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Abstract

We consider entire transcendental functions f with an invariant (or periodic) Baker
domain U. First, we classify these domains into three types (hyperbolic, simply parabolic
and doubly parabolic) according to the surface they induce when we quotient by the
dynamics. Second, we study the space of quasiconformal deformations of an entire map
with such a Baker domain by studying its Teichmüller space. More precisely, we show
that the dimension of this set is infinite if the Baker domain is hyperbolic or simply
parabolic, and from this we deduce that the quasiconformal deformation space of f is
infinite dimensional. Finally, we prove that the function f(z) = z + e−z, which possesses
infinitely many invariant Baker domains, is rigid, i.e., any quasiconformal deformation of
f is affinely conjugate to f .

1 Introduction

Let f : S → S be a holomorphic endomorphism of a Riemann surface S. Then f partitions
S into two sets: the Fatou set Ω(f), which is the maximal open set where the iterates
fn, n = 0, 1, . . . form a normal sequence; and the Julia set J(f) = S \ Ω(f) which is the
complement.

If S = Ĉ = C∪{∞}, then f is a rational map, and every component of Ω(f) is eventually
periodic by the non-wandering domains theorem in [Sullivan 1982]. There is a classification
of the periodic components of the Fatou set: Such a component can either be a cycle of
rotation domains or the basin of attraction of an attracting or indifferent periodic point.

If S = C and f does not extend to Ĉ then f is an entire transcendental mapping (i.e.,
infinity is an essential singularity) and there are more possibilities. For example a compo-
nent of Ω(f) may be wandering, that is, it will never be iterated to a periodic component.
Like for rational mappings there is a classification of the periodic components of Ω(f) (see
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[Bergweiler 1993]) and compared to rational mappings, entire ones allow for one more pos-
sibility: A period p periodic component U is called a Baker domain, if for all z ∈ U we
have fn(z) → ∞, as n → ∞. The first example of an entire function with a Baker do-
main was given by Fatou in [Fatou 1920], who considered the function f(z) = z+1+e−z and
showed that the right half-plane is contained in an invariant Baker domain. Since then, many
other examples have been considered, showing various properties that are possible for this
type of Fatou components (see for example [Eremenko & Lyubich 1987], [Bergweiler 1995],
[Baker & Domı́nguez 1999], [Rippon & Stallard 1999(1)], [Rippon & Stallard 1999(2)],
[König 1999] and [Baranski & Fagella 2000]). It follows from [Baker 1975] that a Baker do-
main of an entire function is simply connected.

Taking an iterate of the map if necessary we consider only the cases of invariant Baker
domains. We remark that in a Baker domain, orbits tend to infinity at a slow rate. More
precisely, if γ is an unbounded invariant curve in a Baker domain (and hence all its points
tend to infinity under iteration), then there exists a constant A > 1 such that |f(z)| ≤ A|z|
for all z ∈ γ [Bergweiler 1993]. This is in contrast to the fact that points in C that tend
to infinity exponentially fast belong to the Julia set of f and, even more, every point in the
Julia set is the limit of such escaping points.

There is another important difference between rational and entire transcendental map-
pings which concerns the singularities of the inverse map f−1 or singular values. In the
rational case, the points for which some branch of f−1 fails to be well defined are precisely
the critical values, i.e., the images of the zeros of f ′. In the transcendental case, one more
possibility is allowed, namely the asymptotic values, which are points a ∈ C for which there
exists a curve γ(t) → ∞ as t → ∞ satisfying f(γ(t)) → a as t → ∞. It follows from a
theorem of Denjoy, Carleman and Ahlfors that entire functions of finite order may have only
a finite number of asymptotic values (see e.g. [Nevanlinna 1970] or [Hua & Yang 1998] The-
orem 4.11), but in the other extreme there exists an entire map for which every value is an
asymptotic value.

As it is the case with basins of attraction and rotation domains, there is also a relation
between Baker domains and the singularities of the inverse map. In particular, it is shown
in [Eremenko & Lyubich 1992] that Baker domains do not exist for a map such that the set
Sing(f−1) is bounded, where Sing(f−1) denotes the closure in C of the set of singular values.
The actual relationship between this set and a Baker domain U is related to the distance of
the singular orbits to the boundary of U (see [Bergweiler 2001] for a precise statement). We
remark that it is not necessary, however, that any of the singular values be inside the Baker
domain. Indeed, there are examples of Baker domains with an arbitrary number of singular
values (including none) inside.

Our first goal in this paper is to give a classification of Baker domains. Our result is an
extension of previous classifications of certain classes of Baker domains. Indeed, when the
map f restricted to the Baker domain U is proper, we call U a proper Baker domain. In
particular the degree of f restricted to U is finite. In the special case where this degree is one
we call the domain U univalent. In [Baranski & Fagella 2000] there is given a classification
of univalent Baker domains in terms of the map they induce in the unit disk via the Riemann
map.

