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2nd June 2006
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Diagonal 647, 08028 Barcelona, Spain. E-mail: merce.olle@upc.edu

Abstract

In this paper, we consider horseshoe motion in the planar restricted three-body
problem. On one hand, we deal with the families of horseshoe periodic orbits (which
surround three equilibrium points called L3, L4 and L5), when the mass parameter
µ is positive and small; we describe the structure of such families from the two-body
problem (µ = 0). On the other hand, the region of existence of horseshoe periodic
orbits for any value of µ ∈ (0, 1/2] implies the understanding of the behaviour of the
invariant manifolds of L3. So, a systematic analysis of such manifolds is carried out.
As well the implications on the number of homoclinic connections to L3, and on the
simple infinite and double infinite period homoclinic phenomena are also analysed.
Finally, the relationship between the horseshoe homoclinic orbits and the horseshoe
periodic orbits are considered in detail.

Keywords: periodic orbits, invariant stable and unstable manifolds, homoclinic orbits,
restricted problem.
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1 Introduction

Over the past decades the interest in horseshoe periodic orbits (roughly speaking banana-
shaped orbits) arose when modelling the motion of co-orbital satellites, the most famous
being Saturn’s co-orbital satellites Janus (1980S1) and Epimetheus (1980S3), whose exis-
tence was confirmed by Voyager flights to Saturn in 1981 (see [7], [8], [17] and references
therein). More recently, several near-Earth asteroids have been found to move on horses-
hoe orbits (see [5] and [3]).

The horseshoe motion and the dynamics of co-orbital satellites have been analysed
both analytically and numerically using the three-body context. In the framework of
singular perturbation theory the motion of co-orbital satellites may be approximated by
two independent solutions of a two-body problem when they are far apart. However,
this approximation breaks down when the distance of the two satellites becomes small,
and a different two-body problem must be used instead. The complete description of
the motion requires the matching of both solutions (see [22] and [24]). Cors and Hall [6]
studied the same problem by introducing small parameters to the three-body equations,
truncating higher order terms and deriving dynamical information from the resulting
equations. From a numerical point of view, horseshoe periodic orbits have been explored as
invariant objects using Hill’s problem (see [20]), the planar restricted three-body problem –
RTBP– (as a simple model to describe Saturn’s coorbitals motion with the mass parameter
µ = 3.5×10−9, see [16] and [17]) and the spatial RTBP (where some families of horseshoe
periodic orbits were computed, see [1]).

In this paper we consider the planar RTBP. It is known that this problem has five
equilibrium points (in a rotating system of reference) called Li, i = 1, ..., 5 and a first
integral called the Jacobi integral. We will denote by C the constant value of the Jacobi
integral along a solution. Throughout the paper we study some open questions concerning
horseshoe periodic orbits (HPO) not answered in previous papers. We focus our attention
on periodic symmetric solutions of the RTBP in a rotating system. In this context, HPOs
are orbits that surround the equilibrium points L3, L4 and L5, and have two orthogonal
crossings with the horizontal synodical axis (see Figures 3, 7 and 8).

Our contribution in this paper is threefold:

(i) for a value of µ fixed and small, and for a big interval of values of the Jacobi constant
C, the understanding of the diagram of continuous families of HPOs follows from
the families of periodic orbits obtained from rotating circular and elliptical orbits in
the µ = 0 case (in [17] only a mechanism to generate one set of isolated HPOs for
a fixed value of the Jacobi constant was given). From now on we call such families
for µ = 0 generating families of HPOs and we give their analytical expression.

(ii) Many properties concerning the evolution of the families, for µ > 0 and small,
as well as the shape of the HPOs within a family, are now easily explained from
the generating families of HPOs. The diagram of the characteristic curves of the
families of HPOs is computed for µ = 0.0001 and we remark on the similarities and
differences between this diagram and the corresponding one for µ = 0.
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(iii) However, the continuation of this diagram when varying µ > 0 is not straight
forward. This is mainly due to the existence of the stable and unstable invariant
manifolds of the collinear equilibrium point L3. In particular the behaviour of such
manifolds for C3 = C(L3) and the existence of a finite or infinite number of HPOs
for this value C3 are analysed in order to understand how the diagram of families
of HPOs evolves when increasing µ. Finally, we study the existence and location
of horseshoe periodic orbits and horseshoe homoclinic orbits to L3 for any value of
µ ∈ (0, 1/2]. Since the invariant manifolds of L3 play a key role as a mechanism
to generate HPOs, we have done a detailed exploration of the behaviour of these
manifolds when increasing µ from 0 onwards. In particular, we study the existence
of homoclinic horseshoe orbits to L3 (that is, an orbit that tends to L3 in backward
and forward time) when varying µ. For each homoclinic orbit there is an infinity
of HPOs tending to it. Furthermore, we observe that the set of values of µ for
which simple homoclinic orbits exist, is a sequence tending to zero. And, tending
to each simple isolated homoclinic orbit, a double sequence of double homoclinic
orbits can be obtained. (See Section 4 for the explicit definition of simple and
double homoclinic orbits.)

As a final remark, we must point out that not only L3 is important in the horses-
hoe dynamics, but also the other collinear equilibrium points L1 and L2, and the
equilateral ones, L4 and L5 (as well as the periodic orbits around them and their
associated invariant manifolds), are also involved. We show some examples.

In Section 2 we briefly recall the RTBP. Items (i) and (ii) are developed in Section 3
and item (iii) is done in Section 4.

2 The restricted three-body problem

Let us consider a system of three bodies in an inertial (also called sidereal) reference
system. Two bodies, called big and small primaries of masses 1 − µ and µ, µ ∈ (0, 1/2],
(in suitable units), are describing circular orbits about their common centre of mass (the
origin of coordinates) in a plane. The third body is a particle of infinitesimal mass
which moves under the gravitational effect of the primaries but has negligible effect on
their motion. The problem of the description of the motion of the particle is known
as the circular restricted three-body problem (RTBP). With suitable units, such as the
mean motion of the primaries is the unity, the equations of motion in a rotating (also
called synodical) system of coordinates, where the big and small primaries remain fixed
at positions (µ, 0) and (µ− 1, 0) respectively, are (see Szebehely [23])

x′′ − 2y′ =
∂Ω

∂x
,

y′′ + 2x′ =
∂Ω

∂y
,

(1)
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where

Ω(x, y) =
1

2
(x2 + y2) +

1− µ

r1

+
µ

r2

+
1

2
µ(1− µ),

r2
1 = (x− µ)2 + y2 and r2

2 = (x− µ + 1)2 + y2 are the distances between the particle and
the big and small primaries respectively, and ′ stands for d/dt.

It is well known that these equations have the so called Jacobi first integral

x′2 + y′2 = 2Ω(x, y)− C. (2)

It will be necessary to take into account the regions in the (x, y) plane where the motion
of the particle is possible. This regions are bounded by the zero velocity curves (ZVC)
given by the equation

2Ω(x, y)− C = 0.

obtained from (2) (see Fig. 1).
Finally, Equations(1) satisfy the symmetry

(x, y, x′, y′, t) → (x,−y,−x′, y′,−t). (3)

Using this symmetry, it is well known that any solution with two orthogonal crossings
with the horizontal axis becomes symmetric, with respect to the x axis, and periodic. We
can consider that the orthogonal crossings occur at epochs t = 0 and t = T/2, with T
being the period. Given a periodic orbit, we denote its initial conditions (at t = 0) by
(x0, 0, 0, y

′
0) (or in short (x0, y

′
0)) and the final conditions (at t = T/2) by (xf , 0, 0, y

′
f )

((xf , y
′
f )).

