Erratum

Proposition VII.5 in page 148 should be corrected by theofwithg more restrictive form:

Proposition 1. LetV be real analyticw nonresonant ang, a spectral measure dfy, ,. Assume that
there is a measurable sétsuch that

pg(A) =

0
for almost everys € T. Thenn’(A) = 0 andn’(A) = 0.

In the thesis it is seen that the set

A=c"(Vw)\ (o (V,w,¢),
fotedi

wherealfp(v,w, ¢) is the set of point eigenvalues &f,, , given by Bourgain & Jitomirskaya [BJ02a]
satisfies that’(A) = 0 (using the corrected version of Proposition VI1.6). Therefalson (A) = 0.
To prove Corollary VII.3 (from which Theorem VII.1 follows disis shown in Section VII.2.1) it only
remains to show that also the Lebesgue measureisizero.

To do so, one can invoke Deift & Simon [DS83]. For almost peaicadiscrete Sclirdinger opera-
tors they prove that for almost eveayin the set where the Lyapunov exponent vanishes, one has the
inequality

H
2 sint N (a) N

> 1. (1)

Therefore, under the additional assumption that the Lyap@xponent vanishes in the spectrum, the
inequality (1) implies that ifd is a subset of 7 (w, V) with n7(A) = 0 then also the Lebesgue measure
of A is zero.

As a consequence of Bourgain & Jitormirskaya [BJ02a, BJ0O2bgrfga in o (V, w), (with |V | < €)
the Lyapunov exponent vanishes in the spectrum. TheretoeesetA has Lebesgue measure zero and
Corollary VII.3 follows.
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