selected

and the orbit is computed for this period of time. In the following section

we describe a multiple shooting procedure similar to the one used for the

numerical solution of boundary-value problems (see Stoer and Bulirsch 69).

3.1. Multiple shooting

As in the standard multiple shooting method, the total time span is splitted

into a number of shorter subintervals selecting, for instance, N equally

spaced points t1, t2, ..., tN . (t1 is the initial epoch and tN − t1 the length

of the time interval mentioned above). Different time intervals could have

also been used. Let us denote ∆t = ti+1 − ti and by

Qi = (ti, xi, yi, zi, ẋi, ẏi, żi, )
T , i = 1, 2, ..., N

the points on a fixed orbit of the RTBP, equally spaced (∆t) in time. This

orbit can be, for instance, any of the ones that we have been able to compute

their formal expansions using a Lindstedt–Poincaré method. Let φ(Qi) be

the image of the point Qi under the flow associated to the equations of

motion in the solar system after an amount of time ∆t. As, in this way,

the epochs ti are fixed, we can write Qi = (xi, yi, zi, ẋi, ẏi, żi, )
T . If all the

points Qi were be on the same orbit of the new equations, we would have

φ(Qi) = Qi+1 for i = 1, ..., N − 1. Since this is not the case, a change of

the starting values is needed in order to fulfill the matching conditions. In

this way, one must solve a set of N − 1 nonlinear equations, which can be

written as

F


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




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= 0.

Newton’s method is used to solve the above system. If Q(j) =
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(

Q
(j)
1 , Q

(j)
2 , ..., Q

(j)
N

)T

, denotes the j-th iterate of the procedure, Newton’s

equations can be written as

DF (Q(j)) · (Q(j+1) −Q(j)) = −F (Q(j)),

where the differential of the function F has the following structure

DF =











A1 −I

A2 −I
. . .

. . .

AN−1 −I











,

with DΦ = diag(A1, A2, ..., AN−1). As each of the transition matrices, Ai,

that appear in DΦ are 6× 6, at each step of the method we have to solve a

system of (N − 1)× 6 equations with 6×N unknowns, so some additional

conditions must be added. This is the only difference with the standard

multiple shooting method and is due to the fact that our problem is not a

real boundary-value one. As additional equations we could fix some initial

and final conditions at t = t0 and t = tN . In this case one must take

care with the choice because the problem can be ill conditioned from the

numerical point of view. This is because the matrix DF (Q) can have a very

large condition number. To avoid this bad conditioning, we can choose a

small value for ∆t, but in this case, as the number of points Qi increases (if

we want to cover the same time span), the instability is transfered to the

procedure for solving the linear system. Also, the extra boundary conditions

can force the solution in a non–natural way giving convergence problems

when we try to compute the orbit for a long time interval.

To avoid these problems, we can apply Newton’s method directly. As

the system has more unknowns than equations, we have (in general) an

hyperplane of solutions. From this set of solutions we try to select the

one closer to the initial orbit used to start the procedure. This is done by

requiring the correction to be minimum with respect to some norm (i.e. the

euclidean norm). The use of the normal equations must be avoided because

they are usually ill conditioned too. More precisely, denoting by ∆Q(j)

∆Q(j) = Q(j+1) −Q(j),

and requiring ‖∆Q(j)‖2 to be minimum, one gets the Lagrange function

L(∆Q,µ) with (vector) multiplier µ

L(∆Q,µ) = ∆QT ·∆Q+ µT · (F (Q) +DF (Q) ·∆Q).
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By solving the corresponding Lagrange multipliers problem, we obtain

∆Q(j) = −DF (Q(j))T ·
[

DF (Q(j)) ·DF (Q(j))T
]−1

· F (Q(j)), (11)

which gives the value of ∆Q(j) explicitly. However, since the matrix

DF (Q(j)) is usually very big, a special factorization in blocks is suitable to

get the solution 11 in a computationally and efficient way. See Gómez et

al. 33 for the implementation and the properties of the algorithm.

In order to illustrate the procedure we reproduce the details of some

iterations of the computation of a particular solution using JPL ephemeris

DE403.

The algorithm is started using as initial nodes, Qi, that is, the compo-

nents of Q(0), points on a quasihalo orbit of the Sun–Earth+Moon system

around the L1 point with β = 0.20 and γ = 0.08. The initial epoch is fixed

to be January 1 2000, and 40 nodes are used with a time step, ∆t, between

them of 180 days. This covers a total time span of 19.7 years. So, the total

number of revolutions “around” the equilibrium point L1 is approximately

39 and, in order to perform the multiple shooting, approximately one point

per revolution has been taken. In Figure 8 we show the (x, y) projection

of the orbit after different iterations of the procedure. All the figures are

represented in normalized coordinates centered at the L1 point. The first

plot corresponds to the orbit from where the points Qi were taken, which

was computed with the analytical expansions. It is an approximate solu-

tion (due to the truncation and asymptotic character of the series) of the

RTBP equations of motion. The next two plots, showing large discontinu-

ities at some points, are the results obtained after the first two iterations.

The different pieces that constitute the orbit do not match at the nodes in

these first steps because the initial conditions were taken from a solution of

the RTBP and now we are integrating these initial conditions in a model

including all the bodies of the solar system with its real motion. These

discontinuities are so large because of the highly unstable character of the

solution and because of the small number of nodes per revolution that have

been taken. The last plot corresponds to the orbit computed after 8 itera-

tions. The discontinuities that appear in the first iterations are reduced to

“zero” by the method. In the first step, adding the corrections applied at all

the nodes, the total correction in position (|∆Q
(0)
1,2,3|2 + |∆Q

(0)
7,8,9|2 + ...) is

of 319600.6 km and of 9360.6 km/day in velocity, which means an average

value for the corrections at each point of 8000 km and 235 km/day. After
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eight iterations the total amount of the corrections has been reduced to

37 mm and less than 1 mm/day, for positions and velocities, respectively.

Taking shorter time intervals between consecutive nodes, the norm of the

function F is much smaller at the first steps and the number of Newton

iterations decreases. For the Sun–Earth+Moon system, a value of ∆t equal

to 7 days requires no more than 4 or 5 iterations to get a final solution with

discontinuities at the nodes smaller than tracking errors. For the Earth–

Moon system, computations must be done more carefully and a time step

of half a day usually gives good results.
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Fig. 8. (x, y) projections of the orbits obtained with the multiple shooting procedure at

different steps. The figure on the left upper corner is the orbit of the RTBP, computed

from the expansions, from which the initial points Qi are taken. The orbits with large

jumps discontinuities are the ones obtained after the first two iterations. The figure on
the right lower corner is the orbit computed after 8 iterations. The initial orbit is a

quasihalo orbit with β = 0.2 and γ = 0.08.
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3.2. Resonances

The L2 point in the Earth–Moon system is quite close to a resonance with

solar effects. Because of that, in some sense, the “distance” between the

RTBP model and the real one is too large to extend easily the solutions of

the RTBP to the real problem.

In order to deal with this situation Andreu 1,2, has introduced a time–

dependent restricted four body model that, within a certain degree of sim-

plicity, captures some of the most basic dynamical properties of the true

motion around the libration points. The model is time–periodic, since it

depends in just one frequency: the difference between the mean sinodical

frequencies of the Sun and the Moon. This makes the computation of the

most relevant invariant objects of the dynamics simpler.

The main success of the model is that it has allowed the computation

of halo-type orbits around L2 for very large time spans, covering at least a

Saros period. When the analytical techniques are applied to get the center

manifold around the dynamical substitutes of the libration points, the re-

sults allow only the exploration of energy levels very close to the one of he

dynamical substitute, so the information obtained is poor.

II. Applications to spacecraft missions

4. Transfer to libration point orbits

4.1. Transfer using invariant manifolds

Libration point orbits have, for values of the energy not too far from the

ones corresponding to the libration points, a strong hyperbolic character. It

is thus possible to use their stable manifolds in order to obtain a transfer.

This is what is known in the literature as the dynamical systems approach

to the transfer problem. Other ways to obtain transfer trajectories from the

Earth to a libration point orbit use optimization procedures. These methods

look for orbits between the Earth and the libration orbit maintaining some

boundary conditions, subject to some technical constraints, and minimizing

the total amount of fuel to be spent in manoeuvres during the transfer
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(see Hechler 35). According to Masdemont 54,21, in the dynamical systems

approach one can proceed as follows:

(1) Take a local approximation of the stable manifold at a certain point

of the nominal orbit. This dermines a line in the phase space based on

a point of the nominal orbit and formed by initial conditions on the

stable manifold.