There exist 5 equilibrium points: the collinear points, L1, L2 and L3, with positions
(xi, 0), for i = 1, 2, 3, and the equilateral ones, L4 and L5, located at (µ − 1/2,±√3/2).
If one computes the value of the Jacobi constant at the equilibrium points Ci = C(Li) for
any value of µ ∈ (0, 1/2), one has (see [23])

3 = C4 = C5 < C3 ≤ C1 < C2,

and C3 = C1 for µ = 1/2. Along the paper, the point L3 and its invariant manifolds will
play a key role. We briefly recall that, according to the eigenvalues of the Jacobian matrix
of the vector field at L3, the collinear point is saddle-centre type. That is, the eigenvalues
are λ1 = a > 0, λ2 = −a and λ3,4 = ±bı, b ∈ R (this is also true for the other collinear
points L1 and L2). In particular, L3 has one-dimensional unstable and stable manifolds
associated to the saddle. In particular, an eigenvalue v associated with the eigenvalue
λ1 (respectively λ2) gives the tangent direction of the unstable (stable) manifold. Each
branch of the unstable (resp. stable) manifold tends asymptotically to the equilibrium
point in backward (forward) time. We shall distinguish between the two branches of the
unstable (or stable) manifold according to v or −v, which will be denoted by W u,1

L3
, W u,2

L3

for the unstable manifold of L3 and by W s,1
L3

, W s,2
L3

for the stable one. Actually only W u,1
L3

and W u,2
L3

have to be computed since W s,1
L3

and W s,2
L3

can be obtained from the symmetry
(3).
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We also recall that if one branch of the invariant unstable manifold crosses orthogonally
the x axis (that is, y = x′ = 0), due to the symmetry (3), the branch coincides with one
branch of the stable manifold at this point, giving rise to a homoclinic orbit. This orbit
tends asymptotically, in forward and backward time, to L3.

3 Families of planar horseshoe periodic orbits

According to [17], a planar horseshoe periodic orbit will be a periodic solution of the
RTBP in which the particle follows a path which surrounds only the equilibrium points
L3, L4 and L5 and has two orthogonal crossings with the x axis. This implies that the
HPOs considered are symmetric with respect to the horizontal axis. For greater clarity,
some included plots of the periodic orbits only show a half-period of the motion (for
t ∈ [0, T/2], see for example, Figures 3 right, 7 and 8) and the dotted line represents the
horizontal axis in the synodical reference system where the primaries are located.

An initial question concerns the suitable region in the plane (x, y) to find horseshoe
motion. It is clear from the zero velocity curves (see Figure 1) that the equilibrium points
Li, i = 1, 2, 3, 4, 5, play a role here and that horseshoe motion is only possible for C < C1

(see [23] for the expansions in µ of xi and Ci, for i = 1, 2, 3). Thus, we will begin our
numerical explorations by using values of the Jacobi constant between C3 and C1.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
x

y

L4

L5

L1 L2 L3

m2 m1

3<C<C3

C3<C<C1

Figure 1: Zero velocity curves for µ > 0. The motion is possible outside the region
enclosed by the ZVC. Horseshoe motion takes place for values C < C1.

Given a value of µ > 0 and small, a second question will refer to a mechanism that
explains the existence of HPOs from the µ = 0 case. In this sense, for µ 6= 0 and for
any HPO when t ∈ [0, T/2], we will distinguish between the outer solution, the piece of
the HPO from t = 0 to the returning point (close to the small primary), and the inner
solution from the returning point to t = T/2 (analogously for t ∈ [T/2, T ]). The outer
and inner solutions can be approximated by two different solutions of the rotating two-
body problem when the infinitesimal mass is far from the small primary. In Figure 2 we
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show two HPOs, for µ = 0.0001, and the corresponding approximating rotating circular
orbits (left) and rotating elliptical ones (right), for µ = 0. In Subsection 3.1, we study
the families of periodic orbits of the two-body problem that give the outer and inner
approximations of the HPOs. We call such families generating families of the HPOs for
µ = 0. We also give analytic expressions that describe the families and the corresponding
diagram in suitable variables.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

Figure 2: A whole HPO (continuous line) for µ = 10−4 and the two-body orbits (discon-
tinuous line) for µ = 0 approximating the outer and inner solutions.

Next, we consider the families of HPOs for µ > 0 and small (Subsection 3.2). First,
a method of numerical computation of such families is given. Secondly, we describe the
diagram of characteristic curves (curves such that each point characterises an HPO) for
a specific value of µ (0.0001) and we compare it with the diagram of continuous families
of rotating ellipses and circular orbits for µ = 0.

Finally, it is natural to consider the continuation of this diagram for increasing values of
µ. However, this is not a straightforward task. The explanation comes from the behaviour
of the invariant manifolds of the equilibrium point L3. In Subsection 3.3, we observe that
the loops that appear in the (x, y)-projection of the invariant manifolds and the existence
of homoclinic orbits to L3 (orbits that tend to this point in backward and forward time)
play an important role in order to describe the continuation of these diagrams.

3.1 Generating families of HPOs for µ = 0

When µ = 0 we consider the sidereal orbits described by the particle around the big
primary located at the origin, as natural candidates to approximate the outer and inner
solutions of a horseshoe orbit. We distinguish between a circular sidereal orbit (which
becomes also a synodical circular one) or a synodical orbit coming from a rotating sidereal
ellipse. In order to characterise the families of sidereal circular and elliptical orbits, we
consider the well known relation

C

2
+ h = M, (4)
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with C the Jacobi constant, h the energy and M the angular momentum with sign:
positive for direct orbits and negative for retrograde ones. As M = ±

√
a(1− e2) and

h = −1/2a (a, e being the semimajor axis and the eccentricity) we obtain

C

2
− 1

2a
= ±

√
a(1− e2), (5)

or equivalently

e2 +
1

4a

(
C − 1

a

)2

= 1. (6)

First, we consider the circular orbits. Substituting e = 0 in Equation (5), we obtain

C =
1

a
± 2

√
a (7)

with the plus sign (the l − i families in the Strömgren’s notation, see for example [12])
for sidereal direct orbits and the minus sign (the h −m families) for sidereal retrograde
ones. Each such orbit will have as initial synodical position the point (x, 0), with x = a
satisfying Equation (7). In Figure 3, both curves are represented, as well as the ZVC
obtained from Equation (2) considering µ = 0, i.e. x2 + 1/x = C.

In order to approximate an HPO, we are interested in the two circular orbits of families
l− i close to the ZVC, for a value of C > 3 fixed (see Figure 3). Two such circular orbits
will approximate the outer and inner solutions of an HPO for small µ > 0 (see Figure 2
left). Because of this, this family is called the generating (or also approximating) family
of circular orbits.

It should be noted that for any sidereal orbit we have, from Kepler’s third law, that
n2a3 = 1, where n and n − 1 are the sidereal and synodical mean motions respectively
If n < 0, the orbit is retrograde in both reference systems, while for 0 < n < 1 (a > 1)
the orbit is sidereal direct but synodical retrograde and for n > 1 (a < 1) direct in both
systems. Therefore, the outer and inner solutions of an HPO are approximated by a
retrograde and a direct synodical circular solution respectively.

