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Abstract. Classical and new results concerning the topological structure of

skew-products semiflows, coming from non-autonomous maps and differential

equations, are combined in order to establish rigorous conditions giving rise to
the occurrence of strange nonchaotic attractors. A special attention is paid to

the relation of these sets with the almost automorphic extensions of the base

flow. The scope of the results is clarified by applying them to the Harper map,
although they are valid in a much wider context.

1. Introduction

In this work we focus on invariant sets of non-autonomous dynamical systems.
More concretely, we will consider a specific family of such systems and we will
study the existence of attracting sets, specially when they are “strange”, i.e, they
are not regular (or piecewise regular) manifolds. These attracting sets are called
chaotic when the dynamics on them has a strictly positive Lyapunov exponent.
Here we concentrate on strange attractors with negative Lyapunov exponents; they
are called strange nonchaotic attractors, or SNA. SNAs usually appear in quasi
periodically forced systems (see [46] for specific examples), either discrete or con-
tinuous.

As far as we know, the first constructions of flows containing SNAs can be found
in [39, 40, 61]. It is remarkable that those papers were written before the term SNA
was coined so they do not use this terminology. The term SNA is introduced in
[18], where some rigorous results for discrete maps can be found. Relevant rigorous
examples of SNA for maps are also given in [3, 31].

Here we will focus on the existence of SNAs for certain families of maps and
flows. The considered flows will be induced by Dirac systems (that includes the
Schrödinger equation as a particular case), while the maps considered can be re-
duced to the previous flows by means of a suspension. Our exposition surveys
several classical results on the occurrence of almost automorphic dynamics for al-
most periodic differential equations, reinterpreting them in the context of SNAs.
We combine the above results with some spectral properties in order to prove rig-
orously some new results about SNAs on the real line.

In this study we will relate the invariant sets of certain nonlinear systems to
those of some conservative non-autonomous two-dimensional linear systems. To
explain some of the ideas behind this procedure, let us focus first on an autonomous
linear two-dimensional system of saddle type. As almost all the orbits tend, when
t → +∞, to the line corresponding to the unstable manifold, we can look at this
line as an attracting set (we will not call it attractor because it is not compact).
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Therefore, if we look at this system in polar coordinates and we discard the radial
coordinate, we have a dynamical system defined on S1 that has two attracting (and
two repelling) points which are the intersection of the unstable (stable) manifold
with the unit circle. In this paper, instead of using the usual angles of the polar
coordinates we will use the directions, i.e. the projective line P1: the previous
example induces a flow on P1 with one attracting and one repelling point. This
setting can be generalized to non-autonomous two-dimensional linear differential
systems in a very natural way: consider, for instance, a two-dimensional linear
system that depends quasi periodically on time with d basic frequencies, that is,
of the form x′ = A(ω)x, ω′ = α, for ω ∈ Td and α = (α1, . . . , αd) ∈ Rd, where
α1, . . . , αd are rationally independent. Assume that this system has a stable and an
unstable manifold. In this setting, if we discard the radial coordinate, the space of
directions is Td×P1. This means that the induced flow in Td×P1 has an attracting
and a repelling torus. The same can be asserted in the case of a map on Td × R2.

The examples considered in this paper are quasi periodically forced projective
one-dimensional flows and maps which are induced, by a suitable transformation,
from quasi periodically time dependent two-dimensional linear differential and dif-
ference systems. Then, the attracting and repelling tori contained in the space of
directions Td×P1 correspond to attracting and repelling tori of the one-dimensional
flow. We will also show how the tori in the space of directions collide and break
down, becoming a “strange” set. This corresponds to a similar phenomenon in the
phase space of the one-dimensional model, that creates an SNA.

In this paper classic results concerning these models in a very general context
are reinterpreted and combined with new ones. The presentation and the proofs
are very technical and they require a good degree of familiarity with ergodic theory,
spectral theory and topological dynamics. For this reason, in the introduction we
have included a short (and not very technical) presentation of the main results:
before proving them, we apply these results to the well-known Harper map. We
also compare the structure of the SNAs in the Harper map with those given in [31].
The interested reader will find, in the remaining sections, full details and extensions
of the results mentioned in the introduction, as well as precise references for the
results previously known. A brief description of the contents and structure of the
paper is included in Subsection 1.3.

We stress the fact that, for us, SNAs will be always associated to global discrete
semiflows (or flows) on Td × R, given by the iterations of a continuous map (or
homeomorphism) on this space. That is, we will be talking of SNAs on the real
line. There are other possible definitions of this kind of sets: for instance, some
authors include the graphics of non-continuous invariant curves contained in the
projective bundle over the torus, or talk about SNAs for real flows or semiflows,
given not by a map but by the solutions of a quasi periodic differential equations.

To conclude this general introduction, we point out that the existence of non-
continuous invariant sets is a phenomenon deeply analyzed in the case of flows of
higher dimension, finite or infinite: the condition usually required in these flows is
their monotonicity. The interested reader is referred to [52], [42], and references
therein.
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1.1. The Harper map. The Harper map is defined on T1 × R by
ω̄ = ω + α ,

x̄ = f(x, ω, λ) = − 1
x
− λ− 2b cos 2πω ,

(1.1)

where ω ∈ T1 = R/Z and α /∈ Q. Here b represents a real parameter which will be
fixed in the analysis, and λ represents a real parameter which will vary. This map
can be seen as a discrete version of the Schrödinger equation with a quasi periodic
potential. It has been studied in several places, for instance see [32, 19].

As f sends points with x = 0 to infinity (and, when x goes to infinity, f goes
to a finite value), there are points (ω, x) ∈ T1 × R whose orbits blow up in finite
time. In order to cope with the infinity point, we take projective coordinate ϕ =
cot−1 x ∈ [0, π) on R. This takes the Harper map to

ω̄ = ω + α ,

ϕ̄ = cot−1

(
− 1

cotϕ
− λ− 2b cos 2πω

)
,

(1.2)

which define a map in T1×P1, where P1 ≡ R/πZ. Note that the orbit of any initial
point (ω, ϕ) is defined for every (positive or negative) time.

It is important for the following description of results to note that both maps (1.1)
and (1.2) are obtained from the map on T1 × R2 given by

ω̄ = ω + α,[
z̄1
z̄2

]
=

[
0 1
−1 −λ− 2b cos 2πω

] [
z1
z2

]
(1.3)

by taking x = z2/z1 and ϕ = cot−1 z2/z1 respectively. Note also that this last one
is a conservative linear map. Using that the equation for the angle variable ω can
be solved as ω(n) = ω0 + nα, this linear map can be rewritten as[

z(n)
z(n+ 1)

]
=

[
0 1
−1 −λ− 2b cos 2π(ω0 + nα)

] [
z(n− 1)
z(n)

]
. (1.4)

This map (1.3) is in fact a second order operator, and we can put it into the more
convenient form

−z(n+ 1)− z(n− 1)− 2b cos 2π(ω0 + nα) z(n) = λ z(n) . (1.5)

The left-hand side of this equation is the so-called almost Mathieu operator,

z(n) 7→ −z(n+ 1)− z(n− 1)− 2b cos 2π(ω0 + nα) z(n) . (1.6)

Therefore, we can look at (1.5) as a spectral problem for (1.6).
For further reference, we define

Dλ(ω(n)) =
[

0 1
−1 −λ− 2b cos 2π(ω0 + nα)

]
.

and the propagation matrix of (1.4) as

Zλ(n, ω0) = Dλ(ω(n− 1)) · · ·Dλ(ω(1))Dλ(ω0).

Any ϕ̄0 ∈ P1 admits a unique representative ϕ0 ∈ [0, π). For ϕ0 ∈ [0, π), we define
zϕ0 = (sinϕ0, cosϕ0)T and zλ(n, ω0, ϕ0) = Zλ(n, ω0)

[
sin ϕ0

cos ϕ0

]
(the orbit of (1.4)

with initial data
[

z(−1)
z(0)

]
=

[
sin ϕ0

cos ϕ0

]
).
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1.1.1. Lyapunov exponents and invariant sets. A key concept in our setting is ex-
ponential dichotomy. Roughly speaking, it is said that the system (1.4) admits an
exponential dichotomy when any solution can be written as the sum of two solu-
tions, one of them approaching the origin and the other one going to infinity, both
in an exponential way.

Now let us consider the almost Mathieu operator (1.6) acting on L2(Z), the space
of sequences {zn}n∈Z such that

∑
n∈Z |zn|2 < +∞. It is not difficult to see that

this operator is self-adjoint and, therefore, its spectrum is real. Applying a well
known result of Johnson [25], included here as Theorem 5.2, we have that
a) the spectrum of the Jacobi operator does not depend on ω0,
b) the value λ belongs to the spectrum of the Jacobi operator (1.6) if and only if

(1.4) does not admit an exponential dichotomy.
The interested reader can find in [2] and references therein a good survey on the
description of this spectral problem. In particular, the spectrum is always a compact
subset of R and, if b 6= 0, it is a Cantor set for any irrational frequency α.

The next step is to relate this spectrum with the so-called Lyapunov exponents.
The Oseledets multiplicative ergodic theorem (see [45, 30] and Remark 4.2) implies
that there exists a set Ωλ ⊂ T1, invariant by rotations of angle α and of full Lebesgue
measure, such that for any ω0 ∈ Ωλ the following limit exists and takes the same
value:

lim
|n|→∞

1
n

ln ‖Zλ(n, ω0)‖ = β(λ) ≥ 0.

Moreover, if β(λ) > 0, there exists a measurable decomposition T1×R2 = W+
λ ⊕W

−
λ

in two one-dimensional subbundles with

lim
|n|→∞

1
n

ln |Zλ(n, ω0) z0| = ∓β(λ) for ω0 ∈ Ωλ and (ω0, z0) ∈W±
λ with z0 6= 0 .

In other words, the dynamics onW−
λ is expansive with an average ratio of exp(β(λ)),

and the dynamics on W+
λ is contractive with average ratio of exp(−β(λ)). The

values ±β(λ) are the Lyapunov exponents of (1.4).
Sacker-Sell spectral theorem [50] provides a description of the possibilities for

the dynamics on T1 × R2. In our situation, there are only three different cases.
i) Elliptic case: β(λ) = 0, so that (1.4) does not admit an exponential dichotomy.
ii) Uniformly hyperbolic case: (1.4) admits an exponential dichotomy, so that

β(λ) > 0.
iii) Non-uniformly hyperbolic case: β(λ) > 0 and (1.4) does not admit an expo-

nential dichotomy.
In particular, if β(λ) = 0, then λ belongs to the spectrum of the almost Mathieu
operator, whereas if λ belongs to the resolvent then β(λ) > 0. Non-uniformly hy-
perbolic situations also arise: in fact, Herman [20] proves that β(λ) ≥ max(0, ln |b|)
(and in fact the equality holds in the spectrum, as proved later by Bourgain and Ji-
tormirskaya [8]); so that in the case that |b| > 1, any value of the spectrum provides
non-uniformly hyperbolic dynamics.

In what follows we will assume β(λ) > 0, and we will consider the dynamics
induced by (1.2) on T1 × P1. Assume first that λ belongs to the resolvent of the
Jacobi operator (1.6), so that we are in the uniformly hyperbolic situation. In
this case (see Proposition (4.9)), due to the exponential dichotomy, there exist two
regular invariant curves on T1×P1, given by the graphs of two maps T1 → P1, ω 7→
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ϕ̄±λ (ω). One of these curves is uniformly attracting and the other one is uniformly
repelling: in fact,

∓β(λ) = lim
|n|→∞

1
n

ln |zλ(n, ω0, ϕ
±
λ (ω0))| for all ω0 ∈ T1,

where zλ was defined at the end of Section 1.1 and ϕ±λ (ω0) is the representative of
ϕ̄±λ (ω0) in [0, π); and all the orbits of Td×P1 starting outside the graphs of ϕ̄±λ are
heteroclinic orbits, going from the graph of ϕ̄−λ to the graph of ϕ̄+

λ .
The dynamical behavior is quite more complicated in the non-uniformly hyper-

bolic situation. In this case (see Theorem 4.10), there is a unique minimal invariant
set Mλ ⊂ Td × P1 which is not a smooth curve. More concretely, this set contains
exactly two non-closed invariant subsets that are the graphs of two non-continuous
measurable functions ϕ̄±λ : Td → P1. Moreover, there exists a full measure set
Ωλ  T1 such that

∓β(λ) = lim
|n|→∞

1
n

ln |zλ(n, ω0, ϕ
±
λ (ω0))| for all ω0 ∈ Ωλ .

In addition, for ω0 ∈ Ωλ the trajectories corresponding to (ω0, ϕ̄0) with ϕ̄0 6=
ϕ̄±λ (ω0) are heteroclinic, as before. This is because ϕ̄+

λ and ϕ̄−λ are the projections
on P1 of the Oseledets subbundles W+

λ and W−
λ , and the trajectories of T1 × R2

(for the map (1.3)) starting on an initial condition outside W+
λ tend to W−

λ at the
same time that they go to infinity. We can also prove that there exists a residual
subset Rλ ⊂ Mλ (projecting on T1 outside Ωλ) of points giving rise to orbits on
T1 × R2 which oscillate exponentially for |n| → ∞.

In particular, we have shown the existence of a non-closed invariant set –with a
“strange” structure– with negative Lyapunov exponent. This is one of the objects
we are interested in and it will be discussed in the next section.

1.1.2. Strange attractors in the Harper map. As said before, the maximal Lyapunov
exponent β(λ) of (1.4) is positive for any value of λ if |b| > 1. This is the situation
assumed along this subsection.

We have already mentioned that if λ belongs to the resolvent of (1.5), then W±
λ

are vector bundles with a smooth dependence of ω, which implies the existence of
two smooth curves on T1 × P1, invariant for the map (1.2), given by the graph of
smooth functions ϕ̄±λ : T1 → P1, one one attracting and one repelling. We stress
that, if the range of ϕ̄±λ is P1, there is no way of going back to real coordinates and
to get continuous curves because these curves will always “pass through” infinity.

If λ belongs to the spectrum of (1.5), then (1.3) does not admit an exponential
dichotomy, and we are in the non-uniformly hyperbolic case. This implies that
the vector bundles W+

λ and W−
λ do not depend continuously on ω and, therefore,

the corresponding attracting and repelling sets for the map (1.2) in T1 × P1 are
not continuous curves (see Theorem 4.10). Moreover, it can be proved that the
closure of the attracting and repelling sets is the same set Mλ, which is minimal
(see Remark 5.7). Hence, this set contains attracting and repelling points. The
projection of the set of attracting points on the basis T1 has total Lebesgue measure,
while the projection of the points that are not attracted by the attractor is dense
and has zero measure.

Let us now assume that we select a value λ = λ0 in the resolvent of (1.5), and let
Jλ0 be the largest open interval containing λ0 and contained in the resolvent (this
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is called “spectral gap”). Let λ∗ be a (finite) boundary point of Jλ0 (we note that
Jλ0 cannot be the real line since the spectrum cannot be empty). We focus on the
behavior of the invariant curves that exist for λ = λ0 when λ approaches λ∗. In this
case, we prove the following (see Theorem 5.3): the attracting and repelling curves
approach each other in a monotone and non-uniform way; when λ reaches λ∗, the
two curves “collide” on a dense set of points and they stop being continuous; and,
for λ = λ∗, the two curves are continuous and coincident on a residual set R ⊂ T1,
invariant by ω 7→ ω + α, whereas they are different and discontinuous in a full
measure set of points of T1.