In [Bergweiler 2001] the classification is extended to accomodate a larger class of Baker
domain, namely the regular Baker domains. More precisely let ϕ : U → D denote a Riemann
map, mapping U to the unit disk. Such a map conjugates f to a self-mapping of D that we
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denote by BU . The map BU is called the inner function associated to U . If BU is proper
then this mapping is a (finite) Blaschke product. It follows from the Denjoy-Wolff theorem
(see e.g. [Milnor 1999], Thm. 5.4), that there exists a point z0 ∈ ∂D such that Bn

U converges
towards the constant mapping z0 locally uniformly in D as n tends towards infinity. This
point we call the Denjoy-Wolff point of BU . If BU extends analytically to a neighborhood of
z0 we call U a regular Baker domain. In particular, proper Baker domains are a subclass of
the regular Baker domains.

Our classification is as follows.

Proposition 1. Let f be entire and U a Baker domain. Then U/f is a Riemann surface
conformally isomorphic to exactly one of the following cylinders:

(1) {−s < Im(z) < s}/Z for some s > 0 and we call U hyperbolic;

(2) {Im(z) > 0}/Z and we call U simply parabolic;

(3) C/Z and we call U doubly parabolic. In this case f : U → U is not proper or has
degree at least 2.

In the special case of regular Baker domains, the dynamics of the three types are shown
in figure 1.

1

(a) hyperbolic (b) doubly parabolic

(c) simply parabolic
BU (z) = z + ia(z − 1)2 + · · ·

(d) simply parabolic
BU (z) = z − ia(z − 1)2 + · · ·

Figure 1: The three possibilities for the dynamics of BU when U is a regular Baker domain. By the
symmetry of the map, D and Ĉ \ D must belong to the basin of attraction of 1 and hence the Julia
set must be a subset of the unit circle.

It is a natural question to ask wether examples of Baker domains of all three types exist.
They do, as we show in Section 4. However, our examples for hyperbolic and simply parabolic
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domains are univalent and, to our knowledge, no concrete examples are known of such maps
with degree larger than one.

Our second goal in this paper is to study the possible quasiconformal deformations of
entire maps with a Baker domain. We can consider the space of entire mappings with a
fixed Baker domain as a subset of the space of entire mappings modulo conjugacy with affine
mappings. It is natural to ask how this set looks. It is easy to see it cannot be open, since any
entire map with a Baker domain can be approximated by polynomials, and no polynomial
possesses a Baker domain. Lifting maps with Herman rings (see Example 1 in section 4) for
different rotation numbers converging to a rational p/q, shows that the set is not closed. Can
it have components that are reduced to points? By considering the space of quasiconformal
deformations we will see that if such a point exists, the corresponding mapping can only have
Baker domains which are doubly parabolic.

More precisely we will consider the Teichmüller space of an entire mapping f with a fixed
Baker domain, using the general framework given by [McMullen & Sullivan 1998] (see Section
5). We will see that the dimension of this set is infinite if the Baker domain is hyperbolic or
simply parabolic, and from this we will deduce that the quasiconformal deformation space of
f is infinite dimensional. The precise statement is as follows.

Main Theorem. Let U be a fixed Baker domain of the entire function f and U its grand
orbit. Denote by S the set of singular points of f in U , and by Ŝ the closure of the grand
orbit of S taken in U . Then T (f,U) is infinite dimensional except if U is doubly parabolic
and the cardinality of Ŝ/f is finite. In that case the dimension of T (f,U) equals #Ŝ/f − 1.

Furthermore we show that the lowest dimension is possible, that is we give an example of
a rigid map with a proper Baker domain. Using the Main Theorem we can show the following
(see Section 6).

Proposition 2. The map f(z) = z + e−z is rigid, i.e., if f̃ is a holomorphic map which is
quasiconformally conjugate to f , then f̃ is affinely conjugate to f .

Acknowledgements

We wish to thank Curtis McMullen and Walter Bergweiler for suggesting several references
that were not known to us.

2 Preliminaries – quasiconformal mappings

In this section we recall shortly the relevant definitions and results relative to quasicon-
formal mappings, to be used in Section 5. The standard references are [Ahlfors 1966] and
[Lehto & Virtanen 1973]. In this section, V, V ′ ⊂ C are open subsets of the complex plane or
more generally, one dimensional complex manifolds.

Definition 2.1. Given a measurable function µ : V → C, we say that µ is a k−Beltrami
coefficient of V if |µ(z)| ≤ k < 1 almost everywhere in V . Two Beltrami coefficients of V are
equivalent if they coincide almost everywhere in V .
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Definition 2.2. A homeomorphism φ : V → V ′ is said to be k−quasiconformal if it has
locally square integrable weak derivatives and

µφ(z) =
∂φ
∂z̄ (z)
∂φ
∂z (z)

=
∂̄φ(z)

∂φ(z)

is a k−Beltrami coefficient. In this case, we say that µφ is the complex dilatation or the
Beltrami coefficient of φ.

With the same definition, but skipping the hypothesis on φ to be a homeomorphism, φ is
called a k−quasiregular map.

Definition 2.3. Given a Beltrami coefficient µ of V and a quasiregular map f : V → V ′, we
define the pull-back of µ by f as the Beltrami coefficient of V defined by:

f∗µ =
∂f
∂z̄ + (µ ◦ f)∂f∂z
∂f
∂z + (µ ◦ f)∂f∂z̄

.

We say that µ is f–invariant if f∗µ = µ. If µ = µg for some quasiregular map g, then
f∗ = µg◦f .

It follows from Weyl’s Lemma that f is holomorphic if and only if f∗µ0 = µ0, where
µ0 ≡ 0.

