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Abstract

This paper deals with non-integrability criteria, based on differential Galois the-

ory and requiring the use of higher order variational equations. A general method-

ology is presented to deal with these problems. We display a family of Hamiltonian

systems which require the use of order k variational equations, for arbitrary values of

k, to prove non-integrability. Moreover, using third order variational equations we

prove the non-integrability of a non-linear spring-pendulum problem for the values

of the parameter that can not be decided using first order variational equations.

1 Introduction

Hamiltonian systems appear in multiple models of the sciences. They satisfy equations
of the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where H is assumed to be real analytic on some domain Ω of R2n. We consider the
extension to a complex domain Ω̂ of C2n.

If x = {q, p} ∈ C2n we consider solutions x(t) with t ∈ D̂ ⊂ C. The image of D̂ by x
is a Riemann surface Γ.

We shall consider integrability in the Liouville-Arnol’d sense:
There exist n first integrals f1, f2, . . . , fn independent almost everywhere and in invo-

lution. Usually it is taken f1 = H. In general the functions f1, f2, . . . , fn will be considered
meromorphic in a neighbourhood of a given solution x(t).

The standing problem is to find necessary conditions for integrability, or, equivalently,
sufficient conditions for non-integrability.

Integrable Hamiltonian systems have, in some sense, well ordered dynamics, while non-
integrable ones are associated to some amount of chaos. Eventually the chaotic dynamics
can be confined to the complex phase space without showing up in the real one. A chaotic
behaviour implies lack of predictability, i.e., a sensitive dependence to initial conditions.

Typical Hamiltonian systems are non-integrable. To check non-integrability for a
concrete Hamiltonian one can appeal to numerical techniques, which can be made rigorous
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by using Computed Assisted Proofs (CAP). A classical example is the Hénon-Heiles family,
HHF, a family of 1–1 resonant systems at the origin

H =
1

2
(p21 + p22 + q21 + q22) +

1

3
q31 + bq1q

2
2. (1)

The pioneer example [5] appears for b = −1. Figure 1 shows a Poincaré section of this
problem on the level h=0.1 with q2=0, p2>0. One can easily guess the presence of three
hyperbolic periodic orbits. The heteroclinic connections between them split and create
chaotic zones. There are also four elliptic periodic orbits. Furthermore, in these variables,
the boundary is also an elliptic periodic orbit. Identifying all the points at the boundary
we have S2 as Poincaré section, with 5 fixed points of index +1 and 3 of index −1.
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Figure 1: Poincaré section of (1) for b = −1 on h = 0.1.

Using the first order variational equations (see Section 2) Ito proved that for all except
four of the values of b, HHF is non-integrable, see [6]. Three of the remaining cases are
trivially integrable. The fourth case b = 1/2, that we denote as degenerate Hénon-Heiles,
DHH, has been proved recently to be non-integrable, see [18].

In Section 2 we remind several non-integrability criteria, both in the perturbative case
for H(q, p) = H0(p)+ εH1(q, p) and in the general case. Some of these criteria are related
to exponentially small phenomena. Then we present criteria based on differential Galois
theory, including those which require the use of higher order variational equations. In
Section 3 a general methodology to apply these criteria is introduced and justified. In
problems in which some “reference solution” of the Hamilton equations is known explicitly,
as in the cases presented in that paper, the methods described allow to decide, in a pure
analytic way, about the lack of integrability.

After sketching, for completeness and as a preliminary example, the proof of the
non-integrability of the DHH in Section 4, as presented in [18], we provide in Section 5
examples which require the use of order k variational equations, for arbitrary values of k,
along simple solutions x(t). We denote these examples as generalized DHH or GDHH.

It is relevant to stress here that the fact that for a given system, around a given
simple enough solution, requires higher order variational to prove non-integrability is,
in general, independent of the fact that the system could display large chaotic regions
in numerical simulations. The “simple enough” solutions can be more degenerate than
generic solutions. As an example, the GDHH systems show large chaotic regions in
suitable domains.
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The integrability of an interesting example of non-linear spring-pendulum, SP, model
was studied in [10]. The model depends on two parameters k and a and when a = −k
the analysis could not lead to any conclusion. Using a suitable complex path and third
order variational equations, non-integrability is proved in Section 6. Besides standard
computations concerning the solutions of the involved equations, our proof requires a
kind of blow up for one of the singularities in the first variational equations. A suitable
scaling of the system, depending on k leads to a limit system which is parameter free.
This limit system is also shown to be non-integrable.

Another similar system concerns the Swinging Atwood’s Machine, SAM. The system
depends, essentially, on one parameter, a mass ratio, and has been proved to be non-
integrable except for a discrete set of values. Again using a suitable path and third order
variational equations, non-integrability has been proved. We refer to [13] for the details.

A first difficulty to apply the techniques presented in Section 3 is the need to use a
solution x(t) which is explicitly known. A second difficulty is the choice of a suitable path
for the complex time. A final difficulty is the possibility to integrate first and higher order
variational equations in a simple and efficient way.

This leads, in a natural way, to the question of the numerical check of the necessary
conditions for integrability along arbitrary paths γ of t ∈ C. This approach has been
taken in [14], where a general method, based on Taylor expansions both in time and in
nearby initial conditions, is presented. The integration of arbitrary higher order varia-
tional equations or, equivalently, the transport of jets to any order along arbitrary paths
is easily automatized.

The criteria and methodology presented in sections 2 and 3 can be applied to systems
with an arbitrary (finite) number of degrees of freedom. However, for simplicity and to
be able to have simple reference solutions, we confine our interest here to systems with
two degrees of freedom and having an invariant plane.

Readers familiarised with integrability criteria and differential Galois theory can skip
next Section.

Professor Jürgen Moser largely contributed, with key and beautiful papers, to the study
of integrability and non-integrability. He was mainly using analytical and geometric tools
to this end. Present paper deals with tools which, initially, have a more algebraic flavor.
Hopefully different approaches will merge in the near future and will help understanding
the dynamics.

2 Integrability criteria

The interest in deciding about the integrability of a Hamiltonian system has lead to the
search of different kind of criteria.

2.1 Some criteria

Different methods are used for parametric families of systems, mainly based on the use of
first order variational equations, VE, along x(t), like Ziglin’s method [24] and the so-called
Melnikov methods. The basic idea of the last approach is to try to detect the splitting
of separatrices of unstable periodic orbits, i.e., of hyperbolic fixed points on a suitable
Poincaré map, as presented, e.g., in [20], either in the homoclinic or the heteroclinic case.
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Some difficulties can appear when justifying Melnikov approach for perturbations of
integrable systems H(q, p) = H0(p) + εH1(q, p). Indeed, if the unstable periodic orbit
is created by the perturbation, then the dominant eigenvalues are of the form 1 + O(ε).
The related integrals are of the form Aεr exp(−c/εs) for some positive values of c and s,
but, in principle, the remainder can be O(εr+1). One has to justify that the remainder
contains also similar exponentially small factors.

This has been achieved in different cases. In particular the problem is related to the
splitting of separatrices for area preserving maps APM. It is worth to mention here the
seminal paper of Lazutkin in 1984 (see [7]) for the Chirikov’s standard map, completed
to a full proof in [3]. In [4] a variety of cases is examined numerically with high-precision
computations. The presence of exponentially small splitting of separatrices is generic in
problems in which hyperbolic periodic points appear as a perturbation of the identity, see
[2]. For the splitting of separatrices which appear in resonant zones around an elliptic
fixed point we refer to [23].

A different situation can appear in the two-parameter case. Assume the system de-
pends on two small parameters ε, α. Then it can happen that the splitting is of the
form Aαεr exp(−c/εs)+O(α2εr+1) and the first term dominates if α is sufficiently small
(α << exp(−c/εs)). This approach was used for some problems in Celestial Mechanics
[8, 9, 11, 12], where the first order variational equations were used directly. The role of ε
was played by a mass ratio µ and the one of α by the Jacobi constant or the inverse of
the semi-major axis. But it can lead to unrealistic bounds on the required size of α.

Ziglin’s method uses monodromy matrices, solutions of first order VE along closed
paths in Γ based on a regular point. Non-degeneracy conditions are required for the
monodromy matrices (e.g. non-resonant eigenvalues). The results using Ziglin’s method
can be recovered using the approach of Section 2.2. This alternative approach is based
on differential Galois theory and it is presented in next subsections. It is widely used and
can be applied both to perturbative and non-perturbative problems, like in [19]. However,
it provides no information if the necessary integrability conditions are satisfied.

2.2 The Morales-Ramis theory

The results summarized here are contained in [16, 17]. See also [15] for all the necessary
background and technical details.

Consider the m-dimensional ODE ẋ = f(x(t)) and let x(t) be a solution. The first VE
along x(t) is d

dt
A = Df(x(t))A and we consider the initial condition A(t0) = Id, where

x0 = x(t0) is a regular point of f . If we consider closed paths on the Riemann surface Γ
with base point x0, one can associate to each path the corresponding monodromy matrix.
The set of all these matrices form the monodromy group.

More generally, we can consider any linear ODE

d

dt
A(t) = B(t)A(t). (2)

We assume that the entries of B belong to some field of functions K. Let ξi,j be the
elements of a fundamental matrix of (2). Let L be the extension K(ξ1,1, ξ1,2, . . . , ξm,m),
trivially a differential field. Consider the Galois group G =Gal(L | K), which is an
algebraic group. Then the following result is obtained.
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Theorem 1. (Morales-Ramis) Under the assumptions above, if a Hamiltonian is inte-
grable in a neighbourhood of Γ then the identity component G0 of the Galois group of the
first order VE along Γ is commutative.