To discuss the structure of these curves for λ = λ∗ we introduce the concept of
almost automorphic extension of the basis T1: a minimal invariant set M ⊂ T1×P1

is an almost automorphic extension of the basis T1 if there exists an element ω̂ ∈ T1

such that the set Mω̂ = M∩({ω̂}×P1) reduces to a single point. It is clear that, due
to the invariance of M and that the dynamics on T1 is an irrational rotation, the set
R of values ω̂ such that Mω̂ is a singleton is dense in T1. The simplest example of
an almost automorphic extension is a regular invariant curve, (for which R = T1).
However, in our situation (λ = λ∗), the closure Mλ∗ of the attracting and repelling
curves is an almost automorphic extension of T1 for which the set of values R is a
residual set of zero measure (see Theorem 5.3).

Note that, as recalled before, the spectrum is a Cantor set. In particular there
exists an infinite countable number of spectral gaps, and hence an infinite countable
number of points λ∗ to which the previous arguments apply.

As pointed out before, we are interested in SNAs on R. So let us try to embed
the set Mλ∗ ⊂ T1 × P1 into T1 × R. This can be easily done if the set Mλ∗ is
contained in T1 × [δ, π − δ] for a positive δ. In this case, the graph of the non-
continuous invariant curve ϕ̄− : T1 → (0, π) ⊂ R is what we call an SNA. This is
the situation arising if λ∗ is the first point of the spectrum (see Remark 6.5). If
the projection of M on P1 contains the point 0, the situation is a bit more difficult:
the attractor may be winding on P1 so that it cannot be naturally included in R.
To “unwind” the attractor, we proceed in the following way. Let ϕ̄−λ : T1 → P1

be the attracting invariant curve for any λ. We prove (see Theorem 5.3) that the
graph of ϕ̄−λ − ϕ̄−λ0

excludes the infinity point for all λ ∈ Jλ0 − {λ0}. Therefore, it
is possible to unwind the invariant curve ϕ̄−λ for all λ ∈ Jλ0 − {λ0} by means of a
fixed smooth translation given by ϕ̄−λ0

(see Theorems 6.3 and 6.4). In particular,
the translated curve ϕ̄−λ∗ − ϕ̄−λ0

is not continuous and attracting for the translated
flow, and its closure on Ω×P1 is an almost automorphic extension of the basis that
excludes the infinity point.

The process of unwinding the attractor in the Harper case is a smooth transfor-
mation (a translation) on P1 that allows to embed the attractor in R, used to show
the existence of SNAs on the real line.

Figures 1-4 show some graphics corresponding to the attracting and repelling
sets for the equation (1.2) with b = 1.1 and different values of λ. The horizontal
and vertical axes represent the one-dimensional torus T1 and the real projective
line, respectively, so that the graphics must be interpreted like sets of points over
the two-dimensional torus. Figures 1 and 2 show the situation near the first point
of the spectrum, which we will call λ∗. The four graphics in Figure 1 correspond
to values of λ in the resolvent, approaching λ∗ from the left: −3, −2.8, −2.75 and
−2.783 respectively. The green and red curves represent the attractor and repeller,
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Figure 1. Approximation of the attracting and repelling invariant
curves as λ approaches the first point of the spectrum

Figure 2. Behavior near the first point of the spectrum

given by copies of the base T1. The evolution of these curves is monotone and
the distance between them decreases as λ increases. As mentioned before, these
properties are rigorously proved in Theorem 5.3. Numerical computation gives a
value close to 2× 10−3 for the distance between both curves in the fourth figure.
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Figure 3. Approximation of the attracting and repelling invariant
curves as λ approaches the left extreme point of another spectral
interval

In the case λ = −2.736376452149, represented in the first graphic of Figure 2, the
attracting and repelling sets seem to be continuous curves at a distance of the order
of 10−12. The second graphic corresponds to λ = −2.736376452148. In this case
the attracting (green) and repelling (red) sets do not seem to be continuous curves.
But this cannot be ensured by their representations: recall that in fact they are
continuous outside the spectrum, which is a Cantor set, so that to find numerically
a value of λ for which the curves are not continuous is highly improbable; and
since we have a finite number of pixels to represent any set, it is easy to obtain a
discontinuous set of points when computing a continuous curve with a very strange
shape. This last fact can easily be a source of errors in the interpretation of the
plots. Nevertheless, if we assume that the numerical computation is sharp enough
to guarantee that the points plot to draw Figure 2 are correct, the results rigorously
proved in this paper allow us to say something more: one observes that there is not
a monotone way to pass from the attracting/repelling pair in the first graphic of
Figure 2 to the one of the second, and this lack of monotonicity allows us to ensure
that this small interval (of length 10−12) contains the point λ∗, for which an SNA
on R occurs. This point λ∗ corresponds to the value of the parameter for which the
two curves have their first contact. Hence the graphic of the SNA must look like
the green set in the first plot of Figure 2.
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Figure 4. Behavior near the left extreme point of another spectral interval

Figure 5. Unwound attracting and repelling sets

This structure is basically reproduced at any other extreme point of a spectral
gap. The four graphics in Figure 3, corresponding to the values 1.7, 1.9, 1.95 and
1.96 of λ, are a new sample of the collision phenomenon; and the two graphics of
Figure 4 correspond to two close values of λ (1.960148407660 and 1.960148407661)
between one can reasonable expect the existence of a left extreme point of a spec-
tral interval. The difference with the previous figures is that in these cases, the
attracting sets cross the infinity point of P1. Hence, in order to obtain an SNA on
R, an unwinding process is required. The graphics of Figure 5 show the attracting
and repelling sets obtained after the unwinding process before described: more pre-
cisely, they correspond to the map obtained from (1.2) by ϕ̄ 7→ ϕ̄−ϕ̄−λ0

for λ0 = 1.7.
(We point out that this new map is not necessarily a Harper map.)

The structure described in the case that λ is taken in the boundary of a spectral
gap seems to be lost when λ is not one of these countable values but is still inside
the spectrum. For instance, in [4] it is proved that, if the parameter b is positive
and large enough, there exists a subset of the spectrum (with positive Lebesgue
measure) of values of λ for which the only minimal subset is the whole phase space
T1 × P1. In this case, the functions ϕ̄±λ : Td → P1 corresponding to the projective
coordinates of the Oseledets subbundles W±

λ (i.e. the attracting/repelling sets in
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the Harper map) cannot have any point of continuity: otherwise the closure of
their graphs would be almost automorphic extensions of the base, impossible since
the only minimal set is the whole space. So that the closure of any orbit of the
attracting set is the whole space. For these reasons, we do not consider that, in
this case, the system has a strange nonchaotic attractor. However, some authors
consider the graph of the curve ϕ̄−λ as an (unbounded) SNA on P1 ([19]).

1.2. An example by G. Keller. The previously described properties suggest a
strong similarity between the structure of the SNA found in the Harper map and
the well-known example given by G. Keller in [31]. We think it is very interesting
to insists in this similitude.

Keller’s example uses the map T : T1×[0,∞) → T1×[0,∞) defined by T (ω, x) =
(ω+α, f(x)gµ(ω)). It is assumed that f is positive, bounded C1, increasing, strictly
concave and f(0) = 0. Moreover, it is supposed that gµ is positive, C0 and there
exists a value µ0 such that if µ < µ0 gµ never vanishes, and if µ ≥ µ0 gµ has at
least a zero. It is clear that the Lyapunov exponent of the invariant curve x = 0 is
given by

λµ = ln f ′(0) +
∫

T1
ln gµ(ω) dω.

It is also assumed that λµ > 0 on a neighborhood of µ0. Note that this implies that
the curve x = 0 is repelling. Under these conditions, it can be proved ([31]) that

1. if µ < µ0 there exists a unique attracting invariant curve ϕµ : T1 → [0,∞).
The curve is as smooth as the map (see also [56]).

2. If µ ≥ µ0 there exists an upper semicontinuous (and Lebesgue-a.e. discontin-
uous!) function ϕµ : T1 → [0,∞) with an invariant graph with a negative
Lyapunov exponent. The repelling invariant curve x = 0 is contained in the
closure of the graph of ϕ.

The Lyapunov exponent of the invariant graph of item 2 is defined as

βs(ϕ) =
∫

T1
ln |f ′(ϕ(ω))gµ(ω)| dω.

The Birkhoff ergodic theorem (see, for example, [30]) ensures that βs(ϕ) coincides
a.e. with the Lyapunov exponent of single orbits on the graph of ϕ. On the other
hand, there exists a zero measure set of points on this graph giving a different
Lyapunov exponent. This is also clear if we note that ϕ intersects the repelling
curve x = 0 for a dense set of values of ω.

At this point we want to note the very particular nature of this attracting set:
3. The graph of ϕ is only attracting for initial conditions (ω, x) such that ω

belongs to a suitable full measure proper subset of T1 (that is, there is a dense
zero measure set of values of ω for which the initial conditions (ω, x), x > 0,
are not attracted to the graph of ϕ). In particular, the basin of attraction has
empty interior.

4. The attractor is not minimal (it properly contains the invariant set x = 0). We
remark that, in this context, repelling curves are not persistent (see [28, 29]
for details). Therefore, having x = 0 as invariant curve for all the values of the
parameters is highly nongeneric.

In the previous section we have discussed the existence of an SNA for the Harper
map when λ is in the boundary of a spectral gap and the dynamics is non-uniformly
hyperbolic, possibly after an unwinding process. As said before, we want to make
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some remarks comparing the structures of the closure of the attractor for the Harper
map (we will call it M) and the one given by Keller (we will call it Γ).

Note that assertions 1 and 2 above show that Γ appears as a consequence of the
collision as µ → µ−0 of the invariant curve x = 0 and the continuous attracting
invariant curve ϕµ. The set Γ is given by the closure of ϕµ0 and contains the graph
of x = 0. Similarly, the set M appears as a consequence of the collision as the
spectral parameter in the resolvent tends to the extreme point of a spectral gap of
two hyperbolic curves ϕ̄, and in fact it agrees with the closure of the graph of any
of them.

On the other hand, as asserted in point 4, the set Γ is not minimal, since it
contains a proper subset (x = 0) which is invariant. Consequently, it is not an
almost automorphic extension of the basis T1, as M is. However, we note that Γ
is still a so-called pinched set: its sections reduce to a point for a residual subset
of base points. In addition, the sections of M and Γ do no reduce to a point for a
full measure set of elements of the torus. In this sense, the two sets have a quite
similar “shape”, with the difference that Γ is forced, by construction, to contain
the invariant subset x = 0. Finally, as a consequence of this pinched structure, also
the dynamics inside both sets (partially described for Γ in the point 3) is similar.

1.3. Contents of the paper. Section 2 contains some basic definitions and results
on topological dynamics and ergodic theory which will be fundamental in the rest
of the paper. In Section 3 we define the type of SNAs we will work in this paper:
non-closed and bounded invariant curves for a continuous map on Td × R with
negative Lyapunov exponent. Some monotonicity conditions required for the map
are fundamental in the dynamical description of the skew-product flow that it
induces. The connection between the closure of one of these objects and the almost
automorphic extensions of the quasi periodic base flow will be also established.

In the approach we present, the SNAs will be, roughly speaking, associated to the
projective flow induced on Td×P1 by a quasi periodic family or differential equations
(of Dirac or Schrödinger type) or difference equations (of Jacobi type). All these
cases admit a simultaneous analysis: the Schrödinger equation can be understood
as a particular type of Dirac system, and the Jacobi equation can also be included in
the same setting by means of the suspension of the discrete semiflow that it induces;
i.e. of a new real flow, associated to a Dirac-type differential equation, such that
the restriction of the orbits to the integer values of the time provides the orbits of
the discrete initial flow. (Appendix B summarizes the most basic facts concerning
this suspension process.) Section 4 presents some facts concerning the dynamical
description of these projective flows, paying special attention to the non-uniformly
hyperbolic case. Some classical results of one-dimensional dynamics are needed in
this description. For the reader’s convenience, the detailed proofs of these results
are included in Appendix A.

This type of dynamics is the suitable one for us to look for strange nonchaotic
attractors. However, in order to find SNAs on R, we need something more. In
Section 5 we include our initial equation in a one-parametric family of equations of
the same kind, defining a spectral problem for a linear operator in a suitable space.
Under the assumptions that our equation corresponds to a value of the parameter
given by the finite extreme point of a spectral gap and that the corresponding
dynamics is non-uniformly hyperbolic, we show the existence of a non-continuous
invariant curve on Td×P1 with negative Lyapunov exponent. In addition, we show



12 A. JORBA, C. NÚÑEZ, R. OBAYA, AND J.C. TATJER

that this curve appears as a result of the collision of two hyperbolic continuous
curves as the parameter approaches that extreme point.

Finally, all these results will be glued up in Section 6 in order to show how to
obtain an SNA for a flow of the type considered in Section 3, taking as starting point
the non-continuous invariant curve with negative Lyapunov exponent obtained in
the previous section. In the case of a differential equation: if the closure of this
curve on Td × P1 does not cross the infinity point, the SNA is obtained by means
of a Poincaré section; whereas in the other case a previous unwinding procedure is
required. The situation is similar in the case of an initial difference equation, for
which our our analysis is based on the construction of the suspension mentioned
before. A brief summary of situations in which our conditions are satisfied completes
the paper.

2. Basic notions and results

We recall in this section some definitions and results which are standard in
topological dynamics and ergodic theory, which will be used throughout the paper.

Let Ω be a complete metric space. A continuous map σ : R × Ω → Ω, (t, ω) 7→
σ(t, ω) satisfying

(1) σ0 = Id,
(2) σt+s = σt ◦ σs for each s, t ∈ R,

where σt(ω) = σ(t, ω), is a real continuous flow on Ω, while a continuous map σ :
R+ ×Ω → Ω, (t, ω) 7→ σ(t, ω) satisfying (1) and (2) for s, t ∈ R+ = {t ∈ R | t ≥ 0}
is a real continuous semiflow on Ω.

By replacing R by Z, we obtain the definitions of discrete continuous flow and
semiflow. Note that a discrete semiflow is then given by the iterations of the map
σ1(ω) = σ(1, ω): by defining, as usual, σ0

1(ω) = ω, we obtain σn
1 (ω) = σ(n, ω) for

n ∈ Z+ = {n ∈ Z | n ≥ 0}. In addition, σ is a flow if and only if the map σ1 is
a homeomorphism with inverse σ−1

1 (ω) = σ(−1, ω), in which case σn
1 (ω) = σ(n, ω)

for n ∈ Z.
In order to unify notations, Y will represent either R or Z. So that t ∈ Y will be

either a real or an integer number, depending on the type of flow considered.
Let (Ω, σ,Y) be a continuous flow. The orbit or trajectory of the point ω is the

set {σt(ω) | t ∈ Y}. A subset Ω1 ⊂ Ω is σ-invariant if σt(Ω1) = Ω1 for every
t ∈ Y. A σ-invariant subset M ⊂ Ω is minimal (or σ-minimal) if it is compact and
does not contain properly any other compact σ-invariant set. Clearly, a compact
σ-invariant subset is minimal if and only if every orbit is dense on it, and every
compact σ-invariant set contains a minimal subset. The continuous flow (Ω, σ,Y)
is recurrent or minimal if Ω itself is minimal.

Let m be a normalized Borel measure on Ω; i.e. a finite regular measure defined
on the Borel subsets of Ω and with m(Ω) = 1. The measure m is σ-invariant if
m(σt(Ω1)) = m(Ω1) for every Borel subset Ω1 ⊂ Ω and every t ∈ Y. If, in addition,
m(Ω1) = 0 or m(Ω1) = 1 for every σ-invariant subset Ω1 ⊂ Ω, then the measure m
is σ-ergodic. The measure m is concentrated on Ω1 ⊂ Ω if m(Ω1) = 1.

