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Abstract

We make a local semi-analytical study of a quasi-periodic perturbation of
the Sun-Jupiter RTBP Hamiltonian in a neighbourhood of the triangular points.
First, we construct a suitable normal form of the Hamiltonian around the invari-
ant torus that replaces L5. Then, we use this (high order) normal form to give
a description of the local non-linear dynamics.

Introduction

We are interested in the dynamics of a small particle near the triangular points of
the Sun-Jupiter system. In order to perform this study, we use an specific model based
on the numerical computation of a quasi-periodic solution (with two basic frequencies)
of the planar four body problem Sun, Jupiter, Saturn and Uranus and we write it as
a perturbation of the Sun-Jupiter RTBP. This model is a restricted five body problem
that we call Tricircular Coherent Problem (TCCP). The corresponding Hamiltonian
is:

H =
1

2
α1(θ1, θ2)(p

2
x + p2

y + p2
z) + α2(θ1, θ2)(xpx + ypy + zpz) + α3(θ1, θ2)(ypx − xpy)

+α4(θ1, θ2)x + α5(θ1, θ2)y − α6(θ1, θ2)

[
1− µ

qS

+
µ

qJ

+
msat

qsat

+
mura

qura

]
, (1)

where q2
S = (x − µ)2 + y2 + z2, q2

J = (x − µ + 1)2 + y2 + z2, q2
sat = (x − α7(θ1, θ2))

2 +
(y − α8(θ1, θ2))

2 + z2, q2
ura = (x− α9(θ1, θ2))

2 + (y − α10(θ1, θ2))
2 + z2, θ1 = ωsatt + θ0

1

and θ2 = ωurat + θ0
2. The masses of the bodies involved are µ = 9.538753600 ×

10−4, msat = 2.855150174 × 10−4 and mura = 4.361228581 × 10−5. The functions
αi(θ1, θ2){i=1÷10} are auxiliary quasi-periodic functions that can be computed by a
Fourier analysis of the Tricircular solution. The concrete values of the frequencies are
ωsat = 0.597039074021947 and ωura = 0.858425538978989. For a description on the
development of this model, see [3].

Normal Form of the TCCP Hamiltonian

The 2-D invariant torus that replaces L5

In the TCCP system, the RTBP L4 and L5 points are replaced by quasi-periodic
orbits with two internal frequencies and three normal ones. The two internal frequencies



 0.8645

 0.865

 0.8655

 0.866

 0.8665

 0.867

 0.8675

-0.501 -0.5005 -0.5 -0.4995 -0.499 -0.4985 -0.498 -0.4975 -0.497
-0.5005

-0.5

-0.4995

-0.499

-0.4985

-0.498

-0.4975

-0.8675 -0.867 -0.8665 -0.866 -0.8655 -0.865 -0.8645

Figure 1: Planar projections of the 2-D invariant torus that replaces L5: T5. Left:
(x, y)-projection. Right: (px, py)-projection.

j Re (λj) ±Im (λj) |λj | ±Arg (λj)
1 0.662315481968626 0.749225067883254 1.0 0.846891268646165
2 -0.485204809265089 0.874400533546285 1.0 2.077393707458922
3 -0.453781923686027 0.891112768248671 1.0 2.041801148412721

Table 1: Linear normal modes around the 2-D invariant torus T5 in the TCCP system.

are ωsat and ωura, the two proper frequencies of the TCCP system. The proof can be
found in [8], where quasi-periodically perturbed elliptic equilibrium points are studied.

In order to compute this 2-D invariant torus (in the L5 case, for instance), we
use the method explained in [1] adapted to the non-autonomous case. The method
consists, basically, in computing an invariant curve of a map. In this case, we consider
the time period-of-Saturn map associated to the flow of the TCCP. Note that this map
can be easily evaluated by a numerical integration of the flow associated to (1), and
its differential is also obtained integrating the variational flow.

Hence, it is possible to compute, in the Poincaré section, the invariant curve that
corresponds to the 2-D invariant torus that replaces L5 for the flow of the TCCP
model. Due to the smallness of the perturbation, it is enough to use, as initial guess,
the coordinates of the triangular point L5. The (x, y) and (px, py) projections of the
resulting invariant torus are shown in Figure 1. From now on, we will call this 2-D
invariant torus T5.