The identity component is taken using Zariski’s topology. We also recall that the
Galois group coincides with the Zariski closure of the monodromy group.

A delicate example of application of Theorem 1 can be seen in [19]. See also [18] for
a long, but not exhaustive, list of examples where this Theorem has been used to detect
non-integrability.

If G0 is commutative there is nothing against integrability. This suggests to try to
detect non-integrability at higher order.

2.3 Using higher order variational equations

There are Hamiltonian systems in which none of the previous methods gives a proof
of non-integrability, even if there is a strong numerical evidence (e.g. by computing
Poincaré sections, Lyapunov exponents, by frequency analysis, splitting of separatrices,
etc). Methods based on higher order variational equations have been introduced recently.

Let x(t) = ϕ(t, x0) be the solution of ẋ = f(x) with ϕ(0, x0) = x0. We consider
as fundamental solutions of the k-th order VE, VEk, based on x0, the string of maps
(ϕ(1)(t), ϕ(2)(t), . . . , ϕ(k)(t)) such that

ϕ(t, y0) = ϕ(t, x0) + ϕ(1)(t)(y0 − x0) + . . .+ ϕ(k)(t)(y0 − x0)
k + . . . ,

i.e., the coefficients of the k-jet. Obviously ϕ(1)(t) is a solution of the first order VE=VE1.
The ϕ(k)(t) satisfy linear non-homogeneous ODE, e.g.

d

dt
ϕ(2)(t) = Df(x(t))ϕ(2)(t) +D2f(x(t))(ϕ(1)(t))2,

d

dt
ϕ(3)(t) = Df(x(t))ϕ(3)(t) + 2D2f(x(t))(ϕ(2)(t), ϕ(1)(t)) +D3f(x(t))(ϕ(1)(t))3

with initial conditions ϕ(2)(t0) = 0, ϕ(3)(t0) = 0. See [18] for more explicit versions in terms
of components. For further use we introduce the notation xi, xi;k, xi;k1,k2, xi;k1,k2,k3, . . . for
the components of x and the first, second, third, . . . derivatives with respect to the
initial conditions, that is, the components of ϕ(t), ϕ(1)(t), ϕ(2)(t), ϕ(3)(t), . . . , except by
the presence of factorials.

Note that when ϕ(1) is available, all ϕ(k) are obtained by quadratures.
The equation for ϕ(k), k > 1 depends in a non-linear way on ϕ(j) for j < k, but, for any

k, the equations for the entries of the ϕ(j) can be made linear by introducing additional
variables (products of entries) which also satisfy linear ODE (see again [18] for details).

Hence, one can introduce the k-th order Galois group Gk as the Galois group associated
to the linearized version of the variational equations up to order k. We can also introduce
the k-th order monodromy as the monodromy obtained with the linearized version of the
VE. The information it gives is equivalent to the information obtained by transporting
the jet up to order k. That is, starting at the point x0 + ξ at time t0 one has

ϕ(t; t0, x0 + ξ) =
∑

0≤|n|≤k
an(t)ξ

n +O(|ξ|k+1), (3)
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where n is a multiindex. The jet
∑

0≤|n|≤k an(t0)ξ
n when we return to t0 moving along

a path γ can be seen as the k-th order monodromy along γ, to be denoted as Mγ
k . The

composition of elements in Mγ
k as a group is equivalent to the composition of jets.

Then, for any k ≥ 1 the following extension of Theorem 1 holds:

Theorem 2. ([18]) Under the assumptions above, if the Hamiltonian is integrable then
for any k ≥ 1 the identity component (Gk)

0 of Gk is commutative.

This result gives rise to non-integrability criteria to all orders. Note that these criteria
can depend strongly on the reference solution x(t) and on the paths taken on it. See [18]
for details.

An obvious standing question (see [18] for other open problems) is the following.
Assume (Gk)

0 is commutative for all k. Under which additional conditions one has that
the Hamiltonian is integrable? It is known, see [18], that there exist systems and special
solutions x(t) for which all the (Gk)

0 are commutative despite there is evidence that the
system is non-integrable.

The main purpose of present paper is to set up a methodology to check the necessary
conditions and then to apply Theorem 2 to different examples.

3 A general methodology to test the non-integrability

criteria

To decide that a system is non-integrable applying Theorem 2 it is enough to find a
couple of closed paths ψ1 and ψ2, in the Riemann surface Γ, such that there exists a k ≥ 1
satisfying

• The k-th order monodromies along them, Mψ1

k and Mψ2

k , are in (Gk)
0.

• The commutator

[Mψ1

k ,Mψ2

k ] :=M
ψ−1

2

k ◦Mψ−1

1

k ◦Mψ2

k ◦Mψ1

k , (4)

is not trivial, that is, different from the identity.

Typically one should resort to Gk, k > 1 when Theorem 1 gives no information. This
means that it has been possible to find two closed paths ψ1, ψ2 in Γ such thatMψ1

1 ,Mψ2

1 ∈
(G1)

0 and they commute. For completeness we give some simple cases in whichMψ1

1 ,M
ψ2

1 ∈
(G1)

0.
Assume that the Hamiltonian system has two degrees of freedom and an invariant

plane Π. For concreteness we consider Π to be the (q1, p1)-plane. As the system in
Π is integrable no obstruction can be found related only to the (q1, p1) variables. In
particular the VE1 uncouple into the “tangential” part TVE1 in the (q1, p1) variables and
the “normal” part NVE1 in the (q2, p2) variables.

Lemma 1. Under the above conditions let ψ1, ψ2 be two non-trivial paths in Γ, the Rie-
mann surface corresponding to a solution x(t) in Π. Hence the normal parts of the mon-
odromy matrices along these paths are in SL(2,C). Then, sufficient conditions so that
Mψ1

1 and Mψ2

1 belong to (G1)
0 are:
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i) The normal parts of the matrices Mψ1

1 ,Mψ2

1 are unipotent and they commute. The
simplest case appears when both parts of these matrices are the identity.

ii) At least one of the two normal parts of the matrices Mψ1

1 and Mψ2

1 is non-resonant,
that is, the eigenvalues are not roots of the unity, and the matrices commute.

The proof follows immediately from the classification of the algebraic subgroups of
SL(2,C). See Proposition 2.2 in [15]. An extension of this result to more degrees of
freedom requires to know the algebraic subgroups of SP (2n,C) and the corresponding
identity components. This is not available in general, as far as the authors know. But in
some simple cases, likeM

ψj

1 , j=1, 2 being the identity or simple enough, they are in (G1)
0.

Furthermore, if one can not decide the non-integrability from Theorem 1 using a couple
of paths ψ1, ψ2, then one can go the VEk, k > 1 using the same paths and Theorem 2.

Assume we have Mψ1

1 ,Mψ2

1 ∈ (G1)
0 and they commute. Next Lemma shows that

to get obstructions to the integrability it is sufficient to check that for some k > 1 the
monodromies Mψ1

k and Mψ2

k do not commute.

Lemma 2. AssumeMψ1

1 ,Mψ2

1 ∈ (G1)
0 for two closed paths ψ1, ψ2 in Γ and they commute.

Let us assume that there exists k > 1 such that Mψ1

k and Mψ2

k do not commute. Then the
Hamiltonian is non-integrable in a neighbourhood of Γ.

Proof. Let us consider a Riemann surface Γ′ ⊂ Γ obtained by deleting from Γ a closed
set K containing all the singularities and leaving only in Γ′ a small vicinity of ψ1∪ψ2.

By construction, the monodromy on Γ′, MΓ′

, is generated by Mψ1

1 and Mψ2

1 which
are in the connected subgroup (G1)

0. Then the Galois group GΓ′

1 is connected. Also GΓ′

k

is connected, see Corollary 8.1 in [15]. Then the component (GΓ′

k )
0 coincides with GΓ′

k .
Applying Theorem 2 it follows that the Hamiltonian is non-integrable in a neighbour-

hood of Γ′. Hence, it is non-integrable in a neighbourhood of Γ. 2

In order to apply the above results one has to select, first, a couple of closed paths in a
suitable Riemann surface Γ. Good candidates to be used as paths ψ1, ψ2 appear when the
system has a real invariant plane and a separatrix γ(t) on it, homoclinic to a hyperbolic
fixed point. Close to the separatrix, in nearby levels of the energy there are periodic
orbits which give rise to a closed path ψ1. Beyond the real period it can happen that the
solutions near γ(t) have also a complex period giving rise to a closed path ψ2. This is the
case in classical systems, the Hamiltonian being of the form H(q, p) = 1

2
(p, p) + U(q), if

γ(t) is homoclinic to a hyperbolic fixed point P . Then the changes q = v, p = iw, t = −is
lead to a Hamiltonian K(v, w) = 1

2
(w,w) − U(v) with respect to the new time s. The

point P becomes elliptic for the new Hamiltonian, and it is surrounded by periodic orbits
which correspond to periodic orbits of imaginary period of the Hamiltonian H .

In many typical examples the path ψ−1
2 ◦ ψ−1

1 ◦ ψ2 ◦ ψ1 can be deformed in Γ, without
passing through any singularity, until we obtain a path which has arcs close to several
singularities. Then we are faced to a part of the analysis which can be done locally
around these singularities and another, more global part, which involves the passage from
the vicinity of a singularity to the vicinity of another one.

We should also remark that there is freedom in the choice of the level of energy h of
the solution x(t) that we consider. If the commutator at some order k is different from

7



the identity for some level of energy h0 then, due to the analytical dependence on h, it
is also different from the identity for nearby, suitably chosen, values of h. We recall that,
when the solutions of the first variational equations are available then the solutions of the
VEk, k > 1 are obtained by quadratures along regular paths. In particular, in the case of
classical Hamiltonians as before, the computations can be done along the separatrix and
be used to prove non-integrability in a neighbourhood of a nearby periodic orbit.