Definition 2.4. Given a Beltrami coefficient µ, the partial differential equation

∂φ

∂z̄
= µ(z)

∂φ

∂z
(1)

is called the Beltrami equation. By integration of µ we mean the construction of a quasi-
conformal map φ solving this equation almost everywhere, or equivalently, such that µφ = µ
almost everywhere.

The famous Measurable Riemann Mapping Theorem by Morrey, Bojarski, Ahlfors and
Bers states that every k-Beltrami coefficient is integrable.

Theorem 2.5 (Measurable Riemann Mapping Theorem, [Ahlfors 1966]). Let µ be
a Beltrami coefficient of C. Then, there exists a quasiconformal map φ : C → C such that
µφ = µ. Moreover, φ is unique up to post-composition with affine maps.

We end this section with a lemma that will be important in Section 5. Since we are unable
to give a reference, we include its proof here.

Lemma 2.6. Let A denote the set of K-quasiconformal homeomorphims ω : D → D that
extend continuously to the boundary as the identity. Then there exists a constant C = C(K)
such that for all ω ∈ A and all z ∈ D we have that the hyperbolic distance dD in D satisfies

dD(z, ω(z)) ≤ C.
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Proof. This is a standard compactness argument. Let B denote the set of K-quasiconformal
homeomorphisms of the sphere that fix −1, 1 and ∞. We endow A and B with the topologies
corresponding to uniform convergence. A map ω ∈ A can be extended to the spere, by letting
it coincide with the identity outside D. This defines an injection A → B which can be seen
to be a homeomorhism onto its image. It is easy to see that the image of A in B is closed.
Now, it is well-known that B is sequentially compact (cf. [McMullen 1994]), and it follows
that A is sequentially compact. Then, take a sequence of maps ωn ∈ A and points zn ∈ D

and suppose that dD(zn, ωn(zn)) → ∞. Let ω̂n be the map we obtain by conjugating ωn with
a Möbius transformation that sends D to itself and zn to 0. Now, ω̂n is a sequence of maps in
A with |ωn(0)| → 1. This is in contradiction with the fact that A is sequentially compact.

3 Classification of Baker Domains. Proof of Proposition 1.

Let U be an open subset of the complex plane or, more generally, a one dimensional complex
manifold. For an endomorphism f of the space U, the grand orbit of y ∈ U is the set
{x ∈ U | fn(x) = fm(y) for some n,m > 0}. The grand orbit of a set is the union of the
grand orbits of its elements. The grand orbit relation is the equivalence relation such that
x ∼ y if and only if they have the same grand orbit. We denote by U/f the quotient space
obtained from U by identifying points under the grand orbit relation of f.

Let f be an entire transcendental map and U an invariant Baker domain of f . We recall
the statement of Proposition 1.

Proposition 1. Let f be entire and U a Baker domain. Then U/f is a Riemann surface
conformally isomorphic to one of the following cylinders:

(1) {−s < Im(z) < s}/Z for some s > 0 and we call U hyperbolic, or

(2) {Im(z) > 0}/Z and we call U simply parabolic, or

(3) C/Z and we call U doubly parabolic. In this case f : U → U is not proper or has
degree at least 2.

The proposition is a direct consequence of the work of Cowen. In [Cowen 1981] he defines
the notion of a fundamental set for an endomorphism ψ of a domain Ω as an open, simply
connected and forward invariant subdomain V ⊂ Ω, such that for any compact set K ⊂ Ω
there exists n > 0 so that ψn(K) ⊂ V. Cowen proves the following theorem.

Theorem 2. Let φ : D → D be analytic and without fixed points. Then there exist a funda-
mental set V for φ on D and an analytic mapping σ : D → Ω, with Ω = C or Ω = D, and a
Möbius transformation Φ mapping Ω onto itself such that:

(a) φ and σ are univalent on V ;

(b) σ(V ) is a fundamental set for Φ on Ω;

(c) σ (semi)conjugates φ to Φ, i.e., σ ◦ φ = Φ ◦ σ.

Moreover, Φ is unique up to conjugation by a conformal isomorphism of Ω, and Φ and σ
depend only on φ, not on the particular fundamental set V.
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Proof. We prove how Proposition 1 follows from Cowen’s theorem. Let φ = BU be the inner
function associated to f : U → U, as defined in the introduction. Since f has no fixed points
in U, φ has no fixed points and we can invoke Cowen’s theorem to obtain mappings σ and Φ
as well as a fundamental domain V ⊂ D. Since V is a fundamental domain for φ and σ(V ) is
a fundamental domain for Φ we get

U/f ' D/φ ' V/φ ' σ(V )/Φ ' Ω/Φ.

First suppose Ω = C. The two fixed points of Φ must then coincide at infinity, and
Φ : C → C is conjugate to translation by one on the plane. This is the doubly parabolic case
of the proposition. Now if φ : D → D were proper and of degree one, it would be conjugate
to the translation by one (or minus one) on the upper half plane, which is impossible since
a doubly infinite cylinder is not conformally equivalent to a one sided infinite cylinder. So if
f : U → U is proper it is not of degree one.

