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November 18, 2010

Abstract

We present a methodology to perform Computer Assisted Proofs for the existence and
(local) uniqueness of Fiberwise Hyperbolic Invariant Tori in skew product systems over rota-
tions. The theoretical basis is a tailored version of the Newton-Kantorovich theorem for the
functional equations describing the invariance of tori and their stable and unstable subbundles.
The computational tools allow the rigorous manipulation of truncated Fourier series, which
parametrize the tori and their subbundles used in the validations. Our methodology exploits
the special form of these dynamical systems, and it is based on the results exposed on the
papers by Haro and de la Llave, 2006, 2007. We apply these techniques to two scenarios where
the invariant tori are on the verge of hyperbolicity breakdown.

1 Overview

The goal of this paper is to present a methodology to perform Computer Assisted Proofs (CAPs)
for the existence and (local) uniqueness of Fiberwise Hyperbolic Invariant Tori (FHIT) in skew
product systems over rigid rotations. FHIT are invariant tori whose linearized normal dynamics is
uniformly hyperbolic (i.e., exponentially dichotomic) [14]. These are Normally Hyperbolic Invariant
Manifolds (NHIM) [11, 18]. The dynamical characterization leads to a functional equation for the
invariance condition of a torus that fits in the framework of the Newton-Kantorovich theorem.
This theorem is the theoretical core for the validation algorithms employed in this paper.

This framework leads to a validation theorem [13], see theorem 2.4, that exploits the special
skew product form of the dynamical system. It is remarkable that this theorem satisfies a pos-
teriori bounds. Hence, from an approximately invariant torus (e.g. one that has been computed
numerically [15]) that satisfies a hyperbolicity assumption, we can conclude that there exists a
unique invariant torus nearby. Moreover, we provide upper bounds for the distance between both
tori which can be thought as a measure of the error. The validation algorithm presented in this
paper rigorously checks these upper bounds. An alternative topological method to validate exis-
tence of invariant sets of normally hyperbolic type have been considered in [5], which is based on
the method of covering relations [32]. These methods work for more general dynamical systems
but can not be used to prove (local) uniqueness of the invariant sets.
∗Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585. 08007 Barcelona.

Spain.
†E-mail adress, J-Ll Figueras: figueras@maia.ub.es
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In order to perform the validations we need to rigorously deal with tori and subbundles. Since
parameterizations of these objects are given by periodic functions and the dynamics on the tori
are rigid rotations, it is natural to encode them using Fourier series. (Other base manifold or base
dynamics could require types of approximations.) The Fourier model we use to manage rigorously
with Fourier series is a trigonometric polynomial with interval coefficients plus an interval error.
This has been implemented using a C++ library to manipulate Fourier models together with the
rigorous interval library FILIB++ Interval Library, see [24]. We emphasize that suitable Fourier
and Lindstedt (Fourier-Taylor) models are ubiquitous in computer aided proofs in KAM theory
and renormalization theory [6, 9, 10, 21, 22, 25].

We have applied our methodology to study two challenging scenarios where tori are about to
break in non-smooth bifurcations. The first case we study is a non-smooth breakdown of a saddle
invariant torus, described in [15, 12], for the quasiperiodically driven standard map. Here, the
stable and unstable bundles of a saddle torus approach each other in a complex way. In other
words, their projections show the typical collision mechanism of creation of Strange Nonchaotic
Attractors (SNA) observed, e.g. in the Harper map [16, 20]. Moreover, the corresponding Lyapunov
multipliers are away from 1. We report this mechanism for a quasiperiodically forced standard
map, and prove the existence of the saddle torus up to a bound. This bound is at a relative
distance less than 4.3 · 10−7 than the estimated value of the breakdown. In this example, around
30000 Fourier modes were necessary to obtain accurate approximations of the invariant torus and,
more crucially, its invariant bundles.

The second scenario examined is the so called Heagy-Hammel route [17]. This is a period
2 attracting torus (appeared in a period doubling bifurcation) that collides with its companion
repelling torus, producing a SNA. This situation has been observed in numerical experiments on a
quasiperiodically driven logistic map, a noninvertible one. Remarkably, the role of noninvertibility
in global bifurcations was already noted in [1, 2]. Noninvertibility is also a drawback in rigorous
numerical computations, since it implies that the linear dynamics around the torus can not be
reduced to constant coefficients. We overcome this problem and prove that the period 2 attracting
torus exist up to a specific bound. This is the relative distance which is less than 7.3 · 10−4 of the
estimated value of the breakdown.

We emphasize that, in both examples, we study what happens before the non-smooth bifurca-
tions, in a reliable domain of parameters where we prove that smooth invariant tori exists. Accurate
numerical approximations of the invariant objects are crucial for the computer assisted proofs of
their existence.

All the validations presented here have been tested with several types of computers working
under several operating systems, although we just report the results obtained with a machine
Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz working under Debian, using one of the pro-
cessors.

Organization of the paper In section §2 we summarize some basic notions on FHIT on skew
products, and the theoretical framework necessary for the computer assisted proofs. In section §3
we present the Fourier models and the implementation of the validation algorithms. Sections §4
and §5 report several examples of rigorous validations.

Notation Rn denotes the n-dimensional real space, and e1, . . . en represents its unit vectors that
form the standard basis. For i = 1, . . . n, and v ∈ Rn, πiv = vi is the ith component of the vector
v. L(Rn; Rk) is the space of linear maps from Rn to Rk, identified by the set of k×n matrices. The
space of endomorphism of Rn, identified by the set of square n×n matrices, is L(Rn) = L(Rn; Rn),
and GL(Rn) is its subgroup of automorphisms, i.e. the group of invertible n × n matrices. In
represents the n×n identity matrix. L(Rn,Rm; Rk) denotes the set of bilinear maps from Rn×Rm
to Rk. We also denote L2(Rn; Rk) = L(Rn,Rn; Rk), and L2(Rn) = L2(Rn; Rn), If we are given
norms in Rn, Rm, Rk, we consider the induced norms in the spaces of linear maps and bilinear
maps previously mentioned. For instance, if we consider the maximum norm | · | in Rn, Rm, Rk,
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for M ∈ L(Rn; Rk) with components Mi,j = πiMej for i = 1, . . . k and j = 1, . . . , n,

|M | = max
i

∑
j

|Mi,j | ,

and for B ∈ L(Rn,Rm; Rk) with components Bir,s = πiB(er, es) for i = 1, . . . k, r = 1, . . . , n and
s = 1, . . . ,m, we have

|B| = max
i

∑
r,s

|Bir,s| .