It is also important to stress the following fact. Assume the Hamiltonian has an
invariant plane Π and x(t) is contained in Π. The possible lack of integrability should
show up when we consider effects in the directions “normal” to Π. However, the part of
VEk in the normal directions depends also on the behaviour in the “tangent” directions.
This can be checked in the examples studied in Section 6 and in [13], where one can see
that the differential equations for variables like xi;k1,k2, xi;k1,k2,k3, even if all the indices
i, k1, k2, k3, . . . correspond to normal variables, involve variables in Π.

Note that singularities can appear in the Riemann surface Γ for some values of t for
the solution x(t) itself but additional singularities can appear for the VE along x(t). They
must be taken also into account. An example of this situation will be given in Section 6.

But it can also happen that despite no singularities appear for the reference orbit x(t),
some singularities show up for the VE. Assume there are two of them, t∗ and t∗∗, and let
ψ1, ψ2 be two closed paths starting at a regular point and encircling t∗ and t∗∗, respectively.
If the monodromy matrices Mψ1

1 ,Mψ2

1 satisfy some of the conditions in Lemma 1 then to
prove non-integrability one should still check that the commutator in (4) is not trivial.
An illustration of this case is shown in [13].

In general no explicit solution is known for an arbitrary Hamiltonian with n degrees
of freedom. But assume we are able to find, numerically, two paths ψ1, ψ2, such that
M

ψj

1 , j = 1, 2 are in (G1)
0 and we can also compute M

ψj

k , j = 1, 2 along them for some
k > 1. If the numerical computations give strong evidence that the commutator (4) to
order k is not trivial, we can try to prove that this still holds when we account for the
numerical errors (see [14] for several examples). In fact it possible to do a Computer
Assisted Proof of non-integrability following these steps.

In the next sections we apply the methodology presented here to prove non-integrability
of some systems in cases which can not be decided using only VE1. All of them are clas-
sical Hamiltonians with two degrees of freedom and a separatrix, and it is checked that
M

ψj

1 , j = 1, 2 satisfy some of the conditions in Lemma 1, for some suitable paths, be-

fore proceeding to the computation of M
ψj

k , j =1, 2 for k > 1. A different example, non
involving any separatrix, can be found in [13].

4 A degenerate Hénon-Heiles system

We return to the DHH Hamiltonian

H =
1

2
(p21 + p22 + q21 + q22) +

1

3
q31 +

1

2
q1q

2
2 . (5)

This was the seminal example for the theory in [18] where the non-integrability of (5) was
proved. We sketch here basic ideas of the proof because they will be useful in what follows.
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As usual we denote also the variables (q1, q2, p1, p2) as (x1, x2, x3, x4). The system has
two fixed points. One of them Pee located at the origin is totally elliptic and in 1–1
resonance. The second one Php = (−1, 0, 0, 0) is hyperbolic-parabolic (H-P). DHH is the
only member of Hénon-Heiles Family with an H-P point.

The Hamiltonian (5) has an invariant plane Π = {x2 = x4 = 0} On that plane the
equations of motion are

ẋ1 = x3, ẋ3 = −(1 + x1)x1 (6)

and the solutions are given by elliptic integrals. In particular there is a separatrix Γ0 on
the energy level H = h0 = 1/6, through Php given by

x1(t) =
3/2

cosh2(t/2)
− 1, x3(t) =

−(3/2) sinh(t/2)

cosh3(t/2)
. (7)

Hence, we are facing a classical Hamiltonian systems with a separatrix as described in
Section 3. The Riemann surface Γh0 corresponding to the separatrix is a cylinder, while
the Riemann surfaces Γh for nearby h < h0 are tori. In both cases the solutions x(t) have
a double pole that be denote as t∗.

There exists numerical evidence that (5) is non-integrable (see [18] for a Poincaré
section on the level h = 1/5) but for h < 1/6 the chaotic zones are hardly visible.

The equations for ϕ(k), k ≥ 1, have a singularity only at t∗. All the xi;k (solution of
VE1) are known in terms of hyperbolic functions. In particular the normal variational
equations NVE1, are of the form

ξ̇2 = η2, η̇2 = −(1 + x1)ξ2. (8)

This implies that there are solutions of (8) which are proportional to the solutions x1, x3
of (6). In particular, if we start the solution in Γ at a point of the form (x1, 0) we have
that the first column of the normal part of the monodromy at the end of the period, either
the real or the imaginary one, returns to ξ2 = 1, η2 = 0. Hence, taking as ψ1 and ψ2 the
paths along these periods, both matrices are unipotent and, hence, in (G1)

0 according to
Lemma 1.

Consider a small loop γ around t∗. Integration along γ cancels for all xi;k, xi;k1,k2, but
it is different from zero for some components of ϕ(3) (e.g., it gives 72

5
2π i for x2;2,2,2).

By continuity with respect to parameters along a regular γ this is also true for nearby
energy levels h < h0. The path can be deformed to a period parallelogram γ̂. Hence
the third order monodromy M γ̂

3 is different from the identity and, therefore, (G3)
0 is not

commutative, proving non-integrability of DHH.
We can interpret that result in terms of jet transport. After transporting along γ the

initial variations ξ we recover ξ at first order, zero at second order and something different
from zero at third order.

4.1 Dynamical information on the DHH system

System (5), beyond requiring third order variational equations along the separatrix to
detect non-integrability, has some interesting dynamical properties. We list here some of
them. They are obtained using standard normal form (NF) techniques supplemented by
numerical analysis when dealing with global properties.

9



1) In contrast with the classical HH model, see Section 1, only two families of simple
periodic orbits emanate from Pee, that is, families whose limit period when the
energy h→ 0 is 2π. For the classical HH eight families show up (see Section 1). In
particular the two families for the DHH are elliptic for small h.

Using Σ = {q2 = 0} as Poincaré section and (q1, p1) as coordinates on it, for small h,
the periodic orbit living on Σ is the boundary of the admissible domain. The other
periodic orbit, that we denote as vertical p.o. is seen on Σ as an elliptic fixed point
located on Fe = (qv1 , 0), where q

v
1 = O(h). The Poincaré map PM is very close to

integrable. The rotation number around Fe is O(h). This can be expected because
of the 1–1 resonance.

It can also be derived from a NF study that the first Birkhoff coefficient of the
Poincaré map around Fe is negative. Hence, points going away from Fe rotate
around it with decreasing angular velocity under PM. This also guarantees the
applicability of Moser’s twist Theorem [20].

2) When changing h it has been checked that the first Birkhoff coefficient changes sign
at h ≈ 0.11. As this is far from zero, a classical analytic proof seems to be unfeasible.
But the techniques which are presented in [14] allow to compute easily higher order
Taylor representations of PM around Fe.

As a consequence, the rotation number (of an integrable approximation of PM)
around Fe passes through a maximum and the existence of meandering curves (see
[22]) follows.

All these variations of the rotation number are also associated to the creation of
subharmonic periodic solutions.

-0.8
-0.5

-0.2 -0.8

 0

 0.8

-0.6

 0

 0.6

Figure 2: The global W c
hp manifold, which coincides with a family of periodic orbits. See

text for additional details.

3) The fact that system (5) has a hyperbolic-parabolic point shows that Php has a 2D
centre manifold W c

hp. A NF computation shows that, on W c
hp, the Hamiltonian has

a dominant part of the form 1
2
y2 + 1

4
x4. This implies the existence of a family of

periodic orbits tending to Php when h→ 1/6. Let ∆ = h− 1/6. Then the period of
these orbits behaves as O(∆−1/4) and the dominant eigenvalues of the monodromy
matrix along it are extremely large due to the hyperbolic character in the normal
direction and the very long period.
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An interesting feature appears when trying to globalize W c
hp. Locally, on each level

of energy, should consist of a periodic orbit. A numerical continuation shows that
this family of periodic orbits coincides with the family of vertical p.o. emanating
from Pee as described in 1). Figure 2 shows a representation of the family (and
therefore of the global behaviour of W c

hp) in (q1, q2, q̇2) coordinates.

The approximated circular hole seen in the front part corresponds to the location of
Pee , while the elongated hole on the back corresponds to the location of Php. The
blue curve is the periodic orbit which is found for the maximal value of h.

5 Systems requiring order k variational equations

Concerning the applicability of Theorem 2 one can ask if there exists examples such that,
along some simple solution, it is necessary to go to an arbitrary high order to decide that
they are non-integrable. In this section we show examples of this kind.

As an extension of DHH let us consider, for n ≥ 2, the generalized degenerate HH
problem, GDHH, with Hamiltonian

H =
1

2
(p21 + p22) +

1

2
q21 +

1

3
q31 + (1 + q1)

1

n!
qn2 (9)

which for n = 2 gives DHH. We shall consider n ≥ 3.
The only fixed points are the origin and the point Php, as before. Note that now the

origin becomes elliptic-parabolic while Php is still hyperbolic-parabolic. This difference
implies that the results for n = 2 and n ≥ 3 are slightly different. The Hamiltonian (9)
has the same invariant plane Π and the same separatrix Γ0 as DHH.

Our goal in this section is to prove the following result

Theorem 3. For any n ≥ 3 system (9) is non-integrable in a neighbourhood of the
separatrix Γ0 sitting on the q2 = p2 = 0 plane. To decide the non-integrability one
should use the order n − 1 monodromy Mγ

n−1 along a suitable path, all the lower order
monodromies Mγ

k , k < n− 1 being trivial.