(2) Propagate, backwards in time, the points in the line of the local approx-

imation of the stable manifold until one or several close close approaches

to the Earth are found (or up to a maximum time span is reached). In

this way some globalization of the stable manifold is obtained.

(3) Look at possible intersections (in configuration space) between the

parking orbit of the spacecraft and the stable manifold. At each of

these intersections, the velocities in the stable manifold and in the park-

ing orbit have different values, vs and vp. A perfect manoeuvre with

∆v = vs − vp would move the spacecraft from the parking orbit to an

orbit in the stable manifold that will reach the nominal orbit without

any additional manoeuvre.

(4) Then |∆v| can be minimized by changing the base point of the nominal

orbit at which the stable manifold has been computed (or any equivalent

parameter).

Note that, depending on the nominal orbit and on the parking orbit, the

intersection described in the third item can be empty, or the optimal solu-

tion found in this way can be too expensive. To overcome these difficulties,

several strategies can be adopted. One possibility is to perform a transfer

to an orbit different from the nominal one and then, with some additional

manoeuvres, move to the desired orbits. In a next section we will show how

these last kind of transfers can be done. Another possiblility is to allow for

some intermediate manoeuvres in the path from the vicinity of the Earth

to the final orbit.

In the case in which the nominal orbit is a quasihalo or Lissajous orbit

and any phase can be accepted for the additional angular variable, the

stable manifold has dimension 3. This produces, on one side, a heavier

computational task than in the case of halo orbits, but, on the other side,

it gives additional possibilities for the transfer. One should think that the

stable manifold of the full center manifold of the collinear libration points



Libration Point Orbits: A Survey from the Dynamical Point of View 337

(for a fixed value of t) have dimension 5, which offers a lot of possibilities.

4.2. The TCM problem

The Trajectory Correction Manoeuvres (TCM) problem deals with the ma-

noeuvres to be done by a spacecraft in the transfer segment between the

parking orbit and the target nominal one. The purpose of the TCMs is to

correct the error introduced by the inaccuracies of the injection manoeuvre.

In connection with the Genesis mission (see Lo et al. 53), the TCM

problem has been studied in Howell 37 and Serban et al. 61. For this mission,

a halo type orbit around the L1 point of the Earth–Sun system is used as

nominal orbit. The insertion manoeuvre from the parking orbit around the

Earth to the transfer trajectory is a large one, with a ∆v of the order of

3000 m/s; for the Genesis mission, the error in its execution was expected

to be about a 0.2 % of ∆v (1 sigma value), and a key point to be studied

is how large is the cost of the correction of this error when the execution

of the first correction manoeuvre is delayed.

In the paper by Serban et al. 61, two different strategies are considered

to solve this problem, both of them using an optimization procedure and

producing very close results. It is numerically shown that, in practice, the

optimal solution can be obtained with just two TCMs and that the cost

behaves almost linearly with respect to both the TCM1 epoch and the

launch velocity error.

The same results can be obtained without using any optimal control

procedure. This is what is done in Gómez et al. 28. The quantitative results,

concerning the optimal cost of the transfer and its behaviour as a function

of the different free parameters, turn out the same as in Serban et al. 61.

Additionally, we provide information on the cost of the transfer when the

correction manoeuvres cannot be done at the optimal epochs. These results

are qualitatively very close to those obtained in Wison et al. 59 for the cost

of the transfer to a Lissajous orbit around L2, when the time of flight

between the departure and the injection in the stable manifold is fixed, but

the target state (position and velocity) on the manifold is varied. For this

problem, it is found that the cost of the transfer can rise dramatically.

In our approach the transfer path is divided in three different legs:
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• The first leg goes from the fixed departure point to the point where the

TCM1 is performed. Usually, this correction manoeuvre takes place few

days after the departure.

• The second leg, between the two trajectory correction manoeuvres

TCM1 and TCM2, is used to perform the injection in the stable man-

ifold of the nominal orbit.

• The last path corresponds to a piece of trajectory on the stable man-

ifold. Since both TCM1 and TCM2 are assumed to be done without

errors, the spacecraft will reach the nominal halo orbit without any

additional impulse.

Let t1, t2 and t3 be the TCM1, TCM2 and arrival epochs, respectively, and

∆v1, ∆v2 the values of the correction manoeuvres at t1 and t2. In this way,

given the departure state, Xdep, and the time t1, we define X1 = ϕt1(Xdep),

where ϕt(X) denotes the image under the flow of the point X after t time

units. Then, the transfer condition is stated as

ϕt2−t1(X1 +∆v1) + ∆v2 = ϕt2−t3(Xa), (12)

where Xa represents the arrival state to the target orbit, which is chosen as

Xa = Xh
a + d · V s(Xh

a ) in the linear approximation of the stable manifold

based at the point Xh
a . In (12), the term X1 + ∆v1 has to be understood

as: to the state X1 (position and velocity) we add ∆v1 to the velocity. Note

that, for a given insertion error ε (which determines Xdep), we have six

equality constraints, corresponding to the position and velocity equations

(12), and ten parameters: t1, t2, t3, ∆v1, ∆v2 and Xa (given by the pa-

rameter along the orbit), which should be chosen in an optimal way within

mission constraints.

The sketch of the exploration procedure is the following. To start with,

we consider the error of the injection manoeuvre and t1 fixed. Two types of

explorations appear in a natural way: the fixed time of flight transfers, for

which t3 is fixed, and the free time of flight transfers, where t3 is allowed to

vary. In both cases, we start the exploration fixing an initial value for the

parameter along the orbit,Xa. In the case of fixed time of flight, the problem

then reduces to seven parameters (t2, ∆v1, ∆v2) and the six constraints

(12). Using ∆v1 and ∆v2 to match the constraints (12), the cost of the

transfer, ‖∆v‖ = ‖∆v1‖+ ‖∆v2‖, is seen as a function of t2. In the case of

free time of flight, ‖∆v‖ is seen as a function of t2 and t3, or equivalently,

as a function of t2 and the parameter along the flow, tws = t3 − t2.
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Once we have explored the dependence of the transfer cost with respect

to t2 and t3, we study the behavior moving the parameter along the orbit,

Xa, and finally, the dependence with respect to the magnitude of the error

(which is determined by the launch vehicle) and t1 (which, due to mission

constraints, is enough to vary in a narrow and coarse range).

As an example, Figure 9 shows the results obtained when: the magnitude

of the error in the injection manoeuvre is −3m/s, the first manoeuvre is

delayed 4 days after the departure (t1 = 4), and the total time of flight, t3,

is taken equal to 173.25 days.

Fig. 9. Cost of the trajectory correction manoeuvres when TCM1 is delayed 4 days
after departure and the total time of flight is fixed to 173.25 days. The curves labelled
with (a) correspond to ‖∆v1‖, those with (b) to ‖∆v2‖ and those with (c) to the total

cost: ‖∆v1‖+ ‖∆v2‖.

Several remarks should be done in connection with the Figure:

• The solutions of equation (12) are grouped along, at least, three curves.

For t2 = 99.5 days there is a double point in the cost function, corre-

sponding to two different possibilities.

• For t2 = 113 days we get the optimum solution in terms of fuel con-

sumption: ‖∆v1‖+ ‖∆v2‖ = 49.31 m/s. This value is very close to the

one given in Serban et al. 61 for the MOI approach, which is 49.1817

m/s. The discrepancies can be attributed to slight differences between

the two nominal orbits and the corresponding target points.
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• When t2 is small or very close to the final time, t3, the total cost of the

TCMs increases, as it should be expected.

• Around the values t2 = 92, 97 and 102 days, the total cost increases

abruptly. This sudden grow is analogous to the one described in Howell

and Barden 37 in connection with the TCM problem for the Genesis

mission. It is also similar to the behaviour found in Wilson et al. 59 for

the cost of the transfer to a Lissajous orbit around L2, when the time

of flight between the departure and the injection in the stable manifold

is fixed. This fact can be explained in terms of the angle between the

two velocity vectors at t = t2, this is when changing from the second

to the third leg of the transfer path. This angle also increases sharply

at the corresponding epochs.

5. Transfers between libration point orbits

In this section we will show a method for performing transfers between

libration point orbits around the same equilibrium point.