Let T = R/Z be the 1-dimensional torus. (z, θ) denote the coordinates on the trivial bundle
Rn ×T over T. We assume that the bundle Rn ×T is endowed with a Finslered norm, i.e. a norm
| · |θ on each fiber Rn×{θ}, that depends continuously on θ. We typically suppress the subindex θ
when the fiber is understood, or if the norm does not depend on θ (e.g. we consider the sup norm
on each fiber). Finslered norms on the bundles Rn × T, Rm × T, Rk × T induce Finslered norms
in L(Rn; Rk)× T and L(Rn,Rm; Rk)× T.

A strip in the bundle Rn×T is a set D ⊂ Rn×T such that for each θ ∈ T the fiber Dθ = {z ∈
Rn | (z, θ) ∈ D} ⊂ Rn has non-empty interior. A typical example is D = U × T, where U ⊂ Rn is
open.

For a vector space Z and a Finslered norm in the trivial bundle Z × T over T, we identify
the space of continuous sections of the bundle with the set of continuous functions σ : T → Z,
C0(T;Z), endowed with the supremum norm ||σ||C0 = supθ∈T |σ(θ)|θ .

For a map F : Rn ×T→ Rn, two times differentiable w.r.t. z, DzF (z, θ) and D2
zF (z, θ) denote

the first and the second differential of F with respect to z, respectively.

2 Fiberwise Hyperbolic Invariant Tori

In this section we review some definitions and results on Fiberwise Hyperbolic Invariant Tori
(FHIT) for skew products over rotations. We further present a tailored version of the Newton-
Kantorovich theorem, see theorem 1 in [13], which is the basis for our validation algorithms of
existence and local uniqueness of FHIT.

2.1 Definitions and results

A skew product over a rotation is a continuous bundle map

(F, ω) : Rn × T −→ Rn × T
(z, θ) −→ (F (z, θ), θ + ω) , (1)

where F : Rn × T → Rn is continuous and ω ∈ R. If ω ∈ R/Q, (F, ω) is a quasiperiodic skew
product; otherwise it is periodic. Throughout this paper, we assume that F is C2 with respect to
z.

The graph of a continuous section K : T→ Rn of the bundle Rn × T, K = {(K(θ), θ) | θ ∈ T} ,
is a torus. We often abuse notation and refer to K as a torus, rather than a section or the
parametrization of the torus K. If the section K satisfies the functional equation

F (K(θ), θ)−K(θ + ω) = 0 , (2)

then the torus K is invariant under (F, ω) and its inner dynamics is the rigid rotation ω.
In functional terms this can be rewritten as follows. Let T : C0(T,Rn) → C0(T,Rn) be the

operator defined as
T (K)(θ) = F (K(θ − ω), θ − ω)−K(θ) . (3)
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K is an invariant torus for (F, ω) if and only if

T (K)(θ) = 0. (4)

A sufficient condition to solve (4) is the invertibility of the corresponding linear operator
DT (K) : C0(T,Rn)→ C0(T,Rn), defined as

DT (K)∆(θ) = DzF (K(θ − ω), θ − ω)∆(θ − ω)−∆(θ) . (5)

The invertibility property of DT (K) is strongly related to the hyperbolicity property of the
linearized dynamics around K. This is given by the vector bundle map

(MK , ω) : Rn × T −→ Rn × T
(v, θ) −→ (MK(θ)v, θ + ω) , (6)

where MK : T → L(Rn) is the transfer matrix MK(θ) = DzF (K(θ), θ). We suppress the depen-
dence on K in the notation when it is clear from the context. M is also known as a (linear)
cocycle.

Define the transfer operator M associated to the torus K as the bounded linear operator
M : C0(T; Rn)→ C0(T; Rn) defined as

M(∆)(θ) = M(θ − ω)∆(θ − ω). (7)

The relation between the dynamical properties of the linear skew product (M,ω) and the spectral
properties of the associated transfer operator M, have been intensively studied in the literature,
see e.g. [27, 30, 26, 23, 8]. A key result is the following (see [18] for a more general version).

Theorem 2.1. Let (M,ω) : Rn × T → Rn × T be a linear skew product, and M : C0(T; Rn) →
C0(T; Rn) its associated transfer operator. The following two properties are equivalent:

(a) M is a hyperbolic operator, that is, its spectrum has empty intersection with the unit circle
of the complex plane;

(b) (M,ω) is uniformly hyperbolic, that is, there exists a continuous decomposition of the vector
bundle Rn × T in a Whitney sum S ⊕ U of two invariant bundles S and U , such that M
restricted to U is invertible, and there exists constants C > 0 and 0 < λ < 1 such that

– If (v, θ) ∈ S then |M(θ + (l − 1)ω) · · ·M(θ)v| ≤ Cλl|v| for all l ≥ 0;

– If (v, θ) ∈ U then |M(θ + lω)−1 · · ·M(θ − ω)−1v| ≤ Cλ−l|v| for all l ≤ 0.

We emphasize that, since DT (K) =MK−I, the hyperbolicity property of the transfer operator
MK implies the invertibility of DT (K) and hence, the applicability of Newton method. Invariant
tori satisfying these hyperbolicity properties are the main object of this paper.

Definition 2.2. A fiberwise hyperbolic invariant torus (FHIT for short) of the system (1) is an
invariant torus K : T → Rn, i.e. it satisfies (2), such that its corresponding transfer operator M
is hyperbolic, i.e. its spectrum does not intersect {λ ∈ C : |λ| = 1}.

The invariant bundles S and U of the associated linear skew product (MK , ω), see Theorem 2.1,
are the stable and the unstable bundles, respectively. If U is the zero bundle, i.e. the spectrum of
MK is inside the unit circle, then we say that the torus K is an attractor. If S is the zero bundle,
i.e. the spectrum of MK is outside the unit circle, then the torus K is a repellor. Otherwise we
will say that the torus K is a saddle.

Here we consider the case where the bundles S and U are trivial. This simplifies the computa-
tions. In such a scenario, the linear skew product (MK , ω) is reducible to a block diagonal matrix.
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Thus we can define matrix-valued maps P : T → GL(Rn), Λs : T → L(Rns) Λu : T → GL(Rnu),
with ns + nu = n, such that

P (θ + ω)−1MK(θ)P (θ) =
(

Λs(θ) 0
0 Λu(θ)

)
. (8)

In (8), the first ns columns of P parametrize the stable bundle and the last nu columns parametrize
the unstable bundle. That is, P is an adapted frame to the hyperbolic splitting. Λs and Λu give
the dynamics on the stable and unstable bundles, respectively. An important situation is when we
can reduce (MK , ω) to constants, i.e. Λ is constant. Then we can say that (MK , ω) (and the torus
K) is reducible.