In the case of a continuous semiflow (Ω, σ,Y+), the forward orbit of the point
ω is the set {σt(ω) | t ∈ Y+}; a subset Ω1 of Ω is positively σ-invariant if Ω1 ⊂
σ−1

t (Ω1) for all t ∈ Y+, and it is σ-invariant if Ω1 = σ−1
t (Ω1); a positively σ-

invariant subset M ⊂ Ω is minimal (or σ-minimal) if it is compact and it does not
contain properly any closed, positively σ-invariant subset; the semiflow (Ω, σ,Y+)
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is minimal if Ω itself is minimal. A normalized Borel measure m is σ-invariant if
m(Ω1) = µ(σ−1

t (Ω1)) for every Borel subset Ω1 ⊂ Ω and every t ∈ Y+, and it is
σ-ergodic if every φ-invariant subset has measure 0 or 1. A point ω0 ∈ Ω admits a
backward orbit if for every t ∈ Y there exists a point in Ω, represented by σ(t, ω0),
such that σ(s, σ(t, ω0)) = σ(t + s, ω0) for every s ∈ Y+. Every point in a minimal
subset M admits at least a backward orbit contained in M . And, in the case that
Ω is locally compact, the semiflow σ admits a flow extension (that is, there exists
a flow on Ω × Y+ agreeing with σ) if and only if each point in Ω admits a unique
backward orbit.

Let us represent by Td the d-dimensional torus, identified as usual with (R/Z)d.
Throughout the paper, α = (α1, . . . , αd) ∈ Rd will be a fixed vector with rationally
independent components in the real case Y = R and such that 1, α1, . . . , αd are
rationally independent in the discrete case Y = Z. In both cases we will refer to
α as a rationally independent frequency vector. Then the map σα : Y × Td →
Td, ω 7→ ω·t = ω + αt defines a flow over the torus, which is minimal and uniquely
ergodic, the induced Lebesgue measure on Td being the unique σα-ergodic measure.
In addition, this is an almost periodic flow: given any ε > 0 there exists δ > 0 such
that, if d(ω1, ω2) < δ for a pair of points ω1, ω2 ∈ Td, then d(ω1·t, ω2·t) < ε for
every t ∈ Y. The flow (Td, σα,Y) is usually called a Kronecker flow with frequency
vector α.

Now let X represent a metric space. We will work throughout the paper with a
real skew-product semiflow (Td ×X,φ,Y+) projecting onto (Td, σα,Y); i.e. with a
continuous semiflow on the bundle Td ×X of the form

φ : Y+ × Td ×X → Td ×X , (t, ω, x) 7→ (ω·t, u(t, ω, x)) . (2.1)

That is, φ reproduces the flow on the base torus and it is given on the fiber by a
map u : Y+ × Td ×X → X satisfying

u(t+ s, ω, x) = u(t, ω·s, u(s, ω, x)) for all s, t ∈ Y+ and (ω, x) ∈ Td ×X . (2.2)

Let M be a φ-minimal subset of Td×X. From the minimality of the base flow it is
easy to deduce that the restriction to M of the projection Td×X → X, (ω, x) 7→ x
is surjective. The restricted semiflow (M,φ,Y+) is an almost automorphic extension
of (Td, σα,Y) if there exists an element ω ∈ Td such that the section Mω = {x ∈
X | (ω, x) ∈ M} contains a unique element. And (M,φ,Y+) is a copy of the base
flow if Mω contains a unique element for every ω ∈ Td. In this case, the restriction
of the semiflow to M can be extended to a real flow which reproduces exactly the
one on the base.

In fact, throughout the next pages, the metric space X will be R, R2 or the
real projective line P1, which we will identify with R/πZ. And we will almost
always work with skew-product flows (Td×X,φ,Y) and almost automorphic exten-
sions (M,φ,Y), whose definitions just require to change Y+ by Y in the previous
subsection.

Remark 2.1. In order to simplify the explanation, the results of the following
sections will be referred to skew-product semiflows or flows over a Kronecker base;
that is, we will restrict ourselves to the quasi periodic case. However all the results
can be extended to skew-products over a base flow (Ω, σ,Y) if Ω is a compact metric
space and the flow σ is minimal and almost periodic. These conditions ensure the
ergodic uniqueness on this base flow, and the proofs of the analogous results just
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require to change the Lebesgue measure on Td by the unique ergodic measure on
Ω, the Haar measure.

The reader can find in Katok and Hasselblatt [30], Fink [14], Ellis [12], Sacker and
Sell [47], Shen and Yi [52] and references therein the basic properties on Kronecker,
minimal, almost periodic and almost automorphic flows, as well as several results
of extensibility of semiflows.

3. Strange nonchaotic attractors

Our approach to the concept of strange nonchaotic attractor is described in this
section. As in most of the examples appearing in the literature, they will be non-
closed bounded invariant objects for a discrete monotone semiflow defined on a real
one-dimensional bundle over Td. In addition we will show the connection between
the SNAs of this type and the almost automorphic extensions of the base flow.

Let us consider a discrete Kronecker flow (Td, σα,Z) and a discrete continu-
ous skew-product semiflow (Td × R, φ,Z+) projecting onto (Td, σα,Z), written as
φ(n, ω, x) = (ω·n, ϕ(n, ω, x)) (where ω·n ≡ σα(n, ω) = ω + nα). As explained in
the previous section, the semiflow φ is given by the successive iterations of the con-
tinuous map φ1 : Td×R→ Td×R , (ω, x) 7→ φ(1, ω, x), which is a homeomorphism
if and only if φ is a flow. We assume in this section the following conditions on φ.

Hypotheses 3.1. There exists the partial derivative ϕx(1, ω, x), the map Td×R→
R, (ω, x) 7→ ϕx(1, ω, x) is continuous, and ϕx(1, ω, x) > 0 for every (ω, x) ∈ Td×R.

Note that this guarantees the existence, continuity and positiveness on Td × R
of ϕx(n, ω, x) for every n ∈ Z+, since the chain rule applied to (2.2) gives

ϕx(n, ω, x) = ϕx(1, ω·(n− 1), ϕ(n− 1, ω, x))ϕx(n− 1, ω, x) . (3.1)

In addition, under Hypotheses (3.1) the discrete semiflow φ satisfies the following
fundamental monotonicity condition:

ϕ(1, ω, x1) < ϕ(1, ω, x2) whenever ω ∈ Td and x1, x2 ∈ R with x1 < x2 . (3.2)

Definition 3.2. A φ-invariant curve is a (Lebesgue) measurable map c : Td → R
defined everywhere which is bounded and such that ϕ(1, ω, c(ω)) = c(ω·1) for every
ω ∈ Td. The corresponding φ-invariant graph is the set C = {(ω, c(ω)) | ω ∈ Td} ⊂
Td × R.

It is easy to check that the measure µC defined for the continuous functions
g ∈ C(Td × R,R) by ∫

Td×R
g(ω, x) dµC =

∫
Td

g(ω, c(ω)) dω (3.3)

is a φ-ergodic measure concentrated on C. Note also that c is continuous if and
only if C is closed, in which case this set is a copy of the base.

Definition 3.3. Let c : Td → R be a φ-invariant curve and C the associated graph.
The Lyapunov exponent of c is defined by

βs(c) =
∫

Td

lnϕx(1, ω, c(ω)) dω =
∫

Td×R
lnϕx(1, ω, x) dµC , (3.4)

µC being the φ-ergodic measure defined by (3.3).
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There is a strong connection between this measure-theoretic Lyapunov exponent
and the usual Lyapunov index of a trajectory of the semiflow. Namely, we associate
to each (ω0, x0) ∈ Td × R an index β̃s by

β̃s(ω0, x0) = lim sup
n→∞

1
n

lnϕx(n, ω0, x0) . (3.5)

Note that, as a consequence of (3.1),

β̃s(ω0, x0) = lim sup
n→∞

1
n

n− 1∑
j = 0

lnϕx(1, φ(j, ω0, x0)) .

Birkhoff ergodic theorem and the φ-invariance of c show that

βs(c) = lim
n→∞

1
n

n− 1∑
j = 0

lnϕx(1, ω·j, c(ω·j)) = β̃s(ω, c(ω))

for (Lebesgue) a.e. ω ∈ Td.
Following Jäger [21], we will call strange nonchaotic attractor (SNA for short) to

the graph of a non-continuous φ-invariant curve with negative Lyapunov exponent.
Note that these sets are in fact SNAs on the real line. Our goal in the next sections
will be to establish conditions ensuring the existence of certain flows (Td ×R, φ,Z)
having an SNA. More precisely, we will determine for such flows a φ-invariant curve
c : Td → R such that

- c is continuous at the points of a σα-invariant residual subset of Td,
- c is discontinuous at the points of a σα-invariant subset of Td with full measure,
- and the Lyapunov of c is βs(c) < 0.

In addition, our conditions will ensure that the closure of such a set on Td × R
(which is compact, due to the boundedness of the curve) is a φ-minimal subset
of the product space. In order to understand a bit better the structure of the
SNA, we will describe in the next theorem the shape of the φ-minimal subsets: the
conditions imposed on the flow φ mean a strong restriction on the structure of these
sets. Before we associate a new index to the minimal subsets.

Definition 3.4. Let M ⊂ Td ×R be a positively φ-invariant compact subset. The
upper Lyapunov exponent of M is defined by

βs(M) = sup
(ω,x)∈M

β̃s(ω, x) . (3.6)

Theorem 3.5. Let M ⊂ Td × R be a φ-minimal subset. Then,
(i) the restriction of φ to M admits a flow extension,
(ii) M is an almost automorphic extension of the base flow, and
(iii) if βs(M) < 0, M is a copy of the base; i.e. M is the graph of a continuous

φ-invariant curve.

Proof. (i) Define M0 = ∩∞k=1φ
k
1M and note that each one of its points has a back-

ward orbit, which is necessarily unique by the injectivity in x of ϕ(n, ω, x) for each
(n, ω) (which follows from the monotonicity condition (3.2)). This means that the
semiflow on M0 admits a flow extension (see Section 2). In addition, M0 is a com-
pact positively φ-invariant subset of M , and hence, by minimality, M = M0. This
result appears in [52].
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(ii) From the minimality of the base flow it follows easily that M projects onto
the whole Td. We define ci(ω) = infMω and cs(ω) = supMω where, as usual, Mω =
{x ∈ R | (ω, x) ∈M}. Obviously, the sets {(ω, ci(ω)) | ω ∈ Td} and {(ω, cs(ω)) | ω ∈
Td} are contained in M . Let us check that they are φ-invariant graphs. Assume
by contradiction that there exists ω0 ∈ Td such that ci(ω0·1) 6= ϕ(1, ω0, ci(ω0)).
Then ci(ω0·1) < ϕ(1, ω0, ci(ω0)) and therefore ϕ(−1, ω0·1, ci(ω0·1)) < ci(ω0). Here
we use again condition (3.2). But this contradicts the definition of ci(ω0), since
ϕ(−1, ω0·1, ci(ω0·1)) ∈Mω0 . The proof is analogous in the case of cs.

It is obvious that the maps ci and cs are semicontinuous. Consequently, they are
continuous at the points of a (common) residual subset R ⊂ Td. Take now ω1 ∈ R.
Then, by minimality of M , there exists a sequence (nk) ↑ ∞ such that

(ω1, ci(ω1)) = lim
k→∞

(ω1·nk, ϕ(nk, ω1, cs(ω1))

= lim
k→∞

(ω1·nk, cs(ω1·nk)) = (ω1, cs(ω1)) ;

that is, ci(ω1) = cs(ω1). Consequently, the section Mω1 reduces to a point, which
proves our assertion.

(iii) Our first objective is to show that, given ε > 0, there exists δ = δ(ε) > 0
independent of ω such that |x−ci(ω)| < δ implies |ϕ(n, ω, x)−ci(ω·n)| < ε for every
n ∈ Z+. We define r(ω, y) = ϕ(1, ω, ci(ω)+y)−ci(ω·1)−ϕx(1, ω, ci(ω)) y. It is easy
to check the existence of L(y) ≤ 0 such that |r(ω, y)| ≤ L(y)|y| for every ω ∈ Td and
limy→0+ L(y)/y = 0. We fix (ω, x) ∈ Td×R and define y(n) = ϕ(n, ω, x)− ci(ω·n).
Then y is a solution of the linear difference equation

y(n+ 1) = ϕx(1, ω·n, ci(ω·n)) y(n) + r(ω·n, y(n)) . (3.7)

The condition βs(M) < 0 provides an easy proof of the fact that the sequence
y(n) ≡ 0 is an exponentially asymptotically stable solution of the associated homo-
geneous equation. The boundedness properties of r(ω, y) and the first approxima-
tion theorem imply that y(n) ≡ 0 is an exponentially asymptotically stable solution
of the difference equation (3.7) (see e.g. Lakshmikantham and Trigiante [36]). In
addition, these properties are uniform in ω ∈ Td, from where our assertion follows.

Now we fix ε > 0 and take (ω, x) ∈ M . Let ω1 be a continuity point for ci.
We choose a sequence (nk) ↑ ∞ such that ω1 = limk→∞ ω·(−nk) and consider
the sequences (ω·(−nk), ϕ(−nk, ω, x)) and (ω·(−nk), ϕ(−nk, ω, ci(ω))). Then, for a
common subsequence (nj),

lim
j→∞

(ω·(−nj), ϕ(−nj , ω, x)) = lim
j→∞

(ω·(−nj), ϕ(−nj , ω, ci(ω))) = (ω1, c(ω1)) ,

since Mω1 = {ci(ω1)}. Consequently, |ϕ(−m,ω, x) − ϕ(−m,ω, ci(ω))| < δ for a
point m ∈ Z+, and going forward we find |x − ci(ω)| < ε. Since ε is arbitrary,
we conclude that Mω = {ci(ω)} for every ω ∈ Td, which in its turn ensures the
continuity of ci. This completes the proof. A similar result for the one-dimensional
torus can be found in [57]. �

In particular, if a φ-minimal set M contains an SNA (a non-closed graph), then
βs(M) ≥ 0. This implies that M contains also a φ-invariant graph with non-
negative Lyapunov index. This assertion is a consequence of the next result, which
shows the strong connection between the upper Lyapunov index of a positively
φ-invariant compact subset and the φ-invariant graphs contained in it.
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Proposition 3.6. Let M ⊂ Td ×R be a positively φ-invariant compact subset and
define M0 = ∩∞k=1φ

k
1M , a non-empty compact φ-invariant set. Then,

(i) for each (ω0, x0) ∈M there exists a φ-invariant measure νω0,x0 concentrated
on M0 such that

βs(ω0, x0) =
∫

Td×R
lnϕx(1, ω, x) dνω0,x0 .

(ii) There exists a φ-invariant graph C0 ⊂M0 such that

βs(M) =
∫

Td×R
lnϕx(1, ω, x) dµC0 .

Proof. (i) Let us fix (ω0, x0) ∈M . We choose an increasing sequence (nk) ↑ ∞ with
βs(ω0, x0) = limk→∞(1/nk)

∑nk−1
j=0 lnϕx(1, φ(j, ω0, x0)) and apply Riesz represen-

tation theorem in order to associate to the bounded linear operator C(M,R) →
R , g 7→ (1/nk)

∑nk−1
j=0 g(φ(j, ω, x)) a Borel normalized measure νk concentrated

on M . Alaoglu theorem ensures that the sequence (νk) admits a subsequence (νl)
which converges weakly to a measure νω0,x0 : liml→∞(1/nl)

∑nl−1
j=0 g(φ(j, ω, x)) =∫

Td×R g(ω, x) dνω0,x0 for any continuous g. It is easy to check that νω0,x0 is a φ-
invariant measure concentrated on M . Since νω0,x0(φ1M) = νω0,x0(φ

−1
1 φ1M) ≥

νω0,x0(M) = 1, it turns out that νω0,x0(φ
k
1M) = 1 for every k ∈ Z+, and this gives

νω0,x0(M0) = 1.