The interest on this problem was initially motivated by the study of the

transfer from the vicinity of the Earth to a halo orbit around the equilibrium

point L1 of the Earth-Sun system (Gómez et al. 23,22, Masdemont 54).

There, it was shown that the invariant stable manifolds of halo orbits can

be used efficiently for the transfer from the Earth, if we are able to inject

the spacecraft into that manifolds. This can be achieved easily when the

orbits of the manifold come close to the Earth. But this is true only when

the halo orbit is large enough, or when the effect of the Moon, bending some

orbits of the manifold, is big enough to take these orbits near the Earth.

For small halo orbits, if a swingby with the Moon is used, there are launch

possibilities only during two or three days per month (Eismont 14, Gómez

et al. 22,21, Masdemont 54). These launching possibilities can be longer

for halo orbits with larger z-amplitude. This is because they have a stable

manifold coming closer to the Earth. After the transfer from the Earth to

a large halo orbit has been done, we must be able to go from it to a smaller

one in a not very expensive way, in terms of the ∆v consumption and time.

Although this rule also applies for the transfer to Lissajous orbits, the study

of the transfer between Lissajous orbits was first motivated by the missions

FIRST, Plank and GAIA of the European Space Agency Scientific Program.

FIRST is the cornerstone project in the ESA Science Program dedicated
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to far infrared Astronomy. Planck, renamed from COBRAS/SAMBA, is to

map the microwave background over the whole sky and is now combined

with FIRST for a launch in 2007. Several possible options where considered

during the orbit analysis work. The final one adopted was the so-called

“Carrier”, where both spacecrafts will be launched by the same Ariane 5,

but will separate after launch. For this option, the optimum solution is a

free transfer to a large amplitude Lissajous orbit. FIRST will remain in

this orbit, whereas Planck, of much less mass, will perform size reduction

manoeuvres.

In what follows we will consider the problem of the transfer between

both halo type and Lissajous orbits, always around the same libration point.

5.1. Transfers between halo orbits

The method that we present is based on the local study of the motion

around halo orbits, and uses of the geometry of the problem in the neigh-

bourhood of an orbit of this kind (Masdemont 54, Gómez et al. 29). The

approach is different from the procedure developed by Hiday and How-

ell 36,41 for the same problem. In their approach, they select departure and

arrival states on two arbitrary halo orbits, and take a portion of a Lissajous

trajectory as a path connecting these states. At the patch points there are

discontinuities in the velocity which must be minimized. The primer vector

theory (developed by Lawden 51 for the two body problem) is extended to

the RTBP and applied to establish the optimal transfers.

In our approach, we first study the transfer between two halo orbits

which are assumed to be very close in the family of halo orbits. With this

hypothesis, the linear approximation of the flow in the neighbourhood of

the halo orbits, given by the variational equations, is good enough to have

a better understanding of the transfer.

Assume that at a given epoch, t1, we are on a halo orbit, H1, and that

at this point a manoeuvre, ∆v(1), is performed to go away from the actual

orbit. At t = t2 > t1, a second manoeuvre, ∆v(2), is executed in order to

get into the stable manifold of a nearby halo orbit H2. Denoting by ∆β

the difference between the z-amplitudes of these two orbits, the purpose of

an optimal transfer is to perform both manoeuvres in such a way that the
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performance function

∆β

‖∆v(1)‖2 + ‖∆v(2)‖2
,

will be maximum.

Let ϕ be, as usual, the flow associated to the differential equations of

the RTBP and ϕτ (y) the image of a point y ∈ R6 at t = τ , so we can write

ϕτ (y + h) = ϕτ (y) +Dϕτ (y)h+O(| h |2) = ϕτ (y) +A(τ)h+O(| h |2).

Let xβ be the initial point on a halo orbit, H1, with z-amplitude β, and let

us denote φτ (β) = ϕτ (xβ). The corresponding points in the phase space at

t = t1, t2, neglecting higher order terms and assuming that the time required

to execute the manoeuvre can be also neglected, will be, respectively,

φt1(β) +

(

0

∆v(1)

)

, and φt2(β) +A(t2)A(t1)
−1

(

0

∆v(1)

)

.

At t = t2, the insertion manoeuvre, ∆v(2), into the stable manifold of

the halo orbit of z-amplitude β + ∆β is done. So, denoting by At1,t2 =

A(t2)A(t1)
−1, we must have

φt2(β(0)) +At1,t2

(

0

∆v(1)

)

+

(

0

∆v(2)

)

=

φt2(β +∆β) + γ2e2,β+∆β(t2) + γ3e3,β+∆β(t2),

where e2,β+∆β(t2) and e3,β+∆β(t2) are the eigenvectors related to the stable

direction and to the tangent to the orbit direction, respectively, of the orbit

of amplitude β +∆β at t = t2. The first term in the right hand side of the

above equation can be written as

φt2(β +∆β) = φt2(β) +
∂φt2(β)

∂β
∆β +O((∆β)2).

We want to compute the cost of the transfer per unit of z–amplitude, so

we set ∆β = 1 and the equation to be solved is, after expanding ei,β+∆β

by Taylor around β and neglecting higher order terms,

At1,t2

(

0

∆v(1)

)

+

(

0

∆v(2)

)

=
∂φt2(β)

∂β
+ γ2e2,β(t2) + γ3e3,β(t2),

from which we can isolate ∆v(1), ∆v(2), getting

∆v(1) = u10 + γ2u12 + γ3u13,
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∆v(2) = u20 + γ2u22 + γ3u23,

for suitable uij . All the magnitudes that appear in these two equations,

except the scalars γ2 and γ3, are three-dimensional vectors. As ∆β = 1

has been fixed, the maxima of the performance function corresponds to the

minima of ‖∆v(1)‖2+ ‖∆v
(2)‖2. Computing the derivatives of this function

with respect to γ2 and γ3 and equating them to zero, we get a system of

two polynomial equations of degree four in the two variables γ2 and γ3,

that must be solved for each couple of values t1, t2 (which are the only free

parameters).

The results of the numerical computations show that for a fixed value

of t1, there are, usually, two values of t2 at which the performance function

has a local maximum (for values of t1 close to 90o and 240o there are three

and four maxima). The difference between these two values of t2 is almost

constant and equal to 180o. That is, after the first manoeuvre has been

done, the two optimal possibilities appear separated by a difference of 1/2

of revolution.

The cost of the transfer using the optimal t2 is almost constant and

the variation around the mean value do not exceeds 4%. As an example,

if the z-amplitude of the departure orbit is β =0.1, the optimum value is

reached using the first maximum for t1 = 102o and t2 = 197o. For these

particular values, the cost of the transfer, per unit of ∆β, is of 696 m/s.

The cost increases with β: for β =0.15, the optimal value is ∆v = 742 m/s

(t1 = 102o, t2 = 193o) and for β =0.2 ∆v = 785 m/s (t1 = 101o, t2 = 187o).

It has been found that the variation with β of the optimal value of the cost

is almost linear. The value of t1 for the first manoeuvre is almost constant

and equal to 100o, the corresponding point in the physical space being

always very close to the z = 0 plane. For very small values of β, the second

manoeuvre must be done after t2 = 270o, but this value decreases quickly

and for β ∈ (0.1, 0.3) it is of the order of t2 = 190o, approximately. That

is, one has to wait, typically, 1/4 of revolution after the first manoeuvre, to

do the second one.

The transfer computed with the above procedure is not optimal if the

initial and final orbits are not close. This is because the solution given by

the linear analysis is not good enough when the orbits have very different

z-amplitudes. Several possibilities are discussed in Gómez et al.29. As a

final conclusion we can say that the cost of a unitary transfer is of 756 m/s
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and the behaviour with the z–amplitude β is almost linear. In this way, the

cost of the transfer between two halo orbits of amplitudes β =0.25 and 0.08

is (0.25 − 0.08)× 756 m/s = 128.5 m/s. In Figure 10 we show the three

projections of a transfer trajectory that goes form β = 0.25 to β = 0.08
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Fig. 10. Projections of the transfer trajectory starting at a departure orbit of z-
amplitude β = 0.25 and arriving at a final one with z-amplitude β = 0.08. The dotted

points correspond to the epochs at which the manoeuvres have been done.

5.2. Transfers between Lissajous orbits

The method of this section is based in the dynamical study of the linearized

RTBP equations of motion about a collinear equilibrium point. The de-

velopment was iniciated during preliminary studies of the FIRST/Plank

mission (see Cobos and Hechler 9) and is fully developed in Cobos and

Masdemont 10,11.