Now suppose that Ω = D. By symmetry of Φ, the fixed points of Φ must be on the unit
circle. If the two fixed points coincide, we conjugate Φ with a map sending D onto the upper
half plane and the fixed point to infinity. By invariance of the half plane, the mapping we
obtain must be of the form z 7→ z + a for a real and non-zero. This is the simply parabolic
case of the proposition. The last possibility is that the two fixed points of Φ are distinct.
Denote the multiplier of the attracting fixed point by λ (the repelling fixed point then has
multiplier 1/λ). We conjugate Φ with a Möbius transformation that sends the attracting
fixed point to infinity, the repelling fixed point to 0 and the unit disc to the right half plane
to obtain a Möbius transformation Φ̃ mapping the right half plane onto itself. This mapping
must be z 7→ 1

λz and by invariance of the right half plane, 0 < λ < 1. Finally conjugating

by z 7→ 1
λ log(z), Φ̃ on the right half plane is conjugated to translation by one on the strip

{−π/λ < Im(z) < π/λ}. This is the hyperbolic case of the proposition.

4 Examples

Examples of hyperbolic and simply parabolic univalent Baker domains were already given
in [Baranski & Fagella 2000], but we include them here for completeness. Additionally we
present examples of degree two and three doubly parabolic domains.

Up to this date, we do not know of any example of a hyperbolic or simply parabolic proper
Baker domain with degree larger than one. We summarize this in the following table.

Univalent 1 < degree

Hyperbolic Example 1 ?

Simply parabolic Example 2 ?

Doubly parabolic ××× Examples 3 and 4

Example 1. (univalent, hyperbolic)

Let f(z) = z + α + β sin(z) for 0 < α < 2π and 0 < β < 1. Projecting f by w = eiz, we
obtain the map

F (w) = eiαwe
β

2
(w−1/w)
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which is a holomorphic self-map of C
∗ = C \ {0}. It is easy to check that F restricted to the

unit circle S
1 is the well-known standard family of circle maps.

For appropriately chosen values of the parameters α and β, the map F has a Herman ring
V symmetric with respect to S

1. It is easy to check that lifting V by eiz we obtain a Fatou
component U of f , which is an invariant Baker domain, symmetric with respect to the real
axis. See Figure 2. Since V is a rotation domain, the map F is univalent in V . Using the
fact f(z + 2kπ) = f(z) + 2kπ one can easily show that f |U must also be univalent.

One can check that U is conformally equivalent to a horizontal band B of finite height
and that f in U is conjugate to a horizontal translation in B. It follows easily that U is
hyperbolic.

U

Figure 2: The dynamical plane of f(z) = z + α+ β sin(z) for certain values of α and β such that f
has a univalent hyperbolic Baker domain.

Example 2. (univalent, simply parabolic) Let g(w) = λw expw. Then 0 is a fixed point
of g with multiplier λ. The map g has only one critical point at z = −1. Observe that g is
semiconjugate to the map f(z) = z + log(λ) + ez by w = ez.

Let λ = e2πiθ where θ is chosen so that g has a Siegel disk ∆ around 0 (we can choose θ
to be any Brjuno number). Then ∆ lifts under ez to a domain U which contains a left half
plane. See Figure 3. The invariant closed curves in ∆ lift to invariant almost vertical curves
in U , the points of which move upwards towards infinity. Hence U is a Baker domain which
is easily seen to be univalent. We can lift the linearizing map φ : ∆ → D by the exponential
to get a mapping Φ : U → {Re(z) < 0}, that conjugates f : U → U to the translation by
2iπθ on the right half plane. It follows that U/f is a one-sided infinite cylinder.

Example 3. (degree 2, doubly parabolic)

In this section we study the example

f(z) = z + e−z,

which was also investigated in [Baker & Domı́nguez 1999], showing the existence of infinitely
many invariant Baker domains for f . We start by proving the same fact using different
arguments and then proceed to show that the domains are doubly parabolic.
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U

Figure 3: The dynamical plane of f(z) = z + α + ez with α =
√

5−1

2
, which contains a univalent

simply parabolic Baker domain.

U0

U1

U−1

V

w 7→ w + e−w z 7→ ze−z

z = e−w

Figure 4: To the left is an illustration of the dynamics of f : w 7→ w + e−w. This map possesses a
sequence of fixed doubly parabolic proper Baker domains . . . , U−1, U0, U1, . . .. The map f is semicon-
jugate to g : z 7→ ze−z by z = e−w. The Baker domains of f correspond to the immediate parabolic
basin of attraction of the parabolic fixed point 0 of g.

9



To study the dynamics of f it is convenient to work with the map g(w) = we−w that
is semiconjugate to f by w = e−z. Observe that w = 0 is a fixed point of g of multiplier
1, and g(w) = w − w2 + O(w3) near 0. The attracting and repelling direction of 0 are the
positive and negative real axis respectively. There exists an attracting petal P of f at 0 which
determines a basin of attraction A. Let A0 denote the immediate basin of attraction, i.e.,
the connected component of A that contains P. Then, A0 also contains the unique critical
point w = 1.

We now lift this picture back to the dynamical plane of f (see Figures 4 and 5). Observe
that the preimages of R

− under e−z are the horizontal lines {Imz = (2k+1)π, k ∈ Z}. Hence
all of them are invariant by f and their points have orbits whose real part tends to −∞
exponentially fast. This implies that all of them lie in the Julia set of f .