Proof. The separatrix has been given in (7) and the first order VE uncouple. The
“tangential” part of the solution, containing x1;1, x3;1, x1;3, x3;3, is given in formula (42) in
[18], but it is not necessary now. On the other hand one has x2;2 = x4;4 = 1, x2,4 = t, all
the other elements xi;j being zero. This shows, in particular, that for the NVE1 (i.e., the
“normal” part) the monodromy matrices along both real and imaginary periods for levels
of energy close to the level of the separatrix are unipotent and so Lemma 1 applies.

Let fi be the components of the vector field and fi;k, fi;k1,k2, fi;k1,k2,k3, . . . the higher
order derivatives. From the expressions of fi it follows that all the derivatives of order
higher than 1 are zero along the separatrix except

f3;1,1 = −2, f3;k1,...,kn = −1, f4;k1,...,kn−1
= −(1 + x1), f4;1,k1,...,kn−1

= −1,

where all the kj indices are equal to 2.
Hence, for any k with 1 < k < n− 1 all the entries of VEk of the form xi;j1,j2,...,jk with

i ∈ {2, 4}, jm ∈ {2, 4}, m = 1, . . . , k are identically zero.

11



The lowest order VEk for which some of the components of the form xi;j1,j2,...,jk , as
above, is different from zero is k = n− 1. They are

d

dt

(

x2;k1...,kn−1

x4;k1...,kn−1

)

=

(

0 1
0 0

)(

x2;k1...,kn−1

x4;k1...,kn−1

)

+

(

0
−(1 + x1)

)

, (10)

where all the kj indices are equal to 2, as before.
We can take a path Γ0 starting at t0 = 0 and do a loop around t∗ = π i. After the

loop the solution is
(

x2;k1...,kn−1

x4;k1...,kn−1

)

=

∫

Γ0

(

t(1 + x1)
−(1 + x1)

)

dt =

(

−12π i
0

)

.

For completeness, we can consider an equation like (10) where, among the derivation
indices appears 2 a total of n1 times and 4 a total of n2 times, with n1 +n2 = n− 1. The
related integrals are

∫

Γ0

(

tn2+1(1 + x1)
−tn2(1 + x1)

)

dt =

(

−12(n2 + 1)(π i)n2+1

12n2(π i)
n2

)

(11)

which proves that all the elements xi;k1...,kn−1
, i ∈ {2, 4}, kj ∈ {2, 4} for all j are different

from zero with the exception of the element x4;2,...,2.
At that point we apply the same arguments for h < h0, close to it, as before, and use

the result of Lemma 2. Hence, in a neighbourhood of Γ, the system is detected to be
non-integrable using (Gn−1)

0 but not using (Gk)
0, 1 < k < n− 1. 2

6 A non-linear spring-pendulum problem

Consider a spring-pendulum problem with non-linear spring, having the Hamiltonian

H =
1

2

(

p2r +
p2θ
r2

)

− r cos(θ) +
k

2
(r − 1)2 − a

3
(r − 1)3, (12)

where the real constant k is assumed to be positive. Simple solutions are obtained, for
instance, for pθ = 0 and θ = 0 or π. Letting aside the trivial case k = a = 0 non-
integrability has been proved if k + a 6= 0 in the nice paper [10].

These authors claim that for a = −k, along the chosen solution, the analysis around
the imaginary singularity of r(t) (see (13)) of the m-th order variational equations up
to m = 7, shows that no obstructions to integrability are found. Furthermore numerical
computation of Poincaré maps gives strong evidence of non-integrability. This asks for a
clarification. In this section we shall be concerned with the non-integrability.

When a = −k we have a separatrix given by

r(t) = ρ+
α

cosh2(βt)
, θ = pθ = 0, (13)

where
ρ = (1− γ)/2, α = 3γ/2, β2 = kγ/4, γ = (1 + 4/k)1/2,

similar to the DHH case. It is on the level of energy h0 =
(

k
12

+ 1
3

)

γ + k
12

− 1
2
.

12



Let us look first to VE1 along (13). ϕ(1) is the solution of d
dt
ϕ(1)(t) = B(t)ϕ(1)(t),

ϕ(1)(0) = Id. It uncouples in two linear systems for r, pr and θ, pθ with matrices

B1 =

(

0 1
k(1− 2r) 0

)

, B2 =

(

0 r−2

−r 0

)

. (14)

We note that, as k > 0, the parameters in (13) satisfy α > 0, ρ < 0, α + ρ > 0. But
the separatrix (13) tends, for t → ±∞, to the (non-physical) value ρ < 0. In particular
it takes the value 0 for t = t± = ± cosh−1(−α/ρ)/β. In other words, the radius r(t) has

period π i
β

and a double pole at t∗ = π i
2β
. Hence, B2 has singularities at t∗ and also at

t± ∈ R, where r(t±) = 0. A similar thing, existence of zeros of r and of singularities,
happens for the (doubly) periodic nearby solutions on energy levels h < h0, h ≈ h0. A
suitable path can be chosen to prove

Theorem 4. System (12) is non-integrable when a = −k.

Proof. We shall give here the main steps of the proof. The computational details will be
given in the next sections.

Using circles of small radius ε let γ+,∗,− be paths emanating from the origin and en-
circling the respective singularities t+,∗,− as shown in Figure 3, traveled counterclockwise.
It is clear that the singularities depend analytically on the level of energy h. Then, as
explained before, one can do the computations on the level h0, when required.

We will show, first, that along each of γ+,∗,− the variation of the entries of ϕ(1) cancels.
Then one has to compute the variations of the entries of ϕ(2) and ϕ(3) along γ+,∗,−. After
proving that the variations of ϕ(2) also cancel, it will be enough to show that some of the
components of ϕ(3) has a contribution different from zero.

Furthermore by deforming the path γ− ◦ γ∗ ◦ γ+ for a level of energy h < h0, h ≈ h0
we obtain a circuit which is equivalent to the commutator ψ−1

2 ◦ ψ−1
1 ◦ ψ2 ◦ ψ1 where ψ1

and ψ2 are the paths giving rise to real and imaginary periods, see Figure 3. In Lemma
3 (see subsection 6.2) it will be proved that we are in case ii) of Lemma 1. Hence the
monodromy matrices along ψ1, ψ2 are in (G1)

0 and one can proceed with the higher order
monodromy according to Lemma 2.

Along γ∗ the variational equations up to order 7 give a trivial contribution, according
to [10]. Additional evidence (see [14]) seems to indicate that along γ∗ they cancel to all
orders. In the sequel it will be proved up to order 3. The inclusion of γ+ and γ− in the
path is essential to prove Theorem 4.

It is immediate from the symmetries of the equations (locally, around t = 0, and start-
ing with initial conditions of the form (13)) that the parity of an element xi, xi;k1 , xi;k1,k2,
xi;k1,k2,k3, if it is not identically zero, is the same as the parity of

P = #{i, k1, . . . , ks ∈ {3, 4}}, (15)

where s denotes the order of the variational equations. Furthermore we observe that the
path γ− is minus the path γ+. We shall prove, in subsections 6.2 and 6.3, that all the
non-zero values of the components of ϕ(3) at the end of γ+ are purely imaginary.

Hence, it is easy to check that the non-zero elements of ϕ(3) along γ+ are imaginary
and keep the sign when we pass to γ− if P in (15) is even and change sign if it is odd. As
the monodromy up to third order along γ+,− is the identity plus third order terms, it is

13



0
t+t-

t*

γ+

γ-

γ*

t+t-

t*

t++iΠt-+iΠ

Figure 3: Left: Path for the proof of Theorem 4 around the three singularities of the
variational equations. Right: the path deformed to a period parallelogram, avoiding the
singularities. Here iΠ denotes the imaginary period on the energy level h.

enough to double the value of the elements at the end of γ+ which keep sign when passing
from γ+ to γ−.

Concretely, the non-zero elements in ϕ(3) at the end of γ+ are of the form:

x2;2,2,2 = a i, x2;2,2,4 = −c i, x2;2,4,4 = d i, x2;4,4,4 = −e i,

x4;2,2,2 = b i, x4;2,2,4 = −a i, x4;2,4,4 = c i, x4;4,4,4 = −d i,
where a, b, c, d, e are real positive. Therefore, only

x2;2,2,2 = 2a i, x4;2,2,4 = −2a i, x2;2,4,4 = 2d i, x4;4,4,4 = −2d i

remain at the end of the full loop. It is clear that the structure of the coefficients (x2;2,2,2+
x4;2,2,4 = x2;2,2,4 + x4;2,4,4 = x2;2,4,4 + x4;4,4,4 = 0) at the end of γ+ follows immediately
from symplectiness of the return time map. Therefore, the only thing to prove, beyond
the fact that some elements are zero is a > 0, d > 0.

The computational details are provided in Subsection 6.2.
Using the continuity and deformation arguments with respect to the level of energy,

as in previous cases, this proves that system (13) is non-integrable for a = −k, k > 0. 2

6.1 A limit Hamiltonian when k → 0

When k → 0 in (12) the role of the spring disappears and the solution (13) goes to infinity.
A suitable scaling of variables and time can be introduced as follows:

(R,Θ, PR, PΘ, s) = (k1/2r, θ, k1/4pr, k
3/4pθ, k

1/4t),

giving rise to the Hamiltonian

H =
1

2

(

P 2
R +

P 2
Θ

R2

)

− R cos(Θ) +
1

3
R3 − k1/2

1

2
R2.

This system is analytic with respect to the parameter k1/2. This suggests to study the
limit system

H =
1

2

(

P 2
R +

P 2
Θ

R2

)

− R cos(Θ) +
1

3
R3, (16)
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which is parameter-free, like the classical Hill’s problem [19]. The basic solution for R is
like (13) with (ρ, α, β) = (−1, 2, 1/

√
2) and singularities (s∗, s±) = (π/

√
2,±

√
2 log(

√
3 +√

2), all of them now finite.
All the computations done for (12) are repeated for (16). The approximate values for

a, d are a0 ≈ 18.10054308, d0 ≈ 3.24984189 (see [14]). Furthermore, undoing the scaling,
we recover the values a = a0 +O(k1/2), d = d0k

3/2 +O(k2). The scaling will be useful in
the proof of Theorem 4, but the numerical information above is not used and given only
as a complement.