Let us start with the solution of the linear part of the equations of
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motion (3) which can be written as,

x(t) = A1e
λt +A2e

−λt +A3 cosωt+A4 sinωt

y(t) = cA1e
λt − cA2e

−λt − k̄A4 cosωt+ k̄A3 sinωt

z(t) = A5 cos νt+A6 sin νt







(13)

where Ai are arbitrary constants and c, k̄, ω, λ and ν are constants de-

pending only on c2.

Introducing amplitudes and phases (13) can also be written as

x(t) = A1e
λt +A2e

−λt +Ax cos (ωt+ φ)

y(t) = cA1e
λt − cA2e

−λt + k̄Ax sin (ωt+ φ)

z(t) = Az cos (νt+ ψ)







(14)

where the relations are A3 = Ax cosφ, A4 = −Ax sinφ, A5 = Az cosψ and

A6 = −Az sinψ.

The key point is that, choosing A1 = A2 = 0, we obtain periodic motions

in the xy components with a periodic motion in the z component of a

different period. These are the Lissajous orbits in the linearized restricted

circular three-body problem, Ax, Az being the maximum in plane and out

of plane amplitudes respectively. The first integrals A1 and A2 are directly

related to the unstable and stable manifold of the linear Lissajous orbit. For

instance, the relation A1 = 0, A2 6= 0, defines a stable manifold . Any orbit

orbit verifying this condition, will tend forward in time to the Lissajous (or

periodic) orbit defined by Ax, Az, since the A2-component in (13) will die

out. A similar fact happens when A1 6= 0, A2 = 0, but now backwards in

time. Then, this later condition defines a unstable manifold.

The analysis proceeds by computing the manoeuvres that keep the A1
component equal to zero in order to prevent escape from the libration zone,

and how do the amplitudes change when a manoeuvre is applied. We note

that, for the linear problem, the motion in the z-component is uncoupled

from the motion in the xy component, and z-manoeuvres only change the

Az amplitude but do not introduce instability. Assume that the motion

takes place in a Lissajous orbit with amplitude A
(i)
z and phase ψi, and that

the desired final z-amplitude is A
(f)
z . The possible z-manoeuvres ∆ż wich

perform the transfer at time tm are given by,

∆ż

ν
= A

(i)

z sin (νtm + ψi)±

√

A(f)

z
2
−A(i)

z
2
cos2 (νtm + ψi) (15)

We note that
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• if A
(f)

z ≥ A
(i)

z , the transfer manoeuvre is possible at any time, but

• if A
(f)

z < A
(i)

z , the transfer manoeuvre is possible only if the ex-

pression inside the square root is possitive; more precisely, when t ∈
[

ε, πν − ε
]

∪
[

π
ν + ε, 2πν − ε

]

, where ε = 1
ν (arccos (

A
(f)

z

A
(i)
z

)−ψi). This con-

dition essentially says that it is not possible to reduce the amplitude

with an impulsive manoeuvre in case that the position at time tm has

a z component bigger than A
(f)

z .

The change in the in-plane amplitude is a little more tricky since one

must keep the unstable component equal to zero. Assuming that the motion

takes place in a Lissajous orbit with amplitude A
(i)
x and phase φi and the

desired final in-plane amplitude is A
(f)
x , the possible manoeuvres at time

tm are given by

(∆ẋ,∆ẏ) = α
1

√

c2 + k̄2
(d2,−k̄d1), α ∈ R, (16)

where α, indicating the size of the manoeuvre can be

α = A
(i)

x sin (ωtm + φi − β)±

√

A(f)

x
2
−A(i)

x
2
cos2 (ωtm + φi − β),

where β is a fixed angle given by the direction of the vector (c, k̄). Again

we observe that

• if A
(f)

x ≥ A
(i)

x , the transfer manoeuvre is possible at any time, but

• if A
(f)

x < A
(i)

x , the transfer manoeuvre is possible only when the

expression inside the square root is positive; more precisely, when

t ∈
[

δ, πω − δ
]

∪
[

π
ω + δ, 2πω − δ

]

, where δ = 1
ω (arccos (

A
(f)

x

A
(i)
x

)− φi + β).

We also note that the manoeuvre (16) is always in the same direction. This

direction plays a similar role to the direction orthogonal to the z-plane in

the case of the previously commented z-manoeuvres.

Once the target amplitudes are selected, the epochs of the manoeuvres

can be chosen essentially according to the following possibilities:

• Select tm in order to minimize the ∆v expended in changing the am-

plitude.

• Select tm in order to reach the target orbit with a selected phase.
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Assuming that the amplitudes before and after the manoeuvres are dif-

ferent, in the first case the optimal tm for changing the in-plane amplitude

verifies that the angle ωtm + φi equals β + π
2 + kπ, k ∈ Z. In this case

the minimum fuel expenditure for the manoeuvre is |A
(f)

x −A
(i)

x |. In a sim-

ilar way, the optimal tm for a change in the out-of-plane amplitude verifies

νtm+ψi =
π
2+kπ, k ∈ Z, and the manoeuvre is given by ∆ż = ν(A

(f)

z −A
(i)

z ).

In case that we decide to arrive at the selected Lissajous orbit with a

certain phase, the analysis proceeds by considering the in-plane and out-of-

plane amplitudes Ax and Az written in term of its respective components

A3, A4 and A5, A6, and studying the angle which they define. A particular

interesting case is the one in which the manoeuvres maintain the amplitudes

(the non trivial possibilities of (15) and (16)). In this case, an in-plane

manoeuvre (16) at time tm produces an in-plane change of phase given by

φf − φi = −2(ωtm − β + φi) (mod 2π), (17)

and an out-of-plane manoeuvre (15) produces an out-of-plane change of

phase given by

ψf − ψi = −2(νtm + ψi) (mod 2π). (18)

These manoeuvres give two strategies for the avoidance of the exclusion

zone needed in many missions (see for instance Farquhar 16). Besides the

well known z-strategy given by (18), we have another xy one given by (17),

which for the FIRST/Plank mission implies a delta-v expenditure of only

15 m/s every six years (see Cobos and Hechler 9).

5.3. Homoclinic and heteroclinic connections

In the preceding sections, we have shown how to use the local dynamics

around a halo orbit for “local” purposes. In this one we will study the

global behaviour of the invariant stable/unstable manifolds of the central

manifolds of L1 and L2, in order to perform some acrobatic motions con-

necting libration orbits around these equilibrium points.

In order to show some heteroclinic trajectories between libration orbits

around L1 and L2, we have to match an orbit of the unstable manifold of a

libration orbit around one point with another orbit, in the stable manifold

of a libration orbit around the other point. This is, both orbits have to be
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the same one. Since these orbits, when looked in the X coordinate of the

RTBP system, have to go from one side of the Earth to the other one, the

place where we look for the connection is the plane X = µ− 1, this is, the

plane orthogonal to the X axis that cuts it at the point where the center

of the Earth is located.

Although the technical details are much more complex, the main idea is

similar to the computations introduced in Gómez et al. 27 for L4,5 connec-

tions. Once a Jacobi constant is fixed, we take initial conditions in the linear

approximation of the unstable manifold of all the libration orbits inside the

level of energy. Since the energy is fixed, we have three free variables (usu-

ally q1, q2 and p2). A scanning procedure in these variables is done. Since

the selected orbits will leave the neighbourhood of the libration point, each

initial condition in the variables (q, p) is translated into RTBP coordinates

and then propagated forward in time until it crosses the plane X = µ− 1.

We do the same process for the orbits in the stable manifold, where all the

propagation is done backward in time.

We have to remark that, as usual, the unstable and stable manifolds

have two branches. In the process we select only the branches that, at the

initial steps of the propagations, approach the X = µ− 1 plane.

Since the Jacobi constant is fixed, the set of all RTBP values C =

{(Y, Ẏ , Z, Ż)} obtained, characterize the branch of the manifold of all the

libration orbits around the selected equilibrium point for the particular sec-

tion. Let us denote these sets like C+sji , where + or − denote the branch of

the s (stable) or u (unstable) manifold of the Lj , j = 1, 2 libration orbits

at the i-th intersection with the X = µ− 1 plane.