(ii) We repeat the argument of Theorem 3.5(i) to show that the semiflow on M0

admits a flow extension. Clearly, each φ-invariant measure ν concentrated on M
(and hence on M0) is invariant for this flow. Statement (i) and (3.6) imply the
existence of a sequence (νk) of φ-invariant measures concentrated on M0 such that
βs(M) = limk→∞

∫
Td×R lnϕx(1, ω, x) dνk. Alaoglu theorem ensures the existence

of a subsequence (νj) converging weakly to a measure ν0 concentrated on M0.
In particular, βs(M) =

∫
Td×R lnϕx(1, ω, x) dν0. It follows easily that ν0 is a φ-

invariant measure. The decomposition into ergodic components theorem for the
semiflow (M,φ,Z+) ensures then the existence of a φ-ergodic measure µ0 such
that βs(M) =

∫
Td×R lnϕx(1, ω, x) dν0 (see Mañé [38]). Statement (ii) follows from

the fact that every φ-ergodic measure µ concentrated on M0 agrees with µC for a
φ-invariant graph C ⊂M0 (see Arnold [1]). �

As said before, we will establish conditions ensuring the existence of SNAs for
certain monotone discrete skew-product flows whose closure is a minimal set M .
Therefore, summarizing all the previous assertions, we can conclude the following:

- M contains the graph of a non-continuous φ-invariant curve with negative
Lyapunov exponent, which is dense in it: the SNA whose closure gives rise to
the minimal;

- the section Mω reduces to a point for a residual subset of the base Td, since
M is an almost automorphic extension of the base;

- M contains the graph of another φ-invariant curve with non-negative Lyapunov
exponent, since otherwise Theorem 3.5(iii) ensures that M agrees with the
graph of a continuous φ-invariant curve;

- the section Mω does not reduce to a point for a full-measure subset of the base,
as a consequence of the previous properties.
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In fact, for the type of SNAs that we will find, the closure will contain the graph
of another φ-invariant curve with positive Lyapunov exponent. So that, to some
extent, the dynamics on this minimal set contents ingredients usually associated to
the chaotic dynamics.

We end this section by pointing out again that, of course, this type of strange
nonchaotic attractors is not the unique one can find. As mentioned in Subsec-
tion 1.2, the example given by Keller [31] corresponds to an SNA which is not
contained in a minimal subset. The strong connections between this example and
the SNAs we will find has already been commented in the particular case of the
almost Mathieu equation (1.5): all of them appear as a consequence of the collision
(as a parameter varies) of the graphs of two separate invariant continuous curves,
and their closures are pinched sets (i.e. their sections reduce to a point for a residual
subset of base points). These assertions will be clarified in Section 5, in Remark 5.7.

4. The projective flows

The first objective of this section is to explain with some detail the three different
frameworks we will simultaneously consider throughout the rest of the paper. This
constitutes the starting point in the description of our conditions ensuring the
occurrence of SNAs, as well as in the description of the dynamics on these sets. The
first step in this description is given in the second part of the section, dedicated
mainly (Theorem 4.10) to the analysis of the projective dynamics associated to a
non-uniformly hyperbolic system.

Recall that (Td, σα,Y) represents a real or discrete Kronecker flow with rationally
independent frequency vector α.

Dirac systems. The first setting we consider is given by a family real two-dimensional
linear systems of ordinary differential equations with zero-trace, each one given by
the evaluation of a continuous function on Td along one of the σα-trajectories. That
is,

z′ = S(ω·t) z =
[
a(ω·t) b(ω·t)
c(ω·t) −a(ω·t)

]
z , ω ∈ Td , (4.1)

with a, b, c : Td → R continuous.
We point out that this setting comes frequently from a single two-dimensional

system with quasi periodic coefficients with irrationally independent frequency vec-
tor: the well known hull construction includes one of these systems in a family of
type (4.1).

Let Z(t, ω) represent the fundamental matrix-solution of (4.1) with Z(0, ω) = I2
Then z(t, ω, z0) = Z(t, ω) z0 is the solution of (4.1) with initial data z(t, ω, z0) = z0.
The family of equations induces a continuous real skew-product flow on the linear
two-dimensional bundle Td × R2,

τ : R× Td × R2 → Td × R2 , (t, ω, z0) 7→ (ω·t, z(t, ω, z0)) ,

which is linear on each fiber R2. On its turn, this linearity ensures that τ induces
a new flow on the real projective bundle KR = Td × P1, where we identify P1

with R/πZ. In order to describe it, let us take polar-symplectic coordinates ϕ =
cot−1(z2/z1) and ρ = (z2

1 + z2
2)/2 on R2. We obtain from (4.1) the family of
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equations

ϕ′ = f(ω·t, ϕ)

=
1
2
(b(ω·t)− c(ω·t)) +

1
2
(b(ω·t) + c(ω·t)) cos 2ϕ+ a(ω·t) sin 2ϕ , (4.2)

ρ′ = −fϕ(ω·t, ϕ) ρ = ((b(ω·t) + c(ω·t)) sin 2ϕ− 2 a(ω·t) cos 2ϕ) ρ . (4.3)

The real projective flow is the skew-product

τp : R×KR → KR , (t, ω, ϕ̄0) 7→ (ω·t, ϕ̄(t, ω, ϕ0)) , (4.4)

where ϕ̄ ∈ P1 represents the equivalence class of an element ϕ ∈ R and ϕ(t, ω, ϕ0)
is the solution of the equation (4.2) with initial data ϕ(0, ω, ϕ0) = ϕ0. Note that
simple integration solves equations (4.3) once the orbits of the flow τp are known.
For further purposes, we also point out that

∂ϕ

∂ϕ0
(t, ω0, ϕ0) = exp

∫ t

0

fϕ(ω·s, ϕ(s, ω0, ϕ0)) ds (4.5)

for every (ω0, ϕ̄0) ∈ KR.

Schrödinger equations. The second framework considered in this paper corre-
sponds to a family of scalar linear second-order Schrödinger equations

−z′′ + s(ω·t) z = 0 , ω ∈ Td , (4.6)

with s : Td → R continuous, which can be easily included in the previous Dirac
setting by taking z = [ z

z′] and S0(t) =
[

0 1
s0(t) 0

]
. (However, we will consider in

Section 5 the spectral problems associated to (4.1) and (4.6), and the Schrödinger
one is not a particular case of the Dirac one.)

Jacobi equations. A third type of equations admitting a parallel analysis corre-
sponds to the family of one-dimensional Jacobi equations

−z(n+ 1)− z(n− 1) + v(ω·n) z(n) = 0 , ω ∈ Td , (4.7)

with v : Td → R continuous. These equations can be written in matrix form as[
z(n)

z(n+ 1)

]
= D(ω·n)

[
z(n− 1)
z(n)

]
=

[
0 1
−1 v(ω·n)

] [
z(n− 1)
z(n)

]
. (4.8)

Analogously to the Dirac case, this family of discrete equations induces a dis-
crete skew-product flow on the real bundle Td × R2, given by the iterations of the
map T (ω, z) = (ω·1, D(ω) z). Let us represent Z(n, ω) = D(ω·(n − 1)) · · ·D(ω):
i.e. Z(n, ω) is the propagation matrix of the equation corresponding to ω. Then,
if z(n, ω, z0) represents the solution of (4.7) with initial data

[
z(−1,ω,z0)
z(0,ω,z0)

]
= z0,

one has that Tn(ω, z0) = (ω·n,Z(n, ω) z0) = (ω·n, z(n, ω, z0)). In order to unify
notations, we represent this discrete flow by τ : Z × Td × R2 → Td × R2; that is,
τ(n, ω, z) = Tn(ω, z).

As before, one can consider the induced flow on the projective bundle, (KR, τp,Z),
defined by the solutions of the equations

ϕ(n+ 1) = cot−1(− tanϕ(n) + v(ω·n)) , ω ∈ Td , (4.9)

obtained from (4.7) by taking ϕ = cot−1(z(n+ 1)/z(n)). Appendix B contains the
most basic facts concerning the construction of a suspension of the discrete flow τ ,
which provides a Dirac system defining a real continuous skew-product flow over
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a minimal and almost periodic base whose restriction to discrete instants of time
reproduces the initial discrete one.

In what follows we consider simultaneously the Dirac and Jacobi families (4.1)
and (4.8), so that t represents an element of R or Z. It is possible to distinguish be-
tween three very different dynamical situations: the elliptic, uniformly hyperbolic
and non-uniformly hyperbolic cases. In order to describe them, we recall the funda-
mental concepts of Lyapunov exponents and exponential dichotomy. As usual, |z|
will represent the Euclidean norm of the vector z and ‖Z‖ will denote the induced
matrix norm.

Definition 4.1. The four characteristic exponents of a pair (ω0, z0) ∈ Td×R2 are
the values of the limits

lim sup
t→±∞

1
t

ln |z(t, ω0, z0)| and lim inf
t→±∞

1
t

ln |z(t, ω0, z0)| , (4.10)

which are invariant along the trajectories. In the case that the four limits (4.10)
agree, their value is one of the Lyapunov exponents of the system.

Remark 4.2. It is known that there exist two Lyapunov exponents, −β and β,
with β ≥ 0. Moreover,

β = lim
|t|→∞

1
t

ln ‖Z(t, ω)‖

for every element ω of a σα-invariant subset Ω0 ∈ Td with full measure. These facts
are consequences of Oseledets multiplicative ergodic theorem [45] (see also [?]),
which in addition, in the case of β > 0, provides a measurable decomposition Td ×
R2 = W+⊕W− in two one-dimensional subbundles with lim|t|→∞(1/t) ln |z(t, ω, z0)| =
∓β for ω ∈ Ω0 and (ω, z0) ∈ W± with z0 6= [00]. The sets W+ and W− are usually
called Oseledets subbundles.

Definition 4.3. A family of m-dimensional linear equations z′ = A(ω·t) z (resp.
z(t + 1) = B(ω·t) z(t)) has an exponential dichotomy over Td if there exist two
positive constants η, γ and a family of projections P (ω) : Rm → Rm varying
continuously on Td such that

(i) ‖Z(t, ω)P (ω)Z−1(s, ω)‖ ≤ ηe−γ(t−s) for every t, s ∈ R (resp. t, s ∈ Z) with
t ≥ s,

(ii) ‖Z(t, ω) (Id−P (ω))Z−1(s, ω)‖ ≤ ηeγ(t−s) for every t, s ∈ R (resp. t, s ∈ Z)
with t ≤ s,

where Z(t, ω) is the fundamental matrix solution with Z(0, ω) = Id (resp. the
propagation matrix).

Remark 4.4. In the case of the two-dimensional family (4.1) (resp. (4.8)), the
determinant of the fundamental matrix Z(t, ω) (resp. of the propagation matrix
Z(n, ω)) is equal to 1. As a consequence of this fact, if an exponential dichotomy
occurs, the linear spaces l+(ω) and l−(ω) respectively given by the range and
kernel of P (ω) are one-dimensional. Hence they determine closed subbundles
L± = {(ω, z0) | ω ∈ Td, z0 ∈ l±(ω)} of Td × R2. According to Sacker and Sell
results [48, 49], these subbundles are inlvariant for the corresponding flow (in other
words, P (ω·t)Z(t, ω) = Z(t, ω)P (ω)) and Td×R2 = L+⊕L− as topological (Whit-
ney) sum. It is habitual to refer to L+ and L− as the stable subbundles at −∞ and
+∞, respectively, and also as the Sacker-Sell subbundles.
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Remark 4.5. The dynamical classification mentioned before for a family of systems
of the type (4.1) or (4.8) follow from these results. The three possibilities are

- the elliptic case, when β = 0; in this case 0 is the unique characteristic expo-
nent of any solution of any equation of the family,

- the uniformly hyperbolic case, in the case that an exponential dichotomy oc-
curs; in particular, β > 0,

- and the non-uniformly hyperbolic case, when β > 0 but there is not an expo-
nential dichotomy.

In addition, according to Sacker and Sell results [50], in the case of an exponential
dichotomy, L± = W± and the characteristic exponents of any trajectory lie in
{−β, β}; while in the non-uniformly hyperbolic case, the Oseledets subbundles are
not closed, and the four characteristic exponents of any pair (ω0, z0) lie in the
interval [−β, β], which is the dynamical spectrum of the family.

The following characterization of the presence of exponential dichotomy plays a
fundamental role in order to understand the dynamical meaning of this property.

Theorem 4.6. [Sacker and Sell [48, 49], Selgrade [51]] The family (4.1) z′ =
A(ω·t) z (resp. z(t+1) = B(ω·t) z(t)) has an exponential dichotomy over Td if and
only if no one of its equations admits a non-trivial bounded solution.

Our next objective is to analyze some facts concerning the dynamical structures
of the flows (Td×R2, τ,Y) and (KR, τp,Y) (which of course are strongly connected)
in the hyperbolic cases. In particular we will pay attention to the number of τp-
minimal subsets of the projective bundle and to the limiting behavior of those
τ -trajectories starting at points of these minimal subsets. In this description the
following maps and sets play a fundamental role.

Definition 4.7. A τp-invariant curve is a (Lebesgue) measurable map ψ̄ : Td → P1

defined everywhere such that ϕ̄(t, ω, ψ̄(ω)) = ψ̄(ω·t) for every ω ∈ Td and every
t ∈ Y. The corresponding τp-invariant graph is the set K = {(ω, ψ̄(ω)) | ω ∈ Td} ⊂
KR.

It is easy to check that the measure µK defined for the functions g ∈ C(KR,R)
by ∫

Td×R
g(ω, x) dµK =

∫
Td

g(ω, ψ̄(ω)) dω (4.11)

is a τp-ergodic measure concentrated on K. Note also that ψ̄ is continuous if and
only if K is closed, in which case this set is a copy of the base.

Remark 4.8. Clearly, there is a strong similitude between the concepts of φ-
invariant curve and graph given in Definition 3.2 and τp-invariant curve and graph
given just above. However, note that the first one is associated to a (discrete) flow
on Td × R, while the second one corresponds to a (discrete or continuous) flow on
Td × P1. This difference is important enough to justify these new definitions.

The next two results explore the two different possibilities arising in the uni-
formly and non-uniformly hyperbolic cases. We present a unified approach for the
Dirac (4.1), Schrödinger (4.6) and Jacobi (4.7) cases: as explained above, the fam-
ily (4.6) can be immediately written as a family of systems of the type (4.1); while
Appendix B explains how to obtain a real skew-product flow whose restriction to
discrete times agrees with the flow associated to (4.7), and this flow is induced by
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a new system of type (4.1) (for which the base flow is not a Kronecker flow but
still is an almost periodic and minimal). So that the statements of these results are
valid for the three cases, although they will be enounced for systems (4.1). Also
the proofs will refer to the continuous cases: they can be easily adapted to the
framework detailed in Appendix B (see Remark 2.1).