6.2 Analytical details for the proof of Theorem 4

This section is devoted to perform the computations needed in the proof of Theorem 4.
The first variational equations uncouple in two systems

ξ̇1 = ξ3, ξ̇3 = −k(2r − 1)ξ1, (17)

and

ξ̇2 = r−2ξ4, ξ̇4 = −rξ2, (18)

where r = ρ+ α/ cosh2(βt) as defined in (13) Following the notation introduced in Sub-
section 2.3 we write

Φ1(t) =

(

x1;1(t) x1;3(t)
x3;1(t) x3;3(t)

)

, Φ2(t) =

(

x2;2(t) x2;4(t)
x4;2(t) x4;4(t)

)

, (19)

for the fundamental matrices of the systems (17) and (18), respectively, such that Φ1(0) =
I, and Φ2(0) = I. We remark that trivially

xi;j = 0 if the parity of i and j is different. (20)

The system (17) can be solved explicitly. We obtain

x1;1(t) = −5

8

(

1− 3

cosh2(βt)
+

2

5
cosh2(βt) + 3βt

sinh(βt)

cosh3(βt)

)

,

x1;3(t) = − 1

2αβ2
ṙ(t), (21)

x3;1(t) = ẋ1;1(t), x3;3(t) = ẋ1;3(t).

Lemma 3. On energy levels h < h0, h ≈ h0 the matrix Φ2 along the imaginary period is
non-resonant. Furthermore it commutes with the one along the real period.

Proof. The commutativity follows immediately from the absence of logarithmic terms
in the solution of (18) along the three paths γ+,∗,−. Let us proceed to show that the
monodromy matrix along the imaginary period is non-resonant for values of h < h0
arbitrarily close to h0.

According to the discussion following Lemma 2 concerning classical Hamiltonians with
a separatrix, the periodic solutions with imaginary period are equivalent to real periodic
solutions of the Hamiltonian K = 1

2
p2r− [−r+ k

2
(r−1)2+ k

3
(r−1)3] around the fixed point

r = rf :=
1
2
(1−γ) < 0, pr = 0. Introducing a local variable σ = r−rf the equation for the
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periodic orbits is σ′′ = −A2σ +Bσ2, where A2 = k(1− 2rf), B = k and ′ = d/ds, s = it.
Small amplitude solutions, with a small parameter ε related to changes in the energy
level, can be obtained using Lindstedt-Poincaré method, see [21]. They are of the form

σ(s) = ε(z + z−1) + ε2(a2,0 + a2,2(z
2 + z−2)) + ε3(a3,3(z

3 + z−3)) +O(ε4),

where z = exp( iωs), ω = ω0 + ω2ε
2 + O(ε4). The NVE1 along these solutions are ξ′2 =

r−2ξ4, ξ
′
4 = rξ2 which can be written as a second order linear differential equation. It is

useful to introduce u = rξ2 which satisfies a Hill-like equation of the form

u′′ + (C2 +Dσ)u = 0, C2 = k(1− rf), D = −k.

The solutions are found using Normal Form methods, see [1].
Summarizing, the monodromy matrices along the imaginary periodic solutions of the

initial Hamiltonian H are symplectic matrices of the form

(

a b
c a

)

, because of the sym-

metry of the periodic solutions Moreover a = cos(2πν(ε)), ν(ε) = ν0+ν2ε
2+O(ε4) where

ν0 =
√

(1− rf)/(1− 2rf), ν2 = ν0
3 + 14rf

3(1− 2rf)2(3− 2rf)
.

Resonance is produced if ν(ε) ∈ Q. If ν2 6= 0 then by changing ε there is a set of full
measure in ε which avoids resonance. For rf = −3/14, which corresponds to k = 196/51,
either some of the coefficients ν2j , j > 1 is non-zero or all of them are zero. But in the

last case one has ν(ε) = ν0 =
√

17/20, which is a quadratic irrational and prevents again
from resonance. 2

The solutions of (18) will be obtained as power series in a neighbourhood of the
singularities t∗, t± = ±t̂. We can write (18) as

ξ̈2 +
2ṙ

r
ξ̇2 +

1

r
ξ2 = 0. (22)

Assume that xf1, xf2 are two linearly independent solutions of (22). Then we shall write

x2;2(t) = a xf1(t) + b xf2(t), x2;4(t) = c xf1(t) + d xf2(t), (23)

for some constants a, b, c, d. Using (18) we have

x4;2(t) = r2ẋ2;2(t), x4;4(t) = r2ẋ2;4(t). (24)

The second order variational equations can be written in components as

ẋi;j1,j2 =
4
∑

k=1

fi;k xk;j1,j2 +
4
∑

k1,k2=1

fi;k1,k2 xk1;j1 xk2;j2, 1 ≤ i, j1, j2 ≤ 4. (25)

For a fixed pair of indices (j1, j2), equations in (25) uncouple in two linear systems

ẋ1;j1,j2 = x3;j1,j2, ẋ2;j1,j2 = r−2x4;j1,j2 + h2;j1,j2,

ẋ3;j1,j2 = k(1− 2r)x1;j1,j2 + h3;j1,j2, ẋ4;j1,j2 = −rx2;j1,j2 + h4;j1,j2, (26)
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where the functions h2;j1,j2, h3;j1,j2, h4;j1,j2 depend on r and the corresponding solutions
of the first order variational equations. They are summarized (besides a permutation of
indices), together with the integrands Ii;j1,j2, i = 1, . . . , 4 which appear in the solutions,
in tables 1 and 2, where to simplify the expressions we have introduced

D2,2 := x22;2 − 2rẋ22;2, D2,4 := x22;4 − 2rẋ22;4, DM := x2;2x2;4 − 2rẋ2;2ẋ2;4.

The indices j1, j2 such that they or their permutation do not appear in tables 1 and 2
give rise to variables identically zero. This is mainly due to (20).

j1 j2 h3;j1,j2 I1;j1,j2 I3;j1,j2
1 1 −2k x21;1 2kx21;1 x1;3 −2kx31;1
1 3 −2k x1;1 x1;3 −2kx1;1 x

2
1;3 −2kx21;1 x1;3

2 2 −D2;2 x1;3D2,2 −x1;1D2,2

2 4 −DM x1;3DM −x1;1DM

3 3 −2k x21;3 2kx31;3 −2kx1;1 x
2
1;3

4 4 −D2;4 x1;3D2,4 −x1;1D2,4

Table 1: Independent terms h3;j1,j2 in (26) and integrands I1;j1,j2, I3;j1,j2 in (27).

j1 j2 h2;j1,j2 h4;j1,j2 I2;j1,j2 I4;j1,j2
1 2 −2r−1 x1;1 ẋ2;2 −x1;1x2;2 x1;1DM −x1;1D2,2

1 4 −2r−1 x1;1 ẋ2;4 −x1;1x2;4 x1;1D2,4 −x1;1DM

2 3 −2r−1 x1;3 ẋ2;2 −x1;3x2;2 x1;3DM −x1;3D2,2

3 4 −2r−1 x1;3 ẋ2;4 −x1;3x2;4 x1;3D2,4 −x1;3DM

Table 2: Independent terms h2;j1,j2, h4;j1,j2 in (26) and integrands I2;j1,j2, I4;j1,j2 in (27).

j1 j2 j3 I2;j1,j2,j3
2 2 2 3x1;2,2DM − rx32;2x2;4
2 2 4 x1;2,2D2,4 + 2x1;2,4DM − rx22;2x

2
2;4

2 4 4 2x1;2,4D2,4 + x1;4,4DM − rx2;2x
3
2;4

4 4 4 3x1;4,4D2,4 − rx42;4

Table 3: I2;j1,j2,j3.

j1 j2 j3 I4;j1,j2,j3
2 2 2 −3x1;2,2D2,2 + rx42;2
2 2 4 −x1;2,2DM − 2x1;2,4D2,2 + rx32;2x2;4
2 4 4 −2x1;2,4DM − x1;4,4D2,2 + rx22;2x

2
2;4

4 4 4 −3x1;4,4DM + rx2;2x
3
2;4

Table 4: I4;j1,j2,j3.