The horizontal strips that lie in between these preimages are mapped to the whole dy-
namical plane of g in a one-to-one fashion and, therefore, they each contain a preimage of A0.
Let us denote these preimages by . . . , U−1, U0, U1, . . ., and observe that each Uk contains the
invariant horizontal line Imz = 2kπ, since these are mapped to the positive real axis by e−z.
Hence, for all k ∈ Z, the set Uk is invariant and its points tend to infinity under iteration of
f (since this is the preimage of 0 under the conjugation). Therefore each of these sets is an
invariant Baker domain.

3π

2π

−2π

−3π

π

0

−π

Figure 5: Sketch of the dynamical plane of f . There is an invariant Baker domain in every strip
Imz ∈ ((2k + 1)π, (2k + 3)π), k ∈ Z.

We now proceed to check that each Uk is doubly parabolic. Indeed, Uk/f ' A0/g, which
can be seen to be equivalent to a double infinite cylinder, for instance by using the Fatou
coordinates.

Example 4. (degree 3, doubly parabolic) This example is similar to the last, except
that we lift a mapping with a parabolic fixed point and a double critical point in the bassin.
More precisely, consider the map g(w) = exp(w2/2 − 2w). It is easy to check that w = 0 is
parabolic with multiplier 1 and that the immediate bassin contains a double critical point.
The negative real axis, as in the example above, is contained in the Julia set of g.

Lifting by the exponential function we obtain infinitely many Baker domains separated
by the horizontal lines {Im(z) = (2k + 1)π}. Arguing like the previous example we see that
these are doubly parabolic Baker domains of degree 3.
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Note that, in a similar fashion, it is easy to construct examples of doubly parabolic proper
Baker domains of any degree.

Example 5. (Fatou’s example: infinite degree, non-regular, doubly parabolic)

Let f(z) = z+1+e−z. It is well known that f has a Baker domain that contains the right
half plane, and that all the infinitely many critical points belong to the Baker domain. Hence
the degree is infinite, and since the critical points accumulate at the Denjoy-Wolf point, the
inner map cannot be extended to a neighborhood of this point. Hence the Baker domain is
not regular. Since the map near infinity is basically a translation by one, it is clear that the
quotient by f is a doubly infinite cylinder. Hence the Baker domain is doubbly parabolic.

5 Deformations. Proof of the Main Theorem.

In this section we consider the Teichmüller space of an entire mapping f with a fixed Baker
domain, using the general framework given by [McMullen & Sullivan 1998]. We will see that
the dimension of this set is infinite if the Baker domain is hyperbolic or simply parabolic,
and from this we will deduce that the quasiconformal deformation space of f is infinite
dimensional. For some preliminaries on quasiconformal mappings see Section 2.

Let V be an open subset of the complex plane or more generally a one dimensional complex
manifold and f a holomorphic endomorphism of V. Define an equivalence relation ∼ on the
set of quasiconformal homeomorphisms on V by identifying φ : V → V ′ with ψ : V → V ′′

if there exists a conformal isomorphism c : V ′ → V ′′ such that c ◦ φ = ψ, i.e. the following
diagram commutes.

V

ψ
  A

A

A

A

A

A

A

A

φ
// V ′

c

��

V ′′

It then follows that φ ◦ f ◦ φ−1 and ψ ◦ f ◦ ψ−1 are conformally conjugate (although the
converse is not true in general). Then the deformation space of f on V is

Def(f, V ) = {φ : V → V ′ quasi conformal | µφ is f -invariant }/ ∼ .

As a consequence of the Measurable Riemann Mapping Theorem (see [Ahlfors 1966] or
Theorem 2.5) one obtains a bijection between Def(f, V ) and

B1(f, V ) = {f − invariant Beltrami forms µ ∈ L∞ with ||µ||∞ < 1},

and this is used to endow Def(f, V ) with the structure of a complex manifold. Indeed,
B1(f, V ) is the unit ball in the Banach space of f -invariant Beltrami forms equipped with
the infinity norm.

We denote by QC(f, V ) the set of quasiconformal automorphisms of V that commute
with f. A family of q.c. mappings is called uniformly K-q.c. if each element of the family is
K-q.c.

A hyperbolic Riemann surface V is covered by the unit disk; in fact V is isomorphic to
D/Γ where Γ is a Fuchsian group. Let Ω ⊆ S

1 denote the complement of the limit set of Γ.
Then (D∪Ω)/Γ is a bordered surface and Ω/Γ is called the ideal boundary of V. A homotopy
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ωt : V → V, 0 ≤ t ≤ 1 is called rel ideal boundary if there exists a lift ω̂t : D → D that extends
continously to Ω as the identity. If V is not hyperbolic then the ideal boundary is defined to
be the empty set.

We denote by QC0(f, V ) ⊆ QC(f, V ) the subgroup of automorphisms which are homo-
topic to the identity rel the ideal boundary of V through a uniformly K-q.c. subset of
QC(f, V ).

Earle and McMullen [Earle & McMullen 1988] prove the following result for hyperbolic
subdomains of the Riemann sphere.

Theorem 5.1. Suppose V ⊆ Ĉ is a hyperbolic subdomain of the Riemann sphere. Then a
uniformly quasiconformal homotopy ωt : V → V, 0 ≤ t ≤ 1 can be extended to a uniformly
quasiconformal homotopy of Ĉ by letting ωt = Id on the complement of V. Conversely, a
uniformly quasiconformal homotopy ωt : V → V such that each ωt extends continuously as
the identity to the topological boundary ∂V ⊆ Ĉ is a homotopy rel the ideal boundary.