3

zero velocity curve

retrograde orbits

direct orbits

0 1 3

a

42

Figure 3: Plane (x,C); the ZVC and the two families of sidereal circular orbits (of radius
x = a) of the problem of two bodies given by equation (7).
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Circular orbits are always symmetric and periodic in both sidereal and synodical re-
ference systems. However, in order for a rotating ellipse to be symmetric and periodic
in the synodical system, a rational mean motion n = Q/P is necessary (or equivalently
the semimajor axis a has to verify the condition a = (P/Q)2/3), for P, Q ∈ N relatively
primes), and the two orthogonal crossings in the synodical x axis must take place at a
pericentre or an apocentre of the sidereal orbit.

So, let x > 0 be the value of the synodical x coordinate of the initial orthogonal
crossing. Then x = a(1 + e) if it is at an apocentre or x = a(1 − e) at a pericentre. In

both cases, e2 = (x−a)2

a2 and Equation (6) becomes

(x− a)2

a2
+

1

4a

(
C − 1

a

)2

= 1, (8)

which gives a curve the (x,C) plane that, for a fixed value of a, is an ellipse itself with
centre (a, 1/a) and semimajor axis a and 2

√
a. So, for fixed a, the points in the ellipse

of Equation (8) give a family of elliptical orbits and each of these points represents an
elliptic orbit with semimajor axis a and eccentricity e = |x − a|/a (see Figure 4 left). If
x > a (respectively x < a) the orthogonal crossing takes place at the apocentre (resp.
pericentre). When x = a, we have a circular orbit (e = 0), and for x = 0 or x = 2a,
we get a degenerate ellipse (e = 1) (see Figure 4 right). Also, from Equation (5) and for
a fixed value of a, we distinguish between direct and retrograde orbits according to the
value of the Jacobi constant:

C ∈ ( 1
a
− 2

√
a, 1

a
) sidereal retrograde orbits,

C ∈ ( 1
a
, 1

a
+ 2

√
a) sidereal direct ones.

Both intervals correspond to the upper and lower semiellipses of the associated ellipse
(labelled by a). Again if a < 1 (respectively a > 1) the orbit becomes synodical direct
(retrograde).

We also note that for any fixed value of a, the corresponding family of elliptical orbits
given by Equation (8) intersects the family of circular orbits at two points (see Figure 4
left): (a, 1

a
+ 2

√
a) corresponding to a circular orbit and (x,C) that corresponds both to

a circular orbit with radius x and to an ellipse with x = a(1 + e) or x = a(1 − e). A
deeper analysis shows that, if a < 1 the initial orthogonal crossing x of the ellipse is at an
apocentre while for a > 1 the initial x is at a pericentre. Furthermore, for a < 2−5/3 the
orbit is sidereal retrograde whereas for 2−5/3 < a the orbit is sidereal direct. So we have
two different orbits (circular and elliptic) with the same initial condition (x, 0), but with
different sign in the initial velocity y′ (see also Subsection 3.2 for details). We note that
the sign of the velocity does not determine the sense of the synodical orbit: the velocity
may be negative for a direct synodical orbit, due to the existence of loops (see for example
Figures 7 and 8).

As reasoned above, the solutions of Equation (8) will be called the generating families
of rotating ellipses. Finally, we remark that Equations (7) and (8) may be regarded as the
equations of the characteristic curves of families of symmetrical periodic orbits for µ = 0.
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forbiden region
circular orbits

2

4

0 2 4
x

1/a

a

apocenterspericenters

direct orbits

retrograde orbits

Figure 4: Left. Families of sidereal elliptical orbits in the plane (x,C). Right. One family
given by Equation (8) with a fixed a. Points (a, 1/a± 2

√
a) represent circular orbits.

For a fixed a, a point of the curve in the plane (x,C) gives rise to the synodical initial
condition (x, 0, 0, y′), with y′ = ±v − x (plus or minus sign if the sidereal orbit is direct

or retrograde respectively), v =
√

1±e
a(1∓e)

, and x = a(1 ∓ e), where the up (down) sign is

taken if the particle is at the pericentre (apocentre). Such characteristic curves will be
meaningful when studying the HPOs for small µ > 0 in Subsection 3.2.

3.2 Families of HPOs for µ > 0 and small

The aim of this Subsection is to compare the diagram of characteristic curves of families
of HPOs for µ > 0 and small with the generating families for µ = 0, and to derive some
properties of the families for µ > 0.

Thus, in this Subsection, we fix a value of µ > 0 and small, for example µ = 10−4.
We want to obtain, numerically, families of symmetrical horseshoe periodic orbits. Each
periodic orbit is completely determined by its initial condition (x0, y

′
0), and a family can

be represented by the set of the initial conditions of its periodic orbits. Thus, each family
can be represented by a curve (characteristic curve) for example in the (x0, y

′
0)-plane, or

in the (x0, C)-plane, C obtained from Equation (2). The last, being our choice.
In order to compute the families of HPOs, we take into account that a family of

periodic orbits with initial conditions (x0, 0, 0, y
′
0) is defined implicitly by the equation

x′(T/2, x0, y
′
0) = 0

where T = T (x0, y
′
0) is given by the Poincaré section y(T/2, x0, y

′
0) = 0. The numerical

continuation of the family has been done using the arc step method which we will outline.
A family of periodic orbits is regarded as a curve parameterised by the arc parameter s,
that is,

p(s) = (x0(s), y
′
0(s))

such that x′f (p(s)) = 0, where x′f stands for the value of x′ when the first (or k-th) crossing
with the x axis takes place. Using the fact that the curve p(s) satisfies a suitable system
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of differential equations, we predict the successive points on the curve by a (low) order
Adams-Bashforth method and we refine them by using a modified Newton’s method (see
for example [1], [2] or [21] for details).

Of course an initial point (seed) of each family must be taken. To obtain it, we fix a
value of C, and for any value x0 (greater that x3 = x(L3) if C ≥ C3) we integrate the
equations of motion until the first (or k-th) crossing with the horizontal axis is reached.
At this point, yf = 0, but in general x′f 6= 0 (is not an orthogonal crossing). Then we
consider x′f as a function of the initial x0. In Figure 10, this function is shown for C = C3

and different values of µ (see also Subsection 3.3 and [17] for more details). Each value x0

for which x′f = 0 represents a periodic orbit, so for a fixed value of C we obtain a discrete
number of HPOs, and for each one we can follow its family using the above mentioned
method. We show in Figure 5, and for µ = 0.0001, some of the the characteristic curves
of the families of HPOs computed in the (x0, C) plane (C obtained from x0 and y′0). Only
the initial conditions of horseshoe orbits with two crossings (just the orthogonal ones)
with the horizontal axis have been computed, so the plot of the branches stops when the
HPO has more than two crossings. Also, the discrete set of initial conditions of HPOs
computed for the fixed value C = 3.00019 (the points shown with crosses), as well as the
Lyapunov family around L3 (periodic orbits around the equilibrium point, which have no
horseshoe shape), and the ZVC (the continuous line curve on the left in the Figure) given
by equation

C =
2(1− µ)

x0 − µ
+

2µ

x0 + 1− µ
+ µ(1− µ) + x2

0,

are shown in this Figure.

 3.00019

 3.00019

 3.0002

 3.0002

 3.00021

 1  1.001  1.002  1.003  1.004  1.005  1.006  1.007  1.008

Figure 5: Characteristic curves of some families of HPOs in the (x0, C) plane. The cross
points correspond to the periodic orbits computed for the fixed value C = 3.00019. The
separated dotted curve at the bottom left corresponds to the Lyapunov family of periodic
(not horseshoe) orbits around L3. See the text for more details.