Before stating these results, we need some more notation: any ϕ̄0 ∈ P1 admits
a unique representative ϕ0 ∈ [0, π). For ϕ0 ∈ [0, π), we define zϕ0 =

[
sin ϕ0
cos ϕ0

]
and

z(t, ω, ϕ0) = z(t, ω, zϕ0) (the solution of the system (4.1) with initial data zϕ0).
The structure is quite simple in the uniformly hyperbolic case (i.e. in the case

of occurrence of exponential dichotomy): the following proposition is a direct con-
sequence of Definition 4.3.

Proposition 4.9. Assume that the family (4.1) is in the uniformly hyperbolic case,
and let β > 0 be its positive Lyapunov exponent. Then KR contains exactly two
τp-minimal subsets, M+ and M−, which are copies of the base flow (Td, σα,R):
M± = {(ω, ϕ̄±(ω)) | ω ∈ Td}, with ϕ̄± : Td → P1 continuous. In addition,

∓β = lim
|t|→∞

1
t

ln |z(t, ω, ϕ±(ω))|

for every ω ∈ Td, the convergence being uniform in Td.

Proof. The only minimal subsets of KR are given by the projections of the Sacker-
Sell subbundles L± given by the exponential dichotomy (see Remark 4.4). �

However, the dynamical behavior is quite more complicated in the non-uniformly
hyperbolic case, as described in the last result of this section. It is based on some
ideas of [22] and [26], to which we add some more precise analysis of the oscil-
lation properties. A complete and detailed proof is included, since the result is
fundamental for the rest of the paper.

Theorem 4.10. Assume that the family (4.1) is in the non-uniformly hyperbolic
case, and let β > 0 be its positive Lyapunov exponent. Then,

(i) KR contains a unique τp-minimal subset M . This set M is not uniquely
ergodic: it supports two different τp-ergodic measures, which in addition are
the unique τp-ergodic measures in KR. These measures are associated by
relation (4.11) to two (non-closed) τp-invariant graphs {(ω, ϕ̄±(ω)) | ω ∈
Td}. In addition, there exists a σα-invariant subset Ω0 of Td with full
measure such that

∓β = lim
|t|→∞

1
t

ln |z(t, ω, ϕ±(ω))| (4.12)

for every ω ∈ Ω0.
(ii) For every (ω, ϕ̄) in a residual subset R of M , there exist four sequences (tik)

with limk→∞ tik = ∞ for i = 1, 3 and limk→∞ tik = −∞ for i = 2, 4, and
such that

lim
k→∞

ln |z(tik, ω, ϕ)|+ β tik = (−1)i∞ for i = 1, 2 (4.13)

and

lim
k→∞

ln |z(tik, ω, ϕ)| − β tik = (−1)i+1∞ for i = 3, 4 . (4.14)
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In particular, for any (ω, ϕ̄) ∈ R,

lim sup
t→±∞

1
t

ln |z(t, ω, ϕ)| = β and lim inf
t→±∞

1
t

ln |z(t, ω, ϕ)| = −β .

In other words, the points of the residual subset R ⊂ M give rise to τ -
trajectories which oscillate exponentially both at +∞ and −∞.

Proof. (i) Oseledets multiplicative ergodic theorem [45] ensures the existence of a
σα-invariant subset Ω0 ⊂ Td with full measure and two τp-invariant graphs in KR,
W̄± = {(ω, ϕ̄±(ω)) | ω ∈ Td}, such that relations (4.12) hold for ω ∈ Ω0: W̄± are
the projections on KR of the Oseledets subbundles (see Remark 4.2 and note that
we can define ϕ̄± to be invariant outside Ω0). Relations (4.12) and

|z(t, ω, ϕ±(ω))| = exp
(
−1

2

∫ t

0

fϕ(τp(s, ω, ϕ̄±(ω))) ds
)

(deduced from equation (4.3)), and Birkhoff ergodic theorem, ensure then that

∓β = −1
2

∫
KR

fϕ(ω, ϕ̄) dµW̄± , (4.15)

where µW̄± are the τp-ergodic measures defined by (4.11). Assume the existence of
any other τp-ergodic measure ν on Td × R and define γ = (−1/2)

∫
KR
fϕ(ω, ϕ̄) dν.

Assume also that γ ≥ 0 (the proof is symmetric in the other case). Birkhoff ergodic
theorem allows us to take ω0 ∈ Ω0 and ϕ̄0 ∈ P1 − {ϕ̄−(ω0)} such that

γ = lim
t→−∞

− 1
2t

∫ t

0

fϕ(τp(s, ω0, ϕ̄0)) ds = lim
t→−∞

1
t

ln |z(t, ω0, ϕ0)| . (4.16)

On the other hand, given two distinct points ϕ1, ϕ2 ∈ [0, π), {z(t, ω, ϕ1), z(t, ω, ϕ2)}
is a fundamental system of solutions for the equation (4.1) corresponding to ω, and
hence, since any fundamental matrix solution has constant determinant,

|z(t, ω, ϕ1)||z(t, ω, ϕ2)| sin(ϕ(t, ω, ϕ1)− ϕ(t, ω, ϕ2)) = sin(ϕ1 − ϕ2) . (4.17)

Therefore, relations (4.12) and (4.16) lead us to the contradiction

0 < | sin(ϕ̄−(ω0)− ϕ̄0)| ≤ lim
t→−∞

|z(t, ω0, ϕ
−(ω0))||z(t, ω0, ϕ0)| = 0 .

Consequently, µW̄± are the unique τp-ergodic measures on the projective bundle.
Let M be any τp-minimal subset of KR (maybe the whole space). According

to Krylov-Bogoliubov theorem, the compact metric space M supports a τp-ergodic
measure, say µW̄+ . Assume now that this is the unique τp-ergodic measure on M .
Using (4.15) and applying Birkhoff ergodic theorem to the uniquely ergodic case,

−β = lim
|t|→∞

− 1
2t

∫ t

0

fϕ(τp(s, ω, ϕ̄)) ds = lim
|t|→∞

1
t

ln |z(t, ω, ϕ)| (4.18)

uniformly on (ω, ϕ̄) ∈ M (see Mañé [38]). On the other hand, the absence of an
exponential dichotomy and Theorem 4.6 imply the existence of (ω0, ϕ̄0) ∈ Ω0 × P1

with supt∈R |z(t, ω0, ϕ0)| <∞. In particular, ϕ̄0 6= ϕ̄+(ω0), as deduced from (4.12),
while by (4.18) limt→∞ |z(t, ω0, ϕ0)| = limt→∞ |z(t, ω0, ϕ

+(ω0))| = 0. This contra-
dicts again (4.17).

This shows that M cannot be uniquely ergodic. Consequently, it supports the
unique two τp-ergodic measures on KR, which in its turn precludes the existence
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of any other minimal subset. Obviously, the sets {(ω, ϕ̄±(ω)) | ω ∈ Td} cannot be
closed: otherwise M would not be minimal. The proof of (i) is complete.

(ii) The proof of this assertion is strongly based on the analysis of the dynamical
behavior of the solutions of a family of linear scalar equation, detailed in Appen-
dix A. Let us consider the scalar equations

x′ =
(
−1

2
fϕ(τp(t, ω, ϕ̄)) + β

)
x and x′ = −1

2
fϕ(τp(t, ω, ϕ̄)) + β (4.19)

for (ω, ϕ̄) ∈ M . According to relation (4.15), the integral of the coefficient func-
tion of the first equation with respect to the ergodic measure ν+ is zero; so that
Birkhoff ergodic theorem precludes the existence of an exponential dichotomy for
this equation. On its turn, (4.12) guarantees the unboundedness of the function
ln |z(t, ω, ϕ−(ω))| + βt, a solution of the second equation in (4.19). Hence, since
the restriction to the flow τp to M is minimal, the hypotheses of Theorem A.2 are
satisfied. Consequently, for any point (ω, ϕ̄) of a residual subset R1 of M there
exist two sequences (t1k) ↑ ∞ and (t2k) ↓ −∞ satisfying (4.13).

An analogous argument applied to the equations obtained substituting β by −β
in (4.19) shows the existence of a residual R2 and sequences (t3k) ↑ ∞ and (t4k) ↓ −∞
for which (4.14) hold. The residual set R is given by R1 ∩R2.

Finally, from (4.13) and (4.14) it follows easily that, for any (ω, ϕ̄) ∈ R,

lim sup
t→±∞

1
t

ln |z(t, ω, ϕ)| ≥ β and lim inf
t→±∞

1
t

ln |z(t, ω, ϕ)| ≤ −β .

Hence the last assertion of the theorem follows from the fact that all the charac-
teristics exponents lie in the dynamical spectrum [−β, β] (see Definition 4.1 and
Remark 4.5). This completes the proof. �

Remarks 4.11. 1. Nothing in Theorem 4.10 allows one to distinguish a priori
between the different possibilities for the unique τp-minimal set M appearing in the
non-uniformly hyperbolic case. There are known examples of this kind of dynamics
for which the whole space KR is minimal, as those found by Bjerklöv [4], as well as
situations in which M is an almost automorphic extension of the base flow, being
classical the examples due to Millions̆c̆ikov [39, 40] and Vinograd [61]. And nothing
precludes other different situations.

2. In fact the situation in which M is an almost automorphic extension is the
interesting one to our purposes: it will constitute the framework in which we will
be able to find SNAs on R, as we will see in Section 6. But something more than
non-uniform hyperbolicity is required to guarantee it. These additional conditions
will be establishes in next section.

3. However, we have already pointed out in the Introduction that some authors
do not impose the real character of the SNA in their definition. For the interested
reader we also recall that in the case that the projective flow (KR, τp,Y) admits a
bounded mean motion (i.e. if supt∈R |ϕ(t, ω0, ϕ̄0)−ϕ̄0−ρ t| <∞| for every (ω0, ϕ̄0) ∈
KR, where ρ is the rotation number of the flow), the minimal M is an almost
automorphic extension of the base (see [63]). So that the other possibilities for M
correspond to the case of unbounded mean motion. According to some authors, in
these cases, the non-continuous invariant graph of the map ϕ̄− : Td → P1 would be
an unbounded SNA on P1.
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5. Extreme points of spectral gaps

In this section we consider the three families of spectral problems associated with
the Dirac, Schrödinger and Jacobi operators respectively defined on L2(R2), L2(R)
and L2(Z) by the families (4.1), (4.6) and (4.7); namely

L1
ωz = λ z with L1

ωz(t) = J(z′(t)− S(ω·t) z(t))
(
where J =

[
0 −1
1 0

])
, (5.1)

L2
ωz = λ z with L2

ωz(t) = −z′′(t) + s(ω·t) z(t) , (5.2)

L3
ωz = λ z with L3

ωz(n) = −z(n+ 1)− z(n− 1) + v(ω·n) z(n) . (5.3)

Here ω is a fixed point of Td and λ represents a complex parameter. We recall that
the (classical) spectrum of Lj

ω is defined as the set of λ ∈ C such that the operator
does not admit a bounded inverse operator. The resolvent is the complementary of
the spectrum in the complex plane.

As stated below, it turns out that the spectrum is a closed real subset indepen-
dent of the choice of ω. This section is mainly dedicated to analyze the dynamical
behavior of the projective flow given by one of the previous equations when λ in the
spectrum is the extreme point of a real interval of the resolvent. This will be the
second condition allowing us to define an SNA on R: we will prove (Theorem 5.3)
that this hypothesis guarantees that the corresponding projective flow admits at
least one almost automorphic extension of the base flow; consequently (Remark 5.7)
exactly one –appearing as consequence of the collision of the graphs of two contin-
uous invariant curves and with a very complicate dynamical behavior– when this
spectral condition is added to the non-uniform hyperbolicity of the system studied,
described in the previous section.

In order to formulate these assertions with more precision, we need to recall pre-
viously the strong connection between resolvent and occurrence of an exponential
dichotomy.

Remark 5.1. The definitions of characteristic and Lyapunov exponents (Defi-
nition 4.1) and the dynamical description provided by Oseledets theorem (Re-
mark 4.2), as well as the concept of exponential dichotomy over Ω (Definition 4.3)
and the characteristics of the associated splitting (Remark 4.4), are valid for sys-
tems with complex coefficients, like the ones we are now considering: one must just
replace Rd by Cd. Both definitions coincide in the case of real coefficients: the
invariant subbundles are real in this case.

Theorem 5.2. [Johnson [25]]

(i) The family of systems (5.1) (resp. (5.2), (5.3)) corresponding to a value
λ ∈ C of the parameter has an exponential dichotomy over Td if and only
if λ belongs to the resolvent of the operator L1

ω (resp. L2
ω, L3

ω), which is
common for every ω ∈ Td.

(ii) The family (5.1) (resp. (5.2), (5.3)) corresponding to λ ∈ C − R has an
exponential dichotomy over Td.

In particular, the spectrum is a closed subset of the real line. So that its com-
plementary on R is an open set, and hence it is composed by an at most countable
union of disjoint open intervals. These intervals are called spectral gaps. We point
again that the system corresponding to any value of the parameter λ0 in one of
these spectral gaps has an exponential dichotomy over Td, and we represent by
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ϕ̄±λ0
(ω) the continuous maps given by the projective coordinates of the Oseledets

subbundles L±λ0
(see Remarks 4.2 and 4.5 and Proposition 4.9).

The main objective of this section is to prove in detail the following result, in
which the behavior of the functions ϕ̄±λ0

as λ0 tends to an extreme point of a spectral
gap is analyzed.

Theorem 5.3. Let J = (λ1, λ2) be a spectral gap. Then ∓ϕ̄±λ0
(ω) moves coun-

terclockwisely along P1 as λ0 increases in J for any ω ∈ Td. In the case that
λ2 < ∞ (resp. λ1 > ∞), there exist the limits ϕ̄±λ2

(ω) = limλ0→λ−2
ϕ̄±λ0

(ω) (resp.
ϕ̄±λ1

(ω) = limλ0→λ+
1
ϕ̄±λ0

(ω)) for any ω ∈ Td. In addition, the functions ϕ̄±λ2
: Td →

P1 (resp. ϕ̄±λ1
: Td → P1) are continuous at the points of a σα-invariant residual set

R ⊂ Td. Furthermore, if ω1 ∈ R, the sets

M±
λj

= closureKR{(ω1·t, ϕ̄±λj
(ω1·t)) | t ∈ R} , j = 2 (resp. j = 1) (5.4)

are τλj ,p-invariant and determine almost automorphic extensions of the base flow.

The proof reproduces arguments used in [23]. The version here included is a bit
more detailed, since its ideas are fundamental for us in the next section, in which we
will obtain conclusions about the existence of SNAs. This proof is strongly based
on a careful analysis of the limiting behavior of the Weyl functions, associated a
priori to the stable and unstable directions in the case of uniform hyperbolicity.
Before recalling their definitions, let us define a new skew-product flow associated
to the family of systems that we are working with.

As seen in Section 4, equations (5.2) and (5.3) can be written in a equivalent
way as families of two-dimensional systems for each λ ∈ C fixed. In this way, these
families induce linear skew-product flows τλ on Td ×C 2. For our next purposes, it
is convenient to consider the skew-product flows τ̃λ,p determined from the previous
ones by the projection onto the complex projective bundle

Π : Td × C 2 → KC , (ω, [z1
z2]) 7→ (ω, z2/z1) . (5.5)

Here, KC = Td × P1
C, where P1

C represents the complex projective line: each line in
C2 passing trough the origin, determined by a non-null vector z = [z1

z2], is identified
with the value m = z2/z1 in the compactification of C. The complex projective
flow is then given by

τ̃λ,p : R(Z)×KC → KC , (t, ω,m0) 7→ (ω·t,mλ(t, ω,m0)) ,

where mλ(t, ω,m0) is the solution with mλ(0, ω,m0) = m0 of the Ricatti equation

m′ = (c(ω·t)− λ)− 2a(ω·t)m− (b(ω·t) + λ)m2 (5.6)

in the case of (5.1); of
m′ = s(ω·t)− λ−m2 (5.7)

in the case of (5.2); and of

−m(n+ 1)− 1
m(n)

+ v(ω·n) = λ (5.8)

in the case of (5.3). These equations are respectively obtained from (5.1), (5.2) and
(5.3) by defining m(t) as z2(t)/z1(t), z′(t)/z(t) and z(n)/z(n− 1) (for t = n ∈ Z in
this last case). Note also that KR ⊂ KC: the change of variable m = cot ϕ̄ gives the
relation between the new coordinate and the previously considered one and gives
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the flow isomorphism between the restriction of τ̃λ,p to the real projective bundle
and the flow τλ,p defined by the corresponding expression (4.4).