Remark 2.3. In cases where we can decompose the trivial bundle Rn × T in a Whitney sum
of invariant subbundles of rank 1, i.e. Rn × T = E1 ⊕ · · · ⊕ En, then we can reduce MK to
a diagonal matrix by using a suitable matrix-valued map P defined from the double covering of
T = R/Z, R/2Z. Hence, non-orientability of rank 1 subbundles can easily be overcome with the
double covering trick. See [15] for examples of computation of invariant tori with non-orientable
bundles.

2.2 A validation theorem

In previous subsection we have seen the relation between hyperbolicity and the implementability
of Newton method. From theorem 1 in [13], the Newton method for finding FHIT converges
quadratically, provided that the initial approximations of the torus and its invariant bundles are
fairly accurate. The following is a reformulation of such a theorem.

Theorem 2.4. Let Rn × T be the trivial bundle over T, endowed with the Finslered norm given
by the maximum norm on each fiber. Let F : D ⊂ Rn × T → Rn be a continuous map defined in
an open strip D, C2 with respect to z, and ω ∈ R, defining the skew product (F, ω) : D → Rn × T.

Assume we are given:

1.1) a continuous parametrization K : T→ Rn of a torus K ⊂ D;

1.2) two continuous matrix-valued maps P1, P2 : T→ L(Rn);

1.3) a continuous block diagonal matrix-valued map Λ: T → L(Rn), Λ(θ) = diag (Λs(θ),Λu(θ)),
where Λs : T→ L(Rns) and Λu : T→ GL(Rnu), with n = ns + nu.

Let ρ, σ, τ, λ, λ̂ be positive constants such that:

2.1) For each θ ∈ T, R(θ) = P2(θ + ω) (F (K(θ), θ)−K(θ + ω)) ∈ Rn satisfies |R(θ)| ≤ ρ;

2.2) For each θ ∈ T, S(θ) = P2(θ + ω)DF (K(θ), θ)P1(θ)− Λ(θ) ∈ L(Rn) satisfies |S(θ)| ≤ σ;

2.3) For each θ ∈ T, T (θ) = P2(θ)P1(θ)− In ∈ L(Rn) satisfies |T (θ)| ≤ τ ;

2.4) For each θ ∈ T, max
(
|Λs(θ)|, |Λu(θ)−1|

)
≤ λ, |Λ(θ)| ≤ λ̂;

and assume that

2.5) λ+ σ + τ < 1.

Given a positive constant r, let b, h be positive constants such that:

3.1) For each (z, θ) ∈ Rn × T with z = K(θ) + P1(θ)v and |v| ≤ r, then (z, θ) ∈ D and B(z, θ) =
P2(θ + ω)D2

zF (z, θ) [P1(θ)·, P1(θ)·] ∈ L2(Rn) satisfies |B(z, θ)| ≤ b;

3.2) (1− λ− σ − τ)−2bρ ≤ h;
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and assume that

3.3) h < 1
2 .

Assume also that the positive constants r0, r1 satisfy:

4.1) (1− λ− σ − τ)(1−
√

1− 2h)b−1 ≤ r0 ≤ r;

4.2) r1 ≤ (1− λ− σ − τ)(1 +
√

1− 2h)b−1 and r1 ≤ r.

Then, there exists a unique continuous map K∗ : T→ Rn such that, for each θ ∈ T:

a.1) F (K∗(θ), θ)−K∗(θ + ω) = 0;

a.2) |P−1
1 (θ) (K∗(θ)−K(θ)) | ≤ r1.

Moreover:

a.3) |P−1
1 (θ) (K∗(θ)−K(θ)) | ≤ r0.

If, moreover, the positive constants σ′, µ satisfy:

5.1) (1− τ)−1(br0 + σ + λ̂τ) ≤ σ′;

5.2) λ(1− λ2)−1σ′ ≤ µ < 1
4 ;

then there exist continuous matrix-valued maps P∗ : T → GL(Rn), Λ∗ : T → L(Rn), with Λ∗(θ) =
diag (Λs∗(θ),Λ

u
∗(θ)), where Λs∗ : T→ L(Rns) and Λu∗ : T→ GL(Rnu), such that, for each θ ∈ T:

b.1) P∗(θ + ω)−1DzF (K∗(θ), θ)P∗(θ)− Λ∗(θ) = 0;

b.2) |P1(θ)−1(P∗(θ)− P1(θ))| ≤ µ√
1−4µ

;

b.3) |Λ∗(θ)− Λ(θ)| ≤
(

1 + µ√
1−4µ

)
σ′.

Remark 2.5. As a consequence of theorem 2.4, K∗ parametrizes a FHIT, and the columns of P∗
contain frames of its invariant bundles. Moreover, the convergence of the Newton method to K∗
from K is quadratic.

Remark 2.6. From the results in [14], the torus K∗ is as smooth as the map F (including analytic).

Remark 2.7. The Finslered norm appearing in theorem 2.4 is the sup norm on each fiber. More
general norms can be considered [13], e.g. the Lyapunov metric adapted to the hyperbolic splitting.
Instead of considering adapted metrics, theorem 2.4 considers adapted frames.

Remark 2.8. The norm of the second differential (in the coordinates of the adapted frame P1), is
bounded by b for all points in the strip

D̄P1(K, r) = {(z, θ) | |P−1
1 (θ)(z −K(θ))| ≤ r}.

This bound b (and subsequently h) depends obviously on the radius r of the strip. A first choice is
taking 2(1−λ−σ−τ)−1ρ ≤ r, that assures (if h < 1

2) that r0 ≤ r, assumption that appears in 4.3).
We can also tune r in order to improve (making smaller) the error radius r0 and the improving
(making bigger) the uniqueness radius r1.

Remark 2.9. One can state a similar theorem using norms with higher regularities (e.g. Cr,
Sobolev, analytic). In this paper we have only considered (and implemented) validations using C0

norms. Hence, although the FHIT K∗ is as smooth as the skew product and the bundles are as
smooth as its differential, we only measure the distance of the invariant objects to the approximately
invariant objects using C0 norms. We plan to comeback to this problem in the future.

Remark 2.10. Theorem 2.4 works also if T is replaced by a general compact metric space, and
ω : T → T is replaced by a general homeomorphism. However, the fiberwise hyperbolic invariant
graph K∗ obtained will be in general less regular than F .
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3 Implementation of the validation algorithm

In this section we explain implementation issues of computer validations of FHIT in skew products
over rotations, based on Theorem 2.4. Since the base manifold of the skew product is a torus, and
the base dynamics is a rotation, we use Fourier polynomials to approximate the periodic functions
giving the components of the approximate invariant tori and bundles of the input data. We em-
phasize that other dynamics and/or other manifolds would lead to other types of approximations,
such as simplices, splines, etc.

The core of the implementation is a set of routines to manage Fourier polynomials that approx-
imate periodic functions. This provides rigorous bounds of the coefficients and the tails. These
are what we refer as the Fourier models (see [29] for descriptions of Taylor models, and [21, 22] for
several Fourier and Fourier-Taylor models).