At this point we want to comment on some properties concerning the evolution of the
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families, and to compare the diagram of the characteristic curves with the diagram of
generating families for µ = 0:

(i) We have considered the eccentricity (which is not constant along an HPO) at the
initial condition of an HPO and we think of this value of e as the eccentricity of
the outer approximation. It is proved in [1] that the points (x0, C) for which the
outer approximation with the same initial conditions has eccentricity zero satisfy
the equation

C =
2(1− µ)

x0 − µ
+

2µ

x0 + 1− µ
+ µ(1− µ) + 2

√
x0 − 1

x0

. (9)

This is the dashed line in Figure 6 (called skeleton in [1]) and corresponds to the
generating family l − i of circular orbits for µ = 0 (see Figure 4 left).

(ii) Each continuous family reaches a maximum value of C, denoted by Cm. We dis-
tinguish between two kinds of families, either the family ‘crosses’ the skeleton or it
does not (see Figure 6). In any case we can consider both branches in each curve:
on the left and right sides of the skeleton if it is crossed by the characteristic curve,
or on the same side if it is not. In any case, the two branches of the family are
very close to one generating family (for µ = 0) which is different for each branch.
That is, for µ > 0 and small, the generating families that approach each branch
do not coincide and then, the values of the semimajor axis a and a′ associated to
each generating family are different. This means that the outer solution of orbits
belonging to the same family but to a different branch can be approximated by
ellipses with different semimajor axis.

The same property can be derived for the inner solution of orbits belonging to the
same family but to a different branch. We can consider the characteristic curves of
the families by taking into account the points (xf , C), xf being the x position at
t = T/2 (see Figure 6, where the dotted curves correspond to the points (xf , C) for
two particular families labelled as A and C). The same observation in this case can
be made: each curve has two branches which can be approximated by two different
generating families for µ = 0 (although in the aforementioned Figure they cannot
be appreciated).

(iii) In particular, let us consider one family of HPOs and one branch of the family.
As the branch can be approximated by one generating family for µ = 0, the outer
solution of each HPO is near a rotating ellipse with the same semimajor axis a
for all of the orbits of the family, but with different eccentricity. As C decreases,
the eccentricity varies from 0 onwards along the branch. As specific examples, we
consider families A and C (see Figure 6), and we plot the (x, y) projection of some
orbits belonging to the families in Figures 7 and 8: the subplots (1), (2) and (3)
correspond to orbits with initial conditions in the left branch of each family, and (4),
(5) and (6) correspond to orbits in the right branch. We can see how the increase of
the eccentricity is translated to bigger loops and therefore to an increasing number of
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 3

 3.0005

 3.001

 3.0015

 3.002

 1  1.01  1.02  1.03  1.04  1.05  1.06  1.07  1.08  1.09

A

C

 2.994

 2.995

 2.996

 2.997

 2.998

 2.999

 3

 3.001

 3.002

 3.003

 0.7  0.75  0.8  0.85  0.9  0.95  1  1.05  1.1  1.15

CC

A

Figure 6: Left: characteristic curves (x0, C) of some families of HPOs for µ = 0.0001.
The dashed-dotted line on the right represents the ZVC, and the dashed line crossing
all the families is the skeleton curve given by Eq. 9. Right: characteristic curves (x0, C)
(continuous line) and (xf , C) (dashed line) of families A and C. The points indicated on
each curve correspond to the orbits, with increasing x0, shown in Fig. 7 and 8.
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Figure 7: Samples of HPOs from family A ((x, y) projection). The numbering corresponds
to the rhombus, with increasing x0, in Figure 6

crossings of the HPO with the horizontal axis (only two of them being orthogonal).

(iv) It is quite easy from Subsection 3.1 to describe the evolution of the main features
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Figure 8: Samples of HPOs from family C ((x, y) projection).

related to the initial and final (at t = T/2) conditions along each family. In parti-
cular, we want to describe whether the particle is at a pericentre or an apocentre
at t = 0 and the evolution of the sign of y′0. See Figures 6, 7 and 8 for orbits of
family A and C as examples. With respect to the question of the initial condition
being an apocentre or pericentre, it only depends on whether it is in a left or in
a right branch. The left branch of each family is close to the corresponding upper
and left semi-ellipse (generating family for µ = 0) satisfying Equation (8). That
means, from Figure 4, that the initial position point (x0, 0) of every HPO in a
left branch corresponds to a pericentre of the approximating direct rotating ellipse.
Analogously, the initial conditions in the right branches of the families correspond
to an apocentre of the approximating ellipse. In both cases and for all the orbits
computed, the sidereal velocity of the approximating ellipse is positive, this is,
y′0+x0 ≥ 0, although the synodical velocity y′0 can change its sign. Consider a family
with a left branch. There is a particular x0 for which the family is tangent to the
ZVC, therefore y′0 = 0 (see orbit (3) in Figure 7). From this value of x0 downwards,
y′0 > 0 (see orbits (1) and (2) in Figure 7), while from this value onwards, y′0 < 0,
but the initial point still corresponds to a pericentre until the family crosses the
skeleton. This fact can be observed also for the generating families (the upper
left semi-ellipses are tangent to the ZVC before its intersection with the family of
circular orbits, see Figure 4). At this point (when the family crosses the skeleton),
there is an x0 such that the approximating outer solution is circular (see orbits (4)
in Figures 7 and 8). Then, as x0 increases, we have the right branch of the family
approximated by another upper and right semi-ellipse (generating family) given by
(8), with a different semimajor axis a. Therefore the initial point takes place at an
apocentre (of the corresponding rotating ellipse) all along the right branch.
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Of course, the same comments apply to the curve given by the final points (xf , C)
with (xf , 0, 0, y

′
f ) at t = T/2 (see Figure 6 for such curves for families A and C).

In Figures 7 and 8, we see that at the position point (xf , 0), the particle is always
at the apocentre for family A and at the pericentre for family C. Let us finally
remark that, looking at the characteristic curve (xf , C) of families A and C, the
two branches might seem to be the same, but they are not, with the maximum
separation between both branches being close to the Cm value of the family.

Finally, we can describe the location of the initial condition x0 with respect to the
position of L3 (at x3). It is clear that in each generating family, for a ≥ 1, there
exists a value of C corresponding to a point in the upper left semi-ellipse for which
x0 = 1. Equivalently, for µ > 0 and each family with a left branch, there is point
(x0, C) verifying x0 = x3. This is clearly observed in the evolution of x0 in family A
or C. The initial conditions in the right branches always satisfy x0 > x3, while the
initial conditions in the left branches only satisfy x0 > x3 for values of C greater of
a certain value (different for each family). With respect to the final conditions, in
family A, xf < x3 only for values greater than another value of C, while in family
C, xf < x3 always (see Figure 6).

(v) Let us finally make two important remarks. On one hand, as C1 = 3.00895589 and
C3 = 3.00019998, the region of HPOs explored is in a tiny neighbourhood of C3,
say C3 − a, C3 + b, where b > 0 is small due to the C1 value. On the other hand,
there is no limitation, in principle, for a > 0, but as C decreases, the orbits become
tremendously unstable and we have not computed them. Therefore, the question
as to whether the characteristic curve of each family of HPOs is closed or not (as
suggested from the closed ellipses of generating ellipses for µ = 0) remains open for
a future paper.

As we have just shown, it is clear that the two-body problem explains the behaviour
of the characteristic curves of the continuous families of HPOs as well as many geo-
metrical properties of each HPO. However, for any given HPO, what the two-body
approximation does not explain is the intermediate piece of the solution between
the outer and inner solutions, that is, when the returning point takes place. Of
course, the dynamics of the returning point might be much more complicated (see
Section 4). In fact, when C is close to, and less than, C1, there is a thin neck region
given by the ZVC, that allows the path to pass from the outer region –where the
outer solution lives– to the inner one –the oval shape region around the big primary
m1, where there is the inner solution– (see Figure 1). Of course the small primary
plays a key role there. But also, for any value of C < C1, the invariant manifolds of
the Lyapunov orbits associated with the collinear points L1 and L2 exist and play
a role as well. See Section 4 (also [4] and [11]).