The following result is also proved in [25].

Theorem 5.4. Let Td × C2 = L+
λ ⊕ L−λ be the splitting in two one-dimensional

closed τλ-invariant subbundles for λ ∈ C − R. Define M±
λ = Π(L±λ ) (Π defined

by (5.5)). Then
M±

λ =
{
(ω,m±(ω, λ)) | ω ∈ Td

}
(5.9)

with ± Imλ Imm±(ω, λ) > 0.

Definition 5.5. The functions m± : Td × (C − R) → KC, (ω, λ) 7→ m±(ω, λ)
given by (5.9) are the Weyl functions or m-functions associated to the family of
equations (5.1) (resp. (5.2), (5.3)).

Note that the splitting and hence the m-functions depend on the index j, al-
though this dependence will be omitted in the notation. A different approach to
these functions in terms of the unique L2(R)-solution of the equation corresponding
to λ ∈ C − R, based on classical Weyl’s classification of two-dimensional systems
into point-limit and circle-limit cases [62], can be found e.g. in Kotani [35], Deift
and Simon [10] and Sun [58].

Definition 5.5 shows that the functions m±(ω, λ) represent the complex projec-
tive coordinates of the stable directions at ∓∞, respectively. Sacker-Sell spectral
theory [50] ensures that they are continuous in both variables on the sets Td×C±,
where C± = {λ ∈ C | ± Imλ > 0}. It is well known that, for each fixed ω ∈ Td,
the maps λ 7→ m±(ω, λ) are analytic on C+ and C−; and this and the condi-
tion ± Imλ Imm±(ω, λ) mean that ±m±(ω, ·) are Herglotz functions. From their
definition it follows easily that m±(ω, λ) = m±(ω, λ). Finally, the τλ-invariance
of the subbundles L±λ implies that, fixed ω ∈ Td and λ ∈ C − R, the functions
t 7→ m±(ω·t, λ) are solutions of the associated equation (5.6), (5.7) or (5.8).

The Herglotz character of the Weyl functions guarantees the existence of the
radial limits

l±λ0
(ω) = lim

ε→0+
m±(ω, λ0 + iε)

at (Lebesgue) a.e. λ0 ∈ R for each ω ∈ Td fixed (see Koosis [34]). Fubini theorem
shows then that for a.e. λ0 ∈ R the limits exist a.e. in Td. In addition, if β(λ0)
represents the Lyapunov exponent of the system corresponding to λ0, then:

Proposition 5.6. If β(λ0) > 0, then the limits l±λ0
(ω) exist and belong to P1

(i.e. Im l±λ0(ω) = 0) for a.e. ω ∈ Td.

The proof of this result uses known arguments in spectral theory; it is due
to Titchmarsh [60] in the Schrödinger case and extended by Giachetti and John-
son [16] to two-dimensional systems. An alternative proof, based on the properties
of the Floquet coefficient, is made in [10] by Deift and Simon, who also prove the
result in the Jacobi case.

We recall that β(λ0) > 0 corresponds to two different situations: uniform and
non-uniform hyperbolicity. In the uniformly hyperbolic case, more can be said
about this limiting behavior: Sacker-Sell spectral theory implies that the limit exists
for every ω ∈ Td, and if Td × R2 = L+

λ0
⊕ L−λ0

, then Π(L±λ0
) = {(ω, l±λ0

(ω)) | ω ∈
Td} ⊂ Td × P1. In particular, the functions l±λ0

are continuous functions on Td.
Furthermore, the analytic variation of the spectral subbundles ensures that the
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functions m±(ω, ·) admit a meromorphic extension to C−Σj , where Σj represents
the (common) spectrum of Lj

ω: one must just define m±(ω, λ0) = l±λ0
(ω) for each

λ0 ∈ R− Σj .
Note that in the previous paragraphs we are identifying P1 with the compactifi-

cation of R, contained in P1
C: the limits l±λ0

(ω) can take the value ∞. In order to
work with our usual angular coordinate we should consider ϕ̃±λ0

(ω) = cot−1 l±λ0
(ω) ∈

R/πZ. Note that (ω·t, ϕ̃±λ0
(ω·t)) = τλ0,p(t, ω, ϕ̃±λ0

(ω)): this is easily deduced from
the properties of the Weyl functions before summarized. In addition, in the case
that λ0 belongs to a spectral gap, we have ϕ̄±λ0

(ω) = ϕ̃±λ0
(ω), since these functions

represent the stable and unstable directions given by the exponential dichotomy.

Proof of Theorem 5.3. Let us fix ω0 ∈ Td. We represent l±ω0
(λ0) = l±λ0

(ω0) for
λ0 ∈ J and m±

ω0
(λ) = m±(ω0, λ) for λ ∈ C− R. Then,

(l±ω0
)′(λ0) = lim

ε→0+

∂ m±
ω0

∂ Reλ
(λ0 + iε) = − lim

µ→0+

Imm±
ω0

(λ0 + iµ)
µ

.

This means that ∓(l±ω0
)′(λ0) ≥ 0. It follows easily that ∓ϕ̄±λ0

(ω0) moves counter-
clockwisely along P1 as λ0 increases in J , this behavior being independent of the
choice of ω0.

We will assume that λ2 is a real point and analyze the variation of ϕ̄±λ0
as

λ0 → λ−2 , the other case being similar. Let us fix λ∗ ∈ J . Given ω0, we can choose
representatives ϕ±λ∗(ω0) of ϕ̄±λ∗(ω0) and δ0 > 0 with

ϕ−λ∗(ω0) < ϕ+
λ∗

(ω0) ≤ ϕ−λ∗(ω0) + π − δ0 . (5.10)

Then, for each λ0 ∈ (λ∗, λ2), we can find unique representatives ϕ±λ0
(ω0) of ϕ̄±λ0

(ω0)
with

ϕ−λ∗(ω0) ≤ ϕ−λ0
(ω0) < ϕ+

λ0
(ω0) ≤ ϕ+

λ∗
(ω0) . (5.11)

We are using the fact that ϕ̄+
λ0

(ω0) 6= ϕ̄−λ0
(ω0) for every λ0 ∈ J , as well as

the continuity and monotonicity of these functions with respect to λ0. This en-
sures the existence of limλ0→λ−2

ϕ±λ0
(ω0) ∈ R. Hence, there also exists ϕ̄±λ2

(ω0) =
limλ→λ−2

ϕ̄±λ0
(ω0) ∈ P1.

This can be done for each ω ∈ Td. In addition, by construction, ϕ±λ0
(ω)−ϕ−λ∗(ω)

belong to [0, π−δ0] for each ω ∈ Td and λ0 ∈ (λ∗, λ2). This uniqueness in the choice
of representatives ensures the continuity of the functions ϕ±λ0

−ϕ−λ∗ : Td → [0, π−δ0].
The limit of a monotone sequence of continuous functions is semicontinuous. This
ensures that the functions limλ0→λ−2

ϕ±λ0
− ϕ−λ∗ : Td → [0, π − δ0] (and hence also

ϕ̄±λ2
− ϕ̄−λ∗ : Td → P1) are continuous at the points of a residual set R ∈ Td. The

continuity of ϕ̄−λ∗ ensures then that the limits ϕ̄±λ2
are continuous at the points of

R. In addition, this set is σα-invariant, since for any t ∈ Y,

(ω·t, ϕ̄±λ2
(ω·t)) = (ω·t, limλ0→λ−2

ϕ̄±λ0
(ω·t)) = τλ2,p(t, ω, ϕ̄±λ2

(ω)) . (5.12)

Fix now ω1 ∈ R and note that (5.12) implies the τλ,p-invariance of the compact sets
M±

λ2
defined by (5.4). The minimality of the base flow ensures that the projections

M±
λ2
→ Td, (ω, ϕ̄) 7→ ω determine surjective flow homomorphisms. Let ω∗ ∈ R be

other continuity point of ϕ̄±λ2
and assume that (ω∗, ϕ̄∗) ∈ M±

λ2
. Then there exists

a sequence (tn) ↑ ∞ such that (ω∗, ϕ̄∗) = limn→∞(ω1·tn, ϕ̄λ2(ω1·tn)), which gives
ϕ̄∗ = limn→∞ ϕ̄λ2(ω1·tn) = ϕ̄λ2(ω0); in other words, the sets M±

λ2
contain a unique
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element of the fiber over each continuity point ω∗. In particular, M±
λ2

are τλ2,p-
minimal: any non-empty τλ2,p-minimal subset K ⊂ M±

λ2
projects onto the whole

Td and, consequently, it contains (ω1, ϕ̄
±
λ2

(ω1)), which implies K = M±
λ2

. These
properties mean that (M±

λ2
, τλ2,p) are almost automorphic extensions of (Td, σα),

as asserted. Note finally that the sets M±
λ2

are independent of the continuity point
ω1 chosen to define them. �

Remark 5.7. An extreme point λ∗ of a spectral gap belongs to the spectrum.
Hence there are two possibilities for the family of systems (5.1), (5.2) or (5.3)
corresponding to λ∗: either it is elliptic or it is non-uniformly hyperbolic. Assume
that it is non-uniformly hyperbolic. Then,

- Theorem 4.10 ensures the existence of a unique τλ∗,p-minimal subset Mλ∗

(and describes the complicate dynamics on it). Therefore, necessarily M+
λ∗ =

M−
λ∗ = Mλ∗ .

- Theorem 4.10 also establishes the existence of two different τλ∗,p-invariant
graphs contained in Mλ∗ and associated to ∓β(λ∗), which clearly agree with
{(ω, ϕ̄±λ∗(ω)) | ω ∈ Td}.

- Proposition 5.6 asserts the existence of the limits l±λ∗(ω) ∈ P1. It is easy to
see that in fact both limits agree: l±λ∗(ω) = cot ϕ̄±λ∗(ω, λ

∗); or, in other words,
ϕ̃±λ∗(ω) = ϕ̄±λ∗(ω), as it happened for the values of the parameter in the spectral
gap.

- The functions ϕ̄+
λ∗(ω) and ϕ̄−λ∗(ω) are different in a σα-invariant subset Ω0 ⊂

Td of full measure, at which the corresponding points (ω, ϕ̄±(ω, λ∗)) sat-
isfy (4.12) for β = β(λ∗); whereas there exists a σα-invariant residual set for
which the corresponding orbits oscillate in the way described by relations (4.13)
and (4.14).

Note the connections between this description and the one of a minimal set con-
taining an SNA made at the end of Section 3. In fact the existence of a set Mλ∗ of
this type will be the starting point to show the existence of SNAs on R for suitable
monotone discrete flows. And note finally that Mλ∗ appears as a consequence of
the collision, as λ0 (in the spectral gap) tends to λ∗ (in the spectrum), of the two
copies of the base associated to the exponential dichotomy occurring for λ0.

6. Examples of SNAs

The information summarized in the previous pages will be finally used in what
follows in order to describe situations giving rise to the occurrence of SNAs on the
real line. Recall that these sets are associated to discrete flows or semiflows on
Td × R. . These flows will be closely related to the flow τp induced on KR by a
family of equations of type (4.1), (4.6) or (4.7). So that we will make use of all the
notation introduced in Section 4. In our main results (Theorems 6.3 and 6.4), the
two hypotheses described in the previous sections will be imposed (non uniformly
hyperbolic dynamics at the extreme point of a spectral gap): roughly speaking,
these conditions will provide the SNA on R after an unwinding procedure (in some
cases) and a discretization (in the case of Y = R).

6.1. Vinograd’s case. In order to clarify the analysis, we begin by recalling a
well-known example. Vinograd [61] constructs a two-dimensional linear ordinary
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differential equation of the form

z′ =
[

0 1 + a((y1, y2)·t)
1− a((y1, y2)·t) 0

]
z , (y1, y2) ∈ T2 , (6.1)

where the Kronecker flow on the base T2 is given by a frequency vector α = (1, α2)
for an irrational number α2: (y1, y2)·t = (y1 + t, y2 + α2t) for (y1, y2) ∈ T2. By
taking angular coordinate ϕ = cot−1 z2/z1 we obtain the family of equations

ϕ′ = a((y1, y2)·t) + cos 2ϕ , (y1, y2) ∈ T2 . (6.2)

The function a is obtained as a = limn→∞ an for a non-decreasing sequence of
non-negative functions (an), which in its turn is defined by means of an iterative
procedure designed to get the following properties: the angular equation ϕ′ =
an((0, 0)·t) + cos 2ϕ has two solutions ψ±n (t) such that

π

4
< ψ−n (t) < ψ−n+1(t) < ψ+

n+1(t) < ψ+
n (t) <

3π
4
,

with inft∈R |ψ+
n (t)−ψ−n (t)| = δn > 0 and limn→∞ δn = 0, and the system obtained

by replacing a by an in (6.1) has two Lyapunov exponents ±βn with βn > 1/2.
This behavior for one of the systems (6.1) implies that the family is non-uniformly

hyperbolic: the positive Lyapunov exponent of (6.1) is β ≥ 1/2 and the family
of systems does not have an exponential dichotomy. Theorem 4.10 ensures the
occurrence of a unique τp-minimal subset M ⊂ KR containing two τp-invariant
graphs {((y1, y2), ϕ̄±(y1, y2)) | (y1, y2) ∈ T2}, whose elements determine solutions
of (6.1) which behave as described by (4.12) for every (y1, y2) in a σ-invariant subset
Ω0 with full measure. In addition, M ⊂ T2 × [π/4, 3π/4], and hence no one of the
maps ϕ(t, (y1, y2), ϕ0) for ((y1, y2), ϕ0) ∈ M crosses the infinite point of P1 (we
recall the identification P1 ≡ R/πZ). By repeating the arguments of Theorem 3.5,
one shows that M is in fact an almost automorphic extension of the base flow. All
these properties were already described in the exhaustive analysis of this example
made by Johnson in [24].

Now we will explain how M determines an SNA on the real line for a discrete
flow. Let us identify y ∈ T1 with the point (0, y) ∈ T2, so that T1 is a fixed
section of T2. The restriction of σα to Z × T1 is then σα2(n, y) = y + nα2 ≡ y·n,
a one-dimensional Kronecker flow with irrational frequency on the circle. And the
skew-product flow

φ : Z× T1 × R→ T1 × R , (n, y, ϕ0) 7→ (y·n, ϕ(n, (0, y), ϕ0)) ,

where ϕ(t, (y1, y2), ϕ0) represents the solution of (6.2) with initial data ϕ0, satisfies
all the conditions imposed at the beginning of Section 3.