Proof. The proof can be found in [Earle & McMullen 1988]: Proposition 2.3 and the proof
of Corollary 2.4 imply the first statement. Theorem 2.2 implies the second.

The group QC(f, V ) acts on Def(f, V ) by ω∗φ = φ ◦ω−1. Indeed if φ and ψ represent the
same element in Def(f, V ) then ω∗φ = ω∗ψ as elements of Def(f, V ).

Definition 5.2. The Teichmüller space T (f, V ) is the deformation space Def(f, V ) modulo
the action of QC0(f, V ), i.e. T (f, V ) = Def(f, V )/QC0(f, V ). If V is a one dimensional
complex manifold we denote by T (V ) the Teichmüller space T (Id, V ).

Teichmüller space can be equipped with the structure of a complex manifold and a (pre)-
metric (we refer to [McMullen & Sullivan 1998]).

Let us give a rough idea of Teichmüller space and the motivation for studying it. In
holomorpic dynamics one is often interested in studying the set F of holomorphic mappings
that are quasiconformally conjugate to a given holomorhic map f : V → V modulo conjugacy
by conformal isomorphisms. Such a mapping can be written as φ◦f ◦φ−1 for a φ ∈ Def(f, V ).
Now φ ◦ f ◦ φ−1 and ψ ◦ f ◦ ψ−1 are conformally conjugate exactly when they represent the
same element in Def(f, V )/QC(f, V ). So we can study F by looking at Def(f, V )/QC(f, V ).
Clearly the Teichmüller space is related to this space, and it can be shown to be, at least
morally, a covering of it. Because of the nice properties of Teichmüller space, this space is
often more convenient to study than F .

Sullivan and McMullen prove stronger versions of the following two theorems.

Theorem 5.3. Let f be an entire mapping, and suppose that Uα is a family of pairwise
disjoint completely invariant open subsets of C. Then

T (f,∪Uα) '
∏

T (f, Uα).

Proof. This follows from Theorem 5.5 in [McMullen & Sullivan 1998].

Theorem 5.4. Suppose every component of the one-dimensional manifold V is hyperbolic,
f : V → V is a holomorphic covering map, and the grand orbit relation of f is discrete. If
V/f is connected then V/f is a Riemann surface and

T (f, V ) ' T (V/f).

12



Proof. This is a consequence of Theorem 6.1 in [McMullen & Sullivan 1998].

After these general definitions, we return to the case where f is an entire mapping with
a Baker domain U. By definition f : U → U is conjugate to its inner function BU : D → D,
with a non-repelling fixed point at 1.

We now show that the grand orbit of the set of singular values is formed by dynamically
distinguished points. More precisely we have the following proposition.

Proposition 5.5. Let f be an entire mapping and U a totally invariant open set whose
connected components are simply connected and hyperbolic. Denote by S the set of singular
values of f in U . Then any ω ∈ QC0(f,U) restricts to the identity on the closure of the grand
orbit of S in U .

To prove the proposition we need the following lemma.

Lemma 5.6. Let V be a simply connected hyperbolic subset of C, and f : V → C\{a, b} be a
holomorphic map into the thrice punctured sphere. Suppose γ : [0,+∞] → Ĉ is a curve such
that

1. γ([0,+∞)) ⊂ V,

2. γ(+∞) ∈ ∂V ∪ {∞}, and

3. limτ→+∞ f ◦ γ(τ) = x0 ∈ Ĉ.

Let (zn) ⊂ V be a sequence converging to the boundary of V in Ĉ and satisfying that
dV (zn, γ) ≤ C for some C. Then, if f(zn) converges to a point in Ĉ this point must be
x0.

Proof. Set x1 = lim f(zn).We must show that x1 = x0. Let φ : H → V be a Riemann mapping
that sends the upper half plane H conformally onto V. By [Pommerenke 1991] (Proposition
2.14) the curve γ̃ = φ−1 ◦ γ|[0,+∞) extends continuously to a curve γ̃ : [0,+∞] → H ∪ {∞},
with γ̃(+∞) ∈ ∂H ∪ {∞}. By replacing φ with another Riemann mapping we can suppose
γ̃(∞) = 0. Let wn = φ−1(zn) and let τn ≥ 0 be a sequence such that dD(γ̃(τn), wn) ≤ C; we
must have tn → +∞. Let Ln denote the affine mapping that maps H onto itself and sends
γ(τn) to i. Set gn = f ◦φ◦L−1

n : H → C\{a, b}. By Montel’s theorem gn is a normal sequence
and by passing to a subsequence we suppose that gn converges to a map g∞ : H → Ĉ, locally
uniformly in H. Clearly g∞(i) = x0.

We claim that g∞ is the constant mapping. Let r ∈ (0, 1) be arbitrary. Take τ ′n > τn
such that

|Ln ◦ γ̃(τ
′

n) − Ln ◦ γ̃(τn)| = |Ln ◦ γ̃(τ
′

n) − i| = r.