In addition to the description of the families of HPOs and some of their properties
from the generating families for µ = 0, we can derive other interesting features from the
data obtained in the numerical computation of the families.

We now consider the (linear) stability of the computed HPOs. Given a periodic orbit



E. Barrabés and M. Ollé 15

of period T , it is well known that the monodromy matrix M (the fundamental matrix of
the linear variational system of differential equations along a periodic solution for t = T )
has the eigenvalues 1, 1, λ1, 1/λ1 and sp = λ1 +1/λ1 = 2−tr(M) is known as the stability
parameter (see, for instance, [1], [13]). A periodic orbit is (linearly) stable if | sp |< 2,
and when the stability parameter equals 2 or −2 the orbit is called critical since families
of the same period or doubling period respectively may bifurcate (see for instance [18]
and [19]).

Regarding now the stability of the set of families of the computed HPOs, two common
features appear along each family. First, when C along the family reaches the maximum
value Cm, the stability curve crosses the line sp = 2 as expected (see [13]). Second, when
C varies along the family, there appears a tangency to the line sp = −2 or even some
transversal crossings to this line, so families of double period of HPOs may bifurcate.
Therefore we may conclude that for any given family there is always one interval (or
more) in the initial value x0 for which the HPOs are stable although such intervals may
be extremely thin (see [1] for details). Also, there are always bifurcation orbits where a
family of the same or double period (depending on the value of sp of this orbit) bifurcates.

Let us show an example of bifurcating families of double period. We consider a family
with a tangential crossing with the line sp = −2 and the associated value of C of this
orbit. In Figure 9, top left, the curve (x0, sp) of such a family is shown. The bifurcating
orbit with sp = −2 is x0 = x0,bif and C = 3.0007512. Now we fix this value of C and for a
range of values of x0 in an interval containing x0,bif , we consider the orbit with this initial
condition (y′0 obtained from C) and the value of x′f at the first cross of the orbit with the
horizontal axis and the (x0, x

′
f ) curve. This curve is shown in Figure 9, top middle. As

expected, there is only one point such that x′f = 0 that corresponds to the bifurcating
HPO. However, if we decrease the C value slightly, and we compute the (x0, x

′
f ) curve not

at first, but at the second crossing, there appear three points with x′f = 0 (see top right in
the same Figure for C = 3.0007506): the one in the middle corresponds to the bifurcating
HPO of simple period and the left and the right points correspond to two bifurcating
HPOs of double period. One of the bifurcating HPO is plotted for t ∈ [0, T/2] in Figure
9 (bottom left and a zoom in right). Therefore, we would obtain two new families of
bifurcating double period HPOs (with four crossings in a period). We notice that we have
not followed them, so these orbits do not appear in the diagrams shown in Figures 5 and
6.

3.3 Continuation of families of HPOs in the mass parameter

Naturally, once we have computed families of HPOs for a fixed and small µF = 0.0001,
we wonder about the continuation of the diagram of the characteristic curves of such
families when varying µ. Of course an HPO may have many crossings with the x axis
although only two of them will be orthogonal. This fact will be an inconvenient when we
want to continue the families by varying the mass parameter µ. An easy way to perform
the continuation would be simply to consider one family for µF and compute the new
family for µN = µF + ∆µ either by taking one point of the known family and making
the continuation up to µN , and then from this new point, computing the new family for



16 On horseshoe motion

(1) (2) (3)

-3

-2

-1

 0

 1

 2

 3

 1.025  1.026  1.027  1.028  1.029  1.03  1.031
-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 1.026  1.0265  1.027  1.0275  1.028  1.0285  1.029
-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 1.026  1.0265  1.027  1.0275  1.028  1.0285  1.029

(4) (5)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1
-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.95  0.96  0.97  0.98  0.99  1  1.01  1.02  1.03

Figure 9: Example of a bifurcation family of double period for µ = 0.0001. (1) Curve
(x0, sp) of a family of HPOs with a bifurcation orbit with sp = −2; (2) for C = 3.0007512
fixed (corresponding to the bifurcation orbit), the curve (x0, x

′
f ) at first crossing; (3) for

C = 3.0007506 fixed, (x0, x
′
f ) curve at second crossing; (4) example of a bifurcating HPO

of double period in the (x, y) plane for t ∈ [0, T/2]; (5) a detail of the HPO: not the first
but the second crossing is orthogonal (at t = T/2) (this plot is not scaled in order to
observe this fact).

µN fixed, or making the continuation of each point of the family from µF to µN . There
would be no problems in such a continuation for µN < µF . However, the continuation in
certain regions of the diagram is very sensitive in µ when µ goes onwards from µF .

To show this effect, let us restrict, when increasing µ, to the region of the diagram
where the Jacobi constant is equal to C = C3. First, let us compute for a given µ, the
curve (x0, x

′
f ), where (x0, 0, 0, y

′
0) is the initial condition of an orbit (with y′0 < 0) and x′f is

the value of the velocity component x′ at the first crossing of the orbit with the horizontal
synodical axis, for x0 increasing onwards from x3 + δ, δ > 0 very small. Let us compare
the obtained curves for increasing values of µ. For µ = 0.0001, we see in Figure 10
top left, that many values of x0 for which x′f = 0 exist. Each of these values gives the
initial condition (y′0 obtained from the value C3) of an HPO with two crossings with the
horizontal axis in one period. We can also see many intervals for which there are jumps or
discontinuities in the curve. In each one a value x0 for which x′f = 0 not at the first cross,
but at the second one exists. This value corresponds to an orbit whose projection in the
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(x, y) plane has a loop close to the first crossing (see Figure 11), and therefore such an x0

corresponds to an HPO with 4 crossings with the y = 0 line in one period. However, we
might say that the (x0, x

′
f ) curve for µ = 0.0001 is quite regular (in the sense of being an

increasing sinus curve type). But when we slightly increase µ, for example µ = 0.00015,
a different behaviour is obtained for the corresponding (x0, x

′
f ) curve (see Figure 10 top

right). Although there are still values of x0 such that x′f (x0) = 0, which correspond
to HPOs with two crossings. For µ = 0.0005 and the corresponding (x0, x

′
f ) curve we

remark that there are no HPOs with only two crossings in one period for any value x0 in
the interval (x3, 1.00024) (see Figure 10 bottom left). Thus, the number of intersections
with the horizontal axis can change from one value of µ to another one, and this will
be a problem when doing the continuation by varying the mass parameter. However, for
bigger values of µ, we remark that we recover again the regular behaviour of the (x0, x

′
f )

curve, although the whole curve moves up or down when varying µ. In Figure 12 we plot
the curve (x0, x

′
f ) at the first crossing for µ = 0.00697485 (left), µ = 0.007 (middle) and

µ = 0.008 (right). In the first case, there seems to be an infinite set of points with x′f = 0
(this will be confirmed later, in Section 4), whereas for the other two values of µ we have
just a finite one.
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Figure 10: Curve (x0, x
′
f ) for Jacobi constant C = C3 and µ = 0.0001 (top left), µ =

0.00015 and x0 ∈ [1.0000627, 1.000064] (top right) and µ = 0.0005 (bottom, left and
right).