The solutions of the linear systems (26), with initial conditions equal to zero, can be
obtained in terms of some quadratures involving the solutions of the first order variational
equations as

(

x1;j1,j2
x3;j1,j2

)

= Φ1(t)

( ∫ t

0
I1;j1,j2

∫ t

0
I3;j1,j2

)

,

(

x2;j1,j2
x4;j1,j2

)

= Φ2(t)

( ∫ t

0
I2;j1,j2

∫ t

0
I4;j1,j2

)

, (27)
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where Ii;j1,j2, i = 1, . . . 4 are given in tables 1 and 2.
In a similar way, we can obtain the third order variational equations. For our purpose

we only need to consider the variables x2;j1,j2,j3 and x4;j1,j2,j3, for (j1, j2, j3) ∈ I, where
I = {(2, 2, 2), (2, 2, 4), (2, 4, 4), (4, 4, 4)}. We get

(

x2;j1,j2,j3
x4;j1,j2,j3

)

= Φ2(t)

( ∫ t

0
I2;j1,j2,j3

∫ t

0
I4;j1,j2,j3

)

, (28)

where Ii;j1,j2,j3 are given in tables 3 and 4

Remark 1. The integrals
∫ t

0
x1;jD2,2,

∫ t

0
x1;jD2,4,

∫ t

0
x1;jDM , for j = 1, 3 are linear com-

binations of Ii, Ji, i = 1, 2, 3 where

Ii =

∫ t

0

x1;1Di, Ji =

∫ t

0

x1;3Di, i = 1, 2, 3,

being
D1 = x2f1 − 2rẋ2f1, D2 = x2f2 − 2rẋ2f2, D3 = xf1xf2 − 2rẋf1ẋf2.

Remark 2. Using the expressions of x1;2,2, x1;2,4, and x1;4,4, derived from (27),
∫ t

0
Ii;j1,j2,j3,

for i = 2, 4, (j1, j2, j3) ∈ I can be written as linear combinations of
∫ t

0
Ai,j and

∫ t

0
Bi,j where

Ai,j := İiJj − J̇iIj = x1;1Di

∫ t

0

x1;3Dj − x1;3Di

∫ t

0

x1;1Dj , i, j = 1, 2, 3, (29)

Bi,j := rxif1x
j
f2, 0 ≤ i, j ≤ 4, i+ j = 4, (30)

the dot denoting the derivative with respect to t.

The next proposition shows that the variations of the entries of ϕ(2) and ϕ(3) cancel
along γ∗.

Proposition 1. For any k > 0, xi;j1,j2, i = 1, . . . , 4, 1 ≤ j1, j2 ≤ 4 and xi;j1,j2,j3, for
i = 2, 4, (j1, j2, j3) ∈ I cancel along the path γ∗ defined at the beginning of Section 6.

Proof The proof goes as follows. First, we shall develop the solutions of the first order
variational equations around the singularity t∗. This will show that Φ1(t) and Φ2(t) do
not change after moving along a small circle around t∗ (see Figure 3). Then we shall
prove that the residues at t∗ of Ii;j1,j2 and Ii;j1,j2,j3 given in the tables 1 to 4 are zero. This
implies that going through the small circle around t∗ the variables do not change. Then
the proof finishes by taking into account that the variation going up and down from a
neighbourhood of zero to a neighbourhood of t∗ trivially cancel. In the rest of the proof
we shall made explicit the required computations.

Let us consider a neighbourhood of t∗ = π i/(2β). We introduce τ = t− t∗. Then, the
following expansions hold

r(τ) =
∑

i≥−2

riτ
i, x1;1(τ) =

∑

i≥−3

eiτ
i, x1;3(τ) =

∑

i≥−3

diτ
i, (31)

where the main coefficients ri, ei, di are given in the appendix 1.
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Furthermore, using Frobenius method we easily see that

xf1(τ) = α0 + α4τ
4 + α6τ

6 + . . . , xf2(τ) = τ 5(α̂0 + α̂2τ
2 + α̂4τ

4 + . . .), (32)

α4 = − k

24
α0, α̂2 =

5k

42
α̂0, α̂4 =

k(k − 2)

144
α̂0,

and α0, α̂0 are arbitrary values different from zero. Then

D1 = α2
0 +O(τ 4), D2 = O(τ 6), D3 = O(τ 5). (33)

This implies that the residues at t∗ of x1;1Di, x1;3Di, for i = 1, 2, 3 are zero, and the same
is true for Ii;j1,j2, for i = 1, 3 and (j1, j2) ∈ {(2, 2), (2, 4), (4, 4)}, and for I2;j1,j2, I4;j1,j2.

The residues of x21;1x1;3, x
3
1;1, x

3
1;3, x1;1x

2
1;3 at t∗ are the following ones

R∗(x
2
1;1x1;3) = 2e−3(e1d1 + e5d−3) + e21d−3 + e2−3d5 = 0,

R∗(x1;1x
2
1;3) = 2d−3(e1d1 + e−3d5) + e5d

2
−3 + e−3d

2
1 = 0,

R∗(x
3
1;1) = 3e−3(e

2
1 + e−3e5) = 0,

R∗(x
3
1;3) = 3d−3(d

2
1 + d−3d5) = 0.

Let us consider now I2;j1,j2,j3, I4;j1,j2,j3 given in tables 3 and 4. Using the Remark 2 we
only need to compute the residues of Bi,j and Ai,j. It is immediate to see that Bi,j and Ai,j
have residue zero for any (i, j) except for A1,1. However a simple computation shows that

R∗(A1,1) = α4
0(e−3d1 − e1d−3) = 0,

where the expansions (31) have been used. 2

For the remaining part of the proof of Theorem 4 we begin with the analysis of the
behaviour along γ+.

Proposition 2. For any k > 0, xi;j1,j2, i = 1, . . . , 4, ≤ j1, j2 ≤ 4 cancel along the path γ+
defined at the beginning of Section 6. Furthermore, xi;j1,j2,j3, for i = 2, 4, (j1, j2, j3) ∈ I
do not cancel simultaneously along γ+.

Proof The proof follows the same steps as the proof of Proposition 1.
Let us consider a neighbourhood of t+. We shall keep for the coefficients the notation

introduced in the proof of the Proposition 1. Let be τ = t− t+. We obtain

r(τ) =
∑

i≥1

riτ
i, x1;1(τ) =

∑

i≥0

eiτ
i, x1;3(τ) = − 1

2αβ2

∑

i≥1

iriτ
i−1, (34)

where the main coefficients ri, ei are given in the Appendix.
Furthermore we obtain the following linearly independent solutions of (22)

xf1(τ) = α0 + α1τ + α2τ
2 + . . . ,

xf2(τ) =
α̂−1

τ
+ α̂1τ + α̂2τ

2 + . . . , (35)

α1 = − 1

2r1
α0, α2 =

1

4r21
α0, α̂1 =

k

3
α̂−1, α̂2 = − k

72r1
(3− k + γ(4 + k))α̂−1,
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where α0, α̂−1 are nonzero arbitrary values. Then trivially, Ii;1,1, Ii;1,3, Ii;3,3, for i = 1, 3
have residues equal to zero at t+.

Moreover we easily compute the residues of x1;iDj, i = 1, 3, j = 1, 2, 3 as

R+(x1;1D1) = 0,

R+(x1;1D2) = α̂2
−1r1(ke0 − 2e2) = 0,

R+(x1;1D3) = e0α̂−1(α0 + 2α1r1) = 0,

R+(x1;3D1) = 0,

R+(x1;3D2) = − 2

αβ2
α̂−1r1(−2r3α̂−1 + α̂1r1) = 0,

R+(x1;3D3) = − 1

2αβ2
α̂−1r1(α0 + 2α1r1) = 0.

Using (34) and (35) we have that the coefficient of τ−1 in Ai,j is equal to 0 except for
A1,2, A2,1 and A2,2. In these cases we have the following values

R+(A1,2) = R+(A2,1) =
1

2αβ2
α2
0α̂

2
−1r1(e1r1 − e0), (36)

R+(A2,2) =
8

αβ2
α̂3
−1α̂2r

2
1(e1r1 − e0) +

2

αβ2
α̂4
−1

(

e0(9r1r
2
3 − 4r3 + r1r4 − 5r21r5)+

+e1r1(−9r1r4 + 4r3)− 3e2r
2
1r3 + 2e3r

2
1 + e4r

3
1

)

. (37)

Furthermore

R+(B0,4) =
3

2
α̂4
−1kr1, R+(B2,2) = α2

0α̂
2
−1r1, (38)

R+(B1,3) = α̂3
−1(

α0

2
+ r1α1) = 0, R+(B4,0) = R+(B3,1) = 0 .

Therefore

R+(rx
4
2;2) = 6a2b2R+(B2,2) + b4R+(B0,4),

R+(rx
3
2;2x2;4) = 3ab(ad + bc)R+(B2,2) + b3dR+(B0,4),

R+(rx
2
2;2x

2
2;4) = (a2d2 + b2c2 + 4abcd)R+(B2,2) + b2d2R+(B0,4),

R+(rx2;2x
3
2;4) = 3cd(ad+ bc)R+(B2,2) + bd3R+(B0,4),

R+(rx
4
2;4) = 6c2d2R+(B2,2) + d4R+(B0,4).

The residues of Ii;j1,j2,j3 at t+ can be written in terms of

X1 = R+(A1,2)−R+(B2,2), X2 = 3R+(A2,2)−R+(B0,4). (39)

However X1 = 0 and we simply obtain

R+(I2;2,2,2) = b3dX2, R+(I4;2,2,2) = −b4X2,

R+(I2;2,2,4) = b2d2X2, R+(I4;2,2,4) = −b3dX2, (40)

R+(I2;2,4,4) = bd3X2, R+(I4;2,4,4) = −b2d2X2,

R+(I2;4,4,4) = d4X2, R+(I4;4,4,4) = −bd3X2,
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where

X2 = 2α̂4
−1

√

k(1 + 2γ)

3

2γ2 − γ − 1

(γ + 1)2
6= 0.

We note that the following relations hold

R+(I2;2,2,2) = −R+(I4;2,2,4), R+(I2;2,2,4) = −R+(I4;2,4,4), R+(I2;2,4,4) = −R+(I4;4,4,4).

To finish the proof of the lemma we must prove that b 6= 0 and d 6= 0. Let us introduce

C =

(

a c
b d

)

, Φf(t) =

(

xf1 xf2
r2ẋf1 r2ẋf2

)

.