Looking at the above mentioned branches of the manifolds, the simplest

heteroclinic orbits will be obtained from I1− = C−s1
1 ∩ C−u2

1 and I1+ =

C−u1
1 ∩ C−s2

1 . Both sets give transfer orbits that cross once the plane X =

µ − 1. We will denote by Ik− (respectively Ik+) the set of heteroclinic

trajectories from L2 to L1 (resp. from L1 to L2) that cross k times the plane

X = µ−1, following the above mentioned branches of the manifold. We note

that, due to the symmetries of the RTBP equations, for any heteroclinic

orbit from L1 to L2 we have a symmetrical one from L2 to L1 and so just

one exploration must be done.

Unhopefully, it has been found (see Gómez et al. 30) that I1+ is empty
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and so one must look for connections crossing at least twice the plane

X = µ − 1. In this case many possibilities of connections appear. As an

example, in Figure 11 a connection between a Lissajous orbit around L2
and a quasi-halo orbit around L2 is displayed. Both the 3-D representation

of the homoclinic orbit and the intersections with the surface of section

Z = 0, around both equilibrium points, are given.

As another kind of connection, the homoclinic orbit inside the central

manifold that marks the transition from the central Lissajous orbits to the

quasi-halo ones is computed in Gómez et al. 30. These kind of solutions are

interesting because they perform a transition from a planar motion (close

to a Lyapunov orbit) to an inclined orbit (close to the quasi-halo orbits)

without any ∆v. Figure 12 shows one of these orbits in central manifold

(q, p) variables. Unfortunately, the transition is very slow but probably, with

very small ∆v, it could be possible to accelerate the transition from planar

to inclined motion.

6. Low energy transfers

According to Simó 64: “It seems feasible to produce accurate and enough

complete descriptions of the dynamics on the center manifolds of the

collinear libration points as well as large parts of the corresponding sta-

ble and unstable manifolds. Having these concepts in hand, the design of

space missions à la carte, involving the vicinities of these points, could be

done in an automatic way”. Although not all the theoretical and practical

questions underlying the above idea, and required for its implementation,

have been solved, some progress has been done and will be summarized in

this section.

The invariant manifold structures associated to the collinear libration

points provide not only the framework for the computation of complex

spacecraft mission trajectories, but also can be used to understand the

geometrical mechanisms of the material transport in the solar system. This

has been the approach that has been used recently for the design of low

energy transfers from the Earth to the Moon (Koon et al. 49) and for a

“Petit Grand Tour” of the Moons of Jupiter (Koon et al.48, Gómez et

al. 25). It has also been used to explain the behaviour of some captured

Jupiter comets, see Howell et al. 42, Koon et al. 50.
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Fig. 11. L1-L2 heteroclinic connection between a Lissajous orbit around L2 and a

quasi-halo orbit around L1. In the lower pictures the intersections of the orbits with the
surface of section (Z = 0) for L2 (left) and for L1 (right) are displayed with crosses.

6.1. Shoot the Moon

The goal is to produce transfer orbits from the Earth ending at a lunar

capture orbit, using less fuel than in a Hohmann transfer. This problem

was first considered by Belbruno and Miller 6 and applied to the Hiten

mission in 1991. The present procedure, developed by Koon et al. 48, is

based in the construction of trajectories with prescribed itineraries and has

the following three key steps:

(1) Decouple the Sun–Earth–Moon-Spacecraft system (which is a restricted

4–body problem) in two restricted 3–body problems: the Sun–Earth–

Spacecraft and the Earth–Moon-Spacecraft systems.

(2) Use the stable/unstable manifolds of the periodic orbits about the Sun–

Earth system L2 libration points to provide a low energy transfer from
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Fig. 12. Homoclinic connection between Lyapunov orbits inside the central manifold

(in central manifold coordinates).

the Earth to the stable/unstable manifolds of periodic orbits around the

Earth–Moon L2 libration point. The “low energy” required is needed

because some manoeuvres must be done in order to depart slightly from

the manifolds and also because the manifold intersection is not a true

one, since they are related to different restricted problems.

(3) Finally, use the unstable manifolds of periodic orbits around the Earth–

Moon libration points to provide a ballistic capture about the Moon.

In fact, the procedure works as follows: first a suitable Sun–Earth L2 pe-

riodic orbit is computed, as well as their stable and unstable manifolds.

Some orbits on the stable manifold come close to the Earth and, at the

same time, points close to the unstable manifold propagated backwards in

time come close to the stable manifold. So, with an small ∆v is possible to

go from the Earth to the unstable manifold of this periodic orbit. At the

same time, when we consider the L2 point of the Earth–Moon system, is

has periodic orbits whose stable manifold “intersect” the unstable manifold

that we have reached departing from the Earth and are temporarily cap-
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tured by the Moon. With a second small ∆v, we can force the intersection

to behave as a true one.

The orbit computed in this way can be used as an intial guess to find

a true solution, in the JPL ephemeris model, performing the prescribed

acrobacies.

6.2. Petit Grand Tour

The general idea for the “Petit Grand Tour” of the Moons of Jupiter is

similar to the one of “Shoot the Moon”. In a first step, the Jovian moon n–

body system is decoupled into several three–body systems. The tour starts

close to the L2 point of an outer moon (for instance Ganymede). Thanks to

an heteroclinic connection between periodic orbits around L1 and L2, we

can go from the vicinity of L2 to the vicinity of L1 and, in between, perform

one o several loops around Ganymede. Now, we can look for “intersections”

between the unstable manifold of the p.o. arond the L1 point and the stable

manifold of some p.o. around the L2 point of some inner moon (for instance

Europa). By the same considerations, we can turn around Europa and leave

its influence through the L1 point. Once the orbits have been obtained, they

are easily refined to a more realistic model.

6.3. Solar sytem low energy transfers and astronomical

applications

As Lo and Ross 52 suggested, the exploration of the phase space structure,

as revealed by the homoclinic/heteroclinic structures and their association

with mean motion resonances, may provide deeper conceptual insight into

the evolution and structure of the asteroid belt (interior to Jupiter) anf the

Kuiper belt (exterior to Neptune), plus the transport between these two

belts and the terrestrial planet region.

Potential Earth–impacting asteroids may utilize the dynamical channels

as a pathway to Earth from nearby heliocentric orbits in resonance with

the Earth. This phenomenon has been observed recently in the impact of

comet Shoemaker–Levy 9 with Jupiter, which was in 2:3 resonance with

Jupiter just before impact.
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Numerical simulations of the orbital evolution of asteroidal dust par-

ticles show that the earth is embedded in a circumsolar ring of asteroidal

dust, known as the zodiacal dust cloud. Both simulations and observa-

tions reveal that the zodiacal dust cloud has structure. When viewed in the

Sun–Earth rotating frame, there are several high density clumps which are

mostly evenly distributed throughout Earth’s orbit. The dust particles are

belived to spiral towards the Sun from the asteroid belt, becoming trapped

temporarily in exterior mean motion resonances with the Earth. It is sus-

pected that the gross morphology of the ring is given by a simpler RTBP

model involving the homoclinic and heteroclinic structures associated with

the libration points.

7. Station keeping

7.1. The Target mode approach and the Floquet mode

approach

The problem of controlling a spacecraft moving near an inherently unstable

libration point orbit is of current interest. In the late 1960’s, Farquhar 15

suggested several station–keeping strategies for nearly–periodic solutions

near the collinear points. Later, in 1974, a station–keeping method for

spacecraft moving on halo orbits in the vicinity of the Earth–Moon translu-

nar libration point (L2) was published by Breakwell, Kamel and Ratner 7.

These studies assumed that the control could be modeled as continuous. In

contrast, specific mission requirements influenced the station–keeping strat-

egy for the first libration point mission. Launched in 1978, the International

Sun–Earth Explorer–3 (ISEE–3) spacecraft remained in a near–halo orbit

associated with the interior libration point (L1) of the Sun–Earth/Moon

barycenter system for approximately three and one half years (Farquhar 18).

Impulsive maneuvers at discrete time intervals (up to 90 days) were success-

fully implemented as a means of trajectory control. Since that time, more

detailed investigations have resulted in various station–keeping strategies,

including the two identified here as the Target Point and Floquet Mode

approaches.

The Target Point method (as presented by Howell and Pernicka 43,

Howell and Gordon 39, and Keeter 47 ) computes correction maneuvers by
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minimizing a weighted cost function. The cost function is defined in terms

of a corrective maneuver, as well as position and velocity deviations from

a nominal orbit at a number of specified future times ti. The non–final

state vectors at each time ti are denoted as ”target points.” The target

points are selected along the trajectory at discrete time intervals that are

downstream of the maneuver. In contrast, the Floquet Mode approach,

as developed by Simó et al. 66,67, incorporates invariant manifold theory

and Floquet modes to compute the maneuvers. Floquet modes associated

with the monodromy matrix are used to determine the unstable component

corresponding to the local error vector. The maneuver is then computed

such that it eradicates the dominant unstable component of the error. It is

noted that both approaches have been demonstrated in a complex model

such as the Earth–Moon system.