The validating computer program has to verify, from an approximately invariant torus and
approximately invariant stable and unstable bundles (e.g. computed numerically or using pertur-
bative arguments), all the hypothesis of Theorem 2.4. Notice that the checking has to be done
only once. Since we will apply the computer programs in situations in which tori are about to
break, see sections §4 and §5, we prioritize the accuracy over the speed.

3.1 Fourier models

Here we detail the implementation of Fourier models, assuming the reader is familiar with interval
computations [28]. In what follows, when we refer to interval we mean a compact interval. Given an
interval J = [a, b], we denote J− = a, J+ = b. The modulus of an interval is |J | = max(|J−|, |J+|).
Following the standard findings in the literature, the result of an operation with intervals is an
interval that encloses the result. This is what one can do when implementing interval operations
in a computer.

Definition 3.1. A (one dimensional, real) Fourier model of order m ≥ 0 is a couple Ĝ = (G(θ), R),
where

G(θ) = A0 +
m∑
k=1

(
Ak cos(2πkθ) +Bk sin(2πkθ)

)
is a trigonometric polynomial with interval coefficients A0, . . . , Am, B1, . . . Bm, and the reminder
R = R(Ĝ) is an interval. Abusing notation, we denote B0 = {0}, and for all k > m we define
Ak = Bk = {0}. We also mean by Fourier model of order −1 as an interval R.

We say that a continuous function f : T → R belongs to the Fourier model Ĝ, denoted f ∈ Ĝ,
if for all θ ∈ T, f(θ) ∈ A0 +

∑m
k=1 (Ak cos(2πkθ) +Bk sin(2πkθ)) +R.

Let Ĝ, Ĥ be two Fourier models. We say that Ĝ is enclosed by Ĥ, Ĝ ⊂ Ĥ, iff for any continuous
periodic function f : T→ R, f ∈ G implies f ∈ H.

Given an interval J , the image of J under the Fourier model Ĝ is defined as Ĝ(J) = G(J)+R(Ĝ),
where G(J) is the interval image of J under the trigonometric polynomial with interval coefficients
G. That is, Ĝ(J) = {f(θ) ∈ R | f ∈ Ĝ, θ ∈ J}. The image of Ĝ is Ĝ([0, 1]). The supremum
norm is the non-negative number ||Ĝ|| = |Ĝ([0, 1])|. An upper bound of the supremum norm is
the `1-norm ||Ĝ||1 = |A0|+

∑m
k=1 (|Ak|+ |Bk|) + |R|.

Remark 3.2. The computer implementation of Ĝ(J) obtains an enclosure E of the result, i.e.
Ĝ(J) ⊂ E. In order to avoid large overestimations, specially in cases in which the functions f ∈ Ĝ
behave wildly, we consider suitable subdivisions J =

⋃n
i=1 Ji in subintervals Ji, computing the

enclosures Ei of the Ĝ(Ji).

Definition 3.3. Let Ĝ = (G(θ), R) be a Fourier model of order m, and ` ≥ 0. We define
the `-tail of Ĝ as Ĝ>` = (G>`(θ), R), where G>`(θ) = is the (intervalar) Fourier polynomial∑m
k=`+1 (Ak cos(2πkθ) +Bk sin(2πkθ)). We define the `-enclosure of Ĝ as Ĝ≤` = (G≤`, Ĝ>`([0, 1])),
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where G≤`(θ) = A0 +
∑`
k=1

(
Ak cos(2πkθ) + Bk sin(2πkθ)

)
. Abusing notation, Ĝ>−1 = Ĝ,

Ĝ≤−1 = Ĝ([0, 1]).

Given a d-variable function ϕ(x1, . . . , xd), and d Fourier models Ĝ1, . . . , Ĝd, we are interested
in computing a Fourier model Ĥ enclosuring the composition ϕ◦Ĝ, where Ĝ = (Ĝ1, . . . , Ĝd). That
is, we want that, for all θ ∈ T, ϕ(Ĝ(θ)) ⊂ H(θ). We will consider here the case that ϕ is elementary
(in the Liouville sense), that is we will assume the ϕ is a combinations of finitely many arithmetic
operations and compositions with simple functions (or intrinsic functions [29]) such as the power
function, the exponential function or the trigonometric functions.

The arithmetic operations with Fourier models are defined as follows. Addition and subtraction
of two Fourier models Ĝ and Ĥ is defined componentwise:

Ĝ+ Ĥ = (G(θ) +H(θ), R(Ĝ) +R(Ĥ)) , Ĝ− Ĥ = (G(θ)−H(θ), R(Ĝ)−R(Ĥ)).

If J is an interval, we define the multiplication of Ĝ with J as

J · Ĝ = (JG(θ), JR).

The product of Ĝ and Ĥ is

Ĝ · Ĥ = (G(θ)H(θ), G([0, 1])R(Ĥ) +H([0, 1])R(Ĝ) +R(Ĝ)R(Ĥ)).

In order to bound the order of the Fourier models through the operations in a computation, we in
fact compute enclosures of the products. For instance, if Ĝ and Ĥ are two Fourier models of order
m, their m-product is the m-enclosure of the product, i.e. (Ĝ · Ĥ)≤m.

Once we have defined the arithmetic operations with Fourier models, compositions with poly-
nomials are straightforward. If P (x) = C0 +C1x+C2x

2 + . . .+Cnx
n is a polynomial with interval

coefficients, we compute the composition P ◦ Ĝ using a Hörner scheme:

P (Ĝ) = C0 + Ĝ ·
(
C1 + Ĝ ·

(
C2 + · · ·+ Ĝ ·

(
Cn−1 + Cn · Ĝ

)
· · ·
))

.

Since the order of the composition is n times the order m of Ĝ, we usually substitute each product
of Fourier models in the Hörner scheme by the corresponding m-product. Hence, we obtain an
enclosure of order m of the composition of Ĝ with P .

Enclosures of the compositions of Fourier models with simple functions, such as the exponen-
tial, power function, logarithm, etc. can be performed with the aid of the corresponding Taylor
polynomial approximations (and bounds of the Lagrange errors). We consider here the composition
with the sine and cosine functions, which are the ones that appear in our examples.