Such τ ′n exists since Im(Ln ◦ γ̃(τ)) → 0 as τ → +∞. Now, gn ◦ Ln(γ̃(τ
′

n)) = γ(τ ′n) → x0 and
it follows that there exists a point on the circle with center i and radius r that g∞ maps
to x0 (any accumulation point of {Ln(γ̃(τ

′

n))} will do). Since r was arbitrary, the Identity
Theorem implies that g∞ is the constant map w 7→ x0.

Note that Ln(wn) is contained in the closure of the hyperbolic disk {dH(ζ, i) < C}. On
the one hand gn(Ln(wn)) → x0. On the other hand gn(Ln(wn)) = f(zn) → x1. We conclude
that x0 = x1.

13



Proof of Proposition 5.5. We first show that ω restricts to the identity on the set of critical
values, then that it restricts to the identity on the set of asymptotic values, and finally to
the closure of the grand orbit of these two sets.

Let ωt be a path in QC(f,U) that connects ω0 = Id to ω1 = ω. Since ωt commutes with f,
the set of critical points is ωt invariant. So, if c ∈ U is a critical point, the path t 7→ ωt(c) is
a subset of the critical points. Since this set is discrete ωt(c) = c for all t. Since ωt commutes
with f we immediately get that every ωt fixes the critical values.

Now let x0 ∈ U be an asymptotic value, and γ : [0,+∞) → U a corresponding asymptotic
path; i.e. a curve with the property that limτ→∞ γ(τ) = ∞ and limτ→∞ f ◦ γ(τ) = x0. Let
V denote the component of U that contains γ. Then V is simply connected and hyperbolic,
[Eremenko & Lyubich 1992]. By assumption ωt|V : V → V fixes the ideal boundary of V .
Set

xt = ωt(x0) = lim
τ→∞

f ◦ ωt ◦ γ(τ)

We must show that xt = x0. Let τn > 0 be a sequence tending towards +∞ and set zn =
ωt ◦ γ(τn) By Lemma 2.6 there exists a constant C such that the hyperbolic distance in V
satisfies dV (γ(τn), zn) ≤ C. Since f(V ) is contained in a component of U which is hyperbolic,
we can apply Lemma 5.6 and we get that xt = limn→+∞ f(zn) = x0. So ωt fixes the asymptotic
values of f in U .

Since every singular value is in the closure of the set of asymptotic and critical values, we
get by continuity that ωt fixes the singular values of f in U . Since ωt commutes with f we
get that ωt restricts to the identity on the forward orbit of this set. Now suppose ωt(y) = y
for all t and that fn(x) = y. Then ωt(x) must map into f−n{y}. Since this set is discrete we
get that ωt(x) = x for all x. It follows that ωt restricts to the identity on the grand orbit of
S for all t and by continuity this is also true on the closure.

We can now prove our main theorem whose statement we recall here.

Main Theorem. Let U be a proper fixed Baker domain of the entire function f and U its
grand orbit. Denote by S the set of singular values of f in U , and by Ŝ the closure of the grand
orbit of S taken in U . Then T (f,U) is infinite dimensional except if U is doubly parabolic
and the cardinality of Ŝ/f is finite. In that case the dimension of T (f,U) equals #Ŝ/f − 1.

Proof. By Lemma 5.5 every element of QC0(f,U) restricts to the identity on Ŝ. Hence

T (f,U) ' B1(f,U)/QC0(f,U) '
(
B1(f, Ŝ) × B1(f,U − Ŝ)

)
/QC0(f,U)

' B1(f, Ŝ) ×
(
B1(f,U − Ŝ)/QC′

0(f,U)
)
,

where we denote by QC′

0(f,U) the group formed by the restriction of each element in
QC0(f,U) to U − Ŝ. Since the elements in QC0(f,U) are the identity on Ŝ, it follows from
Theorem 5.1 that

QC′

0(f,U) = QC0(f,U − Ŝ).

Therefore,
T (f,U) ' T (f,U − Ŝ) × B1(f, Ŝ).

By Proposition 1, W = U/f is an annulus of finite modulus when U is hyperbolic, one-
sided infinite modulus when U is simply parabolic and two-sided infinite modulus when U is
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doubly parabolic. The subset T = Ŝ/f ⊂ W is relatively closed in W, so W − T is an open
set. We denote the components of W by Vi. Then each Vi = Vi/f for a completely invariant
open subset Vi of C and ∪Vi = U − Ŝ. By Theorem 5.3 we have

T (f,U − Ŝ) '
∏

i

T (f,Vi),

and by Theorem 5.4 we have ∏

i

T (f,Vi) '
∏

i

T (Vi).

If T contains interior points, then B1(f, Ŝ) is infinite dimensional, so we can suppose
it does not. Then T is a proper subset of W. If T has infinitely many components then a
component Vi of W − T is either of infinite connectivity or has ideal boundary (or both).
In both cases the Teichmüller space is infinite (see [Gardiner 1987]). So we can assume
that T has only finitely many components. If one of these components is not a point then
the presence of ideal boundary forces the dimension of the Teichmüller space to be infinite.
Consequently we can assume that T is a finite set. Then W −T has only one component; it is
an annulus with finitely many punctures. If W is of finite or one-sided infinite modulus, again
the presence of ideal boundary will force the dimension to be infinite. So we can suppose
that W is an annulus of doubly infinite modulus and U is a doubly parabolic Baker domain.

Since T is finite B1(f, Ŝ) is trivial and

T (f,U) ' T (W − T ).