It is clear now that the obtained diagram of HPO for µ = 0.0001 (Figure 6), will
be rather different when the mass parameter increases. In Figure 13 the diagram of the
characteristic curves in the (x0, C) plane for µ = 0.008 is shown. The families have
been computed using the method explained in Subsection 3.2: continuing the families
from the HPO obtained by fixing a value of C, and looking for orbits with x′f = 0. When
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Figure 11: Left. Two horseshoe (non periodic) orbits with a loop close to the first crossing
with the x axis (projection in the (x, y) plane). Right. Zoom.
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Figure 12: For C = C3, curve (x0, x
′
f ) at first crossing for µ = 0.00697485 (left), µ = 0.007

(middle) and µ = 0.008 (right).

comparing both diagrams (µ = 0.0001 and µ = 0.008) we observe the following differences:
first, as explained above and shown in Figure 12 right (curve (x0, x

′
f ) for C = C3), for the

µ = 0.008 case, there are not HPOs (with only two crossings) near L3. Second, the rigid
structure of families organised in branches around the skeleton (see Figure 5) disappears
completely when µ increases. Actually, the influence of the two body problem disappears
as µ increases, but the small primary and the Lypaunov orbits around L1 and L2 play
their role instead. For example, to find HPOs that enter the neighbourhood of the small
primary is easier for µ = 0.008 than for µ = 0.0001, and the HPOs become more intricate,
having several crossings with the x axis. In Figure 14 three HPOs for µ = 0.008 are shown.

Thus, we can conclude that the continuation of the families of HPOs is very sensitive
with respect to µ. The reasons for the differences in the diagrams of families for different
values of µ depend on the behaviour of the invariant manifolds of L3, and the existence
of homoclinic orbits to L3, as we will see in Section 4.

4 Horseshoe motion for µ ∈ (0, 1/2].

Our most ambitious goal in this Section is to analyse the existence of HPOs for any
value of the mass parameter µ ∈ (0, 1/2] in an interval of values of C close to C3. Of
course, a mechanism suitable to describe the HPOs for µ > 0 and small (as explained in
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Figure 13: Characteristic curves of families of HPO for µ = 0.008. The dotted curve on
the bottom corresponds to the Lyapunov family around L3.
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Figure 14: Samples of HPO for µ = 0.008 and C = 3.0000029162232198, x0 =
0.9462538001607815 (left), C = 3.0128479526207705, x0 = 1.162120446968716 (middle)
and C = 3.0082900381403035, x0 = 1.117289488220401 (right).

Section 3), does not apply for any given value of µ. We are going to show that a natural
mechanism that explains the existence of HPOs and the differences between the diagrams
of the characteristic curves (of the families of HPOs) for different values of µ, relies on
the behaviour of the one-dimensional manifolds of the collinear point L3.

We recall that to compute the two branches of the unstable manifold, W u,i
L3

i = 1, 2,
we have taken as an initial condition PL3 + s · v, where s is a small quantity (usually
10−6) positive or negative according to i = 1, 2 respectively, and v is the unit eigenvector
associated to the eigenvalue λ > 0 of the Jacobian matrix of the vector field at L3. From
this initial condition, we follow the invariant manifold numerically (integrating the system
of ODEs) under the check test that along the integration the Jacobi constant values must
be C = C3.

Throughout this Section, two main ideas will play a role: (i) given µ > 0, if the
manifold W u,i

L3
, i = 1 or 2, has a first (or k-th) orthogonal crossing with the x axis, i.e

y = x′f = 0, then (by symmetry (3)), the unstable and stable manifolds intersect giving
rise to a homoclinic orbit which tends asymptotically, in forward and backward time, to
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L3. For this µ value, we expect the existence of an infinite set of orbits approaching the
homoclinic orbit (known as blue sky catastrophe phenomenon after Devaney [9], see also
[14] and [15]). (ii) if in addition, the (stable or unstable) invariant manifold of L3 has a
horseshoe shape (this is, with the orthogonal crossing close to L3) we may expect to have
HPOs in a neighbourhood of it. So, along this Section, we will concentrate on the C = C3

value, where the manifolds of L3 exist.
First of all, we will apply these two ideas to answer the open question, described

in Subsection 3.3, concerning the description of the diagram (of characteristic curves of
families of HPOs) for different values of µ at C3. This is done in Subsection 4.1, where
an exploration for selected values of µ, is done.

Next, we focuss our attention on the following natural question: for which values of
µ do the invariant manifolds of L3 (i) have a horseshoe shape? (ii) become homoclinic
orbits? Thus, a systematic exploration of the shape of the invariant manifolds of L3 is
carried out for all values of µ ∈ (0, 1/2]. The values of µ for which there is a homoclinic
connection are analysed as well. We will see that, for µ ∈ (0, 01174] two different sequences
of values of µ, µn,homo,1 and µn,homo,2 exist, both tending to 0 as n → ∞, for which an
homoclinic orbit to L3 exists. For each value of µ in µn,homo,1, the homoclinic orbit has
only one crossing (the orthogonal one) with the x axis, whereas for µ in µn,homo,2, the
homoclinic orbit has a loop (so there are three crossings with the x axis, the second one
being orthogonal). This is explained in Subsection 4.2.

For µ > 0.01174, the manifolds enter in the neighbourhood of the small primary, where
the presence of the other two equilibrium points L1 and L2 as well as the small primary
play a role. For such values of µ, we obtain either horseshoe invariant manifolds which
describe a path close to the small primary or even collide with it, or manifolds which have
no horseshoe shape at all. This is explained in Subsection 4.3.

Finally, in Subsection 4.4 we show how the phenomenon of double homoclinic orbits
bifurcation around each µn,homo,i, for i = 1, 2 takes place.

4.1 Invariant manifolds of L3 when varying µ

From the invariant manifolds of L3 it is now easy to explain the plots in Figure 10 and
12. First we plot the (x, y) projection of the unstable manifold W u,1

L3
for µ = 0.0001

(Figure 15 top and bottom left). The invariant manifold has a simple horseshoe shape
and is almost a homoclinic orbit. The homoclinic connection occurs for µ = 0.00010001,
for which an infinite sequence of HPOs approaching the homoclinic orbit exist (this is
known as blue sky catastrophe). This fact explains the infinite sequence of values x0 (of
the initial conditions of HPO) accumulating to x3 which we can see in Figure 10 top left.
But as µ increases slightly from 0.0001, we can see how the loops close to the first crossing
with the x axis appear and that the width of the loops grows rapidly in µ (Figure 15 top
middle). It is this width of the loops that has consequences on the dynamics of the orbits
and, from Figure 15 top middle, it is easy to understand that small variations of the value
of µ gives invariant manifolds with the orthogonal crossing at the first intersection with
the horizontal axis or at the second one. More precisely, for µ = 0.0001 the width of the
loops is very small and therefore it has no effects on the (x0, x

′
f ) curve (which has regular
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behaviour as shown in Figure 10 top left), whereas for µ = 0.0005, due to the loops that
appear in the invariant manifolds (Figure 15 top middle) the HPOs for values x0 near x3

have more than two crossings (thus, the curve x′f (x0) at the first cross does not intersect
the horizontal axis, see Figure 10 bottom left).
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Figure 15: Projection (x, y) of the manifold W u,1
L3

until the first cross with the horizontal
axis. Top. Zoom near L3 for: (1) µ = 0.0001, (2) µ = 0.0005, (3) µ = 0.001. In order to
see the differences between them, these plots are not scaled. Bottom: (4) µ = 0.0001, (5)
µ = 0.008.