Given ` > 0, let S`(x), C`(x) be the Taylor polynomials of degree ` of the sine and cosine
functions, respectively. Let

Ŝ`(x) = S`(x) +
[−1, 1]
(`+ 1)!

xl+1 , Ĉ`(x) = C`(x) +
[−1, 1]
(`+ 1)!

xl+1

be the corresponding polynomials with Lagrange error bounds. Then, the compositions of (F, ω)
with the sine and cosine functions are enclosed in

sin`(Ĝ) = sin(A0) · Ĉ`(Ĝ>0) + cos(A0) · Ŝ`(Ĝ>0) ,

cos`(Ĝ) = cos(A0) · Ĉ`(Ĝ>0)− sin(A0) · Ŝ`(Ĝ>0) ,

respectively. In computer implementations, the order ` of the Taylor polynomials is chosen such
that

∣∣∣ 1
(l+1)! (Ĝ>0[0, 1])l+1

∣∣∣ is less than a given tolerance. We also use m-products in the intermediate
computations.
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Another operation used in this paper is the shift of a Fourier model Ĝ = (G(θ), R) by
an (interval) rotation ω. This is the Fourier model Sω(Ĝ) = (S(θ), R), with S(θ) = A0 +∑m
k=1 (A′k cos(2πkθ) +B′k sin(2πkθ)), where

A′k = Bk cos(2πkω)−Ak sin(2πkω) , B′k = Ak cos(2πkω) +Bk sin(2πkω).

Remark 3.4. For the validation algorithms, we also use vector and matrix Fourier models, that
are implemented straightforwardly.

3.2 Validation of FHIT

Here we show how can be implemented, via Fourier models, theorem 2.4 in order to validate some
initial data as a good approximation of a FHIT and its invariant subbundles for a given skew
product (F, ω) : D ⊂ Rn × T→ Rn × T, which is continuous, and C2 with respect to z.

We assume that F is simple, in the sense that we can effectively compute the enclosures of the
components of the compositions of F (z, θ), DzF (z, θ) and D2

zF (z, θ) with Fourier models. That is,
we can substitute z by a (vector) Fourier model K̂, if for each θ ∈ [0, 1], K̂(θ) ⊂ Dθ) (a fact that
can be rigorously checked by using interval arithmetics).

0) Compute, e.g. numerically or using perturbative arguments, the trigonometric polynomial
approximations of an invariant torus (K), the adapted frame (P1) and its inverse (P2), and
the dynamics on the invariant bundles (Λ = diag(Λs,Λu)).

Fix the order m of the Fourier models throughout the rigorous computations of the validation
algorithm. The results at each operation of Fourier models will be m-enclosed.

The validation algorithm mimics the statement of theorem 2.4. Here are the steps:

1) From the input data, derive the Fourier models K̂, P̂1, P̂2, Λ̂ = (Λ̂s, Λ̂u).

2) Compute the upper bounds ρ, σ, τ, λ, λ̂ by enclosing the Fourier models R̂, Ŝ, T̂ , Λ̂s, Λ̂u,
(Λ̂u)−1. Check (using interval arithmetics) if λ+σ+ τ < 1. If not, the torus is not validated
(and algorithm stops).

3) Given r (for instance, an upper bound of 2(1 − λ − σ − τ)−1ρ, see remark 2.8), compute
upper bounds b and h. Since we use maximum norms, we compute the Fourier model
B̂ = B(K̂ + P̂1 [−r, r]n , ·) of the bilinear map B(z, θ) for points (z, θ) in the strip D̄P1(K, r)
and, hence, b is an upper bound of the maximum norm of B̂(θ) for all points in [0, 1]. Once
we compute h, check (using interval arithmetics) if h < 1

2 . If not, the torus is not validated
(and algorithm stops).

4) Compute (an upper bound of) the error radius r0 ≥ (1 − λ − σ − τ) (1−
√

1− 2h)b−1 and
(a lower bound of) the uniqueness radius r1 ≤ (1− λ− σ − τ) (1 +

√
1− 2h)b−1. Check if

r0 ≤ r. If not, the torus is not validated (and algorithm stops).

Then, the torus is validated, meaning that there is a unique invariant torus K∗ in the strip
D̄P1(K, r1). Moreover, the torus K∗ is contained in the strip D̄P1(K, r0).

5) Compute the upper bound of µ and σ′ using σ, τ, λ, λ̂. Check if µ < 1
4 . If not, the normal

dynamics of the validated torus is not validated (and algorithm stops). Compute the upper
bounds µ√

1−4µ
≤ ρP and

(
1 + µ√

1−4µ

)
σ′ ≤ ρΛ.

Hence, the normal dynamics on the torus and the invariant subbundles are validated: they
are at a distance less than ρΛ, ρP from the ones given by the initial data.
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3.3 Validation of a family of FHIT

Here we show the procedure to validate the existence of a family of FHIT of a one parameter family
of skew products (Ft, ω) : D ⊂ Rn × T→ Rn × T, with parameter t ∈ [a, b].

Consider the interval [a, b] = I ∪ J , where I and J are closed intervals, and let Ki, P1,i, P2,i

and Λi for i = I, J be the initial data of the validation algorithm for the (interval) skew products
(Fi, ω). In order to check that the corresponding validated tori belong to the same family we
proceed as follows.

0) Apply the validation algorithm explained in subsection §3.2 to the (interval) skew products
(Fi, ω), i = I, J . Besides the Fourier models corresponding to the initial data, K̂i, P̂1,i, P̂2,i

and Λ̂i, the validation algorithm produces bounds ρi, σi, τi, r0,i, r1,i, hi.

1) Construct the Fourier model ÊI,J = P̂2,J ·
(
K̂J −

(
K̂I + P̂1,I · [−r0,I , r0,I ]

n
))

. Check if

||ÊI,J || ≤ (1− τJ)r1,J . (9)

If this holds, the two initial data approximates the same family of FHIT, if not, this family
has not been validated.

4 Example 1: computer validations on the verge of the hy-
perbolicity breakdown of a saddle torus

In this section we report computer validations of existence of saddle tori on the verge of their hyper-
bolicity breakdown for a quasiperiodically forced standard map. This phenomenon was described
in [15, 12] for similar models.

4.1 Two bifurcation scenarios of saddle tori in the quasiperiodically
forced standard map

The quasiperiodically forced standard map is the map (F, ω) : T× R× T→ T× R× T defined as x̄ = x+ ȳ
ȳ = y − κ

2π sin(2πx)− ε sin(2πθ)
θ̄ = θ + ω

, (10)

where we fix ω = 1
2 (
√

5− 1).
For every κ > 0, there exist a family Kε(θ) of FHIT (saddle type), with ε ∈ (−εc, εc), such that

K0(θ) =
(

1
2 , 0
)
. Notice that K−ε(θ) = −Kε(θ). An interesting problem is approaching as much as

possible the limiting value εc, the critical parameter value, and study the obstructions to fiberwise
hyperbolicity.

Remark 4.1. Since (10) is area preserving, the product of the Lyapunov multipliers associated to
the 1-dimensional stable and unstable subbundles is equal to 1. Then, by an abuse of notation, we
refer the Lyapunov multiplier to the maximal Lyapunov multiplier.