Target Point Approach

The goal of the Target Point station–keeping algorithm is to compute

and implement maneuvers to maintain a spacecraft ”close” to the nominal

orbit, i.e., within a region that is locally approximated in terms of some

specified radius centered about the reference path. To accomplish this task,

a control procedure is derived from minimization of a cost function. The

cost function, J , is defined by weighting both the control energy required

to implement a station–keeping maneuver, ∆v, and a series of predicted

deviations of the six–dimensional state from the nominal orbit at speci-

fied future times. The cost function includes several submatrices from the

state transition matrix. For notational ease, the state transition matrix is

partitioned into four 3× 3 submatrices as

Φ(tk, t0) =

[

Ak0 Bk0

Ck0 Dk0

]

. (19)

The controller, in this formulation, computes a ∆v in order to change the

deviation of the spacecraft from the nominal path at some set of future

times. The cost function to be minimized is written in general as

J = ∆vTQ∆v+pT1 Rp1+v
T
1 Rνv1+p

T
2 Sp2+v

T
2 Sνv2+p

T
3 Tp3+v

T
3 Tνv3, (20)

where superscript T denotes transpose. The variables in the cost function

include the corrective maneuver, ∆v, at some time tc, and p1, p2 and p3 that

are defined as 3 × 1 column vectors representing linear approximations of

the expected deviations of the actual spacecraft trajectory from the nominal



Libration Point Orbits: A Survey from the Dynamical Point of View 355

path (if no corrective action is taken) at specified future times t1, t2 and t3,

respectively. Likewise, the 3×1 vectors v1, v2 and v3 represent deviations of

the spacecraft velocity at the corresponding ti. The future times at which

predictions of the position and velocity state of the vehicle are compared

to the nominal path are denoted as target points. They are represented as

∆ti such that ti = t0 + ∆ti. The choice of identifying three future target

points is arbitrary.

In Eqn. (20), Q, R, S, T , Rν , Sν , and Tν , are 3× 3 weighting matrices.

The weighting matrix Q is symmetric positive definite; the other weighting

matrices are positive semi–definite. The weighting matrices are generally

treated as constants that must be specified as inputs. Selection of appropri-

ate weighting matrix elements is a trial and error process that has proven

to be time–consuming. A methodology has been developed that automat-

ically selects and updates the weighting matrices for each maneuver. This

”time-varying” weighting matrix algorithm is based solely on empirical ob-

servations.

Determination of the ∆v corresponding to the relative minimum of this

cost function allows a linear equation for the optimal control input, i.e.,

∆v∗ =

−
[

Q+BT
10RB10 +BT

20SB20 +BT
30TB30 +DT

10RνD10 +DT
20SνD20 +DT

30TνD30

]−1

×
[(

BT
10RB10 +BT

20SB20 +BT
30TB30 +DT

10RνD10 +DT
20SνD20 +DT

30TνD30

)

v0

+
(

BT
10RA10 +BT

20SA20 +BT
30TA30 +DT

10RνC10 +DT
20SνC20 +DT

30TνC30

)

p0

]

,

where v0, is the residual velocity (3×1 vector) and p0 is the residual position

(3× 1 vector) relative to the nominal path at the time t0. The performance

of the modified Target Point algorithm is not yet truly ”optimal,” though

it has been demonstrated to successfully control the spacecraft at reason-

able costs. This accomplishment alone provides the user with a quick and

efficient way to obtain reasonable station–keeping results. Given some pro-

cedure to select the weighting matrices, the maneuver is computed from

the above equation. The corrective maneuver (∆v∗) is a function of space-

craft drift (in both position and velocity with respect to the nominal orbit),

the state transition matrix elements associated with the nominal orbit, and

the weighting matrices. It is assumed here that there is no delay in imple-

mentation of the maneuver; the corrective maneuver occurs at the time t0,

defined as the current time. Note that this general method could certainly
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accommodate inclusion of additional target points. Although the nominal

orbit that is under consideration here is quasiperiodic, the methodology

does not rely on periodicity; it should be applicable to any type of motion

in this regime.

In this application, three additional constraints are specified in the

station–keeping procedure to restrict maneuver implementation. First, the

time elapsed between successive maneuvers must be greater than or equal to

a specified minimum time interval, tmin. This constraint may be regulated

by the orbit determination process, scientific payload requirements, and/or

mission operations. Time intervals of one to three days are considered in

the Earth-Moon system. The second constraint is a scalar distance (pmin)

and specifies a minimum deviation from the nominal path (an isochronous

correspondence) that must be exceeded prior to maneuver execution. For

distances less than pmin, maneuver computations do not occur. Third, in

the station–keeping simulation, the magnitude of position deviations are

compared between successive tracking intervals. If the magnitude is de-

creasing, a maneuver is not calculated. For a corrective maneuver to be

computed, all three criteria must be satisfied simultaneously.

After a maneuver is calculated by the algorithm, an additional con-

straint is specified on the minimum allowable maneuver magnitude, ∆vmin.

lf the magnitude of the calculated — ∆v is less than ∆vmin then the recom-

mended maneuver is cancelled. This constraint is useful in avoiding ”small”

maneuvers that are approximately the same order of magnitude as the ma-

neuver errors. It also serves to model actual hardware limitations.

Floquet Mode Approach

An alternate strategy for station–keeping is the Floquet Mode approach,

a method that is significantly different from the Target Point approach. It

can be easily formulated in the circular restricted three–body problem. In

this context, the nominal halo orbit is periodic. The variational equations

for motion in the vicinity of the nominal trajectory are linear with periodic

coefficients. Thus, in general, both qualitative and quantitative information

can be obtained about the behavior of the nonlinear system from the mon-

odromy matrix, M , which is defined as the state transition matrix (STM)

after one revolution along the full halo orbit.
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The knowledge of the dynamics of the flow around a halo orbit, or

any solution close to it, allows other possibilities in addition to the station–

keeping procedure described here, such as the computation of transfer orbits

both between halo orbits and from the Earth to a halo orbit (Gómez et

al. 21,29). The behavior of the solutions in a neighborhood of the halo

orbits is determined by the eigenvalues, λi, i = 1, . . . , 6 and eigenvectors

ei, i = 1, . . . , 6 of M . Gathering the eigenvalues by pairs, their geometrical

meaning is the following:

a) The first pair (λ1, λ2) with λ1 ·λ2 = 1 and λ1 ≈ 1500, is associated with

the unstable character of the small and medium size halo orbits. The

eigenvector, e1(t0), associated with the largest eigenvalue, λ1, defines

the most expanding direction, related to the unstable nature of the

halo orbit. The image under the variational flow of the initial vector

e1(t0), together with the vector tangent to the orbit, defines the linear

approximation of the unstable manifold of the orbit. In a similar way,

e2(t0) can be used to compute the linear approximation of the stable

manifold.

b) The second pair (λ3, λ4) = (1, 1) is associated with neutral variables

(i.e., unstable modes). However, there is only one eigenvector with

eigenvalue equal to one. This vector, e3(t0) is the tangent vector to

the orbit. The other eigenvalue, λ4 = 1, is associated with variations

of the energy (or the period) of the orbit through the family of halo

orbits. Along the orbit, the vectors e3 and e4 span an invariant plane

under the flow.

c) The third couple, (λ5, λ6), is formed by two complex conjugated eigen-

vectors of modulus one. The restriction of the flow to the corresponding

two–dimensional invariant subspace, is essentially a rotation. This be-

havior is related to the existence of quasiperiodic halo orbits around

the halo orbit (see Gómez et al. 33).