On the other hand, the loops may also produce the existence of an infinite set of
initial conditions of HPO accumulating to a certain x0 far from x3. This is the case for
µ = 0.0005: we plot the curve (x0, x

′
f ) for x0 > x3 and we concentrate on the interval

x0 ∈ [1.00043, 1.0005] (Figure 10 bottom right). Near the value x0 = 1.00048826 there
seems to exist an infinite number of HPO with only two crossings, but in fact only a
finite number exists (as a zoom exploration reveals). If we compute the manifold W u,2

L3
,

we observe that the first crossing (almost orthogonal) takes place at xf = 1.000489376,
x′f = 8.175 · 10−6. Of course the case x′f = 0 would imply a homoclinic orbit to L3 and
the existence of an infinite set of HPO tending to it. In fact, for µ = 0.0005, we would
expect a homoclinic orbit to the Lyapunov orbit around L3 for a suitable value of C < C3

and very close to C3.
We finally remark that this loop shape of the manifolds of L3 disappears as µ increases,

see Figure 15 top and bottom right. So we have the simple plots in Figure 12. The infinity
of HPOs for µ = 0.00697485 (points with the x′f (x0) = 0 in the left plot in the same
Figure) with the corresponding initial x0 tending to x3, is just a direct consequence of the
homoclinic (horseshoe shape) orbit to L3 for this value of µ (again a blue sky catastrophe).
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Instead, for a µ slightly different, µ = 0.007 and also µ = 0.008, Figure 12 centre and
right), the invariant manifolds describe a simple horseshoe shape but are not homoclinic,
and therefore, only a finite number of HPOs appears. This is the reason for the gap at
C = C3 in the diagram of characteristic curves for µ = 0.008 (Fig. 13) compared to the
diagram for µ = 0.0001 (Fig. 5 and 6 left).

Therefore, in summary, we have shown that, although the plots of the manifolds are
qualitatively similar, the loops have relevant dynamical consequences for the diagram of
characteristic curves of HPOs at C = C3.

4.2 Homoclinic orbits to L3 when varying µ

Motivated by the previous Subsection, we proceed to a systematic exploration, for µ ∈
(0, 1/2], of the behaviour of the unstable manifolds of L3 (a similar analysis follows for
the stable ones). Our aim is to explore for which values of µ ∈ (0, 1/2] the manifolds have
a horseshoe shape and are homoclinic to L3. Of course, for each such µ, the dynamics
concerning HPO will be similar to the one described in the previous section.

Therefore, we compute W u,1
L3

for each value of µ > 0 and we keep the x and x′ values
at the k-th crossing with the x axis, y = 0, denoted from now on as xf,k and x′f,k. Firstly,
we will concentrate on the analysis of the behaviour of the invariant manifolds from L3

at the first crossing, (k = 1), with the x axis. Furthermore, some aspects of the dynamics
that have to do with other crossings and that will appear in a quite natural way will be
also remarked on.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

-1

-0.5

 0

 0.5

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

Figure 16: Left: Curve xf (µ) (left) and x′f (µ) (right) at the first crossing. In the figure on
the left, the position of L3 (x3) and the small primary for each value of µ are also plotted
(see the text for details).

We plot in Figure 16 the (µ, xf,1) and the (µ, x′f,1) curves and the positions of L3 and
the small primary (µ, µ−1) as well. From these plots we have the following results related
to horseshoe motion.

(i) When 0 < µ ≤ 0.01174 the invariant manifold associated with each value of µ has
a horseshoe shape. This has been numerically checked through the condition that
the manifold crosses the x = 0, y < 0 semi-axis twice –at least– but does not cross
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the x = 0, y > 0 semi-axis before the manifold crosses y = 0 at x > 0. Furthermore,
the first crossing with the horizontal axis at x > 0 takes place with xf,1 close to L3

and on its left (see Figure 16 left). For µ > 0.01174 the invariant manifold crosses
the y = 0 axis for x < 0 and the influence of the small primary must be taken into
account. We discuss this fact in the Subsection 4.3.

(ii) We also remark that when 0 < µ ≤ 0.01174, there are infinitely many values of
µ such that x′f,1 = 0 (see Figure 16 right), each one corresponding to a horseshoe
homoclinic orbit to L3 with an orthogonal crossing at the first cross with y = 0.
Actually, Font ([10]) computed some values of µ tending to 0 for which there is a
homoclinic connection to L3. Let us denote this infinity of values µ as µn,homo,1 such
that when n →∞, µn,homo,1 → 0.

(iii) In this range of µ values, each ‘sharp’ point in the (µ, xf,1) curve is associated to a
jump or discontinuity in the (µ, x′f,1) curve. For these values of µ the projection in
the (x, y) plane of the invariant manifold has a loop (see also Figure 11). Therefore
the values of xf,2 and x′f,2 at the second crossing must be taken into account. As
discussed in Section 3, for each discontinuity in the (xf , x

′
f ) curve, there is a nearby

horseshoe homoclinic orbit such that the second crossing (the orthogonal one) takes
place at the half loop –in the (x, y) plane– (see Figure 19 bottom). Since there is
another infinity of such discontinuities in x′f,1, that means there is another infinity of
horseshoe homoclinic orbits each of them with a loop. Let us denote this sequence
as µn,homo,2 (also µn,homo,2 → 0).

In conclusion, we have found two sequence of µ values tending to zero such that for each
value a homoclinic connection to L3 exists. For each such value, the blue sky catastrophe
occurs and an infinity of periodic orbits (horseshoe-shaped like the homoclinic orbits)
exist. Clearly, for values of µ close to µn,homo,i, i = 1, 2, HPOs still survive and can be
found.

4.3 Collision manifolds and influence of L2

We have just described the evolution of the first crossing curve xf,1(µ) for µ ∈ (0, 0.01174).
Let us go on describing the behaviour of this curve for µ > 0.01174 (see Figure 16).

There is another discontinuity in both curves xf,1(µ) and x′f,1(µ) which has nothing
to do with loops. This corresponds to the jump in xf observed for µ = 0.01175. It takes
place because there is a tangency with the negative x axis. For increasing values of µ
the invariant manifold is still horseshoe shaped although it invades the x < 0, y > 0
region. Therefore, not the first but the third crossing (at least) with the y axis will be
meaningful for horseshoe motion. However, keeping track only of the first crossing xf < 0
and for values of µ after the tangency, we find the value µhomo,1 = 0.0159375, for which
the manifold is a homoclinic orbit to L3, and the value µcol,1 = 0.02004225, for which
the unstable manifold collides with the small primary at the first crossing. See Figure 16
right, where the value µcol,1 corresponds to the last intersection of the curve with the
horizontal axis. We have used Levi-Civitta coordinates (see [23]) in order to regularise
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Figure 17: For µcol,1 = 0.02004225 the unstable manifold of L3 collides with the small
primary (Levi-Civitta position coordinates).

the binary collision between the particle and the small primary. In Figure 17 we show
this manifold in the position Levi-Civitta coordinates (u, v) (the collision corresponds to
the origin). After the collision, when µ increases, the xf value (still at the first crossing
with y = 0) keeps decreasing on the left of the position of the small primary. In fact, for
µ ≥ µhomo,1 the unstable manifold W u,1

L3
does not have a horseshoe shape anymore.