Using (23) we have that C = (Φf (0))
−1. Then

b = − 1

D
r2(0)ẋf1(0), d =

1

D
xf1(0)

where D = det(Φf (0))
−1 6= 0. The next lemma will finish the proof of Proposition 2.

Lemma 4. Let be r and xf1 as defined in (34) and (35) respectively. Then xf1 and r2ẋf1
do not cancel at t = 0.

We shall prove this lemma in the next subsection. 2

6.3 Proof of Lemma 4

Let us consider the first order variational system in (18) written as

ẋ = r−2y, ẏ = −rx, (41)

where we remind the expression of r(t) from (13)

r(t) =
1

2
(1− γ) +

3γ

2 cosh2(βt)
, β = β(γ) =

√

γ

γ2 − 1
. (42)

We recall that xf1(t), yf1(t) = r2(t)ẋf1(t) is a solution of (41) in a neighbourhood of the
singularity t = t+.

To prove Lemma 4 we shall perform a blow up of the singularity t+ in order to see
xf1(t), yf1(t) as a branch of the stable manifold of a saddle point for some regularized
system. In this way the proof of Lemma 4 is reduced to study the behaviour of such a
stable manifold. To do this we shall use qualitative techniques.

For the proof it will be necessary to consider separately the cases γ ≤ 7/5 and γ ≥ 7/5
and introduce different formulations for the equation (41).

We start with a technical lemma concerning t+ as a function of γ

t+ = t+(γ) =
1

2β
ln

(

1 +
√

(1 + 2γ)/(3γ)

1−
√

(1 + 2γ)/(3γ)

)

.

Lemma 5. Let γ be such that 1 < γ ≤ 7/5. Then t+(γ) is an increasing function such
that limγ→1+ t+(γ) = 0. Moreover t+(γ) goes to infinity as γ → ∞.
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Proof We compute

dt+
dγ

=
1

2β(γ−1)

(

(γ2 + 1) t+
β(γ+1)2(γ−1)

−
√

3

γ(1+2γ)

)

>
1

2β(γ−1)

(

(γ2 + 1)

2γ(γ+1)
lnY (γ)−1

)

,

where

Y (γ) :=
1 +

√

(1 + 2γ)/(3γ)

1−
√

(1 + 2γ)/(3γ)
(43)

is a decreasing function of γ. Then if 1<γ≤7/5, we get Y (γ) ≥ Y (7/5) =
(√

21+
√
19√

2

)2

and

dt+
dγ

>
1

2β(γ − 1)

(

(γ2 + 1)

γ(γ + 1)
ln

(√
21 +

√
19√

2

)

− 1

)

> 0.

2

Figure 5 shows a plot of t+(γ).
We note that r(t) is an even function of t, decreasing for t > 0, such that r(t) > 0 for

0 ≤ t < t+ and r(0) = (1+ 2γ)/2 > 3/2 for γ > 1. Let us denote by t1 the value of t such
that r(t1) = 1, that is,

t1 = t1(γ) =
1

2β
ln

(

1 +
√

(2γ − 1)/(3γ)

1−
√

(2γ − 1)/(3γ)

)

. (44)

We introduce polar coordinates (R, θ) in the following way

rx = R cos θ, y = R sin θ

and we change the independent variable through ds = r−1dt. It turns out that the
equation for θ is independent of R. However it will be convenient to consider the following
planar autonomous differential system for t, θ

dt

ds
= r(t),

dθ

ds
= −r(t) cos2 θ − ṙ(t) sin θ cos θ − sin2 θ, (45)

where

ṙ(t) =
dr

dt
= −3γβ

tanh(βt)

cosh2(βt)
.

The system (45) can be extended analytically to t = t+. In fact the vertical line t = t+ is
invariant under the flow defined by (45).

Using the periodicity of (45) with respect to θ we only need to consider the domain

R = {(t, θ) | 0 ≤ t ≤ t+,−π/2 ≤ θ ≤ π/2}.
There are two equilibrium points of (45) in R, P0 = (t+, 0) and P1 = (t+, θ+) where
θ+ = arctan(−ṙ(t+)) ∈ (0, π/2). We remark that θ+ depends on γ. It is easy to check
that for any γ > 1, P1 is an attractor and P0 is a saddle point being the stable direction
given by the vector (−2, 1) (see Figure 4). Let us denote as W s the branch of the stable
manifold of P0 with t < t+. We note that for any t ∈ [0, t+) with θ = 0 or θ = π/2 we
have

dt

ds
> 0,

dθ

ds
< 0.

Then, following W s backwards in time it intersects t = 0 at some point with θ = θs(γ).
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Figure 4: Left: Phase portrait of system (45) for γ = 1.2 in the plane (t, θ). The dark
curve corresponds to W s. Right: The domain R0 for γ = 1.2.

Remark 3. Using (34) and (35) we have

yf1(t)

r(t)xf1(t)
→ 0, as t→ t+.

Then in the blown up variables, the solution xf1(t), yf1(t) of (45) projects on W s in the
(t, θ)-plane. We note that any other solution of (41) defined in a small neighbourhood of
t+, with t− t+ < 0 will project in an orbit of (45) which goes to an attractor as t tends to
t+. Our purpose is to prove that for any γ > 1, 0 < θs(γ) < π/2. This would imply that

0 <
yf1(0)

r(0)xf1(0)
<∞ for any 0 ≤ t < t+ and then, xf1(0) 6= 0 and yf1(0) 6= 0.

Lemma 6. Let be 1 < γ ≤ 7/5. Then 0 < θs(γ) < π/2.

Proof Using Lemma 5, t+(γ) < t+(7/5) < π/2 for any 1 < γ ≤ 7/5.
Let us introduce

f(t) = f(t; γ) := arctan(t+ − t), 0 ≤ t ≤ t+. (46)

Assume γ is fixed. Let A be the point (t, θ) = (t1, f(t1)) where t1 is defined in (44). We
define

L1 = {(t, θ) | 0 ≤ t ≤ t+, θ = 0},
L2 = {(t, θ) | t1 ≤ t ≤ t+, θ = arctan(t+ − t)},
L3 = {(t, θ) | 0 ≤ t ≤ t1, θ = −t + t1 + f(t1)},

L4 = {(t, θ) | t = 0, 0 ≤ θ ≤ t1 + f(t1)}.
We shall denote by R0 the closed domain bounded by Li, i = 1, 2, 3, 4 (see Figure 4).

We claim that for any 1 < γ ≤ 7/5

t1 + f(t1; γ) < π/2. (47)

Then, R0 ⊂ R. To prove (47) we note that the graph of f(t; γ) is below the straight line
θ = −t + π/2 for values of γ > 1 but near 1. A tangency occurs at t = t+(γ) for γ = γt
such that t+(γt) = π/2. Then γt > 7/5.
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A local analysis of (45) at P0 shows that in a neighbourhood of P0, W
s is contained in

R0. We shall prove that if 0 ≤ t < t+, then W
s is contained in R0 and then 0 < θs(γ) <

π/2.
Let (t0, θ0) be a point in the boundary of R0, and (t(s), θ(s)) the solution of (45) such

that t(0) = t0, θ(0) = θ0. We say that (t0, θ0) is an exit point of R0 if and only if there
exists s0 > 0 such that

(t(s), θ(s)) ∈ R0 for − s0 ≤ s ≤ 0

and
(t(s), θ(s)) /∈ R0 for 0 < s ≤ s0.

We shall prove that the points in L1, L2 and L3, except the equilibrium P0, are exit
points of R0. Then following backwards in time, W s intersect t = 0 at some point of L4.
This will finish the proof of the lemma.

It is clear that the points of L1 with 0 < t < t+ are exit points of R0. Let us consider
a point of L2. The scalar product of the vector field and the gradient of the function
g(t, θ) := θ − arctan(t+ − t) on a point of L4 is given by

1

1 + (t+ − t)2
r(t)− r(t) cos2 θ − ṙ(t) sin θ cos θ − sin2 θ = − sin θ cos θ(ṙ(t) + t+ − t).

Then, (t, θ) ∈ L2 with t1 < t < t+ is an exit point of R0, if and only if

h2(t; γ) := ṙ(t) + t+ − t < 0.

For a fixed value of γ, one has h2(0; γ) = t+ > 0, h2(t+; γ) = ṙ(t+) < 0. Moreover, using

that r̈(t) = 1 + kr(1− r), we get
dh2
dt

= r̈(t)− 1 = kr(1− r). Therefore, at t = t1, h2 has

a negative minimum and h2(t; γ) < 0 for any t1 < t < t+.
In a similar way, (t, θ) ∈ L3 is an exit point of R0, if and only if

h3(t; γ) := (r(t)− 1) sin2 θ − ṙ(t) sin θ cos θ > 0, 0 ≤ t ≤ t1.

The inequality above holds because r(t) ≥ 1 for 0 ≤ t ≤ t1, with r(t1) = 1, and ṙ(t) < 0.
This finishes the proof. 2

We recall that as γ goes to ∞, t+(γ) becomes unbounded and the arguments used in
above lemma do not apply in this case. To deal with big values of γ we perform an scaling
of variables and time in (41). The scaling is the one used in Subsection 6.1 adapted to
the present variables. We introduce

X = k−1x, Y = k−1/4y, σ = k1/4t

and recalling k = 4/(γ2 − 1) we obtain

dX

dσ
= r̂−2Y,

dY

dσ
= −r̂X, (48)

where

r̂(σ) =
√
k

(

1

2
(1− γ) +

3γ

2 cosh2(β̂σ)

)

, β̂ = β̂(γ) =
1√
2

(

γ2

γ2 − 1

)1/4

. (49)
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In fact, r̂(σ) =
√
kr(t). The system (48) has a singularity when r̂(σ) = 0 that is, at

σ = σ+

σ+ = σ+(γ) =

(

4

γ2 − 1

)1/4

t+.