It is also possible, using the method explained in [7], to compute the three normal
modes of the invariant curve; that is, the frequencies of the three harmonic oscillators
that govern the normal linear motion around T5. They can be found as the solution of
a generalized eigenvalue problem. In Table 1, the linear normal modes are shown. As
all of them have modulus exactly 1, the 2-D invariant torus T5 is linearly stable.

Second order normal form

We construct a linear change of variables (that depends on time in a quasi-periodic
way) that puts the second degree terms of the Hamiltonian into a more convenient
form. This is, essentially, the quasi-periodic Floquet transformation for the variational



flow along the quasi-periodic orbit, but taking into account the symplectic structure
of the problem. To simplify further steps in the normalizing process, we also apply a
complexifying change of variables that puts the second degree terms of the Hamiltonian
in the so-called diagonal form.

The symplectic quasi-periodic Floquet change The linear flow around the 2-D
invariant torus T5 is described by a linear system of differential equations, that depends
quasi-periodically on time:

ż = Q(θ1, θ2)z, (2)

θ̇1 = ωsat,

θ̇2 = ωura.

Our goal is to find a real, symplectic and quasi-periodic change of variables, z =
P r(θ1, θ2)x, such that it reduces (2) to a linear system with real constant coefficients:

ẋ = Bx,
d

dt
B ≡ 0. (3)

We start by considering the (θ1 = 2π)-Poincaré section of the flow given by (2).
Then, we have the following linear quasi-periodic skew product:

z̄ = A(θ)z,

θ̄ = θ + ω,

where θ ≡ θ2 and ω = 2π
(

ωura

ωsat
− 1

)
= 2.75080755611202 is the rotation number of the

invariant curve corresponding to the 2-D invariant torus T5.

As it is shown in [7], it is possible to reduce this quasi-periodic skew-product to

ȳ = Λy, (4)

by implementing a linear change of variables z = C(θ)y. Λ is a diagonal complex
6× 6 matrix with constant coefficients and satisfies, jointly with the matrix C(θ), the
following equation:

A(θ)C(θ) = C(θ + ω)Λ. (5)

If we define the operator Tω : Ψ(θ) ∈ C(T1,Cn) → Ψ(θ +ω) ∈ C(T1,Cn) and if we call
Ψj(θ) the j-th column of the matrix C(θ), we can write the system of equations (5) by
columns as a generalized eigenvalue problem:

A(θ)Ψj(θ) = λjTωΨ(θ). (6)

Remarks: (i) Note that A(θ) is a real matrix (it comes from Q(θ1, θ2) that is
also real). Thus, if Ψj(θ) ∈ C6 is an eigenfunction of (6) with eigenvalue λj, then
Ψ∗

j(θ) is also an eigenfunction of (6) with eigenvalue λ∗j (λ∗j and Ψ∗
j(θ) are the complex

conjugates of λj and Ψj(θ), respectively). We construct the matrix C(θ) as C(θ) =
(Ψ1(θ) Ψ2(θ) Ψ3(θ) Ψ∗

1(θ) Ψ∗
2(θ) Ψ∗

3(θ)), and, then, the matrix Λ takes the following
form: Λ = diag(λ1, λ2, λ3, λ

∗
1, λ

∗
2, λ

∗
3). (ii) The eigenfunctions Ψj(θ) are scaled in such

a way that ‖Ψj‖2 = 1.

Thus, it is possible to reduce equations (2) to complex constant coefficients in a
Poincaré section of the flow (via the complex change of variables C(θ)). Now, we want
to extend the change of variables to the global phase space and to realify it.



Extension of the change of variables The goal is to compute a quasi-periodic
change of variables z = P c(θ1, θ2)y that transforms the system (2) to

ẏ = DBy, (7)

where DB = diag(iω1, iω2, iω3,−iω1,−iω2,−iω3) and ωj is such that λj = exp(iωjTsat),
where as usual Tsat = 2π

ωsat
. Note that it is possible to add to ωj any integer multiple

of 2π
Tsat

(if ωj accomplishes the condition, then ±(ωj + 2kjπ

Tsat
), kj ∈ Z, too). We have

selected a special value of kj ∈ Z for each j = 1, 2, 3 in order the values of ωj to be
the closest possible to the ones in the RTBP case. This is the right choice from a
perturbative point of view and it is also critical in order the change of variables to be
symplectic. The proofs of the next two lemmas can be found in [4].