Finally W − T is conformally equivalent to the sphere with 2 + #T punctures. It is well
known that the dimension of Teichmüller space of the sphere with n punctures is n − 3. So
the dimension of T (f,U) equals 2 + #T − 3 = #T − 1. The proof is finished recalling that
#T = #Ŝ/f.

We conclude this section by remarking that the dimension of the Teichmüller space of
f on the grand orbit of a Baker domain gives a lower bound of the Teichmüller space of f.
Indeed, with U denoting the grand orbit of a Baker domain, J(f) the boundary of U and V
the complement of U ∪ J(f) we get

T (f,C) ' T (f,U) ×B1(f, J(f)) × T (f,V).

So in general we expect T (f,C) to be high dimensional. It may then come as a surprise,
that we can give an example of an entire function f with fixed proper Baker domains which
is rigid, in the sense that the Teichmüller space T (f,C) is trivial. We will exhibit such an
example in the next section.

6 A rigid example; proof of Proposition 2

In this section we shall show that the doubly parabolic example

f(z) = z + e−z,

is rigid. More precisely, we show the following.
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Proposition 2. The map f(z) = z + e−z is rigid, i.e., if f̃ is a holomorphic map which is
quasiconformally conjugate to f , then f̃ is conjugate to f by an affine map.

We need the following preliminary lemma which follows easily from work by Eremenko
and Lyubich.

Lemma 6.1. Let f(z) = z + e−z. The Julia set J(f) has measure zero.

Proof. The mapping z 7→ e−z semi conjugates f to g(z) = ze−z, and J(f) is the preimage of
J(g) under z 7→ e−z (see [Bergweiler 1999]). So to show J(f) has measure zero, it will suffice
to show that J(g) has measure zero. The entire function g has exactly one critical point
ω = 1 and exactly one asymptotic value a = 0. Since the asymptotic value is absorbed by the
parabolic fixed point at the origin, and the critical point is being attracted by the parabolic
fixed point, Proposition 4 and Theorem 8 in [Eremenko & Lyubich 1992] imply that J(g) has
zero measure.

Proof of Proposition 2. Let Uj, j ∈ Z, denote the Baker domains of f , and Uj their grand
orbit. The boundary of each open set Uj coincides with with the Julia set J(f). Since the
Julia set is contained in the closure of dynamically distinguished points (periodic points for
example), and since f has no other Fatou components we get:

T (f,C) ' T (f,∪Uj) × B1(f, J(f)).

By Theorem 5.3

T (f,∪Uj) =
∏

j

T (f,Uj).

Since f has no asymptotic values, and each doubly parabolic Baker domain Uj contains
exactly one critical point, we get from the Main Theorem that each T (f,Uj) is trivial. So

T (f,C) ' B1(f, J(f)).

In view of Lemma 6.1 J(f) has measure 0 and so B1(J(f)) is trivial. In other words T (f,C) '
Def(f,C)/QC0(f,C) is formed by one point. Since QC0(f,C) is a subgroup of QC(f,C) also
Def(f,C)/QC(f,C) has cardinality one. Finally this set is in one to one correspondance
with the set of entire mappings quasiconformally conjugate to f modulo conjugacy by affine
isomorphisms, and the proposition follows.
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[Fatou 1920] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919),
161-271; 48 (1920), 33-94, 208-314.

[Gardiner 1987] F. Gardiner, Teichmüller Theory and Quadratic Differentials, John Wiley &
Sons, 1987.

[König 1999] H. König, Conformal conjugacies in Baker domains, J. London. Math. Soc. 59
(1999), 153–170.

[Lehto & Virtanen 1973] O. Lehto &, K.I. Virtanen Quasiconformal mappings in the plane.
Springer-Verlag Berlin Heidelberg New York (1973).

[McMullen 1994] C. T. McMullen 1994, Complex Dynamics and Renormalization, Annals
of Mathematical Studies, Princeton University Press, 1994.

[McMullen & Sullivan 1998] C.T. McMullen and D.P. Sullivan, Quasiconformal Homeomor-
phisms and Dynamics III. The Teichmüller Space of a Holomorphic Dynamical System,
Advances in Mathematics 135 (1998), 351–395.

[Milnor 1999] J. Milnor, Dynamics in one complex variable. Introductory lectures, Friedr.
Vieweg & Sohn, Braunschweig, 1999.

[Nevanlinna 1970] R. Nevanlinna, Analytic functions, Springer-Verlag, New York, 1970.

17



[Pommerenke 1991] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-
Verlag (1991).

[Rippon & Stallard 1999(1)] P. J. Rippon and G. M. Stallard, Families of Baker domains I,
Nonlinearity 12 (1999), 1005–1012.

[Rippon & Stallard 1999(2)] P. J. Rippon and G. M. Stallard, Families of Baker domains II,
Conform. Geom. Dyn. 3 (1999), 67-78.

[Steinmetz 1993] , Rational iteration; complex analytical dynamical systems, Walter de
Gruytr, Berlin 1993.

[Sullivan 1982] D. Sullivan, Itération des fonctions analytiques complexes. (French) [Iteration
of complex analytic functions], C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 301–303.

[Hua & Yang 1998] X. Hua & C. Yang, Dynamics of Transcendental Functions, Gordon and
Breach Science Publishers, (1998).

18