We have done a numerical exploration and we have found that the bifurcation mechanism
around εc depends on κ:

• For low values of κ, e.g. κ = 0.3 with εc ≈ 1.3364054, there is a smooth bifurcation: the
hyperbolicity is broken down because the Lyapunov multiplier goes to 1 as ε goes to εc, but
the invariant subbundles collide smoothly.
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• For high values of κ, e.g. κ = 1.3 with εc ≈ 1.2352755, there is a non-smooth bifurcation:
the hyperbolicity is broken down because the invariant bundles collide non-uniformly as ε
goes to εc, and the Lyapunov multiplier stays far from 1.

See figure 1 and figure 2 for numerical examples of both scenarios. These figures show the invariant
tori and their invariant bundles, and the graphs of the Lyapunov multiplier and minimum distance
between the invariant bundles as a function ε.

Numerical estimate of the breakdown value In both examples, we have computed the
invariant tori and their invariant bundles, and estimated the critical values εc, using the different
Fourier methods of [13] and computing periodic orbits for rational approximations p

q of the rotation
number ω. These methods produce similar results. Table 1 reports the results using rational
approximations for κ = 1.3.

p q εc Λc

610 987 1.235277250097 1.417569758833
987 1597 1.235276717863 1.427183182503
1597 2584 1.235275424968 1.432628905747
2584 4181 1.235275700525 1.433722000980
4181 6765 1.235275563425 1.436571048918
6765 10946 1.235275611145 1.436207590892
10946 17711 1.235275532096 1.438434241268
17711 28657 1.235275530445 1.438634421523
28657 46368 1.235275526435 1.438911614742
46368 75025 1.235275527297 1.438984187196
75025 121393 1.235275526916 1.439054814648
121393 196418 1.235275527050 1.439063207687
196418 317811 1.235275526794 1.439115016429
317811 514229 1.235275526794 1.439117250462
514229 832040 1.235275526885 1.439118021353
832040 1346269 1.235275526763 1.439124814800
1346269 2178309 1.235275526763 1.439124666214
2178309 3524578 1.235275526763 1.439124723263
3524578 5702887 1.235275526763 1.439124701574

Table 1: Critical εc where the transition occur and their Lyapunov multiplier Λc for each of the
partial convergent of the golden mean with denominator less than 6 · 106. κ = 1.3. The bold digits
represent the right digits, with respect to the values obtained for the biggest denominator.

4.2 Computer Validations

In this section we report computer validations of the invariant tori for the non-smooth bifurcation
scenario, for κ = 1.3 with εc = 1.2352755. This is a challenging example because the invariant
subbundles near the bifurcation are quite wild. Thousands of Fourier modes are needed in order
to have good initial data for the validation algorithm.

Remark 4.2. In the smooth bifurcation scenario, the initial data required in order to get successful
validations near the bifurcation value need no more than one hundred Fourier modes. For κ = 0.3,
we have validated the FHIT for ε = 1.3364, which is at a relative distance of 3·10−4 of the estimated
bifurcation value εc ≈ 1.3364054.

In a first run, we have validated tori Kε for values of ε in a grid of step size ≤ 10−2 of the
parameter interval [0, 1.2351]. Note that the difference between the predicted breakdown value εc
and the last validation ε = 1.2351 is less than of order 1.8 · 10−4. The results of this first run are
reported in figure 3. We observe that, as ε increases, the upper bounds of the validation algorithm
h and r0, that measure the quality of the approximate invariant torus, increases, while the lower
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Figure 1: Smooth bifurcation: invariant torus and its subbundles for κ = 0.3 , and the observables
measuring hyperbolicity, near the bifurcation value εc ≈ 1.3364054.
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Figure 2: Nonsmooth bifurcation: invariant torus and its subbundles for κ = 1.3 , and the observ-
ables measuring hyperbolicity, near the bifurcation value εc ≈ 1.2352755.

13



bound of r1, that measures the size of the uniqueness strip, decreases. We also observe that the
upper bounds µ and ρΛ, that measure the quality of the approximate invariant bundles, increase.
The number of Fourier modes required in the validations increases from 0 to 1280.
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Figure 3: Data output obtained from the validations of the invariant tori and their invariant
bundles for κ = 1.3 with respect to ε. See text for more details.

In order to illustrate the validation algorithm for families of FHIT, we have used it to validate
the whole family in the parameter interval ε ∈ [0, 1.073969], with Fourier models of order 100. The
main problem in order to validate further the family is that the width of the parameter intervals
required in the algorithm is too small, of order 10−6.

In a final run, we have validated the initial data for the values ε = 1.235270, 1.235273, 1.235275,
with Lyapunov multipliers Λ = 1.442582, 1.441463, 1.440193, respectively, in order to check the
applicability of the validation algorithm extremely close to the non-smooth bifurcation. The output
results obtained are shown in table 2. Note that the difference between 1.235275 and the predicted
bifurcation value, 1.2352755, is less than 5.3 · 10−7.

5 Example 2: computer validations for noninvertible skew
products

In this section we report computer validations of existence of invariant tori for a noninvertible map,
the quasiperiodically driven logistic map. Special emphasis is put on validation of non-reducible
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ε 1.235270 1.235273 1.235275

h 2.853269e-03 8.140590e-03 8.928078e-02
r0 1.302039e-07 2.490723e-07 1.035418e-06
r1 9.100589e-05 6.069352e-05 2.107294e-05
µ 1.825306e-03 5.188943e-03 3.841927e-02
ρΛ 1.370355e-03 3.900239e-03 2.985134e-02

order 5802 7918 27692
time (minutes) 103 154 1094

Table 2: Validation results of invariant tori of the quasiperiodically forced standard map for three
ε values near the predicted breakdown. Note that the order of the Fourier models and the time of
validation, increase as ε increase.

tori for values close to their breakdown.

5.1 Numerical exploration of invariant curves in the quasiperiodically
driven logistic map

The driven logistic map is defined as the skew product

(F, ω) : R× T −→ R× T
(z, θ) −→ (a(1 +D cos(2πθ))z(1− z), θ + ω) , (11)

where ω = 1
2 (
√

5−1); and a andD are parameters. We will fixD = 0.1 and let a > 0 vary. This map
has been the target of several numerical studies, see for example [17, 2], where the authors explore
numerically the creation of SNA (Strange Nonchaotic Attractor) via the non-smooth collision of
attracting and repellor curves (the Heagy-Hammel route).