We define M0 = {(y, ϕ) ∈ T1 × R | ((0, y), ϕ) ∈ M} ≡ M ∩ (T1 × R). Since
M ⊂ T2 × (0, π), M0 is a φ-invariant subset. In addition, M0 is minimal for
(T1×R, φ,Z): one shows easily that any one of its trajectories is dense on it. Hence
M0 is an almost automorphic minimal extension of the base flow which contains two
different φ-invariant graphs, {(y, ϕ̄±(0, y)) | y ∈ T1}. Since the index βs((0, y), ϕ0)
agrees with lim supt→∞(−1/2t) ln |z(t, (0, y), ϕ0)|, as deduced from (4.5), we con-
clude from (4.12) that the φ-invariant curves T1 → (0, π), y 7→ ϕ̄±(0, y) have non-
null and opposite Lyapunov exponents (note that any σα2-invariant subset Ω0 of
T2 must have points with null first component). In addition, no one of these curves
is continuous: otherwise M0 would not be minimal. Consequently, the φ-invariant
graph of the map ϕ̄−(0, ·) is an SNA contained in M0.
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Note that ϕ̄+(0, y) 6= ϕ̄−(0, y) in the σα2-invariant set {y | (0, y) ∈ Ω0}, which has
full measure. Finally, Theorem 4.10 ensures that M0 does not contain any other φ-
invariant graph, and hence it is proved in Theorem 3.5(i) that ϕ̄+(0, y) and ϕ̄−(0, y)
are continuous and coincident at the points y of a residual σ̃-invariant subset of T1,
and that they determine at these points trajectories with the complicated oscillating
behavior described by (4.13) and (4.14).

We point out that the point λ∗ = 0, which belongs to the spectrum of the
corresponding problem (5.1), is in fact the extreme point of a spectral gap. This
assertion follows from a simple analysis of the rotation number of the family of
systems (6.1): it is a non-decreasing function of λ, it is positive in the interval
(-1,0) (since 1+a(·)+λ ≥ 0), and it vanishes at λ0 = 0. Consequently, the rotation
number vanishes in the whole interval, and hence Johnson [25] results assure that
the family (6.1) has an exponential dichotomy over T2. Theorem 5.2 implies that
(−1, 0) is contained in the resolvent.

We also mention that Vinograd example [61] is based on the previous works by
Millions̆c̆ikov [39, 40], who first describes cases of non-uniformly hyperbolic two-
dimensional systems with smooth almost periodic coefficients and later refines the
analysis in order to obtain quasi periodic examples. Vinograd goes further: in his
example the coefficient matrix is analytic and the irrational value of α2 is arbitrarily
chosen.

6.2. The real unwound cases. Let us see how to extend the previous ideas to
the general almost periodic case. We consider first the Dirac and Schrödinger cases.
Assume that our system (4.1) (resp. (4.6)), like Vinograd’s one, fits in the situation
described in Theorem 4.10 and Theorem 5.3 (see Remark 5.7); i.e. that the dynamics
corresponds to the non-uniformly hyperbolic case and λ∗ = 0 is the extreme point
of a spectral gap of the spectral problem (5.1) (resp. (5.2)). We represent by
ϕ̄± : Td → P1 the τp invariant curves associated to ∓β by relation (4.12) and by
M the unique τr-invariant minimal subset of KR, which according to Theorem 5.3
is an almost automorphic extension of the base flow.

Note that the solutions of the angular equations (4.2) (ϕ′ = f(ω·t, ϕ)) define a
global skew-product flow on Td × R,

τr : R× Td × R→ Td × R , (t, ω, ϕ0) 7→ (ω·t, ϕ(t, ω, ϕ0)) .

In fact (KR, τp,R) is obtained from this one by projecting the solutions to P1. Note
also that

ln
∂ϕ

∂ϕ0
(t, ω0, ϕ0 + nπ) = −2 ln |z(t, ω0, ϕ0)|

for every (ω0, ϕ0) ∈ Td × [0, π) and n ∈ Z, as deduced from (4.5) and (4.3). Con-
sequently, relation (4.12) ensures that

lim
|t|→∞

1
t

ln
∂ϕ

∂ϕ0
(t, ω, ϕ̄±(ω)) = lim

|t|→∞
−2
t

ln |z(t, ω, ϕ±(ω)| = ±2β (6.3)

for every ω in a full measure σα-invariant subset Ω0 of Td.
Assume that the graphs of the curves ϕ̄± are contained in Td × [δ, π − δ] for a

positive value of δ. Or equivalently, that M is contained in Td × [δ, π − δ]. In this
case we say that M is unwound . As pointed out before, this hypothesis also holds
in Vinograd’s example. Clearly, in this case, the representatives ϕ± : Td → (0, π)
of the τp-invariant curves ϕ̄± : Td → P1 are τr-invariant curves, and M is also an
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almost automorphic extension of the base flow for (Td, τr,R). Relation (6.3) shows
the connection between the Lyapunov exponents of the family (4.1) or (4.7) and
the Lyapunov exponents of the τr-invariant maps ϕ± : Ω → R (which are defined
in the same way as in the discrete case, see Definition 3.3)

Let us identify now Td−1 with the points of Td with null first component, and
note that there are points of Ω0 in this section of the torus. The vector α∗ =
(α2/α1, . . . , αd/α1) (where α = (α1, . . . , αd)) defines a discrete minimal Kronecker
flow σα∗ on Td−1. As before, we define M0 = {(ω, ϕ) ∈ Td−1 × R | ((0, ω), ϕ) ∈
M} ≡ M ∩ (Td−1 × R) and conclude that M0 is an almost automorphic extension
of (Td−1, σα∗ ,Z) for the skew-product flow

φ : Z× Td−1 × R→ Td−1 × R , (n, ω, ϕ0) 7→ (ω + nα∗, ϕ(n/α1, (0, ω), ϕ0)) .

Note that this discrete flow satisfies the conditions imposed at the beginning of
Section 3. By repeating the arguments of the previous example, we show that M0

contains a non-closed φ-invariant graph with Lyapunov exponent −2β/α1; i.e. an
SNA for the flow φρ.

Remark 6.1. As seen in Section 5, there is another way to define skew-product
flows on Td × R from the families of equations (4.1) and (4.6): the ones induced
by the solutions of the equations (5.6) and (5.7) (for λ = 0), which are obtained
from the initial ones by taking coordinate m = z2/z1. But note that these flows are
not global but just local. This is the reason for which we take angular coordinate
ϕ = cot−1(z2/z1) in order to find the suitable framework for the existence of SNAs.

Remark 6.2. We point out that the previous arguments provide an infinite number
of identic SNAs for each one of the constructed flows on Td × R: each string
Td × [nπ, (n+ 1)π), n ∈ Z, contains one of these sets.

6.3. The real general cases. Not only the dynamics on the τp-minimal set M is
important in the previous arguments: its unwound character is crucial in order to
obtain an SNA on the real line. Nevertheless, the next result shows that it is not
necessary to impose this condition a priori: a suitable flow transformation provides
a new flow admitting an unwound almost automorphic minimal set M∗ with the
same dynamical behavior as M . Consequently, the previous arguments can be
applied to this new flow in order to describe situations of occurrence of SNAs.

Theorem 6.3. Assume that the family (4.1) (resp. (4.6)) is in the non-uniformly
hyperbolic case and that λ∗ = 0 is the extreme point of any spectral gap of the
problem (5.1) (resp. (5.2)). Then,

(i) there exists a flow homeomorphism taking (KR, τp,R) to a new skew-product
flow τ∗p : R × KR → KR , (t, ω, ψ̄0) 7→ (ω·t, ψ̄(t, ω, ψ̄0)) for which there
exists a unique minimal set M∗ given by an unwound almost automorphic
extension of the base flow.

(ii) The flow τ∗p agrees with the projection onto KR of the (global) flow τ∗r :
R×Td ×R→ Td ×R , (t, ω, ψ0) 7→ (ω·t, ψ(t, ω, ψ0)) induced by a family of
differential equations

ψ′ = g(ω·t, ψ) , (6.4)

given by a function g : Td×R→ R which is π-periodic in ψ and continuous.
The set M∗ is also a τ∗r -minimal almost automorphic extension of (Td, σ).
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(iii) M∗ contains exactly two τ∗r -invariant graphs {(ω, ψ±(ω)) | ω ∈ Td} which
are non-closed and such that

lim
|t|→∞

1
t

ln
∂ψ

∂ψ0
(t, ω, ψ±(ω)) = ±2β

for a.e. ω ∈ Td, where β > 0 is the Lyapunov exponent of the initial
family (4.1) (resp. (4.6)).

Proof. (i) To fix ideas, we assume that (λ1, 0) is one of the spectral gaps. We main-
tain the notation of Theorem 5.3 (in particular, τp = τ0,p) and use the construction
made in its proof, for which we fix λ0 ∈ (λ1, 0).

Let us define

h : KR → KR, (ω, ϕ̄) 7→ (ω, ϕ̄− ϕ̄−λ0
(ω)) ,

and consider the flow (KR, τ
∗
p ,R) obtained from τp by the relation τ∗p (t, ω, ψ̄0) =

h(τp(t, h−1(ω, ψ̄0))):

τ∗p (t, ω, ψ̄0) = (ω·t, ψ̄(t, ω, ψ̄0)) =
(
ω·t, ϕ̄(t, ω, ψ̄0 + ϕ̄−λ0

(ω))− ϕ̄−λ0
(ω·t)

)
.

Let M be the unique minimal set of the initial flow. Then M∗ = h(M) is the
unique minimal set for τ∗p and it is an almost automorphic extension of the base
flow. Moreover, it is contained in Td × [0, π − δ0], as deduced from (5.10), (5.11)
and (5.4). Hence, by compactness, it is also contained in Td × [δ, π − δ] for δ > 0
small enough.

(ii) It follows from its definition that τ∗p comes from the family of differential
equations (6.4) for

g(ω, ψ) = f0(ω, ψ + ϕ̄−λ0
(ω))− fλ0(ω, ϕ̄

−
λ0

(ω)) ,

where fλ : Td × R→ R is given by

fλ(ω, ϕ) = λ+
1
2

(b(ω)− c(ω)) +
1
2

(b(ω) + c(ω)) cos 2ϕ+ a(ω) sin 2ϕ

in the Dirac case and by

fλ(ω, ϕ) = cos2 ϕ− (s(ω)− λ) sin2 ϕ

in the Schrödinger case. Note that, since fλ is π-periodic in ϕ, also g is π-periodic
in ψ, and hence ψ̄(t, ω, ψ̄0) is the class in P1 of the solution of (6.4) with initial
data ψ̄0.

(iii) Obviously, the sets {(ω, ψ±(ω)) | ω ∈ Td} = h({(ω, ϕ̄±(ω)) | ω ∈ Td}), where
as before ϕ̄± : Td → P1 the τp invariant curves associated to ∓β by relation (4.12),
are the unique τ∗r -invariant graphs contained in M∗, and they are non-closed. Fix
(ω, ψ0) ∈M∗. Then

ψ(t, ω, ψ0) = ϕ(t, ω, ψ0 + ϕ̄−λ0
(ω))− ϕ−λ0

(ω·t)

for a suitable choice of the representative ϕ−λ0
(ω·t), and

(∂ψ/∂ψ0)(t, ω, ψ0) = (∂ϕ/∂ϕ0)(t, ω, ψ0 + ϕ̄−λ0
(ω)) .

In particular,

lim
|t|→∞

1
t

ln
∂ψ

∂ψ0
(t, ω, ψ±(ω)) = lim

t→∞

1
|t|

ln
∂ϕ

∂ϕ0
(t, ω, ϕ̄±(ω)) = ±2β

for a.e. ω ∈ Td, as shown in (6.3). �
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6.4. The Jacobi case. Let us now consider the Jacobi case (4.7). The same
hypotheses as in the continuous cases ensure the existence of a unique τp-minimal
subset M ⊂ KR, given by an almost automorphic extension of the base flow, with
the complicate dynamical behavior described by Theorem 5.3 and Remark 5.7. Let
us see the way in which this set determines an SNA on R for a flow satisfying the
conditions imposed at the beginning of this section.

There is an important difference with the continuous case: since the function
cot−1 is multivalued, there is no a direct way to find a continuous (monotone)
global flow on Ω × R, analogous to the flow τr, from the angular equation (4.9).
The way to solve this problem is again to suspend the discrete flow.

Theorem 6.4. Assume that the family (4.8) is in the non-uniformly dynamics case
and that λ∗ = 0 is the extreme point of any spectral gap of the problem (5.3). Then,

(i) there exists a flow homeomorphism taking (KR, τp,Z) to a new skew-product
flow (KR, τ

∗
p ,Z) for which there exists a unique minimal set M∗ given by

an unwound almost automorphic extension of the base flow.
(ii) The flow τ∗p is given by the projection onto KR of a (global) monotone flow

φ∗ : Z × Ω × R → Ω × R , (n, ω, ψ0) 7→ (ω·n, ψ(n, ω, ψ0)). The set M∗ is
also a φ∗-minimal almost automorphic extension of (Ω, σ).

(iii) M∗ contains exactly two φ∗-invariant graphs {(ω, ψ±(ω)) | ω ∈ Td} which
are non-closed and such that

lim
n→∞

1
n

ln
∂ψ

∂ψ0
(n, ω, ψ±(ω)) = ±2β

for a.e. ω ∈ Td, where β is the Lyapunov exponent of the initial family (4.8).
In particular, βs(ψ±) = ±2β, which means that the φ∗-invariant curve ψ−

is an SNA.

Proof. The construction detailed in Section B allows us to obtain the conclusions
of Theorem 6.3 taking as starting point the suspended flow (K̂R, τ̂p,R) and the
corresponding unique minimal set M̂ . This requires to adapt to this setting the
construction made in Theorem 5.3, which is possible since the sense of rotation of
the Weyl functions with respect to the parameter λ is the same for the suspended
and the initial flows. Once this is done, and using the arguments previous to
Theorem 6.3, we define, from the transformed global flow (Ω̂ × R, τ̂∗r ,R) and its
minimal set M̂∗, a monotone discrete flow φ∗ admitting an SNA on R contained
in a φ∗-minimal subset of M̂∗. It is easy to realize that this subset can be taken
as the Poincaré section corresponding to Ω ⊂ Ω̂, and hence it is identified with
the minimal set M∗ obtained directly from M by means of the transformation h
applied to the initial flow. �

Remark 6.5. It is well-known that the spectrum of the problem (5.3) is a compact
subset of R, and that of (5.2) is contained in a positive half-line. In particular,
in both cases, there is a first point in the spectrum, the right extreme point of a
spectral half-line. It is possible to show that, in the case of non-uniformly hyperbolic
dynamics, the minimal set M is unwound. This assertion follows immediately from
the fact that the corresponding linear systems is disconjugate. The interested reader
is referred to [26].
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6.5. Non-uniformly hyperbolic dynamics examples. We complete this sec-
tion by recalling some cases for which the dynamics is in the non-uniformly hyper-
bolic case. In the continuous cases, apart from the already mentioned Dirac sys-
tems constructed by Millions̆c̆ikov [39, 40] and Vinograd [61] (see also Lipnitskii [37]
for some technical improvements), there are also known examples of Schrödinger
type (4.6), like the limit-periodic one constructed by Johnson [23], for which λ0 = 0
is exactly the first point of the spectrum of the corresponding operator (5.2); or the
quasi periodic Schrödinger equation described by Koltyzhenkov [33].

Let us now consider the Jacobi case (4.7) with quasi periodic potential, for which
the spectrum of the corresponding problem (5.3) is known to be a compact subset
of R. Herman [20] studies the case of Kronecker flow with irrational frequency over
base T1 and coefficient function v(ω) = ρw(ω) given by a non-constant trigonomet-
ric polynomial. He shows that the Lyapunov exponents ±β(λ) of (5.3) never vanish
provided that ρ is large enough. The example of almost Mathieu equation (1.5) de-
scribed in the Introduction fits in this situation, for v(ω) = −2b cos(ω): as recalled
in Subsection 1.1, Herman [20] proved that when |b| is larger than 1, all the values
of λ in the spectrum give rise to non-null Lyapunov exponents.