Lemma 1 The solution of the Initial Value Problem (IVP)

Ṗ c(θ1, θ2) = Q(θ1, θ2)P
c(θ1, θ2)− P c(θ1, θ2)DB

θ̇1 = ωsat

θ̇2 = ωura,

with
(
P c(0) = C(θ

(0)
2 ), θ1(0) = 0, θ2(0) = θ

(0)
2

)
, is the linear change of variables with

complex quasi-periodic coefficients that sends the system (2) to the system (7).

Realification In order to actually implement the Floquet change, we are inter-
ested in computing the real change of variables. Thus, we will make use of the following

Lemma 2 Let us define the (real) matrix R as

R(θ) =
1

2
C(θ)

(
I3 −iI3

I3 iI3

)
.

Then, the solution of the IVP

Ṗ r(θ1, θ2) = Q(θ1, θ2)P
r(θ1, θ2)− P r(θ1, θ2)B (8)

θ̇1 = ωsat

θ̇2 = ωura,

with initial conditions
(
P r(0) = R(θ

(0)
2 ), θ1(0) = 0, θ2(0) = θ

(0)
2

)
, defines a (real) linear

quasi-periodic change of variables (z = P r(θ1, θ2)x) that transforms equation (2) to
equation (3).

The (real) matrix B is defined by B = R−1CDBC−1R and takes the form

B =



0 0 0 ω1 0 0
0 0 0 0 ω2 0
0 0 0 0 0 ω3

−ω1 0 0 0 0 0
0 −ω2 0 0 0 0
0 0 −ω3 0 0 0


.



Finally, to ensure that the transformation is canonical, we only need to check that
P r(θ1, θ2) is a symplectic matrix. This can be proved analytically (analogously at how
it is done in [5]) by extending the matrix P r to the phase space of the autonomous
Hamiltonian

H(x, y, z, θ1, θ2, px, py, pz, pθ1 , pθ2) = ωsatpθ1 + ωurapθ2 + HTCCP (x, y, z, θ1, θ2, px, py, pz),

where HTCCP is (1)) but here, to also check the correctness of the software, we have
tested numerically this condition for a mesh of values of (θ1, θ2), with good agreement.

Implementing this quasi-periodic change of variables, the second degree terms of
the Hamiltonian become:

Hr
2(x, y) =

1

2
ω1(x

2
1 + y2

1) +
1

2
ω2(x

2
2 + y2

2) +
1

2
ω3(x

2
3 + y2

3), (9)

where the frequencies take the following values: ω1 = −0.080473064872369, ω2 =
0.996680625156409 and ω3 = 1.00006269133083. We note that it is not possible to
use the Lagrange-Dirichlet theorem to derive the nonlinear stability of the 2-D invariant
torus, due to the different signs for the values of the frequencies.

Complexification As it is usual in these kind of computations, a complexifying
change of variables is done in order to bring (9) into a diagonal form. The equations
of this linear and symplectic transformation are xj = (qj + ipj)/

√
2, yj = (iqj +

pj)/
√

2, j = 1, 2, 3.

Thus, after composing the three linear symplectic changes of variables (translation
of the origin to the 2-D invariant torus, quasi-periodic symplectic transformation and
complexification), the Hamiltonian of the TCCP in normal form up to order 2 takes
the form:

Hc
2(q, p) = iω1q1p1 + iω2q2p2 + iω3q3p3, (q, p) ∈ C6. (10)

Expansion of the Hamiltonian

With the help of the recurrence of the Legendre polynomials, we are able to produce
a Fourier-Taylor power expansion of the Hamiltonian (1) in these complex coordinates.

We also autonomize the complete Hamiltonian by adding the fictitious momenta
corresponding to the angular variables θ = (θ1, θ2) ∈ T2. Let us denote them pθ =
(pθ1 , pθ2) ∈ C2. In this way, it is possible to write the expanded Hamiltonian as:

H(q, p, θ, pθ) = 〈$, pθ〉+ H2(q, p) +
∑
n≥3

Hn(q, p, θ), (q, p) ∈ C6 , θ ∈ T2, (11)

where H2 6= H2(θ) is given by (10), (Hn)n≥2, denotes an homogeneous polynomial of
degree n in the variables q and p, $ = (ωsat, ωura) and 〈·, ·〉 is the standard scalar
product.