In figure 4(a) appears the bifurcation diagram (with respect to a) of the invariant objects,
while in figure 4(b) appears the corresponding Lyapunov multipliers. A particularly simple case
is the zero-curve xa(θ) = 0, for which the Lyapunov multiplier can be analytically computed
(see e.g. [19]): Λ(a) = a

2

(
1 +
√

1−D2
)
. Hence, for D = 0.1, the zero-curve is attracting if

a < 2(1 +
√

0.99)−1 and repelling if a > 2(1 +
√

0.99)−1 ' 1.002512.
Now, let’s explain the other invariant curves and their bifurcations, labelled in figure 4(b):

A) a ∈ (0, 1.002512) : There is a reducible repellor curve. As a → 0 this curves tends to a−1
a ,

and its Lyapunov multiplier approaches 2. As a→ 1.002512 this curves tends to 0.

B) a ∈ (1.002512, 1.854419) : There is a reducible attracting curve with positive Lyapunov
multiplier (0 < Λ < 1). This curve comes from a transcritical bifurcation between the
zero-curve x(θ) = 0 and the repellor curve of region A.

C) a ∈ (1.854419, 2.406952) : There is a non-reducible attracting curve, that is, its transfer
matrix vanishes at some points. This curve belongs to the same family of the curve of region
A.

D) a ∈ (2.406952, 3.141875) : There is a reducible attracting curve with negative Lyapunov
multiplier (−1 < Λ < 0). This curve also belongs to the same family of curves of regions B
and C.

E) a ∈ (3.141875, 3.271383) : The attracting curve of region D suffers a period doubling bifurca-
tion. In region E, there is a period 2 attracting curve and a period 1 repellor curve (see figures
5(a) and 5(b) for the corresponding Lyapunov multipliers). For values a ∈ (3.141875, 3.17496)
the period 2 attracting curve is reducible and for values a ∈ (3.17496, 3.271383) it is non-
reducible.
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At a near 3.271383 the period 2 attracting curve collides in a non-smooth way with the
repellor curve, bifurcating to a SNA. This is the so-called Heagy-Hammel fractalization route.
Figures 6(a) and 6(b) show these invariant objects before and after the bifurcation.

F) a ∈ (3.271383,∞) : The repellor curve exists for all these values. The SNA seems to persist for
values in a ∈ (3.271383, 3.2746), and afterwards its apparently bifurcates into a SA (Strange
Attractor), with Lyapunov multiplier bigger than 1.
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Figure 4: Bifurcation diagram of the invariant curves and their Lyapunov multipliers, with respect
to parameter a. See text for further details.
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5.2 Numerical computation of the initial data

In this section, we expose how to compute the initial data K,P1, P2,Λ for attracting curves of the
noninvertible 1D skew product (F, ω). Similar methods can be applied for repelling curves, by
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using a right inverse of the map (i.e., one of the branches of the inverse of (F, ω)).
The approximately invariant torus K can be computed using the simple iteration algorithm,

since the invariant torus is attracting. The number of iterations needed to have a good approx-
imation depends heavily on the modulus of the Lyapunov multiplier. In our computations, the
number of iterations does not exceed 1010 simple iterations.

More challenging is the computation of the initial data P1, P2, Λ, since even though the transfer
matrix M is contracting “in average”, it does not mean that it is uniformly contracting for the
supremum norm. The condition of invertibility of the transfer matrix plays a key role in this
computation. We have consider two methods in order to overcome these computational problems.

Lyapunov metric This is a general construction when dealing with uniform hyperbolicity [3].
In the 1D case, for an uniformly attracting torus with transfer matrix M and Lyapunov multiplier
λ, this metric is given by |v|θ = S(θ)|v|, where S : T→ [1,∞) is the continuous function

S(θ) =
∞∑
j=0

1
λ̄j
|M(θ + (j − 1)ω) · · ·M(θ)|, (12)

where 1 > λ̄ > |λ|+ ε, for sufficiently small ε > 0. Instead of considering this Lyapunov metric, we
consider the transformations P1(θ) = 1

S(θ) and P2(θ) = S(θ). Hence, we just define the continuous
function

Λ(θ) = P2(θ + ω)M(θ)P1(θ) = sgn(M(θ))
(
S(θ)− 1
S(θ)

)
λ̄, (13)

where sgn(·) is the sign function. Then, |Λ(θ)| < 1 for all θ ∈ T.

Reducibility and almost reducibility to constant coefficients The goal of reducibility
method is to reduce the transfer matrix to a constant Λ, which satisfies

M(θ)P1(θ) = P1(θ + ω)Λ, (14)

for a suitable transformation P1. If M(θ) is invertible for all θ ∈ T, this equation is solved by taking
logarithms and solving the obtained small divisors equations by matching the Fourier coefficients.
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If M(θ) has zeroes, equation (14) is not well-defined. Hence, we can not reduce M(θ) to
constant coefficients. To overcome this difficulty, we consider the modified equation

(M(θ)2 + εη(θ))P1(θ)2 = P1(θ + ω)2λ2
ε, (15)

for a suitable function η : T→ (0,+∞) and a sufficiently small ε > 0.

One choice for the function η is η(θ) = 1 −
(
M(θ)
||M ||C0

)2

. This function achieves its maximum

value, 1, when the transfer matrix vanishes and decays rapidly outside its zeroes.
Notice that

λ2
ε = exp

(∫
T

log(M(θ)2 + εη(θ))dθ
)
, (16)

hence we consider ε > 0 such that λε < 1 (notice that λ0 < 1).
By defining

Λ(θ) =
M(θ)√

M(θ)2 + εη(θ)
λε ,

we obtain that P1, P2 = P−1
1 and Λ satisfy equation

P2(θ + ω)M(θ)P1(θ) = Λ(θ) .

Remark 5.1. Even thought the analytical solution of small divisors equations involve the smooth-
ness of the transfer matrix and diophantine properties of the rotation ω. In numerical computations
these equations are solved by matching Fourier coefficients up to a finite order. These are inter-
mediate computations to produce initial data to be validated by our computer programs. In fact,
we give no proof about the reducibility properties of the transfer matrix.

Numerical comparison of both methods The Lyapunov metric method and the almost
reducibility method have been tested for the period 2 attracting curve of the quasiperiodically
driven logistic map, with D = 0.1 and a = 3.250. In this case, the transfer matrix is noninvertible,
hence nonreducible to constant. See figure 7 to check differences between both methods. Notice
that the Fourier coefficients of the reduced matrix Λ(θ) decay slowly when using the Lyapunov
metric method, while they decay exponentially fast when using the almost reducibility method.

5.3 Computer validations

We have validated the invariant curves appearing in the bifurcation diagram in figure 4(a), up to
values of a close to the smooth bifurcations A-B (transcritical) and D-E (period doubling) and the
non-smooth bifurcation E-F. We report here in detail the existence of the repellor in regions E and
F, and the existence of the period 2 attracting curve near the non-smooth bifurcation E-F.