When considering dynamical models of motion different from the re-

stricted three–body problem, halo orbits are no longer periodic, and the

monodromy matrix is not defined. Nevertheless, for quasiperiodic motions

close to the halo orbit (and also for the Lissajous orbits around the equilib-

rium point) the unstable and stable manifolds subsist. The neutral behavior

can be slightly modified including some instability which, from a practical

point of view, is negligible when compared with the one associated with λ1.
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Instead of the vectors ei(t) it is convenient to use the Floquet modes

ei(t) which, for the periodic case, are defined as six periodic vectors from

which the ei(t) can be easily recovered (see Wiesel 71). For instance e1(t)

is defined as e1(t) · exp[−(t/T ) log λ1], where T is the period of the halo

orbit. The control algorithm is developed to utilize this information for

station–keeping purposes. The emphasis is placed on formulating a con-

troller that will effectively eliminate the unstable component of the error

vector, δ(t) = (δx, δy, δz, δẋ, δẏ, δż) defined as the difference between the

actual coordinates obtained by tracking and the nominal ones computed

isochronously on the reference orbit. At any epoch, t, δ can be expressed in

terms of the Floquet modes

δ(t) =
6
∑

i=1

αiei(t). (21)

The controller objective is to add a maneuver such that the magnitude of

the component of the error vector in the unstable direction, α1, is reduced

to zero. The five remaining components do not produce large departures

from the reference orbit. By contrast, the component of the error vector

along the unstable mode increases by a factor of λ1 in each revolution.

Denoting the impulsive maneuver as ∆ = (0, 0, 0,∆x,∆y,∆z)
T , to can-

cel the unitary unstable Floquet mode, it is required that

e1
‖e1‖

+ (0, 0, 0,∆x,∆y,∆z)
T =

6
∑

i=2

ciei(t). (22)

From these equations ∆x, ∆y, ∆z can be obtained as a function of c5 and

c6. These free parameters are determined by either imposing a constraint

on the available directions of the control or by minimizing a suitable norm

of ∆.

For practical implementation it is useful to compute the so–called pro-

jection factor along the unstable direction. It is defined as the vector π

such that δ · π = α1. Note that for the computation of π only the Floquet

modes are required, so it can be computed and stored together with the

nominal orbit. To annihilate the unstable projection, α1, with a maneuver,

∆v = (0, 0, 0,∆x,∆y,∆z)
T , we ask (δ +∆v) · π = 0. In this way,

∆xπ4 +∆yπ5 +∆zπ6 + α1 = 0 (23)
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is obtained, where π4, π5 and π6 are the last three components of π. Choos-

ing a two axis controller, with ∆z = 0, and minimizing the Euclidean norm

of ∆v, the following expressions for ∆x and ∆y are obtained,

∆x = −
α1π4
π24 + π25

, ∆y = −
α1π5
π24 + π25

. (24)

In a similar way, a one or three axis controller can be formulated.

Once the magnitude of the maneuver is known, an important consid-

eration is the determination of the epoch at which it must be applied.

The study of this question requires the introduction of the gain function,

g(t) = ‖∆‖−1, where ∆ is the unitary impulsive maneuver. It measures the

efficiency of the control maneuver along the orbit to cancel the unitary un-

stable component. This component is obtained using the projection factors

and the error vector. As the projection factor changes along the orbit, the

same error vector has different unstable components. It is natural then to

consider a delay in the maneuver until reaching a better epoch with less

cost. So, the function to be studied is

R(t) =
exp

(

t log
(

λ1

T

))

g(t)
. (25)

However, as is shown in Simó et al. 66, this function is always increasing,

therefore, it is never good to wait for a maneuver except for operational

reasons.

As it has been said, when the station keeping has to span for a long

time, the satellite can tend to deviate far away from the nominal orbit.

This could happen since the cancellation of the unstable component does

not take care of the neutral components which might grow up to the limit

of loosing controllability. In order to prevent large deviations of the satellite

from the nominal orbit, it is advisable to perform manoeuvres of insertion in

the stable manifold. The main idea of the strategy is to put the satellite in a

state such that approaches the nominal orbit assimptotically in the future.

This strategy is in principle much cheaper than to target to the nominal

orbit itself since the latter case can be considered, from an implementation

point of view, as a sub-case of targeting to the stable manifold. Moreover,

even when the controllability using only unstable component cancellation

manoeuvres (UCCM) is assured, it can be advantageous to perform in-

sertion in the stable manifold since the control effect of this manoeuvres

usually persist for a longer time span than UCCM. Moreover, subsequent
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UCCM would be cheaper due to the fact that the satellite is closer to the

nominal orbit, and consequently the projection of the deviation in the un-

stable component is smaller.

Although the idea is simple, the implementation is not so easy since in

first place, the target state in the stable manifold cannot be accomplished

with a single manoeuvre as it happens with UCCM and, in second place,

the actual state of the satellite is known but affected by tracking errors.

Moreover the manoeuvres to be done will be noised by some errors too.

We refer the interested reader to Gómez et al. 31 for the details of the

implementation.

As a final remark, several constraints that impact the maneuvers must

be specified in the procedure. The most relevant are the time interval be-

tween two consecutive tracking epochs (tracking interval), the minimum

time interval between maneuvers, and the minimum value of α1 that can-

not be considered due solely to tracking errors.

Special emphasis must be placed on the evolution of α1. With no track-

ing errors, the evolution of this parameter is exponential with time (see

Figures 13 and 14). When adding tracking errors, and in order to pre-

vent a useless maneuver, this value must be greater than the minimum.

So, the minimum value must be selected as a function of the accuracy in

orbit determination. On the other hand, the value of α1 should not be too

large, because this increases the value of the maneuver in an exponential

way. Thus, a maximum value is chosen such that, if α1 is greater than the

maximum, a control maneuver will be executed to cancel the unstable com-

ponent. When α1 is between the minimum and maximum values, the error

can be due to small oscillations around the nominal orbit. In this case, a

maneuver is executed only if the error has been growing at an exponential

rate in the previous time steps and the time span since the last maneuver

agrees with the one selected. Also, if the magnitude of the calculated ∆v is

less than ∆vmin, then the recommended maneuver is cancelled. Once these

parameters have been fixed, there are no more free variables allowing any

further minimization.
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Fig. 13. From top to bottom, evolution with time of the unstable component, position

deviations with respect to the nominal trajectory, and velocity deviations. In all the

figures, no orbit determination has been performed, because the simulations have been
done with no errors for the tracking and the execution of the manoeuvres. There is

only an error at the initial insertion epoch. In the left hand side figures there are no
manoeuvres for the insertion in the stable manifold, while in the right hand side there

are. These manoeuvres can be clearly seen, because after its execution the distance to

the nominal orbit goes to zero both in position and in velocity. The discontinuities that

appear in these two figures are associated to the execution of the manoeuvres. The points
marked with a cross are those at which the tracking has been performed, and the ones

marked with a star are those at which a manoeuvre has been executed.

7.2. Numerical results

In Figures 13 and 14, we show some results of simulations done for a halo

orbit around L2 in the Earth-Moon system. We display the evolution of
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Fig. 14. From top to bottom, evolution with time of the unstable component, position

deviations with respect to the nominal trajectory, and velocity deviations. In the left

figures no orbit determination if performed, while in the right ones it is done. In all the
figures, the manoeuvres and the tracking are performed with errors. There is also an

error at the initial insertion epoch. There are manoeuvres for the insertion in the stable
manifold that can be clearly seen at the times at which the distance to the nominal

orbit decreases to very small values (which are not equal to zero because there is an

error added to the manoeuvres). The points marked with a cross are those at which

the tracking has been performed, and the ones marked with a star are those at which a
manoeuvre has been executed.

the unstable component and the deviations from the nominal trajectory in

position and velocity in different situations. In Figure 13 the manoeuvres are

done without any error, while in Figure 14 they are performed with errors.
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In each Figure, we show the results of the station keeping strategy with

and without stable manifold insertion manoeuvres. From them, it becomes

clear both the exponential grow of α1 and the role of the insertion manifold

manoeuvres.

Finally, in Figure 15 the averaged ∆v used for the station keeping is

displayed. As before, the simulations correspond to a halo orbit around L2
in the Earth-Moon system. If no insertion manifold manoeuvres are done,

there appears an exponential grow of the ∆v, while if these manoeuvres are

done, the station keeping cost per year remains constant. From this Figure,

it is also clear that a good orbit determination procedure can be useful to

reduce the total ∆v.
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Fig. 15. Averaged ∆v used for the station keeping, in cm/s/year, in different situations.
The two curves with an exponential grow of the ∆v correspond to simulations with no

insertions in the stable manifold. For the upper curve, there was no orbit determination.

For the other two curves, for which there seems to be a finite limit for the ∆v, we have

used insertion maneuvers in the stable manifold. The one with lower cost uses orbit

determination, whereas the other does not.