Sorets and Spencer [55] extend Herman’s result to the case of any non-constant
real-analytic w. A different approach is made by Bourgain and Goldstein [7] in order
to show that the same property hods for non-constant real-analytic potentials on Td

provided that the base frequency vector is diophantine. The results in this section
show that these examples provide situations giving rise to occurrence of SNAs at
the extreme point λ of any of the spectral gaps.

On the other hand, the results of Eliasson [11] show the existence non-null Lya-
punov exponents for Lebesgue a.e. point in the spectrum for a Gevrey potential
w and irrational and diophantine frequency (again for d = 1). Similar results can
be found in Sinai [54], Frölich et al. [15] and Surace [59], among others. In fact,
Bjerklöv [4] shows the existence of examples of C1-potential ρw(ω) over an irra-
tional base flow (T1, σ) and values of λ in the spectrum for which the Lyapunov
exponents do not vanish but the corresponding projective flow is minimal, condi-
tions in which our results do not guarantee the existence of an SNA on the real
line.

We conclude by pointing out that, in despite of the situations above described,
the non-uniform hyperbolicity is an unfrequent property from a topological point
of view in the space of continuous potentials. The interested reader is referred to
Fabbri [13], Bochi [5], Novo et al. [43], Bochi and Viana [6], and references therein.

Appendix A. One-dimensional dynamics

Let (Ω, σ) represent a (real or discrete) continuous flow on a compact metric
space which is minimal but not necessarily uniquely ergodic, and g : Ω → R will
be a continuous function. Our objective in what follows is to analyze the behavior
of the solutions of the family of scalar differential equations x′ = g(ω·t), namely
x(t, ω, x0) = x0 +

∫ t

0
g(ω·s) ds and their discrete analogous. The knowledge of this

behavior has been necessary to prove Theorem 4.10, which describes the complicate
structure of a set giving rise, a posteriori, to an SNA on R.

In particular, we concentrate our attention in the two different frameworks which
can occur in the case that the family of linear scalar differential equations x′ =
g(ω·t)x does not have an exponential dichotomy over Ω: either all the solutions
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are bounded or all the semitrajectories of the equations corresponding to a residual
subset of Ω oscillate from −∞ to +∞ as |t| ↑ ∞. These are well known properties
(see [17], [22] and references therein). Nevertheless, we include all the proofs by
completeness and give a shorter one for Theorem A.2.

Proposition A.1. The following assertions are equivalent:

(1) there exists a point ω̃ ∈ Ω such that |
∫ t

0
g(ω̃·s) ds| ≤ c1 <∞ for every t ≥ 0

or for every t ≤ 0;
(2) there exist G : Ω → R continuous with G(ω·t) − G(ω) =

∫ t

0
g(ω·s) ds and,

consequently, a constant c such that |
∫ t

0
g(ω·s) ds| ≤ c for every ω ∈ Ω and

t ∈ R.

Proof. Assume that (1) holds for ω̃ ∈ Ω and t ≥ 0; i.e. that the flow φ induced
on Ω × R by the family of scalar equations x′ = g(ω·t) has a bounded positive
semitrajectory {(ω̃·t,

∫ t

0
g(ω̃·s) ds) | t ≥ 0}. The omega-limit set of this semitrajec-

tory contains a minimal subset, say M . As said before, minimality of the base flow
ensures that M projects onto the whole of Ω. Let us check that this projection is
in fact a bijection; or, in other words, that M is a copy of the base. Note that, for
every s ∈ R, the set Ms = {(ω, x+s) | (ω, x) ∈M} is also minimal. Assume by con-
tradiction the existence of (ω∗, y1), (ω∗, y2) ∈M with y2 > y1, and set s = y2 − y1.
Then (ω∗, y2) ∈ M ∩Ms, which means that M = Ms. Analogously, M = Mks for
every k ∈ N, and this contradicts the boundedness of M .

Consequently, M = {(ω,G(ω)) | ω ∈ Ω}, for a continuous G : Ω → R and, since
M is φ-invariant, G(ω·t) = G(ω) +

∫ t

0
g(ω·s) ds for every ω ∈ Ω and t ∈ R. This

proves (2). The converse implication is obvious. �

Theorem A.2. Assume that statement (1) of Proposition A.1 does not hold and
that the family x′ = g(ω·t)x does not have an exponential dichotomy over Ω. Then,
for every ω in a residual subset R, there exist four sequences (tik) with limk→∞ tik =
∞ for i = 1, 3 and limk→∞ tik = −∞ for i = 2, 4, and such that

lim
k→∞

∫ ti
k

0

g(ω·s) ds = −∞ for i = 1, 2 and lim
k→∞

∫ ti
k

0

g(ω·s) ds = ∞ for i = 3, 4 .

Proof. Let us define

e1(ω) = inf
t≥0

exp
∫ t

0

g(ω·s) ds .

The function e1 is the limit of a decreasing sequence of continuous functions, and
hence it is upper semicontinuous. In particular, it admits a residual set R1 of
continuity points. In addition, for any r ≥ 0,

e1(ω·r) = inf
t≥0

exp
∫ t

0

g(ω·(r + s)) ds ≥ e1(ω) exp
(
−

∫ r

0

g(ω·s) ds
)
. (A.1)

Let us assume the existence of ω1 ∈ R1 with e1(ω1) > 0. Then e1(ω) > ρ > 0
for any ω belonging to an open neighborhood V of ω1. By minimality of the base
flow, Ω = ∪r∈[0,r1]σr(V ) for an r1 > 0. Take any ω ∈ Ω and choose r ∈ [0, r1] with
ω·(−r) ∈ V . Then, by (A.1),

e1(ω) ≥ e1(ω·(−r)) exp
(
−

∫ r

0

g((ω·(−r)·s)) ds
)
≥ ρ e−r1‖g‖∞ .
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It follows the existence of a constant k ∈ R with −k ≤
∫ t

0
g(ω·s) ds for every

t ≥ 0 and ω ∈ Ω. On the other hand, the absence of exponential dichotomy and
Theorem 4.6 ensure the existence of ω̃ ∈ Ω with {exp

∫ t

0
g(ω̃·s) ds | t ∈ R} bounded.

We conclude that |
∫ t

0
g(ω̃·s) ds| is bounded for every t ≥ 0, which contradicts our

hypothesis.
Consequently, e1(ω1) = 0 for every ω1 ∈ R, which ensures the existence of a

sequence (t1k) with the required properties. The existence of (t2k) for any ω2 in a
residual set R2 follows from the application of the same arguments to the function

e2(ω) = inf
t≤0

exp
∫ t

0

g(ω·s) ds ,

while repeating the same with the function −g provides the sequences (t3k) and
(t4k) for the points of the residual sets R3 and R4. The set R is then given by the
intersection of this four residual subsets, and the proof is complete. �

The same properties hold for the solutions of the family of scalar difference
equations x(n+1) = x(n)+g(ω·n), namely x(n) = x(0)+

∑n−1
j=0 g(ω·j). The proofs

are completely analogous to the previous ones.

Proposition A.3. Let g : Ω → R be a continuous function. The following asser-
tions are equivalent:

(1) there exists a point ω̃ ∈ Ω such that
∑n−1

j=0 g(ω̃·j) ≤ k1 <∞ for every n ≥ 0
or for every n ≤ 0;

(2) there exist G : Ω → R continuous with G(ω·n)−G(ω) =
∑n−1

j=0 g(ω·j) and,
consequently, a constant k such that |

∑n−1
j=0 g(ω·j)| ≤ k for every ω ∈ Ω

and n ∈ Z.

Theorem A.4. Assume that statement (1) of Proposition A.3 does not hold and
that the family of linear difference equations x(n + 1) = eg(ω·n)x(n) does not have
an exponential dichotomy over Ω. Then, for every ω in a residual subset R, there
exist four sequences (ni

k) with limk→∞ ni
k = ∞ for i = 1, 3 and limk→∞ ni

k = −∞
for i = 2, 4, and such that

lim
k→∞

ni
k∑

j=0

g(ω·j) = −∞ for i = 1, 2 and lim
k→∞

ni
k∑

j=0

g(ω·j) = ∞ for i = 3, 4 .

Appendix B. The suspensions of the discrete flows

The interpolation of the discrete flows (Td, σ), (Td × R2, τ) and (KR, τp) asso-
ciated to the family of Jacobi equations (4.7) by real flows, known as suspensions
of the initial ones, allows as to unify the analysis of the dynamics on KR in the
continuous and discrete cases. In this pages we summarize the most basic facts
concerning the suspension construction, following the approach made by Johnson
in [25].

Let us consider a discrete flow ς : Z×X → X, (n, x) 7→ ς(n, x) ≡ x·n on a locally
compact Hausdorff space X. We define on the product space X×R an equivalence
relation by

(x1, s1) ∼ (x2, s2) ⇔ s1 − s2 = n ∈ Z and x2 = x1·n .
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Then the quotient space X̂ is also a locally compact Hausdorff space, and it is
compact in the case X is. We will represent the equivalence class of the pair (x, s)
by [x, s]; so that [x, s] = [x·n, s − n] for every n ∈ Z. Each equivalence class
admits a unique representative (x, s) with s ∈ [0, 1), which will chosen if fixing
one is needed. The map ς̂ : R × X̂ → X̂, (t, [x, s]) 7→ [x, s + t] defines a real
continuous flow (X̂, ς̂), which is called the suspension of the discrete flow (X, ς).
By defining is : X → X̂, x 7→ [x, s] for each s ∈ R, we can identify X with
i0(X) ⊂ X̂, so that the restriction of ς̂ to Z×X coincides with the discrete initial
flow: ς̂(n, [x, 0]) = [x, n] = [x·n, 0] ≡ x·n = ς(n, x).

It is immediate to check that if the ς-trajectory {x·n | n ∈ Z} of an element
x ∈ X is dense on X, then so is the ς̂-trajectory {[x, s+ t] | t ∈ R} on X̂ for every
s ∈ R. In particular, the new flow is minimal in the case that the discrete one is.

Given a measure µ on X, we define∫
bX

g([x, s]) dµ̂ =
∫ 1

0

∫
X

g ◦ is(x) dµ ds ∀ g ∈ C(X̂) .

It is easy to check that µ̂ is a measure, and that it is ς̂-invariant if µ is ς-invariant;
in fact, if µ is ergodic so µ̂ is. In addition, note that if X̂0 ⊂ X̂ is ς̂-invariant with
µ̂(X̂0) = 1, then µ({x | [x, s] ∈ X̂0}) = 1 for every s ∈ [0, 1].

This procedure allows us to construct (T̂d, σ̂) and ( ̂Td × R2, τ̃), suspensions of
(Td, σ) and (Td × R2, τ) respectively. One can check that the flow (T̂d, σ̂) inherits
the almost periodic character of the discrete base flow. In addition, it turns out that
the space ̂Td × R2 is a trivial bundle over Td, and this trivialization takes τ̃ to a new
flow, of linear skew-product type. Let us see how. Let F : Td × [0, 1] → GL(2,C)
be the homotopy between the maps ω 7→ Id and ω 7→

[
0 1

−1 v(ω)

]
given by

F (ω, s) =
[

cos θ(s) sin θ(s)
− sin θ(s) cos θ(s) + ϑ(s) v(ω)

]
,

where θ and ϑ are C∞-functions satisfying

θ : [0, 1] → [0, π/2] , θ|[0,δ] = 0 , θ|[1/2−δ,1] = π/2 ,
ϑ : [0, 1] → [0, 1] , ϑ|[0,1/2+δ] = 0 , ϑ|[1−δ,1] = 1

for a fixed δ ∈ (0, 1/4). These conditions provide periodic C∞ extensions of θ′ and
ϑ′ to the whole real line. The map

ζ : ̂Td × R2 −→ T̂d × R2 , [(ω, z)·s] 7→ ([ω, s], F (ω, s) z)

(with s ∈ [0, 1)) is a homeomorphism. Let us denote by τ̂ the flow obtained by
translation of τ̃ v́ıa ζ. For t ∈ R and s ∈ [0, 1),

τ̂(t, [ω, s], z) =
(
[ω, (s+ t)], Ẑ(t, [ω, s]) z

)
,

where
Ẑ(t, [ω, s]) = F (ω·n, l)Z(n, ω)F (ω, s)−1 (B.1)

with n = [s+ t] and l = s+ t− n. (Here, as usual, [·] represents the integer part of
a real number.) The restriction to Z× Td × R2 ⊂ R× T̂d × R2 is then

τ̂(n, [ω, 0], z) = (ω·n, F (ω·n, 0)U(n, ω)F (ω, 0)−1z) = (ω·n,U(n, ω) z) = τ(n, ω, z) ;

that is, the discrete flow τ agrees with this restriction. The following result is
proved in Núñez and Obaya [44].



OLD AND NEW RESULTS ON SNAS ON THE REAL LINE 39

Proposition B.1. The continuous flow τ̂ is given on T̂d × R2 by the family of
two-dimensional linear systems

z′ = D̂([ω, s+ t]) z , [ω, s] ∈ T̂d , (B.2)

where D̂ : T̂d → GL(2,R) is the continuous map defined by

D̂([ω, s]) =
[

0 θ′(s)
−θ′(s) + ϑ′(s) v(ω·[s]) 0

]
for ω ∈ Td and s ∈ R.

Let ẑ(t, [ω, s], z0) be the solution of (B.2) with initial data ẑ(0, [ω, s], z0) = z0;
then τ̂(t, [ω, s], z0) = ([ω, s+ t], ẑ(t, [ω, s], z0)). In addition, by taking angular coor-
dinate ϕ = cot−1(z2/z1), we obtain the flow τ̂p induced by (B.2) on the projective
bundle K̂R = T̂d × P1. It is defined as τ̂p(t, [ω, s], ϕ̄0) = ([ω, s + t], ¯̂ϕ(t, [ω, s], ϕ0)),
¯̂ϕ(t, [ω, s], ϕ0) being the projection on P1 of the solution ϕ̂(t, [ω, s], ϕ0) with initial
data ϕ0 of the equation

ϕ′ = θ′(s+ t)− ϑ′(s+ t) v(ω) sin2 ϕ = f([ω, s+ t], ϕ) . (B.3)

Relation (B.1) provides the expressions of ẑ(t, [ω, 0], z0) (resp. ϕ̂(t, [ω, 0], ϕ0)) in
terms of z(n, ω, z0) (resp. ϕ(n, ω, ϕ0)). In particular, the dynamical spectrums
of (4.8) and (B.2) agree, and the restriction to τ̂p to Z×KR ⊂ Z×K̂R coincides with
the discrete projective flow τp defined from (4.9). The details can be found in [44].
It follows easily that the discrete solutions and flows inherit the almost periodicity
properties of the real solutions and flows. In addition, given a τ̂p-minimal subset
M̂ ⊂ K̂R, the set M = {(ω, ϕ̄) | [(ω, ϕ̄), 0] ∈ M̂} is a τp-minimal subset of KR; and
conversely, given a τp-minimal subset M ⊂ KR, the set M̂ = {[(ω, ϕ̄), s] | (ω, ϕ̄) ∈
M, s ∈ [0, 1)} ⊂ K̂R is τ̂p-minimal. And finally, a τ̂p-ergodic sheet of the suspension
K̂R determines a τp-ergodic sheet of KR.
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