Normal form of order higher than 2

We compute a high order normal form for the expansion of the TCCP Hamiltonian,
supposing that up to degree 2 is already in the normal form (10). The goal of the



k1 k2 k3 Re (hk) Im (hk)
1 0 0 -8.0473064872368966e-02 0.0000000000000000e+00
0 1 0 9.9668062515640865e-01 0.0000000000000000e+00
0 0 1 1.0000626913308270e+00 0.0000000000000000e+00
2 0 0 5.6008074695424814e-01 9.9022635266146223e-14
1 1 0 -1.5539627415430354e-01 1.9737284347219547e-14
0 2 0 5.5093985824138381e-03 -3.4515403004164990e-16
1 0 1 5.4161903856716140e-02 2.6837558280952768e-15
0 1 1 6.6103538676104013e-03 -2.3704452239135327e-16
0 0 2 -3.4144388415478051e-04 1.3980906058550924e-20

Table 2: Coefficients of the normal form, up to degree 2 in the actions for the TCCP
case. The first three columns contain the exponents of the actions, and the fourth and
fifth columns are the real and imaginary parts of the coefficients. Imaginary parts must
be zero, but they are not due to the different accumulation errors.

normalizing transformation is to autonomize and to suppress the maximum number
of terms of the Hamiltonian expansion. We use, basically, the Lie series method as
described in [6], but introducing the necessary modifications in order to deal with
quasi-periodic coefficients.

After performing all the changes up to a suitable degree n = N , the Hamiltonian
takes the form

H = 〈$, pθ〉+N (q1p1, q2p2, q3p3) +R(q1, q2, q3, p1, p2, p3, θ1, θ2), (12)

where N denotes the normal form (that only depends on the products qjpj) and R is
the remainder (of order greater than N).

We write the normal form N in real action-angle coordinates. It is not difficult to
see that N does not depend on the angles ϕj but only on the actions Ij:

N =
[N/2]∑
|k|=1

hkI
k1
1 Ik2

2 Ik3
3 , k ∈ Z3, hk ∈ R. (13)

Values for the coefficients hk can be found in Table 2.

Changes of variables

We have also computed explicit expressions for the transformation from the initial
variables of (10) to the final ones. This change of variables is a Taylor truncated power
series up to degree N with Fourier coefficients (with two angles) also truncated, in their
turn, at orders (Nf1 , Nf2). We will use this changes of variables to send information
from the normal form coordinates to the initial ones, and vice versa.

Local non-linear dynamics

If we are close enough to the 2-D invariant torus T5 and we obviate the rotators
〈$, pθ〉, the (non-linear) dynamics can be described accurately by the truncated normal
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Figure 2: Projection on the (x, y) plane (left) and on the configuration space (right) of
an elliptic 3-D invariant torus of the vertical family near T5. The intrinsic frequencies
are ωsat, ωura and ω3 = 1.000062350. The normal ones are ω1 = −0.08044599352 and
ω2 = 0.9966839283.
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Figure 3: Projections on the (x, y, z) (left) and (px, py, pz) spaces of a four-dimensional
invariant torus of the vertical family near T5. The intrinsic frequencies are ωsat, ωura,
ω2 = 0.9966811761 and ω3 = 1.000063022, and the normal one is ω1 = −0.08048083168.

form of the TCCP Hamiltonian (13). As this is an integrable normal form, the dynamics
is very simple: the phase space is completely foliated by families of invariant tori. We
can easily compute lower and maximal invariant tori using the truncated normal form
and send them, via the changes of variables, to the initial synodical coordinates of the
TCCP system. This changes of variables add two additional frequencies (the system’s
intrinsic frequencies, ωsat and ωura) to the invariant tori. Thus, in our case, the invariant
tori are of dimensions three, four and five. Figures 2, 3 and 4 are examples of these
computations. See the captions for more details.
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Figure 4: Projections of an elliptic 5-D invariant torus of the vertical family near T5.
The proper frequencies are ωsat, ωura, ω1 = −0.08046420047, ω2 = 0.9966802858 and
ω3 = 1.000063496. Left plot: (x, y)-projection. Right plot: (z, pz)-projection.
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