8. Application of libration point orbits to formation flight

The excellent observational properties of the L2 point of the Earth–Sun

system have lead to consider this location for missions requiring a flying

multiple spacecraft in a controlled formation. Darwing, LISA and TPF are

three of the more challenging examples of such missions.
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Two basic orbital strategies have been analyzed for a formation flying

mission at the libration points: a nominal orbit strategy and a base orbit

strategy. In the nominal orbit strategy each spacecraft follows its own pre-

defined orbit, while in the base orbit strategy each spacecraft follows an

orbit relative to a predefined one, known as the base orbit. The base orbit

may have no spacecraft on it. In the next two sections we will briefly discuss

the results that have been obtained in both approaches.

8.1. The nominal orbit strategy

Barden and Howell 3,4,38 have considered the possibility of using quasi–

periodic solutions around the halo orbits and the libration points, as natural

locations for a constellation. In their studies, a certain number of spacecraft

are initially placed along a planar curve close to any of the two kinds of

the above mentioned tori and, in a first step, they analyze their natural

motion.

In the quasi-halo case, the torus itself is related to an underlying pe-

riodic halo orbit. As the initial planar curve proceeds in time along the

torus, in the direction of motion of the underlying halo orbit, there are

certain aspects of the evolution of the curve that are of particular interest.

The curve appears simply closed and nearly circular in configuration space.

When the amplitude of the curve is small, i.e., less than 1000 km, the curve

is considered to be planar. However, as the curve evolves, it changes size

and shape. Identifying the plane containing the curve, one can view the

constellation from a point along the normal to the plane. Although the

plane will not persist, the deviations from a reference one are small: less

than 1% of the distance between spacecraft when they are on opposite sides

of the constellation. In addition to the variations in size and shape, there is

a winding aspect of the motion due to the change of the relative locations

of the points of the curve. This is because the torus is self–intersectiong in

the configuration space at the two xz-plane crossings.

This type of natural motion, as an option for formation flying, is very

appealing from a dynamical perspective. From a practical standpoint, how-

ever, this formation will likely not meet the constraints and scientific re-

quirements of a generic mission. The likely scenario is that some pre-

specified formation will be mandated.
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As an example of non-natural formation, Barden and Howell consider

six spacecraft evenly distributed on a circle of radius 100 km in a plane

coincident with the rotating libration point coordinates y and z (parallel

to the yz plane) and around a Lissajous type orbit. At each maneuver, the

formation is enforced to be on the plane, but there will be out-off-plane ex-

cursions for each of the spacecrafts between the maneuvers; the amplitude

of the excursions will vary for each vehicle. In a first simulation, four ma-

neuvers per revolution in the xy plane (nearly equally spaced in time) are

executed where all six spacecraft implement their respective maneuvers si-

multaneously. The size of the maneuvers ranges from 0.043 m/s to 0.12 m/s

for a total cost of 2.93 m/s for a duration of 355 days (which is equivalent

to two revolutions along the baseline Lissajous trajectoy in the xy plane.

These maneuvers are necessary to define a nominal path for each of the

spacecraft; additional stationkeeping maneuvers will also be required to ac-

commodate errors and uncertainties. Even for the baseline motion, however,

out-of-plane excursions between the maneuvers reach a maximum value at

any one time of approximately 20 km in this example. The only means of

reducing this deviation is to increase the frequency of the maneuvers. With

maneuvers every 11 days, instead of 44 days, the out-of-plane deviations

never exceed 1.8 km. The total cost is of 2.77 m/s which is smaller than the

2.93 m/s required. However, fixed planes can be specified where the total

cost increases with the increased number of maneuvers.

8.2. Formation flight in the vicinity of a libration point.

TPF case

The TPF Mission (Terrestrial Planet Finder) is one of the center pieces of

the NASA Origins Program. The goal of TPF is to identify terrestrial plan-

ets around stars nearby the Solar System (see Beichman et al. 5). For this

purpose, a space-based infrared interferometer with a baseline of approx-

imately 100 m is required. To achieve such a large baseline, a distributed

system of five spacecraft flying in formation is an efficient approach. Since

the TPF instruments needs a cold and stable environment, near Earth or-

bits are unsuitable. Two potential orbits have been identified: a SIRTF-like

heliocentric orbit and a libration orbit near the L2 Lagrange point of the

Earth-Sun system. There are several advantages to a libration orbit near

L2. Such orbits are easy and inexpensive to get to from Earth. Moreover, for

missions with heat sensitive instruments (e.g. IR detectors), libration orbits
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provide a constant geometry for observation with half of the entire celestial

sphere available at all times. The spacecraft geometry is nearly constant,

with Sun, Earth, and Moon always behind the spacecraft, thereby provid-

ing a stable observation environment, making observation planning much

simpler. In this section we present some of the results of Gómez et al. 20,

which contain preliminary computations of the TPF mission.

From the dynamical point of view, the TPF Mission can be broken into

four scenarios:

Launch and Transfer Phase

For the simulation, it is assumed that the spacecraft starts in a typical

200 km altitude parking orbit at 28.5 deg inclination, and a halo orbit is

used as a target Baseline Orbit. At the appropriate time, the spacecraft

performs a major maneuver of about 3200 m/s. This injects the spacecraft

onto the stable manifold of the halo orbit to begin the Transfer Phase. The

transfer trajectory is designed by using an orbit of the stable manifold with

a suitable close approach to the Earth.

Deployment Phase

It is assumed that all the spacecraft of the formation reach the Baseline

Orbit in a single spacecraft. This begins the Deployment Phase. The five

satellites are maneuvered to reach their initial positions on the different

points of a 20-gon of 100m diameter at the same time. The Deployment

Phase can last several hours and simulations between 1 and 10 hours have

been done. Assuming that deployment is performed using two impulsive

maneouvres, and that a selected satellite has to be put in the edge of an

20-gon of diameter D meters, and after that starts doing R revolutions per

day, the following table summarizes the estimation of the deployment cost

in cm/s as a function of the deployment time.

Deployment Time R = 1 R = 3

1 Hr 5.5× 10−2D 5.6× 10−2D

3 Hr 1.9× 10−2D 2.7× 10−2D

5 Hr 1.3× 10−2D 2.2× 10−2D

10 Hr 0.9× 10−2D 1.8× 10−2D

100 Hr 0.5× 10−2D 1.5× 10−2D
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Pattern Maintenance Phase

Once the initial configuration has been established, the spacecraft will ma-

noeuvre to follow the edge of the 20-gon to provide a suitable spin rate for

the formation. The nominal spin rate used for this simulation is 360 deg

every 8 hours. The period where the pattern is maintained is called the

Pattern Maintenance Phase. Assuming that a spacecraft is spining in a 20-

gon of diameter D meters and doing R revoulitions per day, it is obtained

that:

Formation maintenance cost per satellite in cm/s per Day = 0.0023DR2.

Reconfiguration Phase

Once sufficient data has been acquired for one star system, the formation

will be pointed to another star for observation. Repointings occur during

the Reconfiguration Phase. The computations of the Reconfiguration Phase

cost is similar to the Deployment Phase, except that the spacecraft do not

depart from the same location (i.e. the Mother Ship).

Estimation of TPF budget for a ten year’s mission

A table presenting an estimation of the ∆V cost associated to satellites

located in an N-gon of 50 and 100 m around a L2 base halo orbit, spining

at the rate of 3 revolutions per day, for a 10 years mission is also given.

Maneuvers per S/C in m/s 50m Diameter Case 100m Diameter Case
Halo Insertion 5 5

Initial Deployment (10h) 0.009 0.018
Formation Maintenance 0.1/Day 0.2/Day
Station Keeping (Z-Axis) 3/Yr 3/Yr
Reconfiguration (est.) 0.05/Day 0.1/Day

10 Year DV Budget (m/s) 585 1135

Halo insertion cost, due to transfer from the Earth, and station keeping

cost (including avoidance of the exclusion zone, that could be required in

case of using an L2 Lissajous orbit) are also included. The usual station

keeping can be assumed to be absorbed in the so often performed pat-

tern maintenance manoeuvres. Manoeuvres are also considered to be done
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without error, so control correction maneuvers are not included. Finally,

the paper ends with some issues related to the TPF simulations and the

visualization tools suitable for the design of the mission.
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30. G. Gómez and J.J. Masdemont: Some Zero Cost Transfers Between Halo
Orbits. Advances in the Astronautical Sciences, 105(2):1199–1216, 2000.
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Three or More Degrees of Freedom, pages 223–241. Kluwer Academic Pub-
lishers, 1999.
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