Invariant curves in regions A, B, C and D have been validated using no more than 20 Fourier
modes. The validations near the smooth bifurcations have been performed obtaining results similar
to the ones reported below for the repellor.

5.3.1 Validation of the repellor

Here we explain the validation of the repellor curve. First of all, we validate analytically the
existence of this curve for a ∈ (4.6,∞) and then, via Computer Assisted Proofs, we validate it for
a ∈ (3.157065, 5) and check that the two families match.
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Figure 7: Graphical comparison of the computed reduced Λ(θ) of the period 2 attracting curve,
for a = 3.25 and D = 0.1.
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Analytic validation For the analytic validation, it is convenient to consider the following right
inverse of (F, ω):

(G,ω) : R× T −→ R× T

(z, θ) −→
(

1
2

+
1
2

√
1− 4

z

a(1 +D cos(2π(θ − ω)))
, θ − ω

)
. (17)

We apply the validation algorithm with the following initial data: K(θ) = a−1
a , P1(θ) = P2(θ) = 1,

Λ(θ) = M(θ) = DzG
(
a−1
a , θ

)
. In the following, we consider the bound

∆ =

√
1− 4(a− 1)

a2(1−D)
.

The constants ρ = 1
2 −

1
a −

1
2∆, σ = τ = 0 and λ = λ̂ = 1

a(1−D)∆ satisfy inequalities 2.1), 2.2),
2.3), 2.4) of the validation theorem 2.4. Inequality 2.5) is satisfied if a > 1

(1−D)∆ .
Choosing r = 2ρ

1−λ , we obtain the upper bound of the second derivative 3.1) to be

b =
2

a2(1−D)2

(
1− 4( a−1

a +r)
a(1−D)

) 3
2
,

from which we obtain h = (1−λ)−2bρ. Fix D, for a > 0 sufficiently big, we obtain h < 1
2 and then

there is a unique invariant torus close to initial data K. In particular, for D = 0.1, we obtain the
crude lower bound a > 4.6 (for which h < 0.45).

Computer validation After we have shown the existence of the repellor curve for values a > 4.6,
we have proved (computer assisted) the existence of the family of the repellor curve for 3.157065 ≤
a ≤ 5, starting at a = 5. This validation has been done, using expression (11), by computing the
initial data using the algorithms exposed in subsection §5.2 with 30 Fourier modes. We emphasize
that the width of the intervals of validation shorten as they approach to the period doubling
bifurcation value a ' 3.143. The algorithm stops when the width of the intervals is less that 10−6,
reaching a = 3.157065. See figure 8(a).

Remark 5.2. The algorithm stops at a distance 1.5 ·10−2 of the predicted bifurcation value because
the Lyapunov multiplier (bounded by λ) of the invariant curve decreases goes to 1.

Remark 5.3. In this computation we have applied 2800 times the validation algorithm and the
time of computation has been around 307 minutes. This means that each validation step, which
consists in computing the initial data, validating the existence and uniqueness of a FHIT near it,
and then, checking the matching, has spent around 6.5 seconds.

In order to show how the upper bounds of the validation algorithm behave near the bifurcation
value, we have applied the validation algorithm for values a = 3.16 + 0.01 · j, with j = 0, . . . , 184,
using 30 Fourier modes. The results are displayed in figures 8(b), 8(c) and 8(d).

Remark 5.4. It is remarkable that, although the validations are done using a library that operates
with intervals in double precision, the errors can achieve order 10−10.

5.3.2 Validation of the period 2 attracting curve

The goal in this subsection is to validate period 2 attracting curves near the predicted non-smooth
bifurcation value a∗ ≈ 3.271. To do so, we have considered the 2 times composition of the driven
logistic map (11):

(F, ω)2 : R× T −→ R× T
(z, θ) −→ (F (F (z, θ), θ + ω), θ + 2ω) . (18)
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Figure 8: Data obtained of the validations of the repellor curve for D = 0.1.
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First, we have performed a numerical study of the regularity of the initial data: the torus K,
the transformations P1 and P2, and the normalized cocycle Λ. Since the associated transfer matrix
M is noninvertible, we have used the almost-reducibility method to compute P1, P2 and Λ. In
figure 9, it is shown, with respect to a, a numerical estimate of the maximum slope of the computed
initial data. Note that P1 is the initial data that has the biggest slope. For example, at a = 3.265
the slope of P1 is 4.3 · 104, while the slopes of the torus and the normalized cocycle are 2.4 · 101

and 3.07 · 103, respectively. Notably, at a = 3.269 the slope of P1 is 4.25 · 106. Hence, P1 is used in
order to determine the number of Fourier modes in the validation process. In figure 10, it is shown
the initial data K (and M), P1 and Λ for a = 3.265 and a = 3.269. Notice that a small change of
the value of a leads to a dramatic change of the initial data.
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Figure 9: Maximum slopes of the period 2 attracting curve K (in red), its P1 transformation (in
green) and the normalized cocycle Λ (in blue), with respect to parameter a.

The validation results for different values of the parameter a are shown in table 3. Note that in
all these validations is that the time computation depends heavily on the regularity of the initial
data.

a 3.265 3.268 3.269
h 3.046383e-05 2.248226e-03 4.203495e-01
r0 5.365990e-09 1.701127e-07 3.635973e-06
ρΛ 5.815762e-03 4.542701e-04 -

order 3000 17000 27000
time (minutes) 5 130 361

Table 3: Validation results of the period 2 invariant torus of the driven logistic map for different
values of a close to breakdown.

6 Final comments

The main message of this paper is that good numerics lead to successful validations. Notably, the
knowledge of the dynamics around the torus is an important ingredient for an accurate numerical
computation.

The computational time of the validation algorithms depends primarily on the regularity of the
initial data, and hence, their number of Fourier modes. The most expensive computations with
Fourier models are the product and the evaluation. Although the times reported in this paper
correspond to computations with a single processor, we have also used the library OpenMP (see [7])
in order to have parallel computations (by distributing the product and evaluation routines on the
processors).
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Figure 10: Graphs of the initial data close to the breakdown of the period 2 curve.
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The models worked out in this paper have simple analytic expressions. But our validation
algorithms can be applied to more general models, as long as we are capable of evaluating the map
(and its first and second derivatives). For instance, for a skew product flow, we can consider its
Poincaré map [4, 31]. In these general cases, we substitute the Fourier arithmetics by the upper
bounds of the validation theorem. Nevertheless, in the examples of this paper this methodology is
not as accurate, especially in the extreme cases we consider. For instance, in the Heagy-Hammel
fractalization route, for a = 3.265, the validation of the period 2 attracting curve has been per-
formed with 3000 Fourier modes. While the direct evaluation method needs about 1255319 interval
subdivisions of [0, 1] in order to achieve the same accurate results.
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