At this point, let us comment in more detail on what happens when the invariant
manifold visits the x < 0, y > 0 region when µ varies in the interval (0.01175, µcol,1).
Actually, since only the first crossing in the curve (µ, x′f (µ)) is considered in Figure 16,
this plot hides that the shape of the manifold of L3 is more intricate. As stated above, the
invariant manifold for µ > 0.01175 crosses the y = 0 axis near the small primary and as µ
increases the Lyapunov orbit around L2 and the small primary play a role now. We have
followed the manifold for up to seven crossings with the x axis, for varying µ, and our
conclusion is that the following different behaviours of the invariant manifold take place:
a trajectory surrounding the small primary and the Lyapunov orbit around L1 or L2 that
does have a horseshoe shape (see Figure 18 top left and bottom right) or does not (see
Figure 18 top right and bottom left). Furthermore, we observe that for a suitable value
of µ a collision invariant manifold with the small primary exists (after a certain number
of crossings with the x axis greater than one).

So we can conclude that the dynamics of the unstable manifold W u,1
L3

becomes very
rich when m2 and the Lyapunov orbit of L2 are taken into account. A systematic analysis
of such dynamics (considering also the influence of the Lyapunov orbits around L1 and
L2), for any µ ∈ (0, 1/2] and for a given number of crossings (greater than two), remains
for future work.

4.4 Double homoclinic bifurcation

Up to now, we have been describing the simple horseshoe manifolds of L3, in the sense
that they surround L4 and L5 just once. However a more detailed numerical exploration
reveals that bifurcation of double period homoclinic orbits (surrounding twice L4 and
L5) appear, although the word ‘period’ does not make sense since a homoclinic orbit has,
say, an infinite period. But the nomenclature recalls what happens in the periodic orbits
context. From now on we will call it the double homoclinic orbit.

To show this phenomenon, let us now consider one of the values µn,homo,i (described
in Subsection 4.2), for a fixed n and i = 1 or 2. In particular, we have taken µn,homo,1 =
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Figure 18: W u,1
L3

in the (x, y) plane for µ = 0.0145642 (top left), µ = 0.01456344 (top
right), µ = 0.0145655 (bottom left), µ = 0.0146968 (bottom right). See the text for
details.

0.0037258 and µn,homo,2 = 0.0041976. We have computed both x′f,1(µ) and x′f,2(µ) curves
for the interval µ ∈ [0.0035, 0.0044] that contain both values µn,homo,1 and µn,homo,2. The
interest in the curve x′f,2(µ) is precisely to show the double homoclinic orbits. We consider
a neighbourhood of µn,homo,1 and one of µn,homo,2 separately.

(i) Let us concentrate first on the neighbourhood I1 = [0.0035, 0.004], which has
µn,homo,1 = 0.0037258. In Figure 19 top, the curves xf,1(µ) and xf,2(µ) as well
as x′f,1(µ) and x′f,2(µ) are represented (on the left, all the curves in the interval I1

are plotted, while on the right, only the curves x′f,i(µ), i = 1, 2 in a wide interval
are shown). We can see that the first crossing is always close to and less than the
position of L3, that is xf,1 < x3. However, the second crossing xf,2(µ) > x3. We
also remark that whereas µ = µn,homo,1 is the unique value for which x′f,1(µ) = 0
in I1, we have infinite values of µ (on the left and right of µn,homo,1) such that
x′f,2(µ) = 0. Therefore, there are two sequences of values of µ, µm,2

n,homo,1 < µn,homo,1,

µm′,2
n,homo,1 > µn,homo,1 such that

lim
m,m′→∞

µm,m′,2
n,homo,1 = µn,homo,1,

and for each value of each sequence the invariant unstable manifold of L3 becomes
a homoclinic orbit to L3.

The geometric behaviour of such manifolds is the following: the horseshoe homo-
clinic manifold for µn,homo,1 surrounds only once the points L4 and L5 in the (x, y)
plane (see Figure 19 middle right). However, the horseshoe homoclinic manifolds
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for µm,m′,2
n,homo,1 have their orthogonal crossing at the second one with xf,i > x3 once

they have surrounded both L4 and L5 (see Figure 19 middle left). Thus, the whole
homoclinic manifold surrounds the points L4 and L5 twice.

(ii) In a similar way as discussed in Subsection 4.2, the infinity of jumps in the x′f,2(µ)
curve (see Figure 19 top), correspond to values of µ (on both sides of µn,homo,1) for
which a loop near the second crossing appears. Therefore, x′f,3(µ) = 0 at a half loop.

Again we can conclude that there are two more sequences µm,3
n,homo,1 < µn,homo,1, and

µm′,3
n,homo,1 > µn,homo,1 such that

lim
m,m′→∞

µm,m′,3
n,homo,1 = µn,homo,1,

and for each value of each sequence the invariant unstable manifold of L3 beco-
mes a homoclinic orbit to L3. The geometric behaviour of these homoclinic orbits
are similar to the homoclinic orbits for µm,m′,2

n,homo,1 in the sense that the whole orbit
surround L4 and L5 twice.

(iii) Let us consider the interval I2 = [0.004, 0.0044] where the value µn,homo,2 = 0.0041976,
for a fixed n, belongs to (see Figure 19 bottom). We also compute the curves xf,1(µ),
xf,2(µ), x′f,1(µ) and x′f,2(µ) (see Figure 19 top). In this case there are four finite sets
of values of µ for which the function x′f,2(µ) has a zero or a jump discontinuity. As
in the previous items, each of these values corresponds to a homoclinic orbit with
a second or third crossing (the orthogonal one) on the right side of L3. But now,
only a finite set is observed. This is due to the fact that, for µ close to µn,homo,2,
a loop intersecting the horizontal axis near the first crossing of the manifold ap-
pears. When this happens, not the second and the third, but the fourth and the
fifth crossings (which will take place on the right side of L3) should be taken into
account.

This illustrates that the loops affect the number of crossings considered when stud-
ying the homoclinic connections.

The dynamical consequence of such double homoclinic orbits is that for each value
of µ for which there is a double homoclinic orbit, there will exist an infinity of HPOs
enclosing the points L4 and L5 twice, and tending to the homoclinic connection.

Finally, we remark that the two patterns just described also take place for any µn,homo,i ∈
(0, 0.01174), i = 1, 2, and n ∈ N . See for instance Figure 19 top right, where only the
curves x′f,1(µ) and x′f,2(µ) are plotted in the interval µ ∈ (0, 0.05). As we can see, the same
patterns of crossings with x′f = 0 described in detail in Figure 19 top left (the bottom
part of the plot) repeat again and again when varying µ in Figure 19 top right.

5 Conclusions

We have analysed the horseshoe motion as a particular kind of motion in the RTBP.
On the one hand, we show that the families of horseshoe periodic orbits for µ > 0 and
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Figure 19: Top left. For n fixed, curves xf,1(µ), xf,2(µ), x′f,1(µ) and x′f,2(µ) around
µn,homo,1 = 0.0037258 and around µn,homo,2 = 0.0041976. Curve x3(µ) is also plotted. Top
right. Curves x′f,1(µ) and x′f,2(µ). Middle. Double homoclinic invariant manifold –(x, y)
projection– for µ close to µn,homo,1 (left); whole homoclinic manifold for µn,homo,1 (right).
Bottom. Homoclinic manifold for µn,homo,2 with the orthogonal crossing at half loop.

small are closely related to the generating families of periodic orbits of the two-body
problem. On the other hand, such horseshoe motion is closely related to the behaviour of
the equilibrium point L3 and its invariant stable and unstable manifolds. A systematic
exploration for any µ has been carried out and turns out to be very useful in order to
obtain results about the homoclinic behaviour of the manifolds as well as the horseshoe
periodic orbits near them.
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[11] G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont, S.D. Ross.
Connecting orbits and invariant manifolds in the spatial restricted three-body
problem. Nonlinearity, 17:1571–1606, 2004.
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