A plot of σ+(γ) shows that it is bounded (see Figure 5).

Lemma 7. Let us assume γ > 7/5. Then σ+(γ) is a decreasing function such that

limγ→∞ σ+(γ) =
√
2
2
ln

(

1+
√

2/3

1−
√

2/3

)

= 1.62099... .

Proof We compute

dσ+
dγ

=
1

2
√
2γ3/2(γ2 − 1)3/4

(

lnY (γ)− 2
√
3(γ + 1)

√

γ

1 + 2γ

)

,

where Y (γ) is defined in (43). Then Y (γ) ≤ Y (7/5). The polynomial

p(γ) = 12γ(γ + 1)2 − (1 + 2γ)(lnY (7/5))2

has a unique positive zero for some γ < 1. Then

lnY (γ)− 2
√
3(γ + 1)

√

γ

1 + 2γ
< lnY (7/5)− 2

√
3(γ + 1)

√

γ

1 + 2γ
< 0.

2

1,5

1,0

g

42

2,5

2,0

0,5

53

Figure 5: Plot of t+(γ), the increasing function, and σ+(γ).

As before we introduce polar coordinates and a new independent variable, ŝ,

r̂X = R̂ cosϕ, Y = R̂ sinϕ, dŝ = r̂−1dt.

Following the same steps as before we get an autonomous planar system for σ, ϕ which
can be extended analytically to the singularity σ = σ+

dσ

dŝ
= r̂(σ),

dϕ

dŝ
= −r̂(σ) cos2 ϕ− r̂′(σ) cosϕ sinϕ− sin2 ϕ, (50)
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where r̂′(σ) = dr̂
dσ
.

The system (50) has two equilibrium points in

R̂ = {(σ, ϕ) | 0 ≤ σ ≤ σ+,−π/2 ≤ ϕ ≤ π/2}.

We are interested in the behaviour of the stable manifold of the saddle point P̂0, (σ, ϕ) =
(σ+, 0). Let us denote by ϕs(γ) the value of ϕ at the intersection point of the left branch,
W s, with σ = 0 backwards in time.

Lemma 8. Let be γ > 7/5. Then 0 < ϕs(γ) < π/2.

Proof We introduce

f1(σ) = f1(σ; γ) := arctan(σ+(γ)− σ), 0 < σ < σ+(γ), f2(σ) := −π
5
σ +

π

2
.

Using Lemma 7 we have σ+(γ) < σ+(7/5) < 2.2 for γ > 7/5. So we can define the
following sets (see Figure 6)

L1 = {(σ, ϕ) | 0 ≤ σ ≤ σ+, ϕ = 0},

L2 = {(σ, ϕ) | 1 ≤ σ ≤ σ+, ϕ = f1(σ)},
L3 = {(σ, ϕ) | 0 ≤ σ ≤ 1, ϕ = f2(σ)},
L4 = {(σ, ϕ) | σ = 0, 0 ≤ ϕ ≤ π/2},

L5 = {(σ, ϕ) | σ = 1, f1(1) ≤ ϕ ≤ f2(1)}.
We note that L5 is well defined because f1(1) ≤ f2(1). To prove this inequality we use
that f1(σ; γ) is a decreasing function of γ. In particular by taking σ = 1, we get

f1(1; γ) < f1(1; 7/5) <
3π

10
= f2(1).

1,5

phi

0,25

1,25

0,0
1,5

0,75
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1,0
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Figure 6: Phase portrait and domain R̂0 for the system (50) in the plane (σ, ϕ) .
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Let us denote by R̂0 the domain in R̂ bounded by Li for i = 1, . . . , 5. We define exit
points of R̂0 as in the proof of Lemma 6.

We claim that for γ > 7/5, the points of L1, L2, L3 and L5, except the equilibrium
point, are exit points of R̂0.

A local analysis of the equilibrium point P̂0 shows that in a neighbourhood of P̂0, W
s

is contained in R̂0. We shall prove that this is true for any 0 ≤ σ < σ+. Therefore going
backwards in time, W s leaves R̂0 through some point in L4 and then 0 < ϕs(γ) < π/2.

It is clear that the orbits leave R̂0 through L1 and L5. Let us consider a point
(σ, f1(σ)) ∈ L2. Following the same steps as in the proof of Lemma 6, the condition for
an exit point is

ĥ2(σ; γ) := r̂′(σ) + σ+ − σ < 0 for 1 ≤ σ < σ+. (51)

However, ĥ2(0; γ) > 0, ĥ2(σ+; γ) < 0 and ĥ2 has a unique zero in the range 0 < σ < σ+.
Moreover

ĥ2(1; γ) < − 6√
2

tanh(β̂(7/5))

cosh2(β̂(7/5))
+ σ+(7/5)− 1 < 0.

Then (51) follows.
For a point of L3, the condition to be an exit point of R̂0 is the following

ĥ3(σ; γ) :=
(π

5
− sin2(πσ/5)

)

r̂(σ)− r̂′(σ) sin(πσ/5) cos(πσ/5)− cos2(πσ/5) > 0

for 0 ≤ σ ≤ 1. However β̂(γ) < β̂(7/5) < 0.9 and then ĥ3(σ; γ) > H(σ) where

H(σ) :=
(π

5
− sin2(πσ/5)

)

(

−1 +
3

cosh2(0.9σ)

)

+

6√
2

tanh(σ/
√
2)

cosh2(0.9σ)
sin(πσ/5) cos(πσ/5)− cos2(πσ/5).

Now, it is a simple exercise to prove that H(σ) > 0 for 0 ≤ σ ≤ 1. However to make
easier the reading we sketch a proof. We write

cosh2(0.9σ)H(σ) = p(σ) + q(σ),

where

p(σ)=
3π

5
−
(

π

5
+cos

(

2πσ

5

))

cosh2(0.9σ), q(σ)=
3√
2
tanh

(

σ√
2

)

sin

(

2πσ

5

)

−3 sin2
(πσ

5

)

.

Figure 7 shows a plot of the functions p and q.
We have that p is decreasing in [0, 1] and p(σ) ≥ 0 if σ ∈ [0, 0.8]. Moreover, if

σ ∈ [0, 1], q is positive and has a unique maximum at some point greater than 0.8. Hence,
for σ ∈ [0, 0.8] one has p(σ) + q(σ) ≥ p(0.8) = 0.00555... > 0. For σ ∈ [0.8, 1] we have
p(σ) + q(σ) > p(1) + min{q(0.8), q(1)} = 0.151... > 0.

To prove that p(σ) is a decreasing function, we note that p′(σ)=0 implies tanh(0.9σ) =
(2π/5) sin(2πσ/5)/ (1.8 (π/5 + cos(2πσ/5))) . The function on the left side is increasing
and concave, and the function on the right side, is increasing and convex. After evaluating
these two functions at σ = 1 one can see that the equation above do not have any solution
for σ ∈ (0, 1]. So, p′(σ) does not change sign. Indeed it is negative.

The claim for q(σ) follows easily from the fact that q′(σ)/ sin(2πσ/5) is a decreasing
function for σ ∈ (0, 1] and q′(0.8) > 0, and q′(1) < 0.

This ends the proof. 2
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Figure 7: The function p (decreasing) and q (with a maximum) used to prove H > 0.

7 Appendix

Coefficients involved in (31):

r−2 = − α

β2
, r−1 = 0, r0 =

α

3
+ ρ, r1 = 0, r2 = −αβ

2

15
, r3 = 0,

r4 =
2

189
αβ4, r5 = 0, r6 = − 1

675
αβ6,

e−3 =
15t∗
8β2

, e−2 = e−1 = e0 = 0, e1 = −β
2t∗
8
, e2 = 0,

e3 =
5

126
β4t∗, e4 =

β4

7
, e5 = − 1

120
β6t∗, e6 = 0, e7 =

1

693
β8t∗,

di = − 1

2αβ2
(i+ 1)ri+1, i ≥ 0, d−3 =

1

αβ2
r−2, d−2 = d−1 = 0,

where α = 3γ/2, β =
√

γ/(γ2 − 1), γ =
√

1 + 4/k.

Coefficients involved in (34):

r1 = 2βρ tanh(βt+), r2 =
1

2
, r3 =

k

6
r1,

r4 = − k2

288
(γ − 1)(4γ2 − 5γ − 5), r5 =

k(k − 6)

120
r1,

e0 = −(6γ2 + 5γ − 5)

8γ(γ − 1)
+

5r1
8γ

t+, e1 =
3

8

(5− 10γ + 9γ2)

γ(γ − 1)2
r1 +

5

8γ
t+,

e2 = − 1

16

k(6γ2 + 5γ − 5)

γ(γ − 1)
+

5k

16γ
r1t+,

e3 =
kr1(25− 50γ + 25γ2 + 12γ3)

48γ(γ − 1)2
− t+

5k2(γ − 1)(4γ2 − 5γ − 5)

576γ
,

e4 = −k
2(−25 + 25γ + 45γ2 − 63γ3 + 30γ4)

384γ(γ − 1)
− t+

5k2r1(3γ
2 − 5)

384γ
,

e5 = −k
2r1(−175+350γ−70γ2−210γ3+81γ4)

1920γ(γ − 1)2
− t+

k3(γ−1)(9γ3+49γ2−35γ−35)

4608γ
,

where ρ = (1− γ)